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tTwo general algorithms based on opportunity 
osts are given for approximating a revenue-maximizing set of bids an au
tioneer should a

ept, in a 
ombinatorial au
tion in whi
hea
h bidder o�ers a pri
e for some subset of the available goods and the au
tioneer 
an onlya

ept non-interse
ting bids. Sin
e this problem is diÆ
ult even to approximate in general,the algorithms are most useful when the bids are restri
ted to be 
onne
ted node subsetsof an underlying obje
t graph that represents whi
h obje
ts are relevant to ea
h other. Theapproximation ratios of the algorithms depend on stru
tural properties of this graph and aresmall 
onstants for many interesting families of obje
t graphs. The running times of thealgorithms are linear in the size of the bid graph, whi
h des
ribes the 
on
i
ts between bids.Extensions of the algorithms allow for eÆ
ient pro
essing of additional 
onstraints, su
h asbudget 
onstraints that asso
iate bids with parti
ular bidders and limit how many bids froma parti
ular bidder 
an be a

epted.1 Introdu
tionAu
tions are arguably the simplest and most popular means of pri
e determination for multilateraltrading without intermediary market makers [9,18,25,35℄. This paper 
onsiders the setting wherethere are (1) a group of 
ompeting bidders who bid to possess the au
tion obje
ts and (2) anau
tioneer who determines whi
h bidders win whi
h obje
ts.For the 
ase of allo
ating a single obje
t to one of many bidders, there is a wealth of literatureon the following four widely used forms of au
tion [18,25,26℄. In an English au
tion or as
endingbid au
tion, the pri
e of an obje
t is su

essively raised until only one bidder remains and winsthe obje
t. In a Dut
h au
tion, whi
h is the 
onverse of an English au
tion, an initial high pri
e issubsequently lowered until a bidder a

epts the 
urrent pri
e. In a �rst-pri
e sealed-bid au
tion,potential buyers submit sealed bids for an obje
t. The highest bidder is awarded the obje
tand pays the amount of her bid. In a se
ond-pri
e sealed-bid au
tion, the highest bidder winsthe obje
t but pays a pri
e equal to the se
ond-highest bid. In all these forms of au
tion, theau
tioneer 
an determine the winning bid in time linear in the number of bids in a straightforwardmanner.�Department of Computer S
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For the 
ase of allo
ating multiple obje
ts to multiple bidders [8,12,17,20,21,27℄, 
ombinato-rial au
tions are perhaps the most important form of au
tions in the Internet Age, where biddersare in
reasingly software agents. Oftentimes a bid by an agent is a subset of the au
tion obje
ts,and the agent needs the entire subset to 
omplete a task. Di�erent bids may share the sameobje
t, but the winning bids must not share any obje
t [24℄. Combinatorial au
tions were �rstproposed by Rassenti et al. [29℄ as one-round me
hanisms for airport time slot allo
ation. Bankset al. [3℄, DeMartini et al. [10℄, and Parkes and Ungar [28℄ formulated multiple-round me
hanisms.It is in general NP -hard for the au
tioneer to determine a set of winning bids of a 
ombinatorialau
tion whi
h maximizes the revenue of the au
tion. To address this 
omputational diÆ
ulty,Rothkopf et al. [33℄ pla
ed 
onstraints on permissible bids. Lehmann et al. [22℄ and Fujishimaet al. [11℄ 
onsidered approximation algorithms. Sandholm and Suri [34℄ designed anytime algo-rithms, whi
h return a sequen
e of monotoni
ally improving solutions that eventually 
onvergesto optimal.In this paper, we propose a general framework to exploit topologi
al stru
tures of the bids todetermine the winning bids with a provably good approximation ratio in linear time. The followingdis
ussion uses the sale of a 
ar as a light-hearted example to explain our 
omputational problemsand key 
on
epts.Imagine that we are in the business of au
tioning used 
ars. If we insist on selling ea
h 
aras a unit, we 
an sell ea
h 
ar to the highest bidder. If we are willing to sell parts of the 
ar, we
an still sell ea
h part to the highest bidder. But suppose that some bidders are only interestedin buying several parts at on
e: Ali
e may not want to buy a tire unless she 
an get the wheelthat goes with it, while Bob might only be interested in both rear wheels and the axle betweenthem. How do we de
ide whi
h of a set of 
on
i
ting bids to a

ept?We will assume that our only goal is to maximize our total revenue. Then we 
an express thisproblem as a simple 
ombinatorial optimization problem. We have some universe O of obje
ts,and our buyers supply us with a set A of bids. The i-th bid 
onsists of a subset Ai of O and apri
e pi that the buyer is willing to pay for all of the obje
ts in Si. We would like to 
hoose a
olle
tion of bids B � A that yields the best possible total pri
e while being 
onsistent, in thesense that no two sets Ai and Aj in B overlap.As the au
tioneer, we 
an 
onstru
t a bid graph G whose nodes are the bids and whi
h hasan edge between any two bids that share an obje
t. Then, a set of 
onsistent bids is simply anindependent set in G, i.e., a set of nodes no two of whi
h are 
onne
ted by an edge. Ea
h nodeis given a weight equal to the value of the bid it represents.Sadly, this means that the problem of �nding the most valuable 
onsistent set of bids is athinly-disguised version of the maximum weight independent set problem, whi
h is not only NP -hard, but 
annot be approximated to within a ratio O(n1��) for an n-node graph unless P = NP[16℄.1 Even for the simplest 
ase when all node weights are one, the maximum weight independentset problem is NP -hard even when every vertex has degree at most d for any d � 3, and in fa
t
annot be approximated within a ratio of d" for some " > 0 unless P = NP [1℄. The best knownalgorithm (for arbitrary d) a
hieves an approximation within a fa
tor of O(d= log log d) [15℄. Asa result, it seems hopeless if we model our 
ombinatorial au
tion problem as an independent setproblem unless we exploit the topologi
al stru
ture of the underlying bid graph.Using ideas from the interval sele
tion algorithm of Berman and DasGupta [7℄, we des
ribe inSe
tion 2 a linear-time improvement of the greedy algorithm, 
alled the opportunity 
ost algorithm,1The fa
t that the bid graph is de�ned by the interse
tions of a 
olle
tion of sets does not by itself help; anygraph 
an be de�ned in this way. 2



for approximating maximum weight independent sets in ordered graphs.2 We then des
ribea similar algorithm 
alled the lo
al ratio opportunity 
ost algorithm, based on ideas from theresour
e allo
ation algorithms of Bar-Noy et al. [4℄. Both algorithms produ
e the same output,but the �rst has a more iterative stru
ture and is easier to implement while the se
ond has amore re
ursive stru
ture and is easier to analyze.These opportunity 
ost algorithms distinguish themselves from the straightforward greedyalgorithm by taking into a

ount the 
ost of ex
luding previously 
onsidered neighbors of a 
hosennode. Sin
e this a

ounting requires propagating information only between neighbors, it in
reasesthe running time by at most a small 
onstant fa
tor, and yet in many 
ases produ
es a greatimprovement in the approximation ratio. The quality of the approximation depends on the lo
alstru
ture of the ordered input graph G. For ea
h node v in G, we examine all of its su

essors(adja
ent nodes that appear later in the ordering). The maximum size of any independent setamong v and its su

essors is 
alled the dire
ted lo
al independen
e number at v; we will write itas �(v). The maximum value of �(v) over all nodes in the graph will be written as �(G),3 andis the dire
ted lo
al independen
e number of G. Our algorithms approximate a maximum weightindependent set to within a fa
tor of �. By 
omparison, the greedy algorithm approximates amaximum weight independent set within a ratio of the maximum size of any independent subsetof both the prede
essors and the su

essors of any node, whi
h in general 
an be mu
h largerthan � (see Se
tion 2).These new approximation results are useful only if we 
an exhibit interesting 
lasses of graphsfor whi
h � is small. Graphs with � = 1 have been extensively studied in the graph theory liter-ature; these are known as 
hordal graphs, and are pre
isely those graphs that 
an be representedas interse
tion graphs of subtrees of a forest, a 
lass that in
ludes both trees and interval graphs(more details are given in Se
tion 3.1). We give additional results showing how to 
ompute upperbounds on � for more general 
lasses of graphs in Se
tions 3.2 and 3.3.Among these tools for bounding �, one of parti
ular interest to our hypotheti
al 
ombinatorialau
tioneer is the following generalization of the fa
t that interse
tion graphs of subtrees have �equal to one. Suppose that we have an obje
t graph whose nodes are obje
ts and in whi
h anedge exists between any two obje
ts that are relevant to ea
h other in some way. (In the 
arexample, there might be an edge between a wheel and its axle but not between a wheel and thehood ornament.) We demand that the obje
ts in ea
h bid be germane in the sense that theymust form a 
onne
ted node subset of the obje
t graph. For many sparse obje
t graphs, theinterse
tion graph of all 
onne
ted sets of verti
es 
an be ordered so that a later set interse
tsan earlier set only if it interse
ts a \frontier set" that may be mu
h smaller than the earlier set.It is immediate that � for the interse
tion graph is bounded by the size of the largest frontierset (more details are given in Lemma 8). Examples of su
h graphs are those of low treewidth(Theorem 9) and planar graphs (Corollary 10).In Se
tion 4 we show how to handle more 
omplex 
onstraints on a

eptable sets of bids. Weinvestigate s
enarios where bids are grouped by bidder, and that ea
h bidder is limited to somemaximum number of winning bids (an unweighted budget 
onstraint), or some maximum total 
ostof winning bids (a weighted budget 
onstraint). By 
harging later bids an approximate opportunity
ost for earlier bids in the same budget groups, we 
an solve these problems approximately withratio � + 1 with unweighted 
onstraints and 2� + 3 for weighted 
onstraints. The results forunweighted budget 
onstraints 
an be further generalized for more 
ompli
ated 
onstraints.2These are graphs in whi
h the nodes have been assigned an order; as we will see in Se
tion 3.5, the 
hoi
e oforder for a given bid graph 
an have a large e�e
t on how good an approximation we 
an get.3Or simply � when G is 
lear from the 
ontext. 3



Finally, in Se
tion 5 we dis
uss some open problems suggested by the 
urrent work.2 Simple 
ombinatorial au
tionsIn this se
tion, we des
ribe our algorithms for approximating the maximum weight independentset problem, the opportunity 
ost algorithm and the lo
al ratio opportunity 
ost algorithm . Bothalgorithms return the same approximation.2.1 The opportunity 
ost algorithmWe will write u! v if uv 2 E and 
all u a prede
essor of v and v a su

essor of u. The set of allprede
essors of u will be written as Æ�(u) and the set of all su

essors as Æ+(u).Given a dire
ted a
y
li
 graph G0 = (V0; E0) with weights weight(v) for ea
h v in V , theopportunity 
ost algorithm, Op
ost, pro
eeds in two stages:OC1 Traversing the nodes a

ording to the topologi
al order of G0, 
ompute a value value(u) forea
h node u. This value represents an estimate of the gain we expe
t by in
luding u in theindependent set; it is 
omputed by taking the weight of u and subtra
ting o� an opportunity
ost 
onsisting of the values of earlier positive-value nodes that 
on
i
t with u. Formally,let value(u) = weight(u)�Xv!umax(0; value(v)): (1)OC2 Pro
essing the nodes in reverse topologi
al order, add any node with non-negative value tothe desired independent set B and dis
ard its prede
essors. Formally, letsele
t(u) = [value(u) � 0℄ ^ 8v 2 Æ+(u) : : sele
t(v): (2)The output of the algorithm is the set B de�ned as all u for whi
h sele
t(u) is true. This setB is 
learly independent. In Se
tion 2.3, we examine how 
lose B is to optimal.2.2 The lo
al ratio opportunity 
ost algorithmThe lo
al ratio te
hnique 
an be used to re
ursively �nd approximate solutions to optimizationproblems over ve
tors in Rn , subje
t to a set of feasibility 
onstraints. It was originally developedby Bar-Yehuda and Even [6℄, and later extended by Bafna et al. [2℄, Bar-Yehuda [5℄, and Bar-Noyet al. [4℄.Let w 2 Rn be a weight ve
tor. Let F be a set of feasibility 
onstraints. A ve
tor x 2 Rn isa feasible solution to a given problem (F;w) if it satis�es all the 
onstraints in F . The w-weightof a feasible solution x is de�ned to be the dot-produ
t w � x; for r � 1, x is an r-approximationwith respe
t to (F;w) if r �w �x � w �x�, where x� is a feasible solution maximizing the w-weight.An algorithm is said to have an approximation ratio of r if it always returns an r-approximatesolution.Lemma 1 (Lo
al Ratio Lemma [6℄) Let F be a set of feasibility 
onstraints. Let w, w1 andw2 be weight ve
tors su
h that w = w1 + w2. If x is an r-approximation with respe
t to (F;w1)and (F;w2), then x is an r-approximation with respe
t to (F;w).4



We now des
ribe the lo
al ratio opportunity 
ost algorithm, LR-Op
ost. Given a dire
teda
y
li
 graph G0 = (V0; E0) with weights weight(v) for ea
h v 2 V0, we pass (G0;weight(�)) to thefollowing re
ursive pro
edure. This pro
edure takes as input a graph G and a weight fun
tion wand pro
eeds as follows:LR1 Delete all nodes in G with non-positive weight. Let this new graph be G2.LR2 If G2 has no nodes, return the empty set.LR3 Otherwise, sele
t a node u with no prede
essors in G2, and de
ompose the weight fun
tionw as w = w1 +w2, where w1(v) = (w(u) if v 2 fug [ Æ+(u),0 otherwise,and w2 = w � w1.LR4 Solve the problem re
ursively using (G2; w2) as input. Let B2 be the approximation to amaximum weight independent set returned by this re
ursive 
all.LR5 If B2 [ fug is an independent set, return B = B2 [ fug. Otherwise, return B = B2.Theorem 2 Op
ost and LR-Op
ost return the same approximation to a maximum weightindependent set.Proof: Consider a re
ursive 
all C of LR-Op
ost. Let u be the node that is sele
ted to bepro
essed in step LR3. All of u's prede
essors in the original graph G0 have either been pro
essedin a previous step LR3 or deleted in some step LR1. Therefore, the 
urrent weight of u, w(u), asseen by the re
ursive 
all C, is just value(u), as de�ned in step OC1 of Op
ost. Furthermore,we add node u to our independent set in step OC2 if and only if we add u to our independent setin step LR5.2.3 Approximation ratiosTheorem 3 Op
ost and LR-Op
ost return a �(G)-approximation to a maximum weight in-dependent set. Furthermore, there exist weights for whi
h this bound is tight.Proof: We will prove the result for LR-Op
ost. The full result follows from Theorem 2.Clearly, the returned set of nodes B is an independent set. By Lemma 1, we need only showthat B is a �-approximation with respe
t to w1 and w2. We will prove this by indu
tion on there
ursion. The base 
ase of the re
ursion is trivial, sin
e there are no positive weight nodes.For the indu
tive step, assume that B2 is a �-approximation with respe
t to w2. Then B isalso a �-approximation with respe
t to w2 sin
e w2(u) = 0 and B � B2 [ fug.To show that B is a �-approximation with respe
t to w1, we will derive an upper bound �w(u)on the maximum w1-weight independent set and a lower bound w(u) on the w1-weight of anyu-maximal independent set of nodes. A u-maximal independent set of nodes either 
ontains u oradding u to it violates the property that it is an independent set. Our w1 performan
e bound is�w(u)=w(u) = �. Note that only u and its su

essor nodes will have a nonzero 
ontribution tow1-weight. 5



The total weight of a maximum w1-weight independent set is at most �(u)w(u) � �(G)w(u) =�w(u). The total weight of any u-maximal independent set is at least w(u), sin
e any su
h set
ontains at least one element of u [ Æ+(u), and all su
h nodes are assigned weight w(u). Sin
ethe algorithm always 
hooses a u-maximal set, its w1 performan
e bound is �.To show the bound is tight, pi
k some v that maximizes �(v), and assign it weight 1 and allof its su

essors weight 1 � �, where � > 0. Let every other node in G have weight 0. When werun Op
ost, the value of v will be 1, the value of ea
h of its su

essors will be ��, and the valueof any other node is irrelevant be
ause it has zero weight. Thus Op
ost returns a set of totalweight 1 but the maximum weight independent set has total weight at least �(u) � (1� �).2.4 Running timeTheorem 4 The running times of both Op
ost and LR-Op
ost are linear in the size of theinput graph G0.Proof: Op
ost 
omputes value(v) for ea
h node v in time proportional to its indegree,and 
omputes sele
t(v) for ea
h node in time proportional to its outdegree, for a total time ofO(jV0j+ jE0j). In the 
ase of LR-Op
ost, a re
ursive 
all is made at most on
e for ea
h node inthe graph, and de�ning w1 and w2 in ea
h 
all takes time proportional to the node's outdegree,for a total running time of O(jV0j+ jE0j).3 Properties of �For any v, �(v) is at most the larger of 1 or the outdegree of v. Thus, �(G) is at most the largerof 1 or the maximum degree of G. In many 
ases we 
an use the stru
ture of G to get a mu
hbetter bound.3.1 Graphs with � = 1Graphs with orientations for whi
h � = 1 
an be 
hara
terized 
ompletely. These are the 
hordalgraphs, also known as triangulated graphs or rigid 
ir
uit graphs. The de�ning property of a
hordal graph is that no 
y
le of length 4 or more appears as an indu
ed subgraph. A su

in
tdis
ussion of these graphs, in
luding a variety of 
hara
terizations as well as several examples ofinteresting families of 
hordal graphs, 
an be found in [14, pp. 280{281℄. For our purposes themost useful of these 
hara
terizations are stated in the following lemma:Lemma 5 Let G be an undire
ted graph. Then the following properties of G are equivalent:1. G is 
hordal.2. G is the interse
tion graph of subtrees of a forest.3. G has an ordering G0 for whi
h the su

essors of any node form a 
lique. Su
h an orderingis 
alled a perfe
t elimination ordering. Restated in terms of �, G has an ordering G0 forwhi
h �(G0) = 1.
6



Proof: See [14, pp. 280-281℄.Chordal graphs 
an be re
ognized and ordered using a spe
ialized version of breadth-�rstsear
h in O(jV j + jEj) time as shown by Rose et al. [32℄, and their maximum 
ardinality inde-pendent sets 
an be 
omputed in O(jV j+ jEj) time as shown by Gavril [13℄. Gavril's algorithmis essentially the same as step OC1 of the opportunity 
ost algorithm; it 
hooses all nodes withpositive value and works be
ause the sets fv : u ! vg for ea
h u in the independent set form a
lique 
overing. However, this algorithm does not deal with weights.Spe
ial 
ases of graphs with � = 1 in
lude trees, interval graphs, and disjoint unions of 
liques.The last are parti
ularly ni
e:Lemma 6 Let G be a disjoint union of 
liques. Then every orientation G0 of G has �(G0) = 1.Proof: For ea
h u in G0, Æ+(u) is a 
lique.3.2 Graphs with larger � valuesFor general graphs, we 
annot 
ompute � even approximately. However, we 
an bound the �values of many graphs using the tools in this se
tion.Lemma 7 Let G be a dire
ted graph.1. If G = G1 [G2, then �(G) � �(G1) + �(G2).2. If G is a node-indu
ed subgraph of H, then �(G) � �(H).Proof: Let u be a node of G. Let Æ+(u), Æ+1 (u), Æ+2 (u), and Æ+H(u) be the set of all su

essorsof u in G, G1, and G2, respe
tively. Let A be any independent subset of Æ+(u). Then1. jAj � jA \ Æ+1 (u)j+ jA \ Æ+2 (u)j � �(G1) + �(G2), and2. A is an independent subset of Æ+H(u), implying jAj � �(H).Lemma 8 Let G be the interse
tion graph of a set system A whose union is O. Let G be orderedby an ordering < su
h that for ea
h A 2 A there exists a \frontier set" SA � U of size at mostk, so that if A < B and A \ B 6= ;, then SA \ B 6= ;. Then �(G) � k. (Note that SA need notbe 
ontained in A.)Proof: Let B1; : : : ; Bl be some independent set of su

essors of A. Under the 
onditionsof the lemma ea
h Bi interse
ts SA. But sin
e the Bi do not themselves interse
t, ea
h mustinterse
t SA in a distin
t element. Thus there are at most k of them.The 
onverse of the lemma does not hold. Instead, its proof shows that the 
lique 
overingnumber � of Æ+(A) (de�ned as the minimum size of any set of 
liques whose union is Æ+(A)) is atmost k, sin
e the set of all B that interse
t SA at any parti
ular element form a 
lique. Note thatany dire
ted a
y
li
 graph in whi
h �(Æ+(v)) is bounded 
an be represented as an interse
tiongraph with small frontier sets as in Lemma 8,4 in general the independen
e number of Æ+(v) maybe smaller than the 
lique 
overing number.4The tri
k is to add a new 
ommon element to all members of ea
h 
lique, and let SA be the set of all su
h newelements for the 
liques that 
over Æ+(A). 7



When A 
onsists of 
onne
ted node subsets of some graph H, we 
an obtain good orderingsof the interse
tion graph G of A by exploiting the stru
ture of H.We start by reviewing the de�nition of treewidth. A tree de
omposition of an undire
ted graphH = (V;E) 
onsists of a tree T and a family of sets V = fVtg where t ranges over nodes of T ,satisfying the following three properties:1. St2T Vt = V .2. For every edge uv in E, there is some Vt that 
ontains both u and v.3. If t2 lies on the unique path from t1 to t3 in T , then Vt1 \ Vt3 � Vt2 .The width of a tree de
omposition (T;V) is max jVtj � 1. The treewidth tw(H) of a graph His the smallest width of any tree de
omposition of H.Theorem 9 If G is an interse
tion graph of 
onne
ted node subsets A of some graph H withtreewidth k, then there is an orientation G0 of G with �(G0) � k+1. Given A = fAig and a treede
omposition (T;V = fVtg) of H, this orientation 
an be 
omputed in time O(Pi jAij + jT j +Pt jVtj), whi
h is linear in the size of the input.Proof: Let (T;V) be a tree de
omposition of H with width k. We will use this treede
omposition to 
onstru
t an ordering of the 
onne
ted node subsets of H, with the propertythat if A < B then either A \ B = ; or B interse
ts some frontier set SA with at most k + 1elements. The full result then follows from Lemma 8.Choose an arbitrary root r for T , and let t1 � t2 if t1 is an an
estor of t2 in the resultingrooted tree. Extend the resulting partial order to an arbitrary linear order. For ea
h 
onne
tednode subset A of H, let tA be the greatest node in T for whi
h VtA interse
ts A. Given two
onne
ted node subsets A and B of H, let A < B if tA < tB and extend the resulting partialorder to any linear order.Ordering T 
an be done in O(jT j) time using depth �rst sear
h. We 
an then 
ompute andthe maximum node in T 
ontaining ea
h node of H in time O(Pt Vt) by 
onsidering ea
h Vt inorder. The �nal step of ordering the Ai in the given set system S takes O(Pi jAij) time, sin
ewe must examine ea
h element of ea
h Ai to �nd the maximum one. The total running time isthus linear in the size of the input.Now suppose A � B in this ordering. We will show that any su
h B interse
ts VtA , and thusthat VtA is our desired frontier set SA. There are two 
ases.If tA = tB , we are done.The 
ase tA < tB is more 
ompli
ated. We will make heavy use of a lemma from [31℄, whi
h
on
ern the e�e
t of removing some node t from T . Their Lemma 2.3 implies that if x; x0 are notin Vt, then either x and x0 are separated in H by Vt or x and x0 are in the same bran
h (
onne
ted
omponent) of T � t.Let p be the parent of tA (whi
h exists be
ause tA is not the greatest element in the treeordering). We have A \ Vp = ; sin
e p > tA. Sin
e A is a 
onne
ted set, it 
annot be separatedwithout removing any of its nodes; thus by Lemma 2.3 every element of A is in the same bran
hof T � p, whi
h 
onsists pre
isely of the subtree of T rooted at tA.Now B 
ontains at least one node x in the vertex set of an element of the subtree rooted attA, and at least one node x0 in VtB , whi
h is not in this subtree be
ause tB > tA. So by Lemma2.3 of [31℄, either one of x; x0 is in VtA or B is separated by VtA . In the latter 
ase B interse
tsVtA sin
e B is also 
onne
ted.Applying Theorem 9 to planar graphs gives:8



Corollary 10 If G is the interse
tion graph of a family A of 
onne
ted node subsets of a planargraph H with n nodes, then there is an orientation G0 of G with �(G0) = O(pn). Given H, adata stru
ture of size O(n) 
an be pre
omputed in time O(n logn) that allows this orientation G0to be 
omputed for any A = fAig in time O(Pi jAij).Proof: Reed [30℄ gives a re
ursive O(n logn) algorithm for 
omputing tree de
ompositions of
onstant-treewidth graphs based on a linear time algorithm for �nding approximate separators forsmall node subsets. Repla
ing this separator-�nding subroutine with the linear time algorithm ofLipton and Tarjan [23℄ gives an O(n log n) time algorithm for 
omputing a tree de
omposition of aplanar graph. Sin
e ea
h separator has size at most k = O(pn), the resulting tree de
ompositionhas width at most 4k = O(pn) by Theorem 1 of [30℄.Sin
e all we need to 
ompute a good ordering of A is the ordering of the n nodes, we 
an
ompute this ordering as des
ribed in the proof of Theorem 9 and represent it in O(n) spa
e byassigning ea
h node an index in the range 1 to n. Ordering A then takes linear time as des
ribedin the proof of Theorem 9.3.3 ExamplesApplying the results of Se
tions 3.1 and 3.2 gives:1. A linear-time algorithm for �nding a maximum weight independent set of an interval graph,sin
e �(G) = 1 by Lemma 5, and sin
e 
hordal graphs 
an be re
ognized and ordered inlinear time using the work of Rose et al. [32℄.While the maximum independent set problem is easily solved for this 
ase (for example, byusing the linear time interval graph re
ognition algorithm of Hsu and Ma [19℄ followed by asimple appli
ation of dynami
 programming) this is an example of how our general methodyields good algorithms as spe
ial 
ases.2. As another spe
ial 
ase, a 2-approximation algorithm for interval sele
tion of Bermanand DasGupta [7℄. Here intervals are partitioned into groups and we must 
hoose non-overlapping intervals with at most one per group. The bid graph G is of the form G1 [G2where G1 is an interval graph and G2 is a disjoint union of 
liques, one for ea
h group. Thus�(G) = 2 by Lemmas 5, 6, and 7.3. A 3-approximation algorithm for \double au
tion" interval sele
tion where ea
h interval hasboth a seller and a buyer, and at most one interval per seller or buyer may be sele
ted.This is the same as the previous 
ase ex
ept the graph is now G1 [G2 [G3 where G2 andG3 are both disjoint unions of 
liques.4. In general, a me
hanism for taking any bid graph with � = k and adding up to m su
hunique-sele
tion 
onstraints to get a (k +m)-approximation algorithm by repeated appli-
ations of Lemmas 6 and 7. So for example we get a 3-approximation algorithm for max-imum weight three-dimensional mat
hing and a 4-approximation algorithm for au
tioningo� tra
ts of undeveloped land spanning intervals where ea
h tra
t must be a

eptable toa seller who provides it, a builder who will develop it, and a buyer who will ultimatelypur
hase both the land and the buildings developed on it.5. An algorithm to k-approximate a maximum weight independent set of any subgraph of ak-dimensional re
tangular grid. Orient ea
h edge to leave the point whose 
oordinates havea smaller sum, giving � � k. 9



6. A linear-time algorithm for 2-approximating a maximum weight independent set of theinterse
tion graph of intervals on a 
y
le. This follows from Lemma 8: order 
onne
tednode subsets by in
lusion, extend to a linear order �, and observe that if A � B and Ainterse
ts B then B interse
ts one of A's two endpoints.57. An algorithm for interse
tion graphs of bounded-height re
tangles in a dis
rete 2D grid.Order the re
tangles by their largest x-
oordinate, and make the rightmost grid points ofea
h re
tangle be its frontier set in the sense of Lemma 8. If ea
h re
tangle is at most htall, there are at most h grid points in ea
h frontier. This generalizes in the obvious wayto higher dimensions given bounds on all but one of the 
oordinates, in whi
h 
ase theapproximation ratio be
omes the produ
t of the bounds.3.4 Hardness of 
omputing �The diÆ
ulty of even approximating the independen
e number of a graph extends to the dire
tedlo
al independen
e number.Theorem 11 Any algorithm that 
an approximate �(G) for an n-node dire
ted a
y
li
 graph Gwith a ratio of f(n) 
an be used to approximate the size �(H) of a maximum independent set ofan undire
ted n-node graph H with ratio f(n+ 1). Thus by H�astad's bound on approximating amaximum 
lique [16℄, we 
annot approximate � by O(n1��) unless P = NP .Proof: Given an undire
ted n-node graph H, 
onstru
t an (n + 1)-node dire
ted a
y
li
graph G by (a) dire
ting the edges of H in any 
onsistent order, and (b) adding a new sour
enode s to H with edges from s to every node in H.Let I be an independent set in H. Then every node in I is a su

essor of s in G, andfurthermore these nodes are all independent. It follows that �(G) � �(s) � �(H).Conversely, if I 0 is an independent set of su

essors of some node v in H, it 
annot 
ontain s(sin
e s is not a su

essor of any node), and thus I 0 is also an independent set in H. So we have�(H) � �(G).3.5 E�e
ts of node orderingThe performan
e of the opportunity 
ost algorithm is strongly sensitive to the order in whi
h thenodes are pro
essed, as this a�e
ts the value of �(u) for ea
h node u. For many of the examplesgiven in the Se
tion 3.3, a good ordering is provided by the stru
ture of the problem. But whathappens in a general graph?Theorem 12 For any graph G with given weights, there exists an orientation G0 of G for whi
hboth Op
ost and LR-Op
ost output a maximum independent set of G.Proof: Let A be any independent set in G. Choose the ordering so that all nodes in Apre
ede all nodes not in A. Then for any u 2 A, u has no prede
essors in the oriented graph andvalue(u) = weight(u).Let A0 be the independent set 
omputed by the algorithm. If u is in A but not A0, it musthave a su

essor v in A0 �A with non-negative value. Sin
e the value of ea
h v is its weight less5One 
an do better by breaking the 
y
le to redu
e it to a standard interval graph problem (see, for example,the approa
h taken by [4℄), but the 2-approximation shows how one 
an still do reasonably well with our generalalgorithms Op
ost and LR-Op
ost. 10



the weight of all its neighbors in A, the total weight of all elements of A0�A must ex
eed the totalweight of all elements in A � A0, and we have weight(A0) = weight(A0 � A) + weight(A0 \ A) �weight(A�A0) + weight(A0 \A) = weight(A).In a sense what Theorem 12 shows is that �nding a good ordering of a general graph isequivalent to solving the maximum weight independent set problem. This is not surprising sin
eevaluating �(u) for even a single node u requires solving this problem. It follows that to get smallapproximation ratios we really do need to exploit some spe
ial property of the given graph.In the other dire
tion, we 
an show that there exist orderings that are not very good:Theorem 13 If all nodes in a graph G have distin
t weights, orienting G in order of de
reas-ing weight 
auses Op
ost and LR-Op
ost to return the same independent set as the greedyalgorithm.Proof: We will prove the result for Op
ost; by Theorem 2 the same result holds forLR-Op
ost.Let � order the nodes in order of de
reasing weight. Let us show by indu
tion on � that ifthe greedy algorithm 
hooses a node v, then value(v) = weight(v); but if the greedy algorithmdoes not 
hoose v, then value(v) < 0. Suppose we are pro
essing some node v and that thisindu
tion hypothesis holds for all nodes previously pro
essed. If the greedy algorithm pi
ks v,then all v's prede
essors were not 
hosen and have negative value, and value(v) = weight(v).If the greedy algorithm does not pi
k v, it is be
ause it 
hose some u ! v; now value(v) �weight(v)� value(u) = weight(v)� weight(u) < 0.Sin
e the only nodes with non-negative weights are those 
hosen by the greedy algorithm,Op
ost sele
ts them as its output.4 Au
tions with budget 
onstraintsConsider the following bidding s
enarios:1. A bidder whose 
ar has broken down wants to buy either a new engine, a new 
ar, or anumbrella and a taxi ride home, but doesn't parti
ularly 
are whi
h. However, she has nointerest in winning more than one of these bids.2. Another bidder wants to buy at most three 1968 Volkswagen Beetle hood ornaments, butshe would like to bid on all that are available so as not to miss any.3. Yet another bidder has only $100 in 
ash, but would like to pla
e multiple bids totalingmore than $100, with the understanding that she 
an only win bids up to her budget.All of these are examples of budget 
onstraints, in whi
h bids in some group 
onsume a 
ommons
ar
e resour
e. We would like to extend our algorithms to handle su
h 
onstraints, whi
h arenatural in real-world bidding situations.The �rst s
enario is an example of a 1-of-n 
onstraint, where at most one of a set of n bids 
anbe a

epted. This spe
ial 
ase 
an be handled by modifying G by forming a 
lique out of all bidsin ea
h set Si; under the assumption that the Si are disjoint, this in
reases � by at most 1 (usingLemmas 6 and 7). The se
ond s
enario depi
ts a more general k-of-n 
onstraint. Su
h 
onstraintsare handled by extending our algorithms to a

ount for the possible revenue loss from bids that11




annot be sele
ted be
ause the budget 
onstraint has been ex
eeded. Again, the approximationratio rises by 1. We refer to both 1-of-n and k-of-n 
onstraints as unweighted budget 
onstraints,as ea
h bid 
onsumes a single unit of the budget.Weighted budget 
onstraints, exempli�ed by the third s
enario, are more 
ompli
ated. Withsu
h 
onstraints, we must ensure that the sum of the weights of a

epted bids in some group Sis at most some bound b. A 
ompli
ation arises be
ause a maximal allowed set of bids mightonly �ll half of a budget limit. With some additional modi�
ations to our algorithms, we get aperforman
e bound of 2� + 3.4.1 Unweighted budget 
onstraintsSuppose the bids are partitioned into groups S1; : : : ; Sr and that no more than ki bids may besele
ted from Si, for 1 � i � r. For ea
h bid u, let g(u) denote the index of the group to whi
h ubelongs and let Su = Sg(u) and ku = kg(u).Unweighted-Op
ost is an extension of Op
ost to handle unweighted budget 
onstraints.It has a similar two-step stru
ture.In the �rst step, like OC1, we traverse the nodes in topologi
al order and 
ompute a valuefor ea
h node. We must extend the de�nition of value for ea
h node to a

ount for the possiblerevenue loss from previously pro
essed bids that may not be sele
ted in the se
ond step be
auseof the budget 
onstraint:value(u) = weight(u)�Xv!umax(0; value(v))� 1ku � Xv2Su�fug;v<umax(0; value(v)); (3)where the notation v < u means that v has already been pro
essed (before u). Note that thein
lusion of u in the set of winning bids does not ne
essarily pre
lude previously pro
essed bidsin Su from also being sele
ted|they may also be sele
ted if the budget ku allows. The 
oeÆ
ient1ku s
ales the opportunity 
ost to a

ount for this fa
t.In the se
ond step, like OC2, we traverse the bid graph in reverse topologi
al order, sele
tingnodes of positive value whose addition to those already sele
ted does not violate the independen
eor budget 
onstraints.Unweighted-LR-Op
ost solves the same problem using the lo
al ratio te
hnique. It followsthe same stru
ture as LR-Op
ost. We begin by deleting all non-positive weight nodes from thegraph. If any nodes remain, we sele
t a node u with no prede
essors, and de
ompose the weightfun
tion into w = w1 + w2. This time, the de
omposition must a

ount for bids that are in thesame budget group. We de�new1(v) = 8><>:w(u) if v 2 fug [ Æ+(u),1kuw(u) if v 2 Su � fug,0 otherwise,and re
ursively solve the problem using w2 as the weight fun
tion. After the re
ursive 
all, wemust de
ide if we should add u to the set of winning bids B2. In LR-Op
ost, we added u to B2if and only if B2 [ fug was an independent set. In this algorithm, we must also ensure that thebudget 
onstraints are satis�ed before adding u to B2. We say that a set of bids is feasible if theyform an independent set and the budget 
onstraints are satis�ed.Theorem 14 Given a dire
ted bid graph G, a partition of the nodes of G into nonempty subsetsS1; : : : ; Sr, and an unweighted budget 
onstraint ki for ea
h Si,12



1. Unweighted-Op
ost and Unweighted-LR-Op
ost return the same approximation toa revenue maximizing set of bids.2. Unweighted-Op
ost and Unweighted-LR-Op
ost (�(G)+1)-approximate an optimalset of bids.3. Unweighted-Op
ost and Unweighted-LR-Op
ost run in time linear in the size of G.Proof: The proof that both algorithms return the same approximation is similar to theproof of Theorem 2.The proof of the approximation ratio follows the same stru
ture as the proof of Theorem 3.We prove the result for Unweighted-LR-Op
ost. By Lemma 1, we need only show that thereturned set of bids B is a (� + 1)-approximation with respe
t to w2 and w1. We do this usingindu
tion on the re
ursion. The fa
t that B is a (�+1)-approximation with respe
t to w2 followstrivially from the indu
tive assumption.In the 
ase of w1, we will derive an upper bound U on the maximum w1-weight of a set offeasible bids and a lower bound L on the w1-weight of any u-maximal set of bids. A u-maximalset of bids either 
ontains u or adding u to it would violate the feasibility 
onstraints. In the 
aseof a set of feasible bids, its total w1-weight is at most �(u)w(u)+ kukuw(u) � w(u)(�+1) = U , sin
ethe only nonzero 
ontribution to w1-weight 
omes from Æ+(u) and Su. In the 
ase of a u-maximalset of bids, if u 
annot be added to the set, then either (1) a su

essor of u is already in the set,in whi
h 
ase the total w1-weight is at least w(u), or (2) the budget 
onstraint is ex
eeded, inwhi
h 
ase the total w1-weight is at least w(u). Therefore, the w1-weight of these bids is at leastw(u) and the w1 performan
e bound isUL = w(u)(� + 1)w(u) = � + 1:The proof of the running time is similar to the proof of Theorem 4. All of the steps thatUnweighted-Op
ost and Unweighted-LR-Op
ost share with Op
ost and LR-Op
osttake linear time. Unweighted-Op
ost adds the 
ost of 
omputing the last term in (3). StoringPv2Si max(0; value(v)) in a variable �Si for ea
h Si allows this term to be 
omputed in timeO(1) for ea
h node, with an additional O(1) 
ost per node to update the appropriate Si. Thesame te
hnique allows budget 
onstraints to be tested in O(1) time per node during the se
ondstep. Thus the additional time is linear.The 
orresponding modi�
ation toUnweighted-LR-Op
ost similarly adds only linear time.Rather than updating the weight of ea
h node v before ea
h re
ursive 
all, we will 
ompute the\
urrent" weight of ea
h node v as it is required, subtra
ting o� the total weight �Sv of allpreviously-pro
essed nodes in Sv as in Unweighted-Op
ost.4.2 Overlapping unweighted 
onstraintsThe analysis in Se
tion 4.1 assumes that the budget 
onstraints partition the bids. For someappli
ations (e.g., bids involving mat
hing up buyers with sellers), we may have overlapping
onstraints. Overlapping 
onstraints may also be used to handle bids for identi
al items inlimited supply, by grouping all bids asking for 
opies of the same item together. The algorithmsdes
ribed above 
an be generalized to handle overlapping 
onstraints.Suppose we have a family of r sets of bids S = fS1; : : : ; Srg, that ea
h bid appears in at mostt of these sets, and that at most ki bids may be a

epted from set Si.13



In Overlapping-Unweighted-Op
ost, when 
omputing the value of a node u, we need toa

ount for the possible revenue loss from nodes in ea
h set that u belongs to:value(u) = weight(u)�Xv!umax(0; value(v)) � X1�i�r;u2Si0� 1ki Xv2Su;v<umax(0; value(v))1A :The rest of the algorithm is the same as Unweighted-Op
ost.In Overlapping-Unweighted-LR-Op
ost, the only 
hange from Unweighted-LR-Op-
ost is in the de
omposition of the weight fun
tion. We de
ompose it asw1(v) = 8><>:w(u) if v 2 fug [ Æ+(u),P1�i�r;u;v2Si 1kiw(u) if there exist Si 
ontaining both u and v,0 otherwise.Theorem 15 Given a dire
ted bid graph G = (V;E), a family of nonempty node subsets S1; : : : ; Sr,where ea
h node appears in at most t of the Si, and an unweighted budget 
onstraint ki for ea
hSi,1. Overlapping-Unweighted-Op
ost and Overlapping-Unweighted-LR-Op
ost re-turn the same approximation to a revenue maximizing set of bids.2. Overlapping-Unweighted-Op
ost and Overlapping-Unweighted-LR-Op
ost(�(G) + t)-approximate an optimal set of bids.3. Overlapping-Unweighted-Op
ost and Overlapping-Unweighted-LR-Op
ost runin time O(jV jt+ jEj)Proof: Similar to the proof of Theorem 14. The additional O(jV jt) term 
omes from havingto apply up to t budget 
onstraints to ea
h node; sin
e Pi jSij � jV jt, this term also 
overs the
ost of reading the Si from the input and initializing the variables for ea
h subset.4.3 Weighted budget 
onstraintsSuppose that bids are partitioned into groups S1; : : : ; Sr and that the total value of the winningbids from group i 
an be no more than bi. For ea
h bid u, let g(u) denote the index of the groupto whi
h u belongs and let Su = Sg(u) and bu = bg(u).This 
ase is more 
ompli
ated than the unweighted 
ase. The diÆ
ulty arises when estimatinga lower bound on the w1-weight of a u-maximal set of bids S. If u 
annot be added to the setbe
ause the budget 
onstraint will be ex
eeded, the w1-weight of S 
an be as small as �, ifw1(u) = bu.We will des
ribe 
hanges required to LR-Op
ost to handle this 
ase. Corresponding 
hanges
an be made to Op
ost. We will run variations of the algorithm twi
e, on
e for the heavy bidsv with w(v) > 12bv and on
e for the light bids v with w(v) � 12bv. We then return the better ofthe two solutions.In Heavy-Weighted-LR-Op
ost, we put an unweighted budget 
onstraint of 1 on ea
hbidder and run Unweighted-LR-Op
ost.Lemma 16 Heavy-Weighted-LR-Op
ost (�+1)-approximates an optimal set of heavy bids.14



Proof: Sin
e ea
h heavy bid 
onsumes more than half a bidder's budget, ea
h bidder 
anwin at most one bid. This is just a simple unweighted budget 
onstraint and 
an be solved asdes
ribed in Se
tion 4.1 for a performan
e bound of � + 1.In Light-Weighted-LR-Op
ost, when de
omposing the weight fun
tion, we setw1(v) = 8><>:w(u) if v 2 fug [ Æ+(u),2buw(v)w(u) if v 2 Su � fug,0 otherwise.Before adding u to the winning set of bids B2, we must ensure that it does not 
on
i
t with otherbids in B2 and that the weighted budget 
onstraint is not violated. The rest of the algorithm isidenti
al to LR-Op
ost.Lemma 17 Light-Weighted-LR-Op
ost (� + 2)-approximates an optimal set of light bids.Proof: This proof uses the same stru
ture and notation as the proof of Theorem 14. Anupper bound U on the w1-revenue of any feasible set of bids is w(u)(� + 2). With regards to au-maximal set of bids, if u 
annot be added to the set be
ause the budget 
onstraint bu will beex
eeded, the existing bids in the set must have weight at least bu=2, sin
e w(u) � bu=2. A lowerbound L on the w1-revenue of any u-maximal set of bids is therefore w(u). The performan
ebound of this algorithm is UL = � + 2, as 
laimed.Theorem 18 Given a dire
ted bid graph G, a partition of the nodes of G into nonempty subsetsS1; : : : ; Sr, and a weighted budget 
onstraint bi for ea
h Si,1. Weighted-Op
ost and Weighted-LR-Op
ost return the same approximation to a rev-enue maximizing set of bids.2. Weighted-Op
ost and Weighted-LR-Op
ost (2�(G)+3)-approximate an optimal setof bids.3. Weighted-Op
ost and Weighted-LR-Op
ost run in time linear in the size of G.Proof: The sum of the optimal revenues for the heavy and light bids is at least equal to theoptimum revenue among all bids. From Lemmas 16 and 17, the better of the two solutions willbe within a fa
tor of 2� + 3 of the optimum for the general problem.For the running time, observe that de
omposing the bids into heavy and light bids takes lineartime, that Heavy-Weighted-Op
ost and Heavy-Weighted-LR-Op
ost are equivalent toUnweighted-Op
ost andUnweighted-LR-Op
ost and thus take linear time by Theorem 14,and that Light-Weighted-Op
ost and Light-Weighted-LR-Op
ost 
an be made to run inlinear time using te
hniques similar to those used for Unweighted-Op
ost and Unweighted-LR-Op
ost.5 Further Resear
hThis paper opens up several dire
tions for further resear
h. An immediate open problem iswhether overlapping weighted budget 
onstraints 
an be pro
essed as eÆ
iently as their un-weighted 
ounterparts are pro
essed in Theorem 15.15



It would be of importan
e to 
ompare the performan
e of our algorithms and others in pra
ti
e.The 
omparison 
ould be 
ondu
ted on simulations, but it would be more useful to analyze theperforman
e on real au
tion data.As the examples of 
ar sales and land sales demonstrate, topologi
al stru
tures exist in a
tualbids. Another good example is the FCC au
tion of airwaves in 1994 and 1995 [24℄, where ea
htrading area is an au
tion obje
t, the trading areas form a plane graph, and bidders prefer toa
quire 
ontiguous trading areas. It would be useful to examine past au
tions to determinewhether similar 
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