Lower Bounds for Distributed Coin-Flipping and
Randomized Consensus*

James Aspnes |

February 2, 1998

Abstract

We examine a class of collective coin-flipping games that arises from
randomized distributed algorithms with halting failures. In these games,
a sequence of local coin flips is generated, which must be combined to
form a single global coin flip. An adversary monitors the game and may
attempt to bias its outcome by hiding the result of up to ¢ local coin
flips. We show that to guarantee at most constant bias, Q(t2) local coins
are needed, even if (a) the local coins can have arbitrary distributions
and ranges, (b) the adversary is required to decide immediately whether
to hide or reveal each local coin, and (c) the game can detect which
local coins have been hidden. If the adversary is permitted to control the
outcome of the coin except for cases whose probability is polynomial in £,
Q(1?/log® t) local coins are needed. Combining this fact with an extended
version of the well-known Fischer-Lynch-Paterson impossibility proof of
deterministic consensus, we show that given an adaptive adversary, any ¢-
resilient asynchronous consensus protocol requires Q(t2/log2 t) local coin
flips in any model that can be simulated deterministically using atomic
registers. This gives the first non-trivial lower bound on the total work
required by wait-free consensus and is tight to within logarithmic factors.

1 Introduction

Our results divide naturally into two parts: a lower bound for asynchronous
randomized consensus in a wide variety of models, and a still more general
lower bound for a large class of collective coin-flipping games that forms the
basis of the consensus lower bound but is interesting in its own right.
Consensus is a fundamental problem in distributed computing in which a
group of processes must agree on a bit despite the interference of an adversary.
(An additional condition forbids trivial solutions that always produce the same

*A preliminary version of this paper appeared in STOC '97 [Asp97].

tYale University, Department of Computer Science, 51 Prospect Street/P.O. Box 208285,
New Haven, CT 06520-8285. Supported by NSF grants CCR-9410228 and CCR-9415410.
FE-mail: aspnes@cs.yale.edu.

answer). In an asynchronous setting, it has long been known that if an adversary
can halt a single process, then no deterministic consensus algorithm is possible
without the use of powerful synchronization primitives [CIL87, DDS87, FLP85,
Her91, LAART].

In contrast, randomized algorithms can solve consensus in a shared-memory
system for n processes even if the adversary can halt up to n—1 processes. Such
algorithms are called wail-free [Her91] because any process can finish the algo-
rithm without waiting for slower (or possibly dead) processes. These algorithms
work even under the assumption that failures and the timing of all events in the
system are under the control of an adaptive adversary— one that can observe
and react to all aspects of the system’s execution (including the internal states
of the processes).

The first known algorithm that solves shared-memory consensus against an
adaptive adversary is the exponential-time algorithm of Abrahamson [Abr88];
since its appearance, numerous polynomial-time algorithms have appeared [AH90,
ADS89, SSWI1, Asp93, DHPW92, BR90, BR91, AW96]. Most of these algo-
rithms are built around shared coitn protocols in which the processes individually
generate many random =1 local coin flips, which are combined by majority vot-
ing. The adversary may bias the outcome of the voting by selectively killing
processes that have chosen to vote the “wrong” way before they can reveal their
most recent votes to the other processes. To prevent the adversary from get-
ting more than a constant bias, it is necessary to collect enough votes that the
hidden votes shift the outcome by no more than a constant number of standard
deviations. With up to n — 1 failures (as in the wait-free case), this requires a
total of Q(n?) local coin-flips, and at least Q(n?) work in order to communicate
these coin-flips.!

Improvements in other aspects of consensus algorithms have steadily brought
their costs down, from the O(n*) total work of [AH90] to the O(n?logn) total
work of [BR91]. But while these algorithms have steadily approached the Q(n?)
barrier, none have broken it. However, no proof was known that consensus
could not be solved in less than Q(n?) time; the barrier was solely a result of
the apparent absence of alternatives to using shared coins based on majority
voting. Indeed, it was asked in [Asp93] if every consensus protocol contained an
embedded shared coin protocol; and (specializing a more general and still open
question of Ben-Or and Linial [BOL89]) if no shared coin protocol in this model
could beat the Q(n?) cost of majority voting.

1Some of the algorithms deviate slightly from the simple majority-voting approach de-
scribed here. In the algorithm of Aspnes [Asp93], some votes are generated deterministically.
In the algorithm of Saks, Shavit, and Woll [SSW91], several coin-flipping protocols optimized
for different execution patterns are run in parallel. In the algorithm of Aspnes and Waarts
[AW96], processes that have already cast many votes generate votes with increasing weights
in order to finish the protocol quickly. However, none of these protocols costs less than simple
majority voting in terms of the expected total number of local coin flips performed in the
worst case.

1.1 Our Results

We show that for a shared coin protocol to guarantee at most constant bias
despite up to ¢ failures, Q(¢?) local coins are needed, even if (a) the local coins can
have arbitrary distributions and ranges, (b) the adversary is required to decide
immediately whether to hide or reveal each local coin, and (¢) the protocol can
detect which local coins have been hidden. If the protocol has polynomial bias,
meaning that the adversary is permitted to control the outcome of the protocol
except for cases whose probability is polynomial in ¢, Q(tz/log2 t) local coins
are needed. An extended version of the well-known Fischer-Lynch-Paterson
impossibility proof of deterministic consensus is then used to show that given
an adaptive adversary, any t-resilient asynchronous consensus protocol either
executes a shared coin protocol with polynomial bias or carries out an expected
Q(t?) local flips avoiding it. This implies that ¢-resilient asynchronous consensus
requires an expected Q(tz/log2 t) local coin flips. Since protocols based on
majority voting require only O(¢?) local coin flips, this lower bound is very close
to being tight.

Since we are counting coin-flips rather than operations, the lower bound is
not affected by deterministic simulations. So, for example, it continues to hold in
message-passing models with up to ¢ process failures (since a message channel
can be simulated by an unboundedly large register), or in a shared-memory
model with counters or cheap atomic snapshots. Furthermore, since our lower
bound assumes that local coin flips can have arbitrary ranges and distributions,
we may assume without loss of generality that any two successive coin-flips by
the same process are separated by at least one deterministic operation in any
of these models— so the lower bound on local coin-flips in fact implies a lower
bound on total work.

The lower bound on coin-flipping games is still more general, and holds in
any model in which the adversary may intercept up to ¢ local coin-flips before
they are revealed, no matter what (deterministic) synchronization primitives or
shared objects are available. Furthermore, 1t is tight in the sense that it shows
that no constant-bias shared coin can use less than Q(¢?) local coins, a bound
achieved by majority voting.

1.2 Related Work

Many varieties of collective coin-flipping games have been studied, starting with
the work of Ben-Or and Linial [BOL89]. Many such games assume that the
locations of faulty coins are fixed in advance; under these assumptions very
efficient games exist [AN90, CL93, BOL89, Sak89]. Another assumption that
greatly limits the power of the adversary is to require that both the locations
and values of faulty coins are fixed in advance; this is the bit extraction problem
[CFGT85, Fri92, Vaz85], in which it is possible to derive completely unbiased
random bits.

If none of these limiting assumptions are made, the adversary gains con-
siderably more power. If the adversary can subvert running processes based

on the execution of the protocol so far, the best strategy for minimizing the
adversary’s influence in many models seems to be to take the majority of fair
coin-flips, the idea being that the majority function minimizes the influence of
any single local coin.? Ben-Or and Linial [BOL89] observed that with a restric-
tion to fair coins, Harper’s isoperimetric inequality for the hypercube [Har66)
implies that the majority function gives the least power to an off-line adversary
that can see all coins before deciding which to change (a one-round protocol),
and conjectured that a similar result held for multi-round protocols in which
n processes repeatedly executed rounds in which each flipped a coin and the
adversary could control all coin-flips of a process once it was subverted.

This conjecture is still open, as the present work applies to systems in which
the adversary can only alter one local coin-flip for each process that it subverts.
(One can think of this restriction as assuming halting failures rather than Byzan-
tine failures in the processes.) A previous paper with similar scope was that
of Lichtenstein, Linial, and Saks [LLS89], who showed that majority is optimal
under the assumption of fair local coins in a sequential game similar to the
one we consider here. In their model fair coin-flips are generated one at a time
and the adversary may replace up to k of them, its decisions depending only on
the values of the coin-flips generated so far. The main difference between their
results and ours are: (a) they require fair Boolean-valued local coins, where
we allow arbitrary distributions and ranges on the local coins; (b) they allow
the adversary to replace a coin-flip with a new value of its choosing, where we
assume a weaker adversary that can only hide a coin-flip by replacing it with a
fixed value L; and (c) they obtain a tight result that shows that combining the
local coins with the majority function (or, in general, any threshold function)
minimizes the adversary’s influence over the global coin. This result depends
strongly on the assumption of fair local coins and the techniques used to prove
it do not appear to generalize to arbitrary distributions on the local coins.

In contrast, our results work for arbitrary distributions, but we do not resolve
completely the question of whether majority is optimal in our more general
model. We do show that for constant bias the number of faults cannot exceed
O(y/n), the number tolerated (modulo constant factors) by majority, but for
large biases our lower bound diverges from the upper bound given by majority.
We believe that a strengthened version of our lower bound could show that
majority is asymptotically optimal; this issue is discussed in Section 4.

The best previously known bound for arbitrary local coins is a bound of
2(1/4/n) on the influence of an adversary that can hide one coin, due to Cleve
and Impagliazzo [C193]. They show that in any martingale sequence starting at
0 and ending at £1, with at least constant probability there is a jump of at least
Q(1/4/n). To translate this into a result about coin-flipping, one constructs a
martingale Xy, X1,...X,, by letting X; be the conditional expectation of the
global coin given the values of the first ¢ coins, and observes that if there is a
large jump between X; and X;y; the adversary can get a large influence over

2An excellent survey of results for a wide variety of models involving fair or nearly fair
two-valued local coins can be found in [BOLS87].

the outcome of the game by hiding the (i + 1)-th local coin.

Part of the motivation for our work on coin-flipping games was to show a
lower bound on the work used by wait-free shared-memory consensus. A very
nice lower bound on the space used by wait-free shared-memory consensus 1is
due to Fich, Herlihy, and Shavit [FHS93]. They show that any such consensus
protocol must use €(y/n) distinct registers to guarantee agreement. Unfortu-
nately, their techniques do not appear to generalize to showing lower bounds on
work.

2 Coin-Flipping Games

A collective coin-flipping game [BOL89] is an algorithm for combining many lo-
cal coins into a single global coin, whose bias should be small even though some
of the local coins may be obscured by a malicious adversary. Though the par-
ticular coin-flipping games we consider here are motivated by their application
to proving lower bounds on distributed algorithms with failures, they abstract
away almost all of the details of the original distributed systems and are thus
likely to be useful in other contexts.

We assume that the local coins are independent random variables whose
ranges and distributions are arbitrary. The values of these variables are revealed
one at a time to an adversary who must immediately choose whether to reveal or
obscure each value. If the adversary chooses to obscure the value of a particular
local coin, the effect is to replace 1t with a default value L. Repeating this
process yields a sequence of values, some of which are the original values of
the random variables and some of which are L. A function is applied to this
sequence to yield an outcome, which may be arbitrary but which we will usually
require to be 1. The adversary’s power is limited by an upper bound on how
many coins it may obscure.

Note that in this description we assume that the adversary cannot predict
future local coins; it can only base the decision to reveal or obscure a particular
coin on the coin’s value and the values of earlier coins. In addition, the adver-
sary’s interventions are visible. The coin-flipping game may observe and react
to the fact that the adversary has chosen to obscure particular local coins, even
though it has no access to the true values of those coins.

Formally, a coin-flipping game is specified by a tree. The leaves of the tree
specify the outcomes of the game. Internal nodes correspond to local coin-flips.
Coin-flipping games are defined recursively as follows. Fix a set of possible
outcomes. A coin-flipping game G with maximum length zero consists of a
single outcome; we will call such a game a constant game and abuse notation by
writing its outcome simply as G. A coin-flipping game G with maximum length
n is either a constant game or consists of

1. A random variable representing the first local coin-flip in G'.

2. A function mapping the range of this random variable to the set of coin-
flipping games with maximum length less than n (the subgames of). For

each value « in this range, the resulting subgame is denoted G.

3. A default subgame G with maximum length less than n, corresponding
to the effect of an adversary choice to hide the first local coin-flip in G.

The above definition represents a coin-flipping game as a tree; if we think of
G as the root of the tree its children are the subgames G, for each value of «
and the default subgame G ;. The actual game tree corresponding to playing
the game against an adversary is a bit more complicated and involves two plies
for each level of (G. We may think of the states of this game as pairs (G, k)
specifying the current subgame G and the limit & on how many local coins the
adversary may hide (i.e., the number of faults). To execute the first local coin-
flip in GG, two steps occur. First, the outcome « of the coin-flip is determined.
Second, the adversary chooses between revealing o, leading to the state (Gq, k);
or hiding «, leading to the state (G, k —1).

In order to prevent the adversary from being able to predict the future or the
game from being able to deduce information about obscured coins, we demand
that all random variables on any path through the game tree be independent.

An adversary strategy specifies for each partial sequence of local coin-flips
whether to hide or reveal the last coin. We will write G o A for the random
variable describing the outcome of G when run under the control of an adversary
strategy A. If a game G has real-valued outcomes, then for each number of
faults k there exist adversary strategies to maximize or minimize the expected
outcome. Define MG to be the maximum expected outcome and m;G to be
the minimum expected outcome. These values can be computed recursively as
follows:

e If GG has length 0, MG = m;G = G.
e If G has positive length, then

Mk(G) = Ea[maX(MkGa,Mk_lGJ_)] (1)
mi(G) = Eq[min(mipGe, mi_1G1)]. (2)

Most of the time we will assume that the only possible outcomes of a game are
+1. In this case the quantities My and my give a measure of how much influence
an adversary with the ability to hide & local coin-flips can get over the outcome.
It is necessary to consider both at once: as we will see later, it is always possible
to find a game with maximum length n whose minimum expected outcome my
can be any value in the range [—1,1]. We will be interested in the best such
game, i.e., the one that attains a particular value of my; while minimizing My
(or, symmetrically, the game that maximizes my, for a particular fixed My). In
general it will turn out to be quite difficult to find this game exactly (although
much can be shown about its structure), and so it will be necessary to settle for
a lower bound on MG as a function of n, k, and mpG.

2.1 The Structure of Optimal Games

Fix a maximum length n and number of failures k. Let us define the range of
a game G to be the interval [m; G, M;G]. Then G (strictly) dominates G' just
in case the range of GG is a (proper) subset of the range of G'; in other words,
if G gives the adversary no more control than G does. A game G is optimal if
it either dominates all other games G’ with m;G’ = m; G or if it dominates all
other games G’ with M;G' = M G. For k < n, this definition will turn out to
be equivalent to saying that no game strictly dominates G'.

With each k& and game GG we can associate a point in a two-dimensional space
given by the coordinates m;G and My (G. From this geometric perspective the
problem we are interested in is finding for each value of n and k the curve
corresponding to the set of optimal games with maximum length n and up to &
failures.

For some values of n and k this task is an easy one. If k = 0, then the (n,0)
curve is just the diagonal running from (=1, —1) to (1, 1), since moG = MyG for
all G. If the other extreme holds and & > n, then for any G either mpG = —1 or
MG = 1, depending on the default outcome of G if all local coins are hidden.
It is not difficult to see that if M, G = 1, then m, G can be any value between
—1 and 1. For example, G could set its outcome to be the value of the first
local coin, or 1 if that coin-flip 1s hidden; if the adversary wishes to achieve
an outcome lower than 1 it must let the first local coin go through. Similar, if
m, G = —1 then M, G can be any value between —1 and 1. Thus the optimal
(n,n) curve consists of the line segment from (—1,—1) to (—=1,1) and the line
segment from (—1,1) to (1,1).

Equations (1) and (2) have a nice geometrical interpretation that in principle
allows one to determine the (n, k) curves of optimal games of maximum length n
with k failures. This process is depicted in Figures 1 and 2. Fix a game . Each
subgame G, corresponds to a point (m; Gy, MpGy), which must lie somewhere
on or above the curve of optimal (n—1, k) games. The contribution of G4, to the
position of (¢ is given by (min(my Gy, mp—1G 1), max(MpGq, Mi_1G 1)), which
is a point in the intersection of the region above the (n — 1, k) curve and the
rectangle of points dominated by G . Since the value of GG is the average of
these contributions, it must correspond to some point in the convex closure of
this intersection. Provided the (n—1, k) curve is concave (which is easily proved
by induction on n as shown below), then all points in the convex closure are
dominated by some point on its lower right edge: the line segment between the
optimal (n — 1, k) game Gy with MGy = My_1G 1 and the optimal (n — 1, k)
game Gy with mpG1 = mp_1G 1.

Geometrically, this edge is the hypotenuse of a right triangle inscribed be-
tween the (n—1, k) and (n—1, k—1) curves such that its sides are parallel to the
axes and its right corner is on the (n — 1,k — 1) curve. To take into account all
possible choices of G, 1t 1s necessary to consider all such triangles. By taking
the minimum of the hypotenuses of these triangles (as shown in Figure 2), we
obtain the (n, k) curve of all optimal games of maximum length n subject to up
to k failures. Note that if the (n—1, k) curve is nondecreasing and concave (true

(n,n)

max
expected
outcome

Default
subgame

(n,0)

min

expected ——— =
outcome

Figure 1: Graphical depiction of constraints on minimum and maximum ex-
pected outcomes of a game G given n and k. Each point in the figure corre-
sponds to a pair of minimum and maximum expected outcomes. The diagonal
represents the k = 0 case where these values are the same. The outer edges of
the figure represent the & = n case. The two inner curves represent all optimal
games with n — 1 voters and either k or k£ —1 failures. The default subgame G |
lies somewhere on or above the (n — 1,k — 1) curve. All other subgames G, lie
on or above the (n — 1, k) curve. If G is fixed, the value of G lies somewhere
in the convex closure of the intersection of the region above the (n— 1, k&) curve
and the rectangle dominated by G . All points in this convex closure, shown
shaded in the picture, are dominated by some point on the hypotenuse of the
right triangle inscribed between the (n — 1, k) and (n — 1,k — 1) curves.

max
expected
outcome

min

expected ———=
outcome

Figure 2: Effect of considering all choices of Gy . Each point on the (n—1,k—1)
curve corresponds to some possible default subgame (G| . The hypotenuse of the
right triangle with corners on this point and the (n — 1, k) curve gives a set of
games which dominate all other games with this fixed G . The set of optimal
games with n voters and k failures is thus the minimum of the hypotenuses of
all such right triangles.

for n — 1 = k, true as the induction hypothesis for larger n — 1), we may extend
each hypotenuse to its containing line without affecting the minimum, and so
the (n, k) curve as the minimum of concave functions is also nondecreasing and
concave.

Let us summarize. From the discussion of the constraints on G given G,
we have:

Theorem 1 For each coin-flipping game G with mazimum length n and up to
k failures, there is a G' such that G' dominates G, G'| dominates G, G' has
exactly two non-default subgames Gy and G, MGy = Mp_1G', and mpyG| =
mk_lG’J_.

One consequence of this theorem is that we can replace any optimal G with
an equivalent G’ in which the first local coin has exactly two outcomes, and in
which the adversary never prefers hiding a local coin to revealing one. Since the
theorem also applies recursively to all subgames of (G, we may assume that these
conditions in fact hold throughout G'. Thus no additional power is obtained
by allowing more than two outcomes to a coin. However, the theorem does not
imply that we can require that all local coins are fair; indeed, for most optimal
games they will not be.

In addition, we have shown the following about the shape of the curves
corresponding to optimal games:

Theorem 2 Fiz n and k with k < n. For each x in [—1,1], let f(x) be the
smallest value of MyG for all G such that myG = x. Then f is nondecreasing
and concave.

Unfortunately, with the exception of some extreme cases like &k = n — 1,
the (n, k) curves do not appear to have nice algebraic descriptions. So while in
principle equations (1) and (2) and the minimum-of-hypotenuses construction
constrain the curves completely, to obtain any useful bounds from them we will
be forced to resort to approximation.

2.2 Lower Bounds for Fixed-Length Games

The essential idea of our lower bound for fixed-length coin-flipping games is
to choose a family of functions to act as lower bounds for the optimal curves
as defined above, and show by repeating the inscribed-right-triangle argument
with these functions that they do in fact provide lower bounds on the optimal
curves given appropriate parameters. The particular family of functions that
we use consists of all hyperbolas that are symmetric about the diagonal from
(—1,1) to (1,—1) and that pass through the corner points (—1,—1) and (1,1).3
These hyperbolas are conveniently given by

tanh™' y —tanh™' z = ¢

3We conjecture (Conjecture 20) that a slightly tighter lower bound could be proven using
the curves given by ®~1(y) — ®~1(2) = ¢, where ® is the normal distribution function. An
analog of Theorem 3 using ® instead of tanh would improve the consensus lower bound in
Theorem 19 by a logarithmic factor.

10

for various values of ¢. The linear (n,0) curve corresponds exactly to ¢ = 0; the
(n,n) curve is the limit as ¢ goes to infinity. Our goal is to compute values of ¢
as a function of n and & such that for all length-n games,

tanh™' MG — tanh™ mG > ¢(n, k).

Given ¢(n — 1, k) and ¢(n — 1,k — 1), repeating the inscribed-right-triangle
construction for the resulting hyperbolas is a not very difficult exercise in an-
alytic geometry. Unfortunately, finding the particular point on the hypotenuse
of the particular triangle that minimizes e(n, k) is a bit more involved (details
of both steps are given in the next two sections). The ultimate result of these
efforts is:

Theorem 3 Lel G be a game of length n with outcome set {—1,+1}. Then for
any k>0, etther MG =1, mpyG = —1, or

k
tanh™! MG — tanh™! my, G > m (3)

2.2.1 Proof of Theorem 3

In this section we assume that each game has length n in all executions. Our
results about such games also apply to any game whose mazimum length is
n, since we can always extend a branch that terminates early with dummy
coin-flips that do not affect the outcome.

The proof i1s by induction on n. The case n = 0 is trivial. For n = 1, we
have either & = 0, in which case MGG = m;G and both sides of (3) are zero,
or k > 1, and either G; = 1 and thus M;G = G, =1 or G = —1 and thus
mkG = GJ_ =—1.

For larger values of n, we wish to show that if the inequality holds for n it
holds for n + 1. Observe first that if £ = 0 we again have My G = m; G and the
theorem holds. Thus i1t remains only to consider the case k& > 0.

Suppose that the inequality holds for length n games and consider a length
n + 1 game (. Consider the pair (m;G, MyG) as a point in [—1,1]%. The
coordinates of this point are averages over the same distribution; thus we can
treat the point itself as an average (as a two-dimensional vector) of a set S
of points in [—1,1]2. The coordinates of the points in this set are given by
(min(mpGo, mi_1G 1), max(My Gy, My_1G 1)) for each possible value of «.

Fach point (z,y) in S must satisfy three constraints: (i) = is at least
mr_1G1; (i) y is at most Mj_1G; and (iii) tanh™y — tanh ™! 2 > % (by
applying the induction hypothesis to GGy). The region R defined by these three
constraints looks like a rectangle with a concave bite taken out of its bottom
right corner, which is the corner with coordinates (mp_1G 1, Mp_1G1). What
is useful about this region is that it is defined solely in terms of n, &, and the
choice of GGy ; and we know that any length n game G has payoffs (m; G, M3 G)
that, as averages of points in the region, must lie somewhere in its convex closure

R.

11

Thus we can prove that our inequality holds for all games GG by proving that
it holds for any point in the convex closure of a region defined as above.
Let’s start with the choice of G} . By the induction hypothesis,
k—1
tanh ™! My_1G1 — tanh ™! mp_1G1 > ——

SNGR

Thus there exists a z such that

k—1
Mk_lGJ_ Z tanh(z + m)
and
k—1

_1G 1 <tanh(z — ——=).
my-1G L < tanh(z Wi)
For the rest of the proof we will ignore the actual payoffs of GG and use instead

the bounds tanh(z + %)

Now let us consider the extreme points (z, y) on the curve tanh™' y — tanh ™' 2 =

When y = z 4+ %, we have the point
k—1

anh(z + m))

(zo,y0) = (tanh(z — kj

T/

When x:z—l—%, we get

k—1 k+1
= (tanh(z — ——),t —)).
(1) = (tanh(z = S tanh(+ 502)
We wish to show that every point in R is dominated by a convex combination
of these two points.
Fix « and let @ = min(mp Gy, mp—1G1) and y = max(MGo, Mi_1G1).
Define:

anh(

1 if ¢ < xy,
Ao = ﬁ if g <2 <2y, and
0 if oy <.

Let (2',4) = Aa(®o, y0) + (1 — Ao) (21, y1). We claim that z < 2’ and ¢ < .

To prove this claim consider the three cases in the definition of A, sepa-
rately. If # < =zg, then # < 2’ = =zy; furthermore ¥ = yo < Mp_1GL
max(MpGq, Mp—1G 1) = y. A similar argument proves the claim when A,
0. For the middle case, we have # = 2’ = Ajwo + (1 — Apwy) and y

tanh (tanh_l(x) + L) which is at least Agyo + (1 — Ag)y1 by Lemma 7. Thus

2v/n
the claim holds.
Let A = Eo[Ao]. From the claim it follows that

VI IA

mpGG = Eq [min(mpGe, mp_1GL)]

Eao [Aazo + (1 — Ay)zy]

Ea[Ao]zo 4+ (1 — Ea[Aa])21
kE+1

A tanh (z— W) + (1=) tanh (z— %)

12

IN

ENGR

Similarly we have

MG

Eo [max(MpGo, My_1G1)]
Ea [Aayo + (1 = Aa)y1]
Ea[Aa]yO + (1 - EQ[AQ])yl

Atanh <Z+Z;\/ﬁl) + (1 — A)tanh (Z—I—]ZL\/;)

We are left with the task of reducing this expression to a more convenient
form. To do so we apply several inequalities involving hyperbolic functions,
proved in the next section. In particular the second-to-last inequality below 1s
given by Lemma 5 and the last is given by Lemma 6.

v

tanh~* MG — tanh~* mi G

> tanh™! [Atanh (z + %) + (1 = A)tanh (z + Zjﬁl)]
—tanh™! [/\ tanh (z - ZL\/_l) + (1 — A)tanh (z -]Z;\/ﬁl)]

> 2tanh™! [1 hlz\/_ 1t nhziﬁl]

> 2tanh™!tanh (4\/ﬁ sech? (2\1/5))

It remains only to show for all £ > 1 and n > 1 that

k h2< 1)> k
Sec .
2/n 2vn) T 2yn+1

From the Taylor’s series expansion of sech z we have sechz > 1—1 —z Setting

z = \/— gives sech 2\/— > 1—— But then sech? 2\/— > 1— - and sech4 2\/— >
1—— Now for n > 1, 1——>1—m:n— Thuswehavesech WZHHT
so sech? \/—> — and 2\/—sechz()

Thus if G is a length n + 1 game, we have
> k
tanh™! MG — tanh™! m;, G

and the induction goes through.

2.2.2 Some Inequalities Involving Hyperbolic Functions

These are used in the proof of Theorem 3.

13

Lemma 4 Let 0 < A< B < 1. Then
1+ A1+B)(2-A-B)?>(1-A)(1-B)(2+ A+ B)?. (4)

Proof: Each of the inequalities below is implied by the one that follows it:

1+A)(1+B)(2-A-B)? > (1-A)(1-B)(2+ A+ B)?
(2—- A - B)? S (2+ A+ B)?
1-4H1-B) = (1+A4)(1+B)
4—4A - 4B+ A2+ 2AB + B? S 4+4A+4B + A2+ 2AB + B?
1-A—-— B+ AB - 1+A+ B+ AB
4+A2—2AB—|—32 S A? —24AB + B?
1-A-B+AB — 1+A+ B+ AB
(A-BP _ _ (A-By
1-A-B+AB — 1+ A+B+ AB
1 1
1-A— B+ AB 2 1+ A+ B+ AB
1+A+B+AB > 1-A—-B+ AB
A+B > —-A-B
and this last inequality follows from A+ B > 0. [|

Lemma 5 Let 0 < a <b. Then for all and all X such that 0 < A <1,

tanh~? (Atanh(z + a) + (1 — A) tanh(z + b))
—tanh™! (Atanh(z — &) + (1 — A) tanh(x — a))

1 1
> 2tanh™! (5 tanh a + 3 tanh b) . (5)

Proof: Equality holds when a = b or A = % and z = 0, so we can prove the
inequality in general by showing that for fixed @ and b with a < b the left-hand
side L of (5) is minimized when A = % and z = 0.

To do so we will take L through a sequence of transformations resulting in
a rational function in A, tanh a, tanh b, and tanh z. Showing that this function
i1s minimized when A = % and x = 0 is equivalent to showing that a certain
polynomial obtained by multiplying out denominators is never negative. This
problem can in turned be reduced to showing that the polynomial is never
negative for certain extreme cases, where its sign can easily be determined.

Reversing these steps proves the original bound.

Step 1: Removing occurrences of tanh™ from L. The first step is to
remove the inverse hyperbolic tangents that appear in L. To save space let us
write A for 1 — A yielding
L = tanh™! (/\ tanh(z 4 a) + A tanh(x + b))
—tanh™! (/\ tanh(z — b) + X tanh(z — a))

14

This we can rewrite using the fact tanh and tanh™" are both odd functions
to get:
L = tanh™! (Atanh(a +) + Atanh(b + z))
+tanh™! (Atanh(b —) + A tanh(a — 2))
Let s = Atanh(a+x)+A tanh(b4) and let ¢ = A tanh(b—x)+ A tanh(a—z).
Recall that for |z| < 1, tanh™" z = 1 In 2. Thus
1 1—|—5+1 I+t 1. (14+s)(1+1)

L=tanh™' s+ tanh ™" ¢ = —1 e P 2 R L
anh e tan 2 M T—s T2 Tt T2 I—s(1—1)

Thus to minimize L we need to minimize %

Step 2: Further expansion using the sum formula for tanh. To do
so we will first expand every occurrence of tanh in s and ¢ using the identity
tanh(z+y) = (tanh z+tanh y)/(1+tanh x tanh y). In order to give the resulting
expressions even the slightest hope of readability, let us write X for tanhz, A
for tanh @, and B for tanhb. We have

A+X - B+X

5:/\tanh(a—i—x)—i—Xtanh(b—l—x):/\1+AX +/\1—|—BX'

Thus

A+ X —_B4+X
1 = 1+2A)
T TATTAX T Y

/\1—|—AX—|—A—|—X X1—|—BX—|—B—|—X

1+ AX 14+ BX
_ A0+ X)) (14 B)(1+X)
- 14+ AX 14+ BX ’

A similar expansion shows that

(1-4)(1-X) X(1 - B)(1-X)

1— —
s T+4ax Y 13Bx
(14 B)(1—X) —(L+A)1-X)
1+¢ = A) d
+ —Bx T 1—ax ™
L, G U=B+X) (1= A1+ X)
= 1— BX 1—Ax

from which 1t follows that

(1+s)(1+1)
(1=5)(1=1)

1+A)(1+X F(1+B)(14+X 1+B)(1-X F(14+A4)(1-X
(esanen | esmppo) (\eepgen | Fosagen)

1-A4)(1-X 3 (1-B)(1-X 1-B)(1+X F(1-A)(14+X
(VR) (\)

15

1+A4 Yy _1+B 1+B 3 _1+A
(’\1+AX + ’\1+BX) (’\1—BX + ’\1—AX)

) (Al%l-A{‘X +’\1+BX) (’\113% +’\1 AX)
M1+ A4)(1+ BX) + A1+ B)(1+ AX)
A1+ B)Y(1 = AX) + M1+ A)(1 - BX

B)

)
[AM1 = A)(1+ BX)+ X1 - B)(1+AX)
A1 = B)(1 - AX) + A1 - A)(1 - BX

]
]

Step 3: Transforming a rational function inequality to a polynomial
inequality. The next step is to reduce the problem of showing that the ratio-
nal function (6) is minimized at « = 0, A = % to an inequality involving only
polynomials.

This transformation will be less cumbersome if we can find a way to write
(6) more compactly. We’ve already canceled all the terms that cancel easily; so

to simplify it further we are going to need to exploit its internal symmetry. Let
A:Q/\—l,sothat/\—ﬁand/\zl—/\:%. Let

(6)

— — [—

(
)
(
)

—_—~ =~ =

R = (14 A)1+A4) (14 BX)+(1—A)(1+ B)(1+ AX)
S = (1—A)(1+A)1=BX)+ (1+A)(1+ B)(1— AX)
T = (1+A)(1—A)(1+BX)+(1—A)1- B)(1+AX)
U (1—A)(1— A)(1 - BX) + (1+A)(1— B)(1 — AX)

So that (6) is % (we are canceling out a few factors of 2 here).
Let us now consider what happens if we set X = 0 and A =0 (i.e., 2 =0

and A = X = %) Then R, S, T, and U are all radically simplified and (6)

becomes g—z where P =24 A+ Band Q = 2— A — B. Since our goal is to
show that % 1s minimized at X = 0, A = 0, we must demonstrate that for any
values for X and A with |X| < 1 and |A| < 1,

RS P2
TU > oz (7)

Observe that since |tanhz| < 1 for all z, we have |A| < 1, |B| < 1, and
|X| < 1. Tt follows that both T and U are positive and thus the inequality (7)
holds just in case RSQ? > TUP? or RSQ? — TUP? > 0.

Step 4: Constraining the coefficients of the polynomial. Consider
J(A X) = RSQ? — TUP? as a polynomial in A and X. If possible, we'd
like to show f i1s always non-negative without having to multiply out its many
terms. Fortunately, we can get quite a bit of information about its coefficients
without such Herculean efforts.

Let a;; be the coefficient in f of AXI IfA =X =0, then RSQ*-TUP? =
P2Q* — @*P? = 0. Thus agy = 0. By symmetry f(A X) = f(-A,—X)
(changing both of these signs swaps R with S and T with U). Thus a;; = 0 for

16

any ¢, j such that ¢ + j is odd. Finally, since the largest power of A or X in
each of R, S, T, and U is 1, and neither A nor X appears in P or (), we have
that a;; = 0 whenever 7 or j is greater than 2. This leaves four possible nonzero
coefficients, and so we can write f as a11AX + a20A? + aga X2 + a9 AZ X2,

Step 5: Reduction to extreme cases. Now we wish to show that if f is
negative anywhere in [—1,1]? it is negative for some point (A, X) with either
A =1or X = 1. To do so we will show that any (A, X) in the interior of
[—1,1]? that yields a negative f can be replaced by tA,¢X for any ¢ such that
[t| > 1, with the result that f(tA,tX) will also give a negative f. If all of the
terms in f had the same degree, this would be easy; since this is not the case,
we must first show that the coefficient asy of the A2X? term is negative.

Fortunately, with not too much work a3 is seen to be (B — A)(B — A)Q* —
(B—A)(B—A)P? or (B—A)?[(2—(A+B))*> —(24+(A+B))?] = (B—A)?[-8(A+
B)?] <0. Soif |t| > 1,

f(tA, tX) = alltzAX + a20t2A2 + a02t2X2 + 022t4A2X2
= tz(aHAXazoAz + ClozXz + azztzAzxz)
< tz(aHAXazoAz + ClozXz + azzAzXz)
= (A X). (8)
Thus if f is ever negative on [—1,1]?, it is negative for some point in which

A =1or X =1, since we can choose whichever of A or X has larger absolute
magnitude and set t = 1/Aort =1/X.

Step 5a: A =1, X # 1. Let us examine the A = 1 case first. We will
assume that |X| < 1; the case A =1, X = 1 will be covered by the X =1 case

below. Recall that f is negative if and only if the inequality (5) is violated. If
A =1, then A = 1 and (5) becomes

1 1
tanh™! tanh(z4a)—tanh™" tanh(z—b) > 2tanh™* (5 tanh a + 3 tanh b) - (9)

The left-hand side of this inequality simplifies to a 4+ b, and so (9) holds just in
case

a+b 1 1
- > — —
tanh 5 2 2tanha—|— Qtanhb,

which holds because tanh 1s concave on the positive real line.

Step 5b: X = 1. When X =1, we have

R = (1+4A)1+A)1+B)+(1—A)1+ A1+ B)
= 214+ A)1+ B)

S = (1—A)1+A)(1—B)+(1+A)1—A)(1+B)

T = (14+A)1—A) (14 B)+(1—A)1+ A)(1—B)

S
U = (1-A)1-A)(1-B)+(1+A)(1-A)1-B)
= 21— A)(1- B).
Thus RSQ?*—TU P2 = 25(14 A)(14B)(2— A—B)?—25(1— A)(1— B)(24+ A+ B)?

which is non-negative by Lemma 4.

Wrap-up. Insummary, we have that f(A, X) > 0 whenever A=1or X = 1.
Using (8), this implies that f(A, X) > 0 for all points (A, X) in the unit square
[—1,1]%, which, after reversing the translations from (5) to f, implies that (5)
holds under the conditions stated in the Lemma.]

Lemma 6 If x > 0, then for any a,

tanh(x + a) + tanh(z — @) > 2 tanh(z sech? 2a). (10)
Proof: The inequality above holds just in case

tanh(z + a) + tanh(z — a) — 2 tanh(z sech” 2a) (11)

is non-negative for non-negative #. To avoid unwieldy notation, let us write

2z .
¢ for sech?2a. Observe that tanhz = ZQII_} =1- ﬁ So we can rewrite

tanh(z + a) 4+ tanh(z — a) — 2tanh(xc) as

2 2 2
- —— - ————) = [242———
(62x+2a+1) +< e2x—2a+1) (+ 620x+1)

4 2 2
62017 + 1 e2x+2a + 1 er—Za + 1

Note that each of these denominators is positive. Thus multiplying out the
denominators and dividing by 2 does not change the sign, and the sign of the
original expression is the same as the sign of

2220 4 1)(e27 20 4 1)
— (€2 + 1)(eX 20 4 1)
_(620x+1)(62x+2a+1)

= (e 4 2rta g 20-a)
(26728 4 (2920 4 g2ex)
(2T 22 | 22y 2ew)

— 264x +62x+2a 4 er—Za _ 62017 (62x+2a 4 er—Za) _ 2620x

— 6217 262x _ 262(0—1)17 + (1 _ 62017) (62(1 + 6—2(1)])

Since ¢2® > 0, we can drop the first factor while preserving the sign. Writing =
for €?¥, and noting that e?* + ¢=2% = 2 cosh 2a, the second factor becomes

27 — 2271 4+ 2(1 — 2°) cosh 2a,

18

and now we can divide out 2 without changing the sign to obtain
z— 271 4 (1 — 2%) cosh 2a. (12)

To show that the inequality (10) holds when # > 0, it is necessary to show
that the sign of (12), and thus of (11), is non-negative for z > 1. Note that
when 2 = 0, z = ¢?* = 1 and (12) reduces to 0. So if we can show that (12) is
non-decreasing for z > 1 we are done.

This we do by taking the derivative of (12) with respect to z and showing that
it is non-negative when z > 1. The derivative is 1 — (¢ — 1)2°=% — ¢z~ ! cosh 2a.
Observe that ¢ = sech?2a < 1 and z > 1 implies both 271 < 1 and 272 < 1.
Thus we have

1—(c—1)z"% — ¢z ! cosh 2a
> 1—(c—1)—-ccosh2a
= 1—(sech?2a — 1) — sech” 2a cosh 2a
= 2—sech?2a — sech 2a

> 0.
|]

Lemma 7 Ifa > 0, then the function f(z) = tanh(a + tanh™'x) is monotone
mcreasing and concave.

Proof: That f is monotone follows immediately from the monotonicity of tanh
and tanh™'. To show it is concave, observe that:

2

d -1
a2 tanh(a + tanh™" #)

d 1
= o sechz(a + tanh ™! z)

x 1— z2

1

= 2sech(a 4 tanh™")[—sech(a 4 tanh™" z) tanh(a + tanh ™! l‘)]m
—z

-1
+ sechz(a + tanh™! x)m%v

= =2 sechz(a +tanh™! z) tanh(a + tanh~* z)— x]

i
< 0.

Note that in the last step we need the fact that f is monotone to know that
the last factor is positive. [|
2.2.3 Corollaries to Theorem 3

Theorem 3 assumes a coin-flipping game with +1 outcomes. For more general
sets of outcomes it is more convenient to work with the minimum and maximum
probabilities of some particular outcome rather than the expected outcome. A
simple transformation of the theorem gives:

19

Corollary 8 Let GG be a coin-flipping game and let x lie in the outcome set of
G. Fiz k, and let p = ming Pr[G o A = 2] and ¢ = ming Pr[G o A #], where
m each case A ranges over adversaries that can hide up to k local coins. Then

1—p 1—y¢q k
In + In > .
P ¢ T 2yn

Proof: Consider the modification G’ of G which replaces each x outcome
with +1 and each non-z outcome with —1. Then m;G = miny E[G o A] =
p—(1—p)=2p—1and MG = maxu E[Go Al = (1 —¢q) —¢ = 1 — 2¢.
Thus tanh™ (M3 G) = tanh™ (1 — 2¢) = In LH1=20) _ 1y 2220 — lnlg—q and

(13)

1-(1-2¢) — 2q
—tanh™'(m;G) = —tanh™*(2p — 1) = tanh ™' (1 — 2p) = In 1]'%”.
Substituting into (3) in Theorem 3 then gives the desired result.]

If the bound on each side i1s the same, we can simplify even further:

Corollary 9 Let G be a coin-flipping game, let x be one of its outcomes, and
let A range over adversaries that can hide up to k local coins. If for some ¢ < %,
ming Pr[Go A = 2] > ¢ and ming Pr[Go A # x] > ¢, then the mazimum lenglh
n of G s at least
k2
161n* (1 —1)

Proof: From the previous corollary we have that % >21In 1;5 =2In (% — 1).
Since € < %, the logarithmic term 1s positive and we can rearrange this inequality

to get the desired bound.]

2.3 Lower Bounds for Variable-Length Games

In the preceding section we considered the connection between the adversary’s
influence over the outcome and the mazimum length of a game. Here we consider
instead the connection between the adversary’s influence and the worst-case ez-
pected length of a game. In principle one could imagine low-expected-length
games whose small bias was purchased by a high maximum length in rare exe-
cutions; thus the bounds on maximum length do not immediately imply bounds
on expected length.

However, using a truncation argument, we can show that a bound similar to
that given in Corollary 9 holds even if we are considering the ezpected length of
G rather than its maximum length. The theorem below covers both the worst-
case expected length (when the adversary is trying to maximize the running
time of the protocol) and the best-case expected length (when the adversary is
trying to minimize the running time of the protocol). The worst-case bound
will be used later to get a lower bound on the work required for consensus.

Theorem 10 Fiz k, and let A range over adversaries that can hide up to k local
coins. Lel G be a coin-flipping game with an oulcome x such thal ming Pr[G o

20

A =2]>¢ and ming Pr[Go A # &] > ¢. Then the worsi-case expected length of

G is at least
3 k2

64 1.2/ 1
b (- 1)
and the best-case expected length is at least

L
32 12 (5}_2_1).

Proof: The essential method is to show that if a game exists whose expected
length is “too good” then a truncated version of this game exists that violates
the requirements of Corollary 9.

Let us assume without loss of generality that GG has outcomes z = 1 and
0. (We can justify this assumption by replacing all outcomes with 1 and all
non-z outcomes with 0.)

First, the worst-case bound. Let

kZ
T 161? (E/Lz—l)'

Let G, be the game obtained by truncating G as follows. If GG finishes in m
or fewer steps, let GG, = G. If G finishes in more than m steps, let G, = L.
The value of m 1s chosen such that for any outcome z of (G, at least one of
miny Pr[G o A = z] and miny Pr[G o A # #] is less than or equal to ¢/2 (using
Corollary 9).

For each A and each execution of Go A that produces an outcome v, there 1s
an execution of G, o A that produces either v or L. Tt is given that ming Pr[G o
A = 0] is at least ¢; thus it follows that ¢ < ming Pr[G,, 0 A € {0, 1}] =
miny Pr[Gp, o A # 1]. But then ming Pr[Gp 0 A = 1] < ¢/2. Since for any A,
Pr[Gp 0 A € {1, L}] > ¢, we get ming Pr[G,, o A = 1] > ¢/2. But applying
Corollary 9 a second time now implies that ming Pr[G,, 0 A # 1] < ¢/2; in
other words, that for some adversary A the probability that G o A does not
finish after m steps is at least 1 —¢/2. Since ¢ < 1/2, this probability is at least
3/4 and so the worst-case expected length of G is at least (3/4)m.

The best-case bound is also obtained by considering a truncated game. Let
T = miny E[length(G o A)]. Let n = %, so that (using Markov’s inequality)
the probability that G o A has not finished by time n is at most ¢/2. Thus
miny Pr[Gp 0 A = 1] < ¢/2. But ming Pr[Gp 0 A € {0, L}] > mins Pr[G o
A = 0] > ¢ so ming Pr[G, o A = 0] > ¢/2. By symmetry we also have
miny Pr[G, 0 A = 1] > ¢/2. Corollary 9 then gives

m

n>i K
S

21

and thus

N |

2.4 Consequences for Constant-Bias Coins

For constant bias, Corollary 9 and Theorem 10 imply that we need Q(¢?) local
coin flips in both the worst and average cases. This is true even though the
adversary’s power is limited by the fact that (a) the local coin flips may have
arbitrary ranges and distributions; (b) the adversary can hide coins, but cannot
control them; (¢) the adversary must decide which coins to hide or reveal im-
mediately in an on-line fashion; and (d) the algorithm may observe and react to
the choices of which coins to hide. These assumptions were chosen to minimize
the power of the adversary while still capturing the essence of its powers in a
distributed system with failures.

In contrast, it is not difficult to see that taking a majority of ©(¢?) fair coins
gives a constant bias even if (a) local coins are required to be fair random bits;
(b) the adversary can replace up to ¢ values with new values of its own choosing;
(¢) the adversary may observe the values of all the local coins before deciding
which ones to alter; and (d) changes made by the adversary are invisible to the
algorithm. So the Q(¢?) lower bound for constant bias is tight for a wide range
of assumptions about the powers of the algorithm and the adversary.”

2.5 Connection to Randomized Distributed Algorithms
with Failures

The importance of coin-flipping games as defined above comes from the fact that
they can often be found embedded inside randomized distributed algorithms.
Let us discuss briefly how this embedding works.

Consider a randomized distributed algorithm in a model in which (a) all
random events are internal to individual processes; and (b) all other nondeter-
minism is under the control of an adaptive adversary. Suppose further that the
adversary has the power to kill up to & of the processes. Then given any ran-
domized algorithm in which some event X that does not depend on the states of
faulty processes occurs with minimum probability m and maximum probability
M we can extract a coin-flipping game from it as follows. Arbitrarly fix all
the nondeterministic choices of the adversary except for the decision whether

4The theorem does not apply if the adversary cannot observe local coin-flips, and so it
cannot be used with an oblivious (as opposed to the usual adapitive) adversary. However,
the bound on best-case expected length does imply that it is impossible to construct a “hy-
brid” constant-bias coin-flipping protocol that adapts to the strength of the adversary, finish-
ing quickly against an oblivious adversary but using additional work to prevent an adaptive
adversary from seizing control. This is not the case for consensus; for example, Chandra’s
consensus algorithm [Cha96] for a weak adversary switches over to an algorithm that is robust
against an adaptive adversary if it does not finish in its usual time.

22

or not to kill each process immediately following each internal random event.
(Since this step reduces the options of the adversary it can only increase m and
decrease M.) Each step of the coin-flipping game corresponds to an execution
of the distributed algorithm up to some such random event, which we interpret
as the local coin. The adversary’s choice to hide or reveal this local coin cor-
responds to its power to kill the process that executes the random event (thus
preventing any other process from learning its value) or to let it run (which may
or may not eventually reveal the value). The outcome of the coin-flipping game
is determined by whether or not X occurs in the original system.

3 Lower Bound for Randomized Consensus

Consensus is a problem in which a group of n processes must agree on a bit.
We will consider consensus in models in which at most ¢ processes may fail
by halting. Processes that do not halt (i.e., correct processes) must execute
infinitely many operations. (A more detailed description of the model is given
in Section 3.2.)

It 1s assumed that each process starts with some input bit and eventually
decides on an output bit and then stops executing the algorithm. Formally,
consensus is defined by three conditions:

e Agreement. All correct processes decide the same value with probability

1.

e Non-triviality. For each value v, there exists a set of inputs and an
adversary that causes all correct processes to decide v with probability 1.

e Termination. All correct processes decide with probability 1.

Non-triviality is a rather weak condition, and for applications of consensus
protocols a stronger condition is often more useful:

e Validity. If all processes have input v, all correct processes decide v with
probability 1.

As non-triviality is implied by validity, if we show a lower bound on the total
work of any protocol that satisfies agreement, non-triviality, and termination,
we will have shown a fortiori a lower bound on any protocol that satisfies
agreement, validity, and termination. Thus we will concentrate on consensus as
defined by the first three conditions.

Since the agreement and termination conditions are violated only with prob-
ability zero, we can exclude all schedules in which they are violated without
affecting the expected length of the protocol or the independence and unpre-
dictability of local coin-flips. Thus without loss of generality we may assume
that not only do agreement and termination apply to the protocol as a whole,
but they also apply even if one conditions on starting with some particular finite
execution «.

23

3.1 Overview of the Proof

In a randomized setting, we are concerned with the cost of carrying out a con-
sensus protocol in terms of the expected total work when running against a
worst-case adversary. We show how the coin-flipping lower bound can be used
to show a lower bound on the worst-case expected cost of t-resilient random-
1zed consensus in the standard asynchronous shared-memory model. As in the
coin-flipping bound, we will measure the cost of a consensus protocol by the
total number of local coin-flips executed by the processes. This measure is not
affected by deterministic simulations, so any results we obtain for the shared-
memory model will also apply to any model that can be simulated using shared
memory, such as a {-resilient message-passing model.

For each adversary strategy and finite execution « there is a fixed probability
that the protocol will decide 1 conditioned on the event that its execution starts
with a. (We may speak without confusion of the protocol deciding 1, as opposed
to individual processes deciding 1, because of the agreement condition.) For any
set of adversaries, there is a range of probabilities running from the minimum
to the maximum probability of deciding 1.

These ranges are used to define a probabilistic version of the bivalence and
univalence conditions used in the well-known Fischer-Lynch-Paterson (FLP) im-
possibility proof for deterministic consensus [FLP85]. We will define an execu-
tion as bivalent if the adversary can force either outcome with high probability.
A v-valent execution will be one after which only the outcome v can be forced
with high probability. Finally, a null-valent execution will be one in which nei-
ther outcome can be forced with high probability. The notions of bivalence and
v-valence (defined formally in Section 3.3) match the corresponding notions for
deterministic algorithms used in the FLP proof; null-valence is new, as it cannot
occur with a deterministic algorithm in which the probability of deciding each
value v must always be exactly 0 or 1.

In outline, the proof that consensus is expensive for randomized algorithms
retains much of the structure of the FLP proof. First, it is shown that with
at least constant probability any protocol can be maneuvered from its initial
state into either a bivalent or a null-valent execution. Once the protocol is in a
bivalent execution, we show that there is a fair, failure-free extension that leads
either to a local coin-flip or a null-valent execution. The result of flipping a
local coin after a bivalent execution is, of course, random; but we can show that
with high probability it leaves us with an execution which is either bivalent or
null-valent or from which we are likely to return to a bivalent or a null-valent
execution after additional coin-flips. If we do reach a null-valent execution, the
coin-flipping bound applies.

Unlike a deterministic protocol, it is possible for a randomized protocol to
“escape” through a local coin-flip into an execution in which it can finish the
protocol quickly. But we will be able to show that the probability of escaping
in this way is small, so that on average many local coin-flips will occur before
it happens.

24

3.2 Model for Consensus Lower Bound

This section describes in detail the model used for the consensus lower bound.
It 1s included for completeness, as lower bounds are notoriously sensitive to
features of the underlying model. However, the reader who is familiar with
previous work on asynchronous shared-memory systems will find no surprises
here, and may wish to skip ahead to the actual proof starting in Section 3.3.

3.2.1 Foundations

There are many ways to represent a distributed system; we will use the I/0
automaton model as described in [Lyn96]. In this model, an execution of a
system is represented by a sequence sg, 71, $1, ma, ... of alternating states and
actions, starting with an initial state. An execution may be finite or infinite; if
finite, 1t ends with a state. The behavior of a deterministic system is described
by a transition relation consisting of triples (sg, 7, s1) specifying the prior state,
the action that occurs during the transition, and the posterior state. For a
randomized system, the third element is replaced by a probability distribution
over new states. An action 7 is said to be enabled after a finite execution « if
there is a transition (s, w, P) such that s is the last state in «.

We will assume that for any state s and action w, there i1s at most one
transition (s, w, P). We will call an action 7 a deterministic action if for any
s such that (s, 7, P) appears in the transition relation, P assigns probability 1
to a single state. Other actions are randomized actions. We will assume that a
randomized action must be local: it can change the state of only one process.

Under the above assumptions, the effect of executing a deterministic action =
after a finite execution « is well-defined; we will write the resulting execution as
am. For a randomized action, suppose that C' is a random variable representing
its outcome; we will write aC' for the (random) execution that results from
executing the randomized action after . In order to avoid dragging in too much
measure-theoretic machinery, we will assume that there are only countably many
possible outcomes of each local coin-flip. Among other things, this assumption
means that we can exclude all outcomes whose probability is zero without having
more than a probability-zero effect on the behavior of a system.

An execution § is an extension of « if o (considered formally as a sequence
of states and actions) is a prefix of 3. If the suffix of 3 after o consists only of
deterministic actions, we write that (3 is a deterministic extension of «.

Often there will be several actions that are enabled after some finite execu-
tion «. The choice of which action to execute will be given to an adversary, a
function mapping each finite execution to an action enabled in 1its final state.
Letting the domain of the adversary function be the entire previous execution
implies first that the adversary has total knowledge of the system’s history and
present state; but also that the adversary cannot base its choices on future
events, such as the outcome of randomized actions that have not yet occurred.
We will assume that the adversary does not itself use a randomized strategy;
since we are in the lower-bound business this restriction on the adversary does

25

not affect our results.

3.2.2 Shared-Memory Model

The lower bound for randomized consensus will be given in the context of the
standard asynchronous shared-memory model (see [Lyn96] for a definition of the
shared-memory model in terms of I/O automata). In this model, the processes
communicate by reading and writing a set of shared atomic registers. It may
be assumed without loss of generality that operations on the registers are in
fact instantaneous; so even though a read or write operation may be modeled
formally as more than one action (e.g., as a separate invocation and response),
we can treat this sequence of actions as a single step.

We will define the property that a step x is enabled after an execution «,
the the result az of executing z after «, and so forth, in the obvious way.
Thus having secured the connection between our intuitive understanding and
the underlying formal model, we will think of each process as carrying out a
sequence of read, write, and local coin-flip steps, without worrying too much
about the actual actions that make up these steps.

An additional property of the shared-memory model is that processes may
fail. The failure of a process is a deterministic action that is always enabled,
and its effect is to prevent the process from carrying out any more actions.
We will usually assume a limit on the number of failures and require that any
process that does not fail (or halt on its own) executes infinitely many steps.
Both of these requirements are restrictions on the range of possible adversaries.
The first forbids adversaries that cause too many failures. The second forbids
adversaries that starve processes that have not failed.

An algorithm that operates in a model permitting up to ¢ failures is called
t-resilient.

3.3 Bivalence, Univalence, and Null-Valence

Formally, for each execution « and adversary A, write Prv|a, A] for the proba-
bility that the protocol decides v after o running under the control of adversary
A. For each execution « and set of adversaries A, let r, 4(«) be the set of such
probabilities ranging over all adversaries in A; that is, r, 4 = {Pr[v|e, A]|A €
A}, Since the fact that the protocol terminates with probability 1 implies
Pr[0]er, A] = 1 —Pr[l]e, A], no additional information is gained by keeping track
of rg and r; separately; thus we will drop the v subscript and write r4(«) for
r1,4(e). In addition, when the set A is clear from context, we will drop it as
well and just write r(«) for 1 a(a).

Fix € > 0. We will classify executions using the maximum probabilities of
deciding 0 or 1 according to the following table.

An execution that is either 0-valent or 1-valent will be called univalent. Note
that this classification is exhaustive: every execution falls into exactly one of
these classes.

26

Classification of @« minr(a) maxr(«)

bivalent < ¢? >1—¢?
0-valent < ¢? <1-—¢2
1-valent > ¢? >1—¢?
null-valent > 2 <1—¢2

It 1s not hard to see that for deterministic algorithms these definitions reduce
to the FLP definitions of a bivalent execution as one in which either outcome is
possible (i.e., can occur with probability 1), and a v-valent execution is one in
which only the outcome v is possible.

The FLP proof is based on the fact that for deterministic protocols, any
extension of a v-valent execution is also v-valent. This fact is used to prove
impossibility of deterministic consensus by showing that if a protocol can always
extend a bivalent execution to either a 0-valent or 1-valent execution (necessary
to reach a decision) it must have a O-valent execution that is indistinguishable
from a l-valent execution (a contradiction).

We will not be deriving any contradictions from randomized protocols—
randomized consensus is not impossible. Instead we will show that if a bivalent
execution can be extended to either a 0-valent or a 1-valent execution through
deterministic steps, then there exist deterministic extensions of these 0-valent
and 1-valent executions that can be made indistinguishable. The resulting in-
distinguishable executions are not a contradiction; instead, they are null-valent.

The reason 1s that any deterministic extension of a v-valent execution may
be either v-valent or null-valent. This fact is immediate from the lemma below:

Lemma 11 Let o' be a deterministic extension of av. Then r(a’) C r(«).

Proof: Let p be an element of 7(o'). Then there is some adversary A’ in A
such that Pr[l|a’, A’] = p. But then the adversary A which first executes the
steps leading to o and then follows the strategy of A’ gives Pr[l|a, A] = p, and
thus p is in r(«). []

If only deterministic operations are enabled after some execution «, the
converse holds:

Lemma 12 Let « be an execution after which only deterministic operations are
enabled. Then r(«) is the union of r(ax) for each operation x enabled after o.

Proof: In proving the lemma, it is necessary to be a little careful about fail-
ures. Observe that for any adversary A that fails some process after «, there
is an adversary A’ that simulates A without failing this process, delaying it in-
stead until some other process decides. Since no process can distinguish A from
A’ until the decision value is fixed, both give the same probability of deciding
1 starting from «. Thus in computing r(«), we need consider only adversaries
that do not fail any processes as the first step after .

27

For each operation x enabled after «, let A, be the set of adversaries that
choose . Then r(a) =, ra,(a) =, r(ax). [|

In particular, if such an « only has v-valent successors, it must be v-valent.

In contrast, the range after a local coin-flip may be arbitrary. However,
the expected endpoints of the range after the flip will always be equal to the
endpoints of the range before the flip. This fact is not immediately obvious but
it is not too hard to prove.

Lemma 13 Let a be an execution and let C' be a random variable that describes
the outcome of some particular local coin-flip enabled after . Then the expected
value of minr(aC') is equal to minr(«), and the expected value of maxr(aC) is
equal to maxr(a).

Proof: We will prove the lemma only for maxr(a('); the case of minr(aC)
1s symmetric.

First observe that maxr(«) is at least E[maxr(aC')], since E[maxr(al’)] is
the probability of deciding 1 starting from « with an adversary that executes C'
and then follows the maximizing strategy in whatever execution results.

To show that maxr(«) is at most E[maxr(aC)], let A be any adversary
such that Pr[l]e, A] = maxr(a). We can modify A to get an adversary A’ that
executes C' immediately after «, and then simulates A, ignoring the result of C'
until A chooses to execute C'. Since alocal coin-flip commutes with all operations
of other processes, the executions produced by A and A’ are indistinguishable
and Pr[l]a, A'] = Pr[l|a, A] = maxr(«). But Pr[l|a, A'] is E[Pr[l|aC, A] <
max r(aC').]

3.4 Valence of Initial States

To get the proof off the ground, we will need to show that there exists an initial
state with the appropriate properties. The following lemma does so.

Lemma 14 For any t-resilient consensus protocol witht > 0, there is an initial

state « such that minr(o) < % and maxr(a) > %

Proof: The proof is essentially identical to the proof that a bivalent initial
state exists for a deterministic protocol. First, observe that if two initial states
« and o differ in only one input, then given any adversary that kills the process
with that input as the first action, the resulting executions are indistinguishable
to all live processes. Thus r(«) and r(a’) overlap at at least one point.

Now consider two states o and 3 such that minr(«) = 0 and maxr(5) = 1.
(These states, which are not necessarily distinct, exist by the non-triviality
condition.) There exists a chain of initial states ag = o, v1, cva, . . ., @, = f such
that each adjacent pair of states differ in only one input. Let «; be the first state
in the chain for which maxr(a;) > % If i = 0, we are done: minr(a;) =0 < %
Otherwise, maxr(a;—1) < %, implying minr(a;) < %, since r(a;—1) and r(o;)
must overlap. [|

28

3.5 Strategy for Univalent Executions

Starting with a univalent execution, one of the outcomes can be forced with high
probability. In this case the adversary’s strategy will be to minimize the likeli-
hood of that outcome in the hopes of getting back to a bivalent or null-valent
execution. Its likelihood of being able to do so is described by the following
lemma.

Lemma 15 Let « be a failure-free 1-valent execution such that minr(a) = p.
Then there is an adversary strategy that, with probability at least 1 — p, extends
a to a failure-free execution af such that one of the following conditions holds:

1. af is null-valent,
2. af s bivalent and 3 contains at least one local coin-flip;

3. af} is 0-valent, maxr(af) > 1 —¢, and 3 contains at least one local coin-
Jtip; or

4. B contlains an expected 1/¢ local coin-flips.

Proof: Claim: For any failure-free execution « for which 0 < minr(«a) < 1,
there exists some failure-free deterministic extension o of & such that minr(a’) =
minr(«) and a local coin-flip is enabled after o’. Proof: There is some adversary
A for which Pr[l|e, A] = minr(«). Since Pr[l|a, A]is not 0 or 1, A must eventu-
ally cause the protocol to execute a coin-flip after some deterministic extension
o’ or a. (Otherwise the protocol does not satisfy the termination condition).
If A causes failures, it can be simulated by an adversary A’ that simply de-
lays “failed” processes until after the coin-flip. That minr(a’) = minr(«) is
immediate from Lemma 11.

Here is the full adversary strategy: carry out o’ as described above, and
then execute a local coin-flip. Repeat until maxr drops to 1 — ¢, minr drops
below €2, or a decision is reached.

Now let us show that this strategy works as advertised. We have minr(a’) =
minr(a) > 1—€?; and from Lemma 11 the only other effect of executing deter-
ministic steps can be to reduce maxr(a). If maxr(a’) is less than or equal to
1 — €2, o is null-valent and case (1) of the lemma holds. Otherwise, we must
consider the possible outcomes of the local coin-flip.

Let C' be the random variable whose values are the possible outcomes of
the local coin-flip. From Lemma 13, E[maxr(a’C)] = maxr(a) > 1 — ¢2. By
Markov’s inequality, the probability that maxr(a’C) is less than or equal to
1 — ¢ is less than ¢. So on average, we expect to execute at least 1/¢ local
coin-flips before maxr drops below 1 —e. This possibility accounts for case (4).

Suppose that maxr(«aC') does not drop below 1 — e. There are several
possibilities. If minr(aC) < €2, case (2) or (3) holds, and we are done. If
minr(aC) > €2 and maxr(aC) < 1— €2 case (1) holds, and again we are done.
If maxr(aC') > 1—¢€?, then we may repeat the process described above until we
reach a new local coin-flip, unless a decision of 1 is reached; but the probability

29

that the protocol reaches a decision of 1 following this strategy is at most p. So
with probability at least 1 — p, one of the other outcomes occurs. [|

By symmetry, it is immediate that the lemma also holds if the decision values
0 and 1 are swapped.

3.6 Strategy for Bivalent Executions

Given a bivalent execution «, we wish to show that « has a fair, failure-free
deterministic extension that is either null-valent (so we can apply the coin-
flipping bound) or permits a local coin-flip in its final state.

Lemma 16 Let « be a failure-free bivalent execution, and let x be a determin-
istic operation that is enabled after ««. Then there exists a finite deterministic
extension B of o such that one of the following conditions holds:

1. B 1s failure-free, bivalent, and a local coin-flip s enabled after 3;
2. B s failure-free, bivalent, and contains x; or

3. B contains at most one failure and is null-valent.

Proof: Consider the set S of all bivalent failure-free deterministic extensions
v of a. If there is a v in S after which a local coin-flip is enabled, we are done:
case (a) holds with # = 5. If there is a y in S containing z, we are done: case
(2) holds with 8 = 7. If there is a v in S such that vy is null-valent for some y,
we are done: case (3) holds with 3 = vy.

Otherwise, let v be a maximal execution in S, i.e. one such that no extension
of v is in S. Such an execution exists because every execution in .S must be
finite by the termination condition. Under the assumption that none of the
conditions above hold, we know that:

1. No local coin-flip is enabled after ~.

2. For each operation y, vy is univalent. (Tt cannot be null-valent; nor can
it be bivalent, because then v is not maximal.)

3. The operation z is enabled after y. (It is enabled after «; for it not to be
enabled after v it must appear in 7.)

Assume without loss of generality that vz i1s 0-valent; the case where it is
1-valent is symmetric. Then there exists some y such that vy is 1-valent, as
otherwise v would be 0-valent by Lemma 12, contradicting its membership in
S. We will show by a case analysis that there are always deterministic extensions
of vx and ~y that are distinguishable by at at most one process. Killing this
process thus leads to indistinguishable executions that deterministically extend
0-valent and 1-valent executions; these executions must both be null-valent and
we can choose either one for 4 and satisfy condition (3).

There are several cases depending on the type of the operations = and y:

30

1. z and y are operations on different registers. In this case z and y commute
and the states resulting from yzy and yyx are the same. No killing is
necessary; vxy and yyz are both null-valent.

2. x1s aread operation. If y1s also a read operation, the operations commute
and yzy and yyx are both null-valent as above. If y is a write operation,
then only the process performing x can distinguish between yyz and yzy.
Killing this process yields a pair of indistinguishable executions that are
thus both null-valent.

3. y is a read operation. This case is symmetric with the previous case.

4. z and y are both write operations on the same register. Then yyz is
distinguishable from yx only by the process performing y. Again, killing
this process yields two indistinguishable executions that must both be
null-valent.

|
Iterating the lemma eliminates one of the cases:

Lemma 17 Let « be a failure-free bivalent execution. Then there exists a finite
deterministic extension O of o such that either

1. B 1s failure-free and a local coin-flip s enabled after 3, or
2. B contains at most one failure and is null-valent.

Proof: Let ag = «a. For each «;, let x; be the operation enabled after «; that
has been enabled the longest and let a;41 be the finite deterministic extension
of a; whose existence is implied by Lemma 16. If «; 41 1s failure-free and a local
coin-flip is enabled after it, set § = a;41. Similarly set § = a;41 if a; 41 contains
at most one failure and is null-valent. If «;4; 1s bivalent, contains z;, and no
coin-flip is enabled in «;41, continue with a; 41 and a new ;1.

This process must eventually terminate with 8 equal to some «;. Otherwise,
it would yield an infinite, fair, failure-free deterministic extension of «, violating
the termination condition. [|

The lemma above implies that we can always reach an execution that either
is null-valent or permits a coin-flip. For this fact to be useful, coin-flips cannot
be too destructive. The following lemma constrains their wrath:

Lemma 18 Let « be a bivalent execution and let C' be a random variable cor-
responding to the possible outcomes of a local coin-flip enabled in «v. Then

Pr [minr(aC) > e Vmaxr(al) < 1 — €] < 2e.

Proof: Let X = minr(aC). Then X > 0, and E[X] = minr(a) < 2. So
by Markov’s inequality the probability that minr(aC') reaches € is less than
¢? /e = ¢. Adding the probability of the symmetric event that max(raC') reaches
1 — € raises the bound to 2e.]

31

Thus with high probability, the result of a local coin-flip after a bivalent
execution is an execution that is either bivalent, null-valent, or univalent with a
very wide range. In the case of a bivalent execution the adversary may continue
as above. In the case of a null-valent execution, the coin-flipping bound applies.
The case of a univalent execution with a wide range is covered below.

3.7 The Full Strategy

Here 1s the full strategy used to prove the lower bound. It is divided into four
cases corresponding to four conditions that could hold at the end of each partial
execution:

1. Start in an initial state whose range straddles % The existence of such a

state is guaranteed by Lemma 14. If this state is bivalent or null-valent,
skip to the appropriate condition below. Otherwise, the state must either

be 0-valent with maxr > % or l-valent with minr < i. In either case,

3
Lemma 15 or its symmetric equivalent applies, and with probability at
least % we reach one of conditions (2), (3), or (4); or we execute an expected

1/¢ local coin-flips before deciding.

2. From a 0-valent execution with maxr > 1 — € or a 1-valent execution
with minr < 1 — €, apply Lemma 15 or its symmetric equivalent. With
probability 1 — e: one of the following occurs: we reach one of conditions
(2) or (3) after executing at least one local coin-flip; we reach condition
(4); or we execute an expected 1/e local coin-flips before deciding.

3. From a bivalent execution, apply Lemma 17 to either reach a null-valent
execution with at most one failure, or a bivalent execution after which
a local coin-flip is enabled. If we reach a bivalent execution after which
a local coin-flip is enabled, apply Lemma 18 to show that the result of
this coin-flip lands us in condition (2), (3), or (4) with probability at least
1— 2e.

4. From a null-valent execution with at most one failure, Theorem 10 applies,

B(t—1)* local
1)

and there is an adversary strategy that forces an expected a2 (2-1)

coin-flips before termination.
With a suitable choice of €, the existence of this strategy implies:

Theorem 19 Against a worst-case adaptive adversary, any t-restlient consen-
sus protocol for the asynchronous shared-memory model performs an expected

(o))

local coin-flips.

32

Proof: Let I be the expected cost from the initial state in case (1); U the
expected cost from the univalent execution in case (2); B the expected cost
from the bivalent execution in case (3); and N the expected cost from the null-
valent execution in case (4). Then we have:

1
i > §min(U,B,N,1/e)
U > (I—¢min(l+U, 14+ B,N,1/¢)
B > min(N,(1-2¢)(1 4+ min(U, B, N)))
_1)2
N o> 3t—1)

64In* (2 - 1)

Our goal is to work backwards from the lower bound on N to get a lower
bound for I. Let M be the smallest of U, B, and N. There are three cases:

e M =U. Then U > (1 — ¢)min(l + U, 1/¢). This implies U is at least
1/e —1; for if we assume that U < 1/e—1we get U > (1 —¢)(1 +U) and
thus e > 1 —cor U > 1/e— 1.

e M = B. Then B > (1—2¢)(1+ B), implying B > 5 — 1.
e M =N. Then M > —3-1°
= 641n2(2-1)

In each case we have

1 t—1)*
M>min|——1 3()

= 14
2¢ 64ln’ (2-1) (14)

Since I > %min(M, 1/€), the right-hand side of (14), divided by 2, gives
a lower bound on the number of local coin-flips executed by the consensus
protocol. If we set ¢ = (¢ — 1)~2, this expression reduces to the bound claimed

in the theorem. [|

The bound counts the number of local coin-flips. Because we allow coin-flips
to have arbitrary values (not just 0 or 1), local coin-flips performed by the same
process without any intervening operations can be combined into a single coin-
flip without increasing the adversary’s influence. Thus the lower bound on local
coin-flips immediately gives a lower bound on total work. Furthermore, because
the coin-flip bound is not affected by changing the model to one that can be
deterministically simulated by shared memory, we get the same lower bound on
total work in any model that can be so simulated, no matter how powerful its
primitives are. So, for example, wait-free consensus requires Q(n?/ log2 n) work
even in a model that supplies counters or O(1)-cost atomic snapshots.

4 Discussion

For those of us who like working with an adaptive adversary, randomization has
given only a temporary reprieve from the consequences of Fischer, Lynch, and

33

Paterson’s impossibility proof for deterministic consensus with faulty processes.
Theorem 19 means that even though we can solve consensus using randomiza-
tion, we cannot hope to solve it quickly without a small upper bound on the
number of failures, built-in synchronization primitives, or restrictions on the
power of the adversary.

Fortunately, there are a number of natural restrictions on the adversary that
allow fast consensus protocols without eliminating the faults that we might
reasonably expect to observe in real systems. Omne plausible approach is to
limit the knowledge the adversary has of register contents, to prevent it from
discriminating against coin-flips it dislikes. Various versions of this can be found
in the the consensus work of Chor, Israeli, and Li [CIL87] and Abrahamson
[Abr88], and in the O(nlog”n) total work protocol of Aumann and Bender
[ABY6], the O(log?n) work-per-process protocol of Chandra [Cha96], and the
recent O(log n) work-per-process protocol of Aumann [Aum97]. Restrictions on
the amount of asynchrony can also have a large effect [AAT94, SSW91].

A question that we have not completely answered is the following: Does the
majority of n fair coin-flips give an optimal coin-flipping game (in the sense of
having minimum bias) with an adversary that can censor up to k flips? Majority
is optimal for similar models (e.g., in the fair-local-coin model studied by Licht-
enstein, Linial, and Saks [LLS89]). Theorem 3 implies that it is not possible to
achieve constant bias with more than k& = O(y/n) faults, the amount tolerated
by majority, but there is still a gap between the lower bound of Theorem 3 and
the upper bound of the majority game when k is large relative to \/n. Tt can
be shown using the analysis in Section 2.1 that taking a majority of fair coins
cannot be optimal in an absolute sense when biased local coins are allowed, as
the optimal games characterized in that section generally do not use fair local
coins. However it is still possible that majority is close to optimal, and it might
be possible to show (for example) that no game where the adversary was allowed
to hide 2k local coins could have a smaller bias than majority with & hidden
coins.

One possible approach to showing majority is close to optimal is suggested by
the fact that the hyperbolic tangent function tanh in Theorem 3 essentially acts
as an easier-to-manipulate approximation to the normal distribution function
®. If we replace tanh by ® and adjust the set of possible game outcomes to
match the range of @, we get the following conjecture:

Conjecture 20 Lel G be a game of length n with outcome set {0,1}. Then
there exists a constant ¢ > 0 such that for any k > 0, either MG =1, mG = 0,
or
O IMLG — @Iy G > k. (15)
~Vn
If true, the conjecture would give a lower bound that would match (up to con-
stant factors) the upper bound given by majority voting, and would improve by
a factor of logn the lower bound for consensus given in Theorem 19.
A still more general question asked by Ben-Or and Linial in [BOL89], also
still open, is whether majority voting is optimal in a Byzantine model where

34

processes may vote more than once but in which the adversary controls all
future votes of a process once it has been corrupted. Our work shows that the
number of local coins flipped in this model must be large relative to the number
of failures, but 1t does not exclude the possibility that the number of distinct
processes might still be relatively small.

5 Acknowledgments

The author is indebted to Russell Impagliazzo for many fruitful discussions of
coin-flipping problems, Steven Rudich for a suggestion that eventually became
the truncation argument used to prove Theorem 10, Mike Saks for encourage-
ment and pointers to related work, and Faith Fich, Wai-Kau Lo, Eric Ruppert,
and Eric Schenk for many useful comments on an earlier version of this work.

References

[AAT94] Rajeev Alur, Hagit Attiya, and Gadi Taubenfeld. Time-adaptive
algorithms for synchronization. In Proceedings of the Twenty-Sizth
Annual ACM Symposium on Theory of Computing, pages 800-809,
Montréal, Québec, Canada, may 1994.

[AB96] Yonatan Aumann and Michael Bender. Efficient asynchronous con-
sensus with a value-oblivious adversary scheduler. In Proceedings
of the 23rd International Conference on Automata, Languages, and
Programmang, July 1996.

[Abr88] K. Abrahamson. On achieving consensus using a shared memory.
In Proceedings of the Seventh ACM SIGACT-SIGOPS Symposium
on Principles of Distributed Computing, August 1988.

[ADS89] Hagit Attiya, Danny Dolev, and Nir Shavit. Bounded polynomial
randomized consensus. In Proceedings of the Eighth ACM Sympo-
stum on Principles of Distributed Computing, pages 281-294, Au-

gust 1989.

[AH90] James Aspnes and Maurice Herlihy. Fast randomized consensus us-
ing shared memory. Journal of Algorithms, 11(3):441-461, Septem-
ber 1990.

[AN90] Noga Alon and Moni Naor. Coin-flipping games immune against
linear-sized coalitions. In Proceedings of the 31st Annual Symposium
on Foundations of Computer Science, pages 46-54. IEEE, 1990.

[Asp93] James Aspnes. Time- and space-efficient randomized consensus.

Journal of Algorithms, 14(3):414-431, May 1993.

35

[Asp9T]

[Aum97]

[AW96]

[BOL89Y)

[BOLSS7]

[BR9O]

[BRI1]

[CFG*85]

[Cha96]

[C193]

[CTL87]

[C1.93]

James Aspnes. Lower bounds for distributed coin-flipping and ran-
domized consensus. In Proceedings of the Twenty-Ninth Annual
ACM Symposium on the Theory of Computing, pages 559-568.
ACM, May 1997.

Yonatan Aumann. Efficient asynchronous consensus with the weak
adversary scheduler. In Proceedings of the Sizteenth Annual ACM
Symposium on Principles of Distributed Computing, pages 209-218,
1997.

James Aspnes and Orli Waarts. Randomized consensus in
O(nlog2 n) operations per processor. SIAM Journal on Comput-
ing, 25(5):1024-1044, October 1996.

Michael Ben-Or and Nathan Linial. Collective coin flipping. In
Silvio Micali, editor, Randomness and Computation, volume b of
Advances i Computing Research, pages 91-115. JAT Press, 1989.

M. Ben-Or, N. Linial, and M. Saks. Collective coin flipping and
other models of imperfect randomness. In Combinatorics, volume 52
of Colloquia Mathematic Societatis Janos Bolyai, pages 75h—112,
Eger (Hungary), 1987.

Gabi Bracha and Ophir Rachman. Approximated counters and ran-
domized consensus. Technical Report 662, Technion, 1990.

Gabi Bracha and Ophir Rachman. Randomized consensus in ex-
pected O(n?logn) operations. In Proceedings of the Fifth Workshop
on Distributed Algorithms, 1991.

Benny Chor, Joel Friedman, Oded Goldreich, Johan Hastad, Steven
Rudich, and Roman Smolensky. The bit extraction problem or ¢-
resilient functions. In Proceedings of the 2th Annual Symposium on
Foundations of Computer Science, pages 396-407. IEEE, 1985.

Tushar Deepak Chandra. Polylog randomized wait-free consensus.
In Proceedings of the Fifteenth Annual ACM Symposium on Prin-
ciples of Distributed Computing, pages 166-175, May 1996.

Richard Cleve and Russell Impagliazzo. Martingales with Boolean
final value must make jumps of O(1/n'/?) with constant probability.
Unpublished manuscript, 1993.

B. Chor, A. Israeli, and M. Li. On processor coordination using
asynchronous hardware. In Proceedings of the Swwth ACM Sympo-
stum on Principles of Distributed Computing, pages 86-97, 1987.

Jason Cooper and Nathan Linial. Fast perfect-information leader-
election protocol with linear immunity. In Proceedings of the
Twenty-Fifth Annual ACM Symposium on the Theory of Comput-
wng, pages 662-671. ACM, 1993.

36

[DDS87]

[DHPW92]

[FHS93]

[FLP85]

[Fri92]

[Har66]

[Her91]

[LAAST]

[LLS89]

[Lyn96]
[Saksg]

[SSW91]

D. Dolev, C. Dwork, and L. Stockmeyer. On the minimal syn-
chronism needed for distributed consensus. Journal of the ACM,

34(1):77-97, January 1987.

Cynthia Dwork, Maurice Herlihy, Serge Plotkin, and Orli Waarts.
Time-lapse snapshots. In Proceedings of Israel Symposium on the
Theory of Computing and Systems, 1992.

Faith Fich, Maurice Herlihy, and Nir Shavit. On the complexity
of randomized synchronization. In Proceedings of the 12th Annual
ACM Symposium on Principles of Distributed Computing, August
1993.

M. Fischer; N.A. Lynch, and M.S. Paterson. Impossibility of dis-
tributed commit with one faulty process. Journal of the ACM,
32(2), April 1985.

Joel Friedman. On the bit extraction problem. In Proceedings of
the 33rd Annual Symposium on Foundations of Computer Science,

pages 314-319. IEEE, 1992.

L. H. Harper. Optimal numberings and isoperimetric problems on

graphs. Journal of Combinatorial Theory, 1:385-394, 1966.

Maurice Herlihy. Wait-free synchronization. ACM Transactions
on Programming Languages and Systems, 13(1):124-149, January
1991.

Michael C. Loui and Hosame H. Abu-Amara. Memory require-
ments for agreement among unreliable asynchronous processes. In
Franco P. Preparata, editor, Advances in Computing Research, vol-

ume 4. JAT Press, 1987.

D. Lichtenstein, N. Linial, and M. Saks. Some extremal problems
arising from discrete control processes. Combinatorica, 9:269-287,

1989.
Nancy A. Lynch. Distributed Algorithms. Morgan Kaufmann, 1996.

Michael Saks. A robust non-cryptographic protocol for collective
coin flipping. SIAM Journal on Discrete Mathematics, 2(2):240-
244, 1989.

Michael Saks, Nir Shavit, and Heather Woll. Optimal time ran-
domized consensus — making resilient algorithms fast in practice.
In Proceedings of the Second Annual ACM-SIAM Symposium on
Discrete Algorithms, pages 351-362, 1991.

37

[Vaz85]

Umesh Vazirani. Towards a strong communication complexity the-
ory, or generating quasi-random sequences from two communicat-
ing slightly-random sources. In Proceedings of the Twenty-Ninth
Annual ACM Symposium on the Theory of Computing, pages 366—
378. ACM, 1985.

38

