
Lower Bounds for Distributed Coin-Flipping andRandomized Consensus�James Aspnes yFebruary 2, 1998AbstractWe examine a class of collective coin-
ipping games that arises fromrandomized distributed algorithms with halting failures. In these games,a sequence of local coin
ips is generated, which must be combined toform a single global coin
ip. An adversary monitors the game and mayattempt to bias its outcome by hiding the result of up to t local coin
ips. We show that to guarantee at most constant bias,
(t2) local coinsare needed, even if (a) the local coins can have arbitrary distributionsand ranges, (b) the adversary is required to decide immediately whetherto hide or reveal each local coin, and (c) the game can detect whichlocal coins have been hidden. If the adversary is permitted to control theoutcome of the coin except for cases whose probability is polynomial in t,
(t2= log2 t) local coins are needed. Combining this fact with an extendedversion of the well-known Fischer-Lynch-Paterson impossibility proof ofdeterministic consensus, we show that given an adaptive adversary, any t-resilient asynchronous consensus protocol requires
(t2= log2 t) local coin
ips in any model that can be simulated deterministically using atomicregisters. This gives the �rst non-trivial lower bound on the total workrequired by wait-free consensus and is tight to within logarithmic factors.1 IntroductionOur results divide naturally into two parts: a lower bound for asynchronousrandomized consensus in a wide variety of models, and a still more generallower bound for a large class of collective coin-
ipping games that forms thebasis of the consensus lower bound but is interesting in its own right.Consensus is a fundamental problem in distributed computing in which agroup of processes must agree on a bit despite the interference of an adversary.(An additional condition forbids trivial solutions that always produce the same�A preliminary version of this paper appeared in STOC '97 [Asp97].yYale University, Department of Computer Science, 51 Prospect Street/P.O. Box 208285,New Haven, CT 06520-8285. Supported by NSF grants CCR-9410228 and CCR-9415410.E-mail: aspnes@cs.yale.edu. 1

answer). In an asynchronous setting, it has long been known that if an adversarycan halt a single process, then no deterministic consensus algorithm is possiblewithout the use of powerful synchronization primitives [CIL87, DDS87, FLP85,Her91, LAA87].In contrast, randomized algorithms can solve consensus in a shared-memorysystem for n processes even if the adversary can halt up to n�1 processes. Suchalgorithms are called wait-free [Her91] because any process can �nish the algo-rithm without waiting for slower (or possibly dead) processes. These algorithmswork even under the assumption that failures and the timing of all events in thesystem are under the control of an adaptive adversary| one that can observeand react to all aspects of the system's execution (including the internal statesof the processes).The �rst known algorithm that solves shared-memory consensus against anadaptive adversary is the exponential-time algorithm of Abrahamson [Abr88];since its appearance, numerous polynomial-time algorithms have appeared [AH90,ADS89, SSW91, Asp93, DHPW92, BR90, BR91, AW96]. Most of these algo-rithms are built around shared coin protocols in which the processes individuallygenerate many random �1 local coin
ips, which are combined by majority vot-ing. The adversary may bias the outcome of the voting by selectively killingprocesses that have chosen to vote the \wrong" way before they can reveal theirmost recent votes to the other processes. To prevent the adversary from get-ting more than a constant bias, it is necessary to collect enough votes that thehidden votes shift the outcome by no more than a constant number of standarddeviations. With up to n � 1 failures (as in the wait-free case), this requires atotal of
(n2) local coin-
ips, and at least
(n2) work in order to communicatethese coin-
ips.1Improvements in other aspects of consensus algorithms have steadily broughttheir costs down, from the O(n4) total work of [AH90] to the O(n2 logn) totalwork of [BR91]. But while these algorithms have steadily approached the
(n2)barrier, none have broken it. However, no proof was known that consensuscould not be solved in less than
(n2) time; the barrier was solely a result ofthe apparent absence of alternatives to using shared coins based on majorityvoting. Indeed, it was asked in [Asp93] if every consensus protocol contained anembedded shared coin protocol; and (specializing a more general and still openquestion of Ben-Or and Linial [BOL89]) if no shared coin protocol in this modelcould beat the
(n2) cost of majority voting.1Some of the algorithms deviate slightly from the simple majority-voting approach de-scribed here. In the algorithm of Aspnes [Asp93], some votes are generated deterministically.In the algorithm of Saks, Shavit, and Woll [SSW91], several coin-
ipping protocols optimizedfor di�erent execution patterns are run in parallel. In the algorithm of Aspnes and Waarts[AW96], processes that have already cast many votes generate votes with increasing weightsin order to �nish the protocol quickly. However, none of these protocols costs less than simplemajority voting in terms of the expected total number of local coin
ips performed in theworst case. 2

1.1 Our ResultsWe show that for a shared coin protocol to guarantee at most constant biasdespite up to t failures,
(t2) local coins are needed, even if (a) the local coins canhave arbitrary distributions and ranges, (b) the adversary is required to decideimmediately whether to hide or reveal each local coin, and (c) the protocol candetect which local coins have been hidden. If the protocol has polynomial bias,meaning that the adversary is permitted to control the outcome of the protocolexcept for cases whose probability is polynomial in t,
(t2= log2 t) local coinsare needed. An extended version of the well-known Fischer-Lynch-Patersonimpossibility proof of deterministic consensus is then used to show that givenan adaptive adversary, any t-resilient asynchronous consensus protocol eitherexecutes a shared coin protocol with polynomial bias or carries out an expected
(t2) local
ips avoiding it. This implies that t-resilient asynchronous consensusrequires an expected
(t2= log2 t) local coin
ips. Since protocols based onmajority voting require only O(t2) local coin
ips, this lower bound is very closeto being tight.Since we are counting coin-
ips rather than operations, the lower bound isnot a�ected by deterministic simulations. So, for example, it continues to hold inmessage-passing models with up to t process failures (since a message channelcan be simulated by an unboundedly large register), or in a shared-memorymodel with counters or cheap atomic snapshots. Furthermore, since our lowerbound assumes that local coin
ips can have arbitrary ranges and distributions,we may assume without loss of generality that any two successive coin-
ips bythe same process are separated by at least one deterministic operation in anyof these models| so the lower bound on local coin-
ips in fact implies a lowerbound on total work.The lower bound on coin-
ipping games is still more general, and holds inany model in which the adversary may intercept up to t local coin-
ips beforethey are revealed, no matter what (deterministic) synchronization primitives orshared objects are available. Furthermore, it is tight in the sense that it showsthat no constant-bias shared coin can use less than
(t2) local coins, a boundachieved by majority voting.1.2 Related WorkMany varieties of collective coin-
ipping games have been studied, starting withthe work of Ben-Or and Linial [BOL89]. Many such games assume that thelocations of faulty coins are �xed in advance; under these assumptions verye�cient games exist [AN90, CL93, BOL89, Sak89]. Another assumption thatgreatly limits the power of the adversary is to require that both the locationsand values of faulty coins are �xed in advance; this is the bit extraction problem[CFG+85, Fri92, Vaz85], in which it is possible to derive completely unbiasedrandom bits.If none of these limiting assumptions are made, the adversary gains con-siderably more power. If the adversary can subvert running processes based3

on the execution of the protocol so far, the best strategy for minimizing theadversary's in
uence in many models seems to be to take the majority of faircoin-
ips, the idea being that the majority function minimizes the in
uence ofany single local coin.2 Ben-Or and Linial [BOL89] observed that with a restric-tion to fair coins, Harper's isoperimetric inequality for the hypercube [Har66]implies that the majority function gives the least power to an o�-line adversarythat can see all coins before deciding which to change (a one-round protocol),and conjectured that a similar result held for multi-round protocols in whichn processes repeatedly executed rounds in which each
ipped a coin and theadversary could control all coin-
ips of a process once it was subverted.This conjecture is still open, as the present work applies to systems in whichthe adversary can only alter one local coin-
ip for each process that it subverts.(One can think of this restriction as assuming halting failures rather than Byzan-tine failures in the processes.) A previous paper with similar scope was thatof Lichtenstein, Linial, and Saks [LLS89], who showed that majority is optimalunder the assumption of fair local coins in a sequential game similar to theone we consider here. In their model fair coin-
ips are generated one at a timeand the adversary may replace up to k of them, its decisions depending only onthe values of the coin-
ips generated so far. The main di�erence between theirresults and ours are: (a) they require fair Boolean-valued local coins, wherewe allow arbitrary distributions and ranges on the local coins; (b) they allowthe adversary to replace a coin-
ip with a new value of its choosing, where weassume a weaker adversary that can only hide a coin-
ip by replacing it with a�xed value ?; and (c) they obtain a tight result that shows that combining thelocal coins with the majority function (or, in general, any threshold function)minimizes the adversary's in
uence over the global coin. This result dependsstrongly on the assumption of fair local coins and the techniques used to proveit do not appear to generalize to arbitrary distributions on the local coins.In contrast, our results work for arbitrary distributions, but we do not resolvecompletely the question of whether majority is optimal in our more generalmodel. We do show that for constant bias the number of faults cannot exceedO(pn), the number tolerated (modulo constant factors) by majority, but forlarge biases our lower bound diverges from the upper bound given by majority.We believe that a strengthened version of our lower bound could show thatmajority is asymptotically optimal; this issue is discussed in Section 4.The best previously known bound for arbitrary local coins is a bound of
(1=pn) on the in
uence of an adversary that can hide one coin, due to Cleveand Impagliazzo [CI93]. They show that in any martingale sequence starting at0 and ending at �1, with at least constant probability there is a jump of at least
(1=pn). To translate this into a result about coin-
ipping, one constructs amartingale X0; X1; : : :Xn by letting Xi be the conditional expectation of theglobal coin given the values of the �rst i coins, and observes that if there is alarge jump between Xi and Xi+1 the adversary can get a large in
uence over2An excellent survey of results for a wide variety of models involving fair or nearly fairtwo-valued local coins can be found in [BOLS87].4

the outcome of the game by hiding the (i + 1)-th local coin.Part of the motivation for our work on coin-
ipping games was to show alower bound on the work used by wait-free shared-memory consensus. A verynice lower bound on the space used by wait-free shared-memory consensus isdue to Fich, Herlihy, and Shavit [FHS93]. They show that any such consensusprotocol must use
(pn) distinct registers to guarantee agreement. Unfortu-nately, their techniques do not appear to generalize to showing lower bounds onwork.2 Coin-Flipping GamesA collective coin-
ipping game [BOL89] is an algorithm for combining many lo-cal coins into a single global coin, whose bias should be small even though someof the local coins may be obscured by a malicious adversary. Though the par-ticular coin-
ipping games we consider here are motivated by their applicationto proving lower bounds on distributed algorithms with failures, they abstractaway almost all of the details of the original distributed systems and are thuslikely to be useful in other contexts.We assume that the local coins are independent random variables whoseranges and distributions are arbitrary. The values of these variables are revealedone at a time to an adversary who must immediately choose whether to reveal orobscure each value. If the adversary chooses to obscure the value of a particularlocal coin, the e�ect is to replace it with a default value ?. Repeating thisprocess yields a sequence of values, some of which are the original values ofthe random variables and some of which are ?. A function is applied to thissequence to yield an outcome, which may be arbitrary but which we will usuallyrequire to be �1. The adversary's power is limited by an upper bound on howmany coins it may obscure.Note that in this description we assume that the adversary cannot predictfuture local coins; it can only base the decision to reveal or obscure a particularcoin on the coin's value and the values of earlier coins. In addition, the adver-sary's interventions are visible. The coin-
ipping game may observe and reactto the fact that the adversary has chosen to obscure particular local coins, eventhough it has no access to the true values of those coins.Formally, a coin-
ipping game is speci�ed by a tree. The leaves of the treespecify the outcomes of the game. Internal nodes correspond to local coin-
ips.Coin-
ipping games are de�ned recursively as follows. Fix a set of possibleoutcomes. A coin-
ipping game G with maximum length zero consists of asingle outcome; we will call such a game a constant game and abuse notation bywriting its outcome simply as G. A coin-
ipping game G with maximum lengthn is either a constant game or consists of1. A random variable representing the �rst local coin-
ip in G.2. A function mapping the range of this random variable to the set of coin-
ipping games with maximum length less than n (the subgames of G). For5

each value � in this range, the resulting subgame is denoted G�.3. A default subgame G? with maximum length less than n, correspondingto the e�ect of an adversary choice to hide the �rst local coin-
ip in G.The above de�nition represents a coin-
ipping game as a tree; if we think ofG as the root of the tree its children are the subgames G� for each value of �and the default subgame G?. The actual game tree corresponding to playingthe game against an adversary is a bit more complicated and involves two pliesfor each level of G. We may think of the states of this game as pairs (G; k)specifying the current subgame G and the limit k on how many local coins theadversary may hide (i.e., the number of faults). To execute the �rst local coin-
ip in G, two steps occur. First, the outcome � of the coin-
ip is determined.Second, the adversary chooses between revealing �, leading to the state (G�; k);or hiding �, leading to the state (G?; k� 1).In order to prevent the adversary from being able to predict the future or thegame from being able to deduce information about obscured coins, we demandthat all random variables on any path through the game tree be independent.An adversary strategy speci�es for each partial sequence of local coin-
ipswhether to hide or reveal the last coin. We will write G � A for the randomvariable describing the outcome of G when run under the control of an adversarystrategy A. If a game G has real-valued outcomes, then for each number offaults k there exist adversary strategies to maximize or minimize the expectedoutcome. De�ne MkG to be the maximum expected outcome and mkG to bethe minimum expected outcome. These values can be computed recursively asfollows:� If G has length 0, MkG = mkG = G.� If G has positive length, thenMk(G) = E� [max(MkG�;Mk�1G?)] (1)mk(G) = E� [min(mkG�;mk�1G?)] : (2)Most of the time we will assume that the only possible outcomes of a game are�1. In this case the quantitiesMk and mk give a measure of how much in
uencean adversary with the ability to hide k local coin-
ips can get over the outcome.It is necessary to consider both at once: as we will see later, it is always possibleto �nd a game with maximum length n whose minimum expected outcome mkcan be any value in the range [�1; 1]. We will be interested in the best suchgame, i.e., the one that attains a particular value of mk while minimizing Mk(or, symmetrically, the game that maximizes mk for a particular �xed Mk). Ingeneral it will turn out to be quite di�cult to �nd this game exactly (althoughmuch can be shown about its structure), and so it will be necessary to settle fora lower bound on MkG as a function of n, k, and mkG.6

2.1 The Structure of Optimal GamesFix a maximum length n and number of failures k. Let us de�ne the range ofa game G to be the interval [mkG;MkG]. Then G (strictly) dominates G0 justin case the range of G is a (proper) subset of the range of G0; in other words,if G gives the adversary no more control than G0 does. A game G is optimal ifit either dominates all other games G0 with mkG0 = mkG or if it dominates allother games G0 with MkG0 = MkG. For k < n, this de�nition will turn out tobe equivalent to saying that no game strictly dominates G.With each k and gameG we can associate a point in a two-dimensional spacegiven by the coordinates mkG and MkG. From this geometric perspective theproblem we are interested in is �nding for each value of n and k the curvecorresponding to the set of optimal games with maximum length n and up to kfailures.For some values of n and k this task is an easy one. If k = 0, then the (n; 0)curve is just the diagonal running from (�1;�1) to (1; 1), since m0G = M0G forall G. If the other extreme holds and k � n, then for any G either mkG = �1 orMkG = 1, depending on the default outcome of G if all local coins are hidden.It is not di�cult to see that if MnG = 1, then mnG can be any value between�1 and 1. For example, G could set its outcome to be the value of the �rstlocal coin, or 1 if that coin-
ip is hidden; if the adversary wishes to achievean outcome lower than 1 it must let the �rst local coin go through. Similar, ifmnG = �1 then MnG can be any value between �1 and 1. Thus the optimal(n; n) curve consists of the line segment from (�1;�1) to (�1; 1) and the linesegment from (�1; 1) to (1; 1).Equations (1) and (2) have a nice geometrical interpretation that in principleallows one to determine the (n; k) curves of optimal games of maximum length nwith k failures. This process is depicted in Figures 1 and 2. Fix a gameG. Eachsubgame G� corresponds to a point (mkG�;MkG�), which must lie somewhereon or above the curve of optimal (n�1; k) games. The contribution of G� to theposition of G is given by (min(mkG�;mk�1G?);max(MkG�;Mk�1G?)), whichis a point in the intersection of the region above the (n � 1; k) curve and therectangle of points dominated by G?. Since the value of G is the average ofthese contributions, it must correspond to some point in the convex closure ofthis intersection. Provided the (n�1; k) curve is concave (which is easily provedby induction on n as shown below), then all points in the convex closure aredominated by some point on its lower right edge: the line segment between theoptimal (n � 1; k) game G0 with MkG0 = Mk�1G? and the optimal (n� 1; k)game G1 with mkG1 = mk�1G?.Geometrically, this edge is the hypotenuse of a right triangle inscribed be-tween the (n�1; k) and (n�1; k�1) curves such that its sides are parallel to theaxes and its right corner is on the (n� 1; k� 1) curve. To take into account allpossible choices of G?, it is necessary to consider all such triangles. By takingthe minimum of the hypotenuses of these triangles (as shown in Figure 2), weobtain the (n; k) curve of all optimal games of maximum length n subject to upto k failures. Note that if the (n�1; k) curve is nondecreasing and concave (true7

(n-1,k-1)(n-1,k)(n,n)
Defaultsubgame (n,0)

minexpectedoutcome
maxexpectedoutcome
Figure 1: Graphical depiction of constraints on minimum and maximum ex-pected outcomes of a game G given n and k. Each point in the �gure corre-sponds to a pair of minimum and maximum expected outcomes. The diagonalrepresents the k = 0 case where these values are the same. The outer edges ofthe �gure represent the k = n case. The two inner curves represent all optimalgames with n�1 voters and either k or k�1 failures. The default subgame G?lies somewhere on or above the (n� 1; k� 1) curve. All other subgames G� lieon or above the (n � 1; k) curve. If G? is �xed, the value of G lies somewherein the convex closure of the intersection of the region above the (n� 1; k) curveand the rectangle dominated by G?. All points in this convex closure, shownshaded in the picture, are dominated by some point on the hypotenuse of theright triangle inscribed between the (n� 1; k) and (n � 1; k� 1) curves.8

(n,n) (n-1,k)(n,k)(n-1,k-1)(n, 0)
minexpectedoutcome

maxexpectedoutcome
Figure 2: E�ect of considering all choices of G?. Each point on the (n�1; k�1)curve corresponds to some possible default subgame G?. The hypotenuse of theright triangle with corners on this point and the (n � 1; k) curve gives a set ofgames which dominate all other games with this �xed G?. The set of optimalgames with n voters and k failures is thus the minimum of the hypotenuses ofall such right triangles. 9

for n� 1 = k, true as the induction hypothesis for larger n� 1), we may extendeach hypotenuse to its containing line without a�ecting the minimum, and sothe (n; k) curve as the minimum of concave functions is also nondecreasing andconcave.Let us summarize. From the discussion of the constraints on G given G?,we have:Theorem 1 For each coin-
ipping game G with maximum length n and up tok failures, there is a G0 such that G0 dominates G, G0? dominates G?, G0 hasexactly two non-default subgames G00 and G01, MkG00 = Mk�1G0?, and mkG01 =mk�1G0?.One consequence of this theorem is that we can replace any optimal G withan equivalent G0 in which the �rst local coin has exactly two outcomes, and inwhich the adversary never prefers hiding a local coin to revealing one. Since thetheorem also applies recursively to all subgames of G, we may assume that theseconditions in fact hold throughout G0. Thus no additional power is obtainedby allowing more than two outcomes to a coin. However, the theorem does notimply that we can require that all local coins are fair; indeed, for most optimalgames they will not be.In addition, we have shown the following about the shape of the curvescorresponding to optimal games:Theorem 2 Fix n and k with k < n. For each x in [�1; 1], let f(x) be thesmallest value of MkG for all G such that mkG = x. Then f is nondecreasingand concave.Unfortunately, with the exception of some extreme cases like k = n � 1,the (n; k) curves do not appear to have nice algebraic descriptions. So while inprinciple equations (1) and (2) and the minimum-of-hypotenuses constructionconstrain the curves completely, to obtain any useful bounds from them we willbe forced to resort to approximation.2.2 Lower Bounds for Fixed-Length GamesThe essential idea of our lower bound for �xed-length coin-
ipping games isto choose a family of functions to act as lower bounds for the optimal curvesas de�ned above, and show by repeating the inscribed-right-triangle argumentwith these functions that they do in fact provide lower bounds on the optimalcurves given appropriate parameters. The particular family of functions thatwe use consists of all hyperbolas that are symmetric about the diagonal from(�1; 1) to (1;�1) and that pass through the corner points (�1;�1) and (1; 1).3These hyperbolas are conveniently given bytanh�1 y � tanh�1 x = c3We conjecture (Conjecture 20) that a slightly tighter lower bound could be proven usingthe curves given by ��1(y) � ��1(x) = c, where � is the normal distribution function. Ananalog of Theorem 3 using � instead of tanh would improve the consensus lower bound inTheorem 19 by a logarithmic factor. 10

for various values of c. The linear (n; 0) curve corresponds exactly to c = 0; the(n; n) curve is the limit as c goes to in�nity. Our goal is to compute values of cas a function of n and k such that for all length-n games,tanh�1MkG� tanh�1mkG � c(n; k):Given c(n � 1; k) and c(n � 1; k � 1), repeating the inscribed-right-triangleconstruction for the resulting hyperbolas is a not very di�cult exercise in an-alytic geometry. Unfortunately, �nding the particular point on the hypotenuseof the particular triangle that minimizes c(n; k) is a bit more involved (detailsof both steps are given in the next two sections). The ultimate result of thesee�orts is:Theorem 3 Let G be a game of length n with outcome set f�1;+1g. Then forany k � 0, either MkG = 1, mkG = �1, ortanh�1MkG� tanh�1mkG � k2pn: (3)2.2.1 Proof of Theorem 3In this section we assume that each game has length n in all executions. Ourresults about such games also apply to any game whose maximum length isn, since we can always extend a branch that terminates early with dummycoin-
ips that do not a�ect the outcome.The proof is by induction on n. The case n = 0 is trivial. For n = 1, wehave either k = 0, in which case MkG = mkG and both sides of (3) are zero,or k � 1, and either G? = 1 and thus MkG = G? = 1 or G? = �1 and thusmkG = G? = �1.For larger values of n, we wish to show that if the inequality holds for n itholds for n+ 1. Observe �rst that if k = 0 we again have MkG = mkG and thetheorem holds. Thus it remains only to consider the case k > 0.Suppose that the inequality holds for length n games and consider a lengthn + 1 game G. Consider the pair (mkG;MkG) as a point in [�1; 1]2. Thecoordinates of this point are averages over the same distribution; thus we cantreat the point itself as an average (as a two-dimensional vector) of a set Sof points in [�1; 1]2. The coordinates of the points in this set are given by(min(mkG�;mk�1G?);max(MkG�;Mk�1G?)) for each possible value of �.Each point (x; y) in S must satisfy three constraints: (i) x is at leastmk�1G?; (ii) y is at most Mk�1G?; and (iii) tanh�1 y � tanh�1 x � k2pn (byapplying the induction hypothesis to G�). The region R de�ned by these threeconstraints looks like a rectangle with a concave bite taken out of its bottomright corner, which is the corner with coordinates (mk�1G?;Mk�1G?). Whatis useful about this region is that it is de�ned solely in terms of n, k, and thechoice of G?; and we know that any length n game G has payo�s (mkG;MkG)that, as averages of points in the region, must lie somewhere in its convex closureR. 11

Thus we can prove that our inequality holds for all games G by proving thatit holds for any point in the convex closure of a region de�ned as above.Let's start with the choice of G?. By the induction hypothesis,tanh�1Mk�1G? � tanh�1mk�1G? � k � 12pn :Thus there exists a z such thatMk�1G? � tanh(z + k � 14pn)and mk�1G? � tanh(z � k � 14pn):For the rest of the proof we will ignore the actual payo�s of G? and use insteadthe bounds tanh(z � k�14pn).Now let us consider the extreme points (x; y) on the curve tanh�1 y � tanh�1 x = k2pn .When y = z + k�14pn , we have the point(x0; y0) = (tanh(z � k + 14pn); tanh(z + k � 14pn)):When x = z + k�14pn , we get(x1; y1) = (tanh(z � k � 14pn); tanh(z + k + 14pn)):We wish to show that every point in R is dominated by a convex combinationof these two points.Fix � and let x = min(mkG�;mk�1G?) and y = max(MkG�;Mk�1G?).De�ne: �� = 8<: 1 if x � x0,x1�xx1�x0 if x0 � x � x1, and0 if x1 � x.Let (x0; y0) = ��(x0; y0) + (1� ��)(x1; y1). We claim that x � x0 and y0 � y.To prove this claim consider the three cases in the de�nition of �� sepa-rately. If x � x0, then x � x0 = x0; furthermore y0 = y0 � Mk�1G? �max(MkG�;Mk�1G?) = y. A similar argument proves the claim when �� =0. For the middle case, we have x = x0 = ��x0 + (1 � ��x1) and y �tanh�tanh�1(x) + k2pn� which is at least ��y0+(1���)y1 by Lemma 7. Thusthe claim holds.Let � = E�[��]. From the claim it follows thatmkG = E� [min(mkG�;mk�1G?)]� E� [��x0 + (1� ��)x1]= E�[��]x0 + (1� E�[��])x1= � tanh�z � k + 14pn �+ (1� �) tanh�z � k � 14pn � :12

Similarly we haveMkG = E� [max(MkG�;Mk�1G?)]� E� [��y0 + (1� ��)y1]= E�[��]y0 + (1 � E�[��])y1= � tanh�z + k � 14pn �+ (1� �) tanh�z + k + 14pn � :We are left with the task of reducing this expression to a more convenientform. To do so we apply several inequalities involving hyperbolic functions,proved in the next section. In particular the second-to-last inequality below isgiven by Lemma 5 and the last is given by Lemma 6.tanh�1MkG� tanh�1mkG� tanh�1 �� tanh�z + k � 14pn �+ (1� �) tanh�z + k + 14pn ��� tanh�1 �� tanh�z � k + 14pn �+ (1� �) tanh�z � k � 14pn ��� 2 tanh�1 �12 tanh k � 14pn + 12 tanh k + 14pn �� 2 tanh�1 tanh� k4pn sech2� 12pn��= k2pn sech2� 12pn� :It remains only to show for all k � 1 and n � 1 thatk2pn sech2� 12pn� � k2pn + 1 :From the Taylor's series expansion of sech z we have sech z � 1� 12z2. Settingz = 12pn gives sech 12pn � 1� 18n . But then sech2 12pn � 1� 14n and sech4 12pn �1� 12n . Now for n � 1, 1� 12n � 1� 1n+1 = nn+1 . Thus we have sech4 12pn � nn+1so sech2 12pn �q nn+1 and k2pn sech2 � 12pn� � k2pn+1 .Thus if G is a length n + 1 game, we have thattanh�1MkG� tanh�1mkG � k2pn+ 1and the induction goes through.2.2.2 Some Inequalities Involving Hyperbolic FunctionsThese are used in the proof of Theorem 3.13

Lemma 4 Let 0 � A � B < 1. Then(1 + A)(1 +B)(2 � A� B)2 � (1� A)(1� B)(2 +A +B)2: (4)Proof: Each of the inequalities below is implied by the one that follows it:(1 +A)(1 +B)(2 � A�B)2 � (1� A)(1� B)(2 + A+ B)2(2�A �B)2(1�A)(1 �B) � (2 + A+ B)2(1 + A)(1 + B)4� 4A� 4B + A2 + 2AB + B21�A� B +AB � 4 + 4A+ 4B +A2 + 2AB + B21 +A +B + AB4 + A2 � 2AB + B21� A� B +AB � 4 + A2 � 2AB + B21 +A+ B +AB(A �B)21� A� B +AB � (A �B)21 + A+B + AB11� A� B +AB � 11 + A+B + AB1 + A+ B +AB � 1� A�B + ABA +B � �A �Band this last inequality follows from A+ B � 0.Lemma 5 Let 0 � a � b. Then for all x and all � such that 0 � � � 1,tanh�1 (� tanh(x+ a) + (1� �) tanh(x+ b))� tanh�1 (� tanh(x� b) + (1� �) tanh(x� a))� 2 tanh�1�12 tanh a+ 12 tanh b� : (5)Proof: Equality holds when a = b or � = 12 and x = 0, so we can prove theinequality in general by showing that for �xed a and b with a < b the left-handside L of (5) is minimized when � = 12 and x = 0.To do so we will take L through a sequence of transformations resulting ina rational function in �, tanh a, tanh b, and tanhx. Showing that this functionis minimized when � = 12 and x = 0 is equivalent to showing that a certainpolynomial obtained by multiplying out denominators is never negative. Thisproblem can in turned be reduced to showing that the polynomial is nevernegative for certain extreme cases, where its sign can easily be determined.Reversing these steps proves the original bound.Step 1: Removing occurrences of tanh�1 from L. The �rst step is toremove the inverse hyperbolic tangents that appear in L. To save space let uswrite � for 1� �, yieldingL = tanh�1 �� tanh(x+ a) + � tanh(x + b)�� tanh�1 �� tanh(x� b) + � tanh(x� a)�14

This we can rewrite using the fact tanh and tanh�1 are both odd functionsto get: L = tanh�1 �� tanh(a+ x) + � tanh(b + x)�+tanh�1 �� tanh(b� x) + � tanh(a� x)�Let s = � tanh(a+x)+� tanh(b+x) and let t = � tanh(b�x)+� tanh(a�x).Recall that for jzj < 1, tanh�1 z = 12 ln 1+x1�x . ThusL = tanh�1 s+ tanh�1 t = 12 ln 1 + s1� s + 12 ln 1 + t1� t = 12 ln (1 + s)(1 + t)(1� s)(1 � t) :Thus to minimize L we need to minimize (1+s)(1+t)(1�s)(1�t).Step 2: Further expansion using the sum formula for tanh. To doso we will �rst expand every occurrence of tanh in s and t using the identitytanh(x�y) = (tanhx�tanh y)=(1�tanh x tanh y). In order to give the resultingexpressions even the slightest hope of readability, let us write X for tanhx, Afor tanh a, and B for tanh b. We haves = � tanh(a + x) + � tanh(b+ x) = � A +X1 + AX + � B +X1 + BX :Thus 1 + s = 1 + � A+X1 +AX + � B +X1 +BX= �1 + AX +A +X1 + AX + �1 +BX +B +X1 + BX= � (1 + A)(1 +X)1 + AX + � (1 +B)(1 +X)1 +BX :A similar expansion shows that1� s = � (1� A)(1�X)1 + AX + � (1� B)(1 �X)1 + BX ;1 + t = � (1 + B)(1�X)1� BX + � (1 +A)(1 �X)1�AX ; and1� t = � (1� B)(1 +X)1� BX + � (1�A)(1 +X)1�AX ;from which it follows that(1 + s)(1 + t)(1� s)(1 � t)= �� (1+A)(1+X)1+AX + � (1+B)(1+X)1+BX ��� (1+B)(1�X)1�BX + � (1+A)(1�X)1�AX ��� (1�A)(1�X)1+AX + � (1�B)(1�X)1+BX ��� (1�B)(1+X)1�BX + � (1�A)(1+X)1�AX �15

= �� 1+A1+AX + � 1+B1+BX ��� 1+B1�BX + � 1+A1�AX��� 1�A1+AX + � 1�B1+BX ��� 1�B1�BX + � 1�A1�AX�= ��(1 +A)(1 +BX) + �(1 + B)(1 +AX)�� ��(1 + B)(1� AX) + �(1 +A)(1 �BX)���(1 �A)(1 +BX) + �(1� B)(1 +AX)�� ��(1� B)(1� AX) + �(1�A)(1 �BX)� (6)Step 3: Transforming a rational function inequality to a polynomialinequality. The next step is to reduce the problem of showing that the ratio-nal function (6) is minimized at x = 0, � = 12 to an inequality involving onlypolynomials.This transformation will be less cumbersome if we can �nd a way to write(6) more compactly. We've already canceled all the terms that cancel easily; soto simplify it further we are going to need to exploit its internal symmetry. Let� = 2� � 1, so that � = 1+�2 and � = 1� � = 1��2 . LetR = (1 + �)(1 + A)(1 + BX) + (1��)(1 + B)(1 +AX)S = (1��)(1 + A)(1� BX) + (1 + �)(1 + B)(1 �AX)T = (1 + �)(1� A)(1 + BX) + (1��)(1� B)(1 +AX)U = (1��)(1� A)(1� BX) + (1 + �)(1� B)(1 �AX)So that (6) is RSTU (we are canceling out a few factors of 2 here).Let us now consider what happens if we set X = 0 and � = 0 (i.e., x = 0and � = � = 12). Then R, S, T , and U are all radically simpli�ed and (6)becomes P2Q2 where P = 2 + A + B and Q = 2 � A � B. Since our goal is toshow that RSTU is minimized at X = 0;�= 0, we must demonstrate that for anyvalues for X and � with jXj < 1 and j�j � 1,RSTU � P 2Q2 (7)Observe that since j tanh zj < 1 for all z, we have jAj < 1, jBj < 1, andjXj < 1. It follows that both T and U are positive and thus the inequality (7)holds just in case RSQ2 � TUP 2 or RSQ2 � TUP 2 � 0.Step 4: Constraining the coe�cients of the polynomial. Considerf(�; X) = RSQ2 � TUP 2 as a polynomial in � and X. If possible, we'dlike to show f is always non-negative without having to multiply out its manyterms. Fortunately, we can get quite a bit of information about its coe�cientswithout such Herculean e�orts.Let aij be the coe�cient in f of �iXj . If � = X = 0, then RSQ2�TUP 2 =P 2Q2 � Q2P 2 = 0. Thus a00 = 0. By symmetry f(�; X) = f(��;�X)(changing both of these signs swaps R with S and T with U). Thus aij = 0 for16

any i, j such that i + j is odd. Finally, since the largest power of � or X ineach of R, S, T , and U is 1, and neither � nor X appears in P or Q, we havethat aij = 0 whenever i or j is greater than 2. This leaves four possible nonzerocoe�cients, and so we can write f as a11�X + a20�2 + a02X2 + a22�2X2.Step 5: Reduction to extreme cases. Now we wish to show that if f isnegative anywhere in [�1; 1]2, it is negative for some point (�; X) with either� = 1 or X = 1. To do so we will show that any (�; X) in the interior of[�1; 1]2 that yields a negative f can be replaced by t�; tX for any t such thatjtj > 1, with the result that f(t�; tX) will also give a negative f . If all of theterms in f had the same degree, this would be easy; since this is not the case,we must �rst show that the coe�cient a22 of the �2X2 term is negative.Fortunately, with not too much work a22 is seen to be (B �A)(B �A)Q2�(B�A)(B�A)P 2 or (B�A)2[(2�(A+B))2�(2+(A+B))2] = (B�A)2[�8(A+B)2] � 0. So if jtj > 1,f(t�; tX) = a11t2�X + a20t2�2 + a02t2X2 + a22t4�2X2= t2(a11�Xa20�2 + a02X2 + a22t2�2X2)< t2(a11�Xa20�2 + a02X2 + a22�2X2)= t2f(�; X): (8)Thus if f is ever negative on [�1; 1]2, it is negative for some point in which� = 1 or X = 1, since we can choose whichever of � or X has larger absolutemagnitude and set t = 1=� or t = 1=X.Step 5a: � = 1, X 6= 1. Let us examine the � = 1 case �rst. We willassume that jXj < 1; the case � = 1, X = 1 will be covered by the X = 1 casebelow. Recall that f is negative if and only if the inequality (5) is violated. If� = 1, then � = 1 and (5) becomestanh�1 tanh(x+a)�tanh�1 tanh(x�b) � 2 tanh�1�12 tanh a+ 12 tanh b� : (9)The left-hand side of this inequality simpli�es to a+ b, and so (9) holds just incase tanh a+ b2 � 12 tanh a+ 12 tanh b;which holds because tanh is concave on the positive real line.Step 5b: X = 1. When X = 1, we haveR = (1 +�)(1 + A)(1 +B) + (1��)(1 + A)(1 + B)= 2(1 + A)(1 + B)S = (1��)(1 + A)(1�B) + (1 + �)(1� A)(1 + B)T = (1 +�)(1� A)(1 +B) + (1��)(1 + A)(1� B)17

= SU = (1��)(1� A)(1�B) + (1 + �)(1� A)(1� B)= 2(1� A)(1� B):Thus RSQ2�TUP 2 = 2S(1+A)(1+B)(2�A�B)2�2S(1�A)(1�B)(2+A+B)2which is non-negative by Lemma 4.Wrap-up. In summary, we have that f(�; X) � 0 whenever � = 1 or X = 1.Using (8), this implies that f(�; X) � 0 for all points (�; X) in the unit square[�1; 1]2, which, after reversing the translations from (5) to f , implies that (5)holds under the conditions stated in the Lemma.Lemma 6 If x � 0, then for any a,tanh(x + a) + tanh(x� a) � 2 tanh(x sech2 2a): (10)Proof: The inequality above holds just in casetanh(x + a) + tanh(x� a)� 2 tanh(x sech2 2a) (11)is non-negative for non-negative x. To avoid unwieldy notation, let us writec for sech2 2a. Observe that tanhx = e2x�1e2x+1 = 1 � 2e2x+1 . So we can rewritetanh(x+ a) + tanh(x� a)� 2 tanh(xc) as�1� 2e2x+2a + 1�+�1� 2e2x�2a + 1���2 + 2 2e2cx + 1�= 4e2cx + 1 � 2e2x+2a + 1 � 2e2x�2a + 1 :Note that each of these denominators is positive. Thus multiplying out thedenominators and dividing by 2 does not change the sign, and the sign of theoriginal expression is the same as the sign of2(e2x+2a + 1)(e2x�2a + 1)�(e2cx + 1)(e2x�2a + 1)�(e2cx + 1)(e2x+2a + 1)= 2(e4x + e2x+2a + e2x�2a + 1)�(e2cxe2x�2a + e2x�2a + e2cx + 1)�(e2cxe2x+2a + e2x+2a + e2cx + 1)= 2e4x + e2x+2a + e2x�2a � e2cx �e2x+2a + e2x�2a�� 2e2cx= e2x h2e2x � 2e2(c�1)x + �1� e2cx� �e2a + e�2a�i :Since e2x > 0, we can drop the �rst factor while preserving the sign. Writing zfor e2x, and noting that e2a + e�2a = 2 cosh 2a, the second factor becomes2z � 2zc�1 + 2(1� zc) cosh 2a;18

and now we can divide out 2 without changing the sign to obtainz � zc�1 + (1� zc) cosh 2a: (12)To show that the inequality (10) holds when x � 0, it is necessary to showthat the sign of (12), and thus of (11), is non-negative for z � 1. Note thatwhen x = 0, z = e2x = 1 and (12) reduces to 0. So if we can show that (12) isnon-decreasing for z � 1 we are done.This we do by taking the derivative of (12) with respect to z and showing thatit is non-negative when z � 1. The derivative is 1� (c� 1)zc�2� czc�1 cosh 2a.Observe that c = sech2 2a � 1 and z � 1 implies both zc�1 � 1 and zc�2 � 1.Thus we have 1� (c � 1)zc�2 � czc�1 cosh 2a� 1� (c� 1) � c cosh 2a= 1� (sech2 2a� 1)� sech2 2a cosh 2a= 2� sech2 2a� sech 2a� 0:Lemma 7 If a � 0, then the function f(x) = tanh(a+ tanh�1 x) is monotoneincreasing and concave.Proof: That f is monotone follows immediately from the monotonicity of tanhand tanh�1. To show it is concave, observe that:d2dx2 tanh(a + tanh�1 x)= ddx sech2(a+ tanh�1 x) 11� x2= 2 sech(a+ tanh�1 x)[� sech(a+ tanh�1 x) tanh(a+ tanh�1 x)] 1(1� x2)2+sech2(a+ tanh�1 x) �1(1� x2)2 2x= �2 sech2(a+ tanh�1 x) 1(1� x2)2 �tanh(a+ tanh�1 x)� x�� 0:Note that in the last step we need the fact that f is monotone to know thatthe last factor is positive.2.2.3 Corollaries to Theorem 3Theorem 3 assumes a coin-
ipping game with �1 outcomes. For more generalsets of outcomes it is more convenient to work with the minimumand maximumprobabilities of some particular outcome rather than the expected outcome. Asimple transformation of the theorem gives:19

Corollary 8 Let G be a coin-
ipping game and let x lie in the outcome set ofG. Fix k, and let p = minA Pr[G �A = x] and q = minA Pr[G � A 6= x], wherein each case A ranges over adversaries that can hide up to k local coins. Thenln 1� pp + ln 1� qq � k2pn: (13)Proof: Consider the modi�cation G0 of G which replaces each x outcomewith +1 and each non-x outcome with �1. Then mkG = minA E[G � A] =p � (1 � p) = 2p � 1 and MkG = maxA E[G � A] = (1 � q) � q = 1 � 2q.Thus tanh�1(MkG) = tanh�1(1 � 2q) = ln 1+(1�2q)1�(1�2q) = ln 2�2q2q = ln 1�qq and� tanh�1(mkG) = � tanh�1(2p� 1) = tanh�1(1 � 2p) = ln 1�pp .Substituting into (3) in Theorem 3 then gives the desired result.If the bound on each side is the same, we can simplify even further:Corollary 9 Let G be a coin-
ipping game, let x be one of its outcomes, andlet A range over adversaries that can hide up to k local coins. If for some � < 12 ,minA Pr[G �A = x] � � and minA Pr[G �A 6= x] � �, then the maximum lengthn of G is at least k216 ln2 �1� � 1�Proof: From the previous corollary we have that k2pn � 2 ln 1��� = 2 ln �1� � 1�.Since � < 12 , the logarithmic term is positive and we can rearrange this inequalityto get the desired bound.2.3 Lower Bounds for Variable-Length GamesIn the preceding section we considered the connection between the adversary'sin
uence over the outcome and the maximum length of a game. Here we considerinstead the connection between the adversary's in
uence and the worst-case ex-pected length of a game. In principle one could imagine low-expected-lengthgames whose small bias was purchased by a high maximum length in rare exe-cutions; thus the bounds on maximum length do not immediately imply boundson expected length.However, using a truncation argument, we can show that a bound similar tothat given in Corollary 9 holds even if we are considering the expected length ofG rather than its maximum length. The theorem below covers both the worst-case expected length (when the adversary is trying to maximize the runningtime of the protocol) and the best-case expected length (when the adversary istrying to minimize the running time of the protocol). The worst-case boundwill be used later to get a lower bound on the work required for consensus.Theorem 10 Fix k, and let A range over adversaries that can hide up to k localcoins. Let G be a coin-
ipping game with an outcome x such that minA Pr[G �20

A = x] � � and minA Pr[G �A 6= x] � �. Then the worst-case expected length ofG is at least 364 � k2ln2 � 1�=2 � 1�and the best-case expected length is at least132 � �k2ln2 � 1�=2 � 1� :Proof: The essential method is to show that if a game exists whose expectedlength is \too good" then a truncated version of this game exists that violatesthe requirements of Corollary 9.Let us assume without loss of generality that G has outcomes x = 1 and0. (We can justify this assumption by replacing all x outcomes with 1 and allnon-x outcomes with 0.)First, the worst-case bound. Letm = k216 ln2 � 1�=2 � 1� :Let Gm be the game obtained by truncating G as follows. If G �nishes in mor fewer steps, let Gm = G. If G �nishes in more than m steps, let Gm = ?.The value of m is chosen such that for any outcome x of Gm, at least one ofminA Pr[G �A = x] and minA Pr[G �A 6= x] is less than or equal to �=2 (usingCorollary 9).For each A and each execution of G�A that produces an outcome v, there isan execution of Gm �A that produces either v or ?. It is given that minA Pr[G�A = 0] is at least �; thus it follows that � � minA Pr[Gm � A 2 f0;?g] =minA Pr[Gm �A 6= 1]. But then minA Pr[Gm �A = 1] < �=2. Since for any A,Pr[Gm � A 2 f1;?g] � �, we get minA Pr[Gm � A = ?] > �=2. But applyingCorollary 9 a second time now implies that minA Pr[Gm � A 6= ?] � �=2; inother words, that for some adversary A the probability that G � A does not�nish after m steps is at least 1� �=2. Since � < 1=2, this probability is at least3=4 and so the worst-case expected length of G is at least (3=4)m.The best-case bound is also obtained by considering a truncated game. LetT = minA E[length(G � A)]. Let n = 2T� , so that (using Markov's inequality)the probability that G � A has not �nished by time n is at most �=2. ThusminA Pr[Gn � A = ?] � �=2. But minA Pr[Gn � A 2 f0;?g] � minA Pr[G �A = 0] � �, so minA Pr[Gn � A = 0] � �=2. By symmetry we also haveminA Pr[Gn �A = 1] � �=2. Corollary 9 then givesn � 116 � k2ln2 � 1�=2 � 1�21

and thus T = n � �2 � 132 � �k2ln2 � 1�=2 � 1� :2.4 Consequences for Constant-Bias CoinsFor constant bias, Corollary 9 and Theorem 10 imply that we need
(t2) localcoin
ips in both the worst and average cases. This is true even though theadversary's power is limited by the fact that (a) the local coin
ips may havearbitrary ranges and distributions; (b) the adversary can hide coins, but cannotcontrol them; (c) the adversary must decide which coins to hide or reveal im-mediately in an on-line fashion; and (d) the algorithm may observe and react tothe choices of which coins to hide. These assumptions were chosen to minimizethe power of the adversary while still capturing the essence of its powers in adistributed system with failures.In contrast, it is not di�cult to see that taking a majority of �(t2) fair coinsgives a constant bias even if (a) local coins are required to be fair random bits;(b) the adversary can replace up to t values with new values of its own choosing;(c) the adversary may observe the values of all the local coins before decidingwhich ones to alter; and (d) changes made by the adversary are invisible to thealgorithm. So the
(t2) lower bound for constant bias is tight for a wide rangeof assumptions about the powers of the algorithm and the adversary.42.5 Connection to Randomized Distributed Algorithmswith FailuresThe importance of coin-
ipping games as de�ned above comes from the fact thatthey can often be found embedded inside randomized distributed algorithms.Let us discuss brie
y how this embedding works.Consider a randomized distributed algorithm in a model in which (a) allrandom events are internal to individual processes; and (b) all other nondeter-minism is under the control of an adaptive adversary. Suppose further that theadversary has the power to kill up to k of the processes. Then given any ran-domized algorithm in which some event X that does not depend on the states offaulty processes occurs with minimum probability m and maximumprobabilityM , we can extract a coin-
ipping game from it as follows. Arbitrarily �x allthe nondeterministic choices of the adversary except for the decision whether4The theorem does not apply if the adversary cannot observe local coin-
ips, and so itcannot be used with an oblivious (as opposed to the usual adaptive) adversary. However,the bound on best-case expected length does imply that it is impossible to construct a \hy-brid" constant-bias coin-
ipping protocol that adapts to the strength of the adversary, �nish-ing quickly against an oblivious adversary but using additional work to prevent an adaptiveadversary from seizing control. This is not the case for consensus; for example, Chandra'sconsensus algorithm [Cha96] for a weak adversary switches over to an algorithm that is robustagainst an adaptive adversary if it does not �nish in its usual time.22

or not to kill each process immediately following each internal random event.(Since this step reduces the options of the adversary it can only increase m anddecrease M .) Each step of the coin-
ipping game corresponds to an executionof the distributed algorithm up to some such random event, which we interpretas the local coin. The adversary's choice to hide or reveal this local coin cor-responds to its power to kill the process that executes the random event (thuspreventing any other process from learning its value) or to let it run (which mayor may not eventually reveal the value). The outcome of the coin-
ipping gameis determined by whether or not X occurs in the original system.3 Lower Bound for Randomized ConsensusConsensus is a problem in which a group of n processes must agree on a bit.We will consider consensus in models in which at most t processes may failby halting. Processes that do not halt (i.e., correct processes) must executein�nitely many operations. (A more detailed description of the model is givenin Section 3.2.)It is assumed that each process starts with some input bit and eventuallydecides on an output bit and then stops executing the algorithm. Formally,consensus is de�ned by three conditions:� Agreement. All correct processes decide the same value with probability1.� Non-triviality. For each value v, there exists a set of inputs and anadversary that causes all correct processes to decide v with probability 1.� Termination. All correct processes decide with probability 1.Non-triviality is a rather weak condition, and for applications of consensusprotocols a stronger condition is often more useful:� Validity. If all processes have input v, all correct processes decide v withprobability 1.As non-triviality is implied by validity, if we show a lower bound on the totalwork of any protocol that satis�es agreement, non-triviality, and termination,we will have shown a fortiori a lower bound on any protocol that satis�esagreement, validity, and termination. Thus we will concentrate on consensus asde�ned by the �rst three conditions.Since the agreement and termination conditions are violated only with prob-ability zero, we can exclude all schedules in which they are violated withouta�ecting the expected length of the protocol or the independence and unpre-dictability of local coin-
ips. Thus without loss of generality we may assumethat not only do agreement and termination apply to the protocol as a whole,but they also apply even if one conditions on starting with some particular �niteexecution �. 23

3.1 Overview of the ProofIn a randomized setting, we are concerned with the cost of carrying out a con-sensus protocol in terms of the expected total work when running against aworst-case adversary. We show how the coin-
ipping lower bound can be usedto show a lower bound on the worst-case expected cost of t-resilient random-ized consensus in the standard asynchronous shared-memory model. As in thecoin-
ipping bound, we will measure the cost of a consensus protocol by thetotal number of local coin-
ips executed by the processes. This measure is nota�ected by deterministic simulations, so any results we obtain for the shared-memory model will also apply to any model that can be simulated using sharedmemory, such as a t-resilient message-passing model.For each adversary strategy and �nite execution � there is a �xed probabilitythat the protocol will decide 1 conditioned on the event that its execution startswith �. (We may speak without confusion of the protocol deciding 1, as opposedto individual processes deciding 1, because of the agreement condition.) For anyset of adversaries, there is a range of probabilities running from the minimumto the maximum probability of deciding 1.These ranges are used to de�ne a probabilistic version of the bivalence andunivalence conditions used in the well-known Fischer-Lynch-Paterson (FLP) im-possibility proof for deterministic consensus [FLP85]. We will de�ne an execu-tion as bivalent if the adversary can force either outcome with high probability.A v-valent execution will be one after which only the outcome v can be forcedwith high probability. Finally, a null-valent execution will be one in which nei-ther outcome can be forced with high probability. The notions of bivalence andv-valence (de�ned formally in Section 3.3) match the corresponding notions fordeterministic algorithms used in the FLP proof; null-valence is new, as it cannotoccur with a deterministic algorithm in which the probability of deciding eachvalue v must always be exactly 0 or 1.In outline, the proof that consensus is expensive for randomized algorithmsretains much of the structure of the FLP proof. First, it is shown that withat least constant probability any protocol can be maneuvered from its initialstate into either a bivalent or a null-valent execution. Once the protocol is in abivalent execution, we show that there is a fair, failure-free extension that leadseither to a local coin-
ip or a null-valent execution. The result of
ipping alocal coin after a bivalent execution is, of course, random; but we can show thatwith high probability it leaves us with an execution which is either bivalent ornull-valent or from which we are likely to return to a bivalent or a null-valentexecution after additional coin-
ips. If we do reach a null-valent execution, thecoin-
ipping bound applies.Unlike a deterministic protocol, it is possible for a randomized protocol to\escape" through a local coin-
ip into an execution in which it can �nish theprotocol quickly. But we will be able to show that the probability of escapingin this way is small, so that on average many local coin-
ips will occur beforeit happens. 24

3.2 Model for Consensus Lower BoundThis section describes in detail the model used for the consensus lower bound.It is included for completeness, as lower bounds are notoriously sensitive tofeatures of the underlying model. However, the reader who is familiar withprevious work on asynchronous shared-memory systems will �nd no surpriseshere, and may wish to skip ahead to the actual proof starting in Section 3.3.3.2.1 FoundationsThere are many ways to represent a distributed system; we will use the I/Oautomaton model as described in [Lyn96]. In this model, an execution of asystem is represented by a sequence s0; �1; s1; �2; : : : of alternating states andactions, starting with an initial state. An execution may be �nite or in�nite; if�nite, it ends with a state. The behavior of a deterministic system is describedby a transition relation consisting of triples (s0; �; s1) specifying the prior state,the action that occurs during the transition, and the posterior state. For arandomized system, the third element is replaced by a probability distributionover new states. An action � is said to be enabled after a �nite execution � ifthere is a transition (s; �; P) such that s is the last state in �.We will assume that for any state s and action �, there is at most onetransition (s; �; P). We will call an action � a deterministic action if for anys such that (s; �; P) appears in the transition relation, P assigns probability 1to a single state. Other actions are randomized actions. We will assume that arandomized action must be local : it can change the state of only one process.Under the above assumptions, the e�ect of executing a deterministic action �after a �nite execution � is well-de�ned; we will write the resulting execution as��. For a randomized action, suppose that C is a random variable representingits outcome; we will write �C for the (random) execution that results fromexecuting the randomized action after �. In order to avoid dragging in too muchmeasure-theoretic machinery, we will assume that there are only countably manypossible outcomes of each local coin-
ip. Among other things, this assumptionmeans that we can exclude all outcomes whose probability is zero without havingmore than a probability-zero e�ect on the behavior of a system.An execution � is an extension of � if � (considered formally as a sequenceof states and actions) is a pre�x of �. If the su�x of � after � consists only ofdeterministic actions, we write that � is a deterministic extension of �.Often there will be several actions that are enabled after some �nite execu-tion �. The choice of which action to execute will be given to an adversary, afunction mapping each �nite execution to an action enabled in its �nal state.Letting the domain of the adversary function be the entire previous executionimplies �rst that the adversary has total knowledge of the system's history andpresent state; but also that the adversary cannot base its choices on futureevents, such as the outcome of randomized actions that have not yet occurred.We will assume that the adversary does not itself use a randomized strategy;since we are in the lower-bound business this restriction on the adversary does25

not a�ect our results.3.2.2 Shared-Memory ModelThe lower bound for randomized consensus will be given in the context of thestandard asynchronous shared-memorymodel (see [Lyn96] for a de�nition of theshared-memory model in terms of I/O automata). In this model, the processescommunicate by reading and writing a set of shared atomic registers. It maybe assumed without loss of generality that operations on the registers are infact instantaneous; so even though a read or write operation may be modeledformally as more than one action (e.g., as a separate invocation and response),we can treat this sequence of actions as a single step.We will de�ne the property that a step x is enabled after an execution �,the the result �x of executing x after �, and so forth, in the obvious way.Thus having secured the connection between our intuitive understanding andthe underlying formal model, we will think of each process as carrying out asequence of read, write, and local coin-
ip steps, without worrying too muchabout the actual actions that make up these steps.An additional property of the shared-memory model is that processes mayfail. The failure of a process is a deterministic action that is always enabled,and its e�ect is to prevent the process from carrying out any more actions.We will usually assume a limit on the number of failures and require that anyprocess that does not fail (or halt on its own) executes in�nitely many steps.Both of these requirements are restrictions on the range of possible adversaries.The �rst forbids adversaries that cause too many failures. The second forbidsadversaries that starve processes that have not failed.An algorithm that operates in a model permitting up to t failures is calledt-resilient.3.3 Bivalence, Univalence, and Null-ValenceFormally, for each execution � and adversary A, write Pr[vj�;A] for the proba-bility that the protocol decides v after � running under the control of adversaryA. For each execution � and set of adversaries A, let rv;A(�) be the set of suchprobabilities ranging over all adversaries in A; that is, rv;A = fPr[vj�;A]jA 2Ag. Since the fact that the protocol terminates with probability 1 impliesPr[0j�;A] = 1�Pr[1j�;A], no additional information is gained by keeping trackof r0 and r1 separately; thus we will drop the v subscript and write rA(�) forr1;A(�). In addition, when the set A is clear from context, we will drop it aswell and just write r(�) for r1;A(�).Fix � > 0. We will classify executions using the maximum probabilities ofdeciding 0 or 1 according to the following table.An execution that is either 0-valent or 1-valent will be called univalent. Notethat this classi�cation is exhaustive: every execution falls into exactly one ofthese classes. 26

Classi�cation of � minr(�) maxr(�)bivalent < �2 > 1� �20-valent < �2 � 1� �21-valent � �2 > 1� �2null-valent � �2 � 1� �2It is not hard to see that for deterministic algorithms these de�nitions reduceto the FLP de�nitions of a bivalent execution as one in which either outcome ispossible (i.e., can occur with probability 1), and a v-valent execution is one inwhich only the outcome v is possible.The FLP proof is based on the fact that for deterministic protocols, anyextension of a v-valent execution is also v-valent. This fact is used to proveimpossibility of deterministic consensus by showing that if a protocol can alwaysextend a bivalent execution to either a 0-valent or 1-valent execution (necessaryto reach a decision) it must have a 0-valent execution that is indistinguishablefrom a 1-valent execution (a contradiction).We will not be deriving any contradictions from randomized protocols|randomized consensus is not impossible. Instead we will show that if a bivalentexecution can be extended to either a 0-valent or a 1-valent execution throughdeterministic steps, then there exist deterministic extensions of these 0-valentand 1-valent executions that can be made indistinguishable. The resulting in-distinguishable executions are not a contradiction; instead, they are null-valent.The reason is that any deterministic extension of a v-valent execution maybe either v-valent or null-valent. This fact is immediate from the lemma below:Lemma 11 Let �0 be a deterministic extension of �. Then r(�0) � r(�).Proof: Let p be an element of r(�0). Then there is some adversary A0 in Asuch that Pr[1j�0; A0] = p. But then the adversary A which �rst executes thesteps leading to �0 and then follows the strategy of A0 gives Pr[1j�;A] = p, andthus p is in r(�).If only deterministic operations are enabled after some execution �, theconverse holds:Lemma 12 Let � be an execution after which only deterministic operations areenabled. Then r(�) is the union of r(�x) for each operation x enabled after �.Proof: In proving the lemma, it is necessary to be a little careful about fail-ures. Observe that for any adversary A that fails some process after �, thereis an adversary A0 that simulates A without failing this process, delaying it in-stead until some other process decides. Since no process can distinguish A fromA0 until the decision value is �xed, both give the same probability of deciding1 starting from �. Thus in computing r(�), we need consider only adversariesthat do not fail any processes as the �rst step after �.27

For each operation x enabled after �, let Ax be the set of adversaries thatchoose x. Then r(�) = Sx rAx(�) = Sx r(�x).In particular, if such an � only has v-valent successors, it must be v-valent.In contrast, the range after a local coin-
ip may be arbitrary. However,the expected endpoints of the range after the
ip will always be equal to theendpoints of the range before the
ip. This fact is not immediately obvious butit is not too hard to prove.Lemma 13 Let � be an execution and let C be a random variable that describesthe outcome of some particular local coin-
ip enabled after �. Then the expectedvalue of minr(�C) is equal to min r(�), and the expected value of max r(�C) isequal to maxr(�):Proof: We will prove the lemma only for maxr(�C); the case of minr(�C)is symmetric.First observe that maxr(�) is at least E[maxr(�C)], since E[maxr(�C)] isthe probability of deciding 1 starting from � with an adversary that executes Cand then follows the maximizing strategy in whatever execution results.To show that maxr(�) is at most E[maxr(�C)], let A be any adversarysuch that Pr[1j�;A] = maxr(�). We can modify A to get an adversary A0 thatexecutes C immediately after �, and then simulates A, ignoring the result of CuntilA chooses to execute C. Since a local coin-
ip commuteswith all operationsof other processes, the executions produced by A and A0 are indistinguishableand Pr[1j�;A0] = Pr[1j�;A] = maxr(�). But Pr[1j�;A0] is E[Pr[1j�C;A0] �max r(�C):3.4 Valence of Initial StatesTo get the proof o� the ground, we will need to show that there exists an initialstate with the appropriate properties. The following lemma does so.Lemma 14 For any t-resilient consensus protocol with t > 0, there is an initialstate � such that minr(�) < 12 and maxr(�) � 12 .Proof: The proof is essentially identical to the proof that a bivalent initialstate exists for a deterministic protocol. First, observe that if two initial states� and �0 di�er in only one input, then given any adversary that kills the processwith that input as the �rst action, the resulting executions are indistinguishableto all live processes. Thus r(�) and r(�0) overlap at at least one point.Now consider two states � and � such that minr(�) = 0 and maxr(�) = 1.(These states, which are not necessarily distinct, exist by the non-trivialitycondition.) There exists a chain of initial states �0 = �; �1; �2; : : : ; �k = � suchthat each adjacent pair of states di�er in only one input. Let �i be the �rst statein the chain for which maxr(�i) � 12 . If i = 0, we are done: minr(�i) = 0 < 12 .Otherwise, maxr(�i�1) < 12 , implying minr(�i) < 12 , since r(�i�1) and r(�i)must overlap. 28

3.5 Strategy for Univalent ExecutionsStarting with a univalent execution, one of the outcomes can be forced with highprobability. In this case the adversary's strategy will be to minimize the likeli-hood of that outcome in the hopes of getting back to a bivalent or null-valentexecution. Its likelihood of being able to do so is described by the followinglemma.Lemma 15 Let � be a failure-free 1-valent execution such that minr(�) = p.Then there is an adversary strategy that, with probability at least 1� p, extends� to a failure-free execution �� such that one of the following conditions holds:1. �� is null-valent;2. �� is bivalent and � contains at least one local coin-
ip;3. �� is 0-valent, max r(��) > 1� �, and � contains at least one local coin-
ip; or4. � contains an expected 1=� local coin-
ips.Proof: Claim: For any failure-free execution � for which 0 < minr(�) < 1,there exists some failure-free deterministic extension �0 of � such that minr(�0) =minr(�) and a local coin-
ip is enabled after �0. Proof: There is some adversaryA for which Pr[1j�;A] = minr(�). Since Pr[1j�;A] is not 0 or 1, A must eventu-ally cause the protocol to execute a coin-
ip after some deterministic extension�0 or �. (Otherwise the protocol does not satisfy the termination condition).If A causes failures, it can be simulated by an adversary A0 that simply de-lays \failed" processes until after the coin-
ip. That minr(�0) = minr(�) isimmediate from Lemma 11.Here is the full adversary strategy: carry out �0 as described above, andthen execute a local coin-
ip. Repeat until maxr drops to 1 � �2, minr dropsbelow �2, or a decision is reached.Now let us show that this strategy works as advertised. We have minr(�0) =minr(�) � 1� �2; and from Lemma 11 the only other e�ect of executing deter-ministic steps can be to reduce maxr(�0). If maxr(�0) is less than or equal to1 � �2, �0 is null-valent and case (1) of the lemma holds. Otherwise, we mustconsider the possible outcomes of the local coin-
ip.Let C be the random variable whose values are the possible outcomes ofthe local coin-
ip. From Lemma 13, E[maxr(�0C)] = maxr(�) > 1 � �2. ByMarkov's inequality, the probability that maxr(�0C) is less than or equal to1 � � is less than �. So on average, we expect to execute at least 1=� localcoin-
ips before maxr drops below 1� �. This possibility accounts for case (4).Suppose that maxr(�C) does not drop below 1 � �. There are severalpossibilities. If minr(�C) < �2, case (2) or (3) holds, and we are done. Ifminr(�C) � �2 and maxr(�C) � 1� �2, case (1) holds, and again we are done.If maxr(�C) > 1��2, then we may repeat the process described above until wereach a new local coin-
ip, unless a decision of 1 is reached; but the probability29

that the protocol reaches a decision of 1 following this strategy is at most p. Sowith probability at least 1� p, one of the other outcomes occurs.By symmetry, it is immediate that the lemmaalso holds if the decision values0 and 1 are swapped.3.6 Strategy for Bivalent ExecutionsGiven a bivalent execution �, we wish to show that � has a fair, failure-freedeterministic extension that is either null-valent (so we can apply the coin-
ipping bound) or permits a local coin-
ip in its �nal state.Lemma 16 Let � be a failure-free bivalent execution, and let x be a determin-istic operation that is enabled after �. Then there exists a �nite deterministicextension � of � such that one of the following conditions holds:1. � is failure-free, bivalent, and a local coin-
ip is enabled after �;2. � is failure-free, bivalent, and contains x; or3. � contains at most one failure and is null-valent.Proof: Consider the set S of all bivalent failure-free deterministic extensions
 of �. If there is a
 in S after which a local coin-
ip is enabled, we are done:case (a) holds with � =
. If there is a
 in S containing x, we are done: case(2) holds with � =
. If there is a
 in S such that
y is null-valent for some y,we are done: case (3) holds with � =
y.Otherwise, let
 be a maximal execution in S, i.e. one such that no extensionof
 is in S. Such an execution exists because every execution in S must be�nite by the termination condition. Under the assumption that none of theconditions above hold, we know that:1. No local coin-
ip is enabled after
.2. For each operation y,
y is univalent. (It cannot be null-valent; nor canit be bivalent, because then
 is not maximal.)3. The operation x is enabled after
. (It is enabled after �; for it not to beenabled after
 it must appear in
.)Assume without loss of generality that
x is 0-valent; the case where it is1-valent is symmetric. Then there exists some y such that
y is 1-valent, asotherwise
 would be 0-valent by Lemma 12, contradicting its membership inS. We will show by a case analysis that there are always deterministic extensionsof
x and
y that are distinguishable by at at most one process. Killing thisprocess thus leads to indistinguishable executions that deterministically extend0-valent and 1-valent executions; these executions must both be null-valent andwe can choose either one for � and satisfy condition (3).There are several cases depending on the type of the operations x and y:30

1. x and y are operations on di�erent registers. In this case x and y commuteand the states resulting from
xy and
yx are the same. No killing isnecessary;
xy and
yx are both null-valent.2. x is a read operation. If y is also a read operation, the operations commuteand
xy and
yx are both null-valent as above. If y is a write operation,then only the process performing x can distinguish between
yx and
xy.Killing this process yields a pair of indistinguishable executions that arethus both null-valent.3. y is a read operation. This case is symmetric with the previous case.4. x and y are both write operations on the same register. Then
yx isdistinguishable from
x only by the process performing y. Again, killingthis process yields two indistinguishable executions that must both benull-valent.Iterating the lemma eliminates one of the cases:Lemma 17 Let � be a failure-free bivalent execution. Then there exists a �nitedeterministic extension � of � such that either1. � is failure-free and a local coin-
ip is enabled after �, or2. � contains at most one failure and is null-valent.Proof: Let �0 = �. For each �i, let xi be the operation enabled after �i thathas been enabled the longest and let �i+1 be the �nite deterministic extensionof �i whose existence is implied by Lemma 16. If �i+1 is failure-free and a localcoin-
ip is enabled after it, set � = �i+1. Similarly set � = �i+1 if �i+1 containsat most one failure and is null-valent. If �i+1 is bivalent, contains xi, and nocoin-
ip is enabled in �i+1, continue with �i+1 and a new xi+1.This process must eventually terminate with � equal to some �i. Otherwise,it would yield an in�nite, fair, failure-free deterministic extension of �, violatingthe termination condition.The lemma above implies that we can always reach an execution that eitheris null-valent or permits a coin-
ip. For this fact to be useful, coin-
ips cannotbe too destructive. The following lemma constrains their wrath:Lemma 18 Let � be a bivalent execution and let C be a random variable cor-responding to the possible outcomes of a local coin-
ip enabled in �. ThenPr [minr(�C) � � _maxr(�C) � 1� �] < 2�:Proof: Let X = minr(�C). Then X � 0, and E[X] = minr(�) < �2. Soby Markov's inequality the probability that minr(�C) reaches � is less than�2=� = �. Adding the probability of the symmetric event that max(r�C) reaches1� � raises the bound to 2�. 31

Thus with high probability, the result of a local coin-
ip after a bivalentexecution is an execution that is either bivalent, null-valent, or univalent with avery wide range. In the case of a bivalent execution the adversary may continueas above. In the case of a null-valent execution, the coin-
ipping bound applies.The case of a univalent execution with a wide range is covered below.3.7 The Full StrategyHere is the full strategy used to prove the lower bound. It is divided into fourcases corresponding to four conditions that could hold at the end of each partialexecution:1. Start in an initial state whose range straddles 12 . The existence of such astate is guaranteed by Lemma 14. If this state is bivalent or null-valent,skip to the appropriate condition below. Otherwise, the state must eitherbe 0-valent with maxr � 12 or 1-valent with minr � 12 . In either case,Lemma 15 or its symmetric equivalent applies, and with probability atleast 12 we reach one of conditions (2), (3), or (4); or we execute an expected1=� local coin-
ips before deciding.2. From a 0-valent execution with maxr > 1 � � or a 1-valent executionwith minr < 1 � �, apply Lemma 15 or its symmetric equivalent. Withprobability 1� �: one of the following occurs: we reach one of conditions(2) or (3) after executing at least one local coin-
ip; we reach condition(4); or we execute an expected 1=� local coin-
ips before deciding.3. From a bivalent execution, apply Lemma 17 to either reach a null-valentexecution with at most one failure, or a bivalent execution after whicha local coin-
ip is enabled. If we reach a bivalent execution after whicha local coin-
ip is enabled, apply Lemma 18 to show that the result ofthis coin-
ip lands us in condition (2), (3), or (4) with probability at least1� 2�.4. From a null-valent execution with at most one failure, Theorem 10 applies,and there is an adversary strategy that forces an expected 3(t�1)264 ln2(2��1) localcoin-
ips before termination.With a suitable choice of �, the existence of this strategy implies:Theorem 19 Against a worst-case adaptive adversary, any t-resilient consen-sus protocol for the asynchronous shared-memory model performs an expected
 � t � 1log(t� 1)�2!local coin-
ips. 32

Proof: Let I be the expected cost from the initial state in case (1); U theexpected cost from the univalent execution in case (2); B the expected costfrom the bivalent execution in case (3); and N the expected cost from the null-valent execution in case (4). Then we have:I � 12 min(U;B;N; 1=�)U � (1� �)min(1 + U; 1 +B;N; 1=�)B � min(N; (1� 2�)(1 +min(U;B;N)))N � 3(t� 1)264 ln2 �2� � 1� :Our goal is to work backwards from the lower bound on N to get a lowerbound for I. Let M be the smallest of U , B, and N . There are three cases:� M = U . Then U � (1 � �)min(1 + U; 1=�). This implies U is at least1=�� 1; for if we assume that U � 1=�� 1 we get U � (1� �)(1 +U) andthus �U � 1� � or U � 1=�� 1.� M = B. Then B � (1� 2�)(1 +B), implying B � 12� � 1.� M = N . Then M � 3(t�1)264 ln2(2��1).In each case we haveM � min" 12� � 1; 3(t� 1)264 ln2 �2� � 1�# (14)Since I � 12 min(M; 1=�), the right-hand side of (14), divided by 2, givesa lower bound on the number of local coin-
ips executed by the consensusprotocol. If we set � = (t� 1)�2, this expression reduces to the bound claimedin the theorem.The bound counts the number of local coin-
ips. Because we allow coin-
ipsto have arbitrary values (not just 0 or 1), local coin-
ips performed by the sameprocess without any intervening operations can be combined into a single coin-
ip without increasing the adversary's in
uence. Thus the lower bound on localcoin-
ips immediately gives a lower bound on total work. Furthermore, becausethe coin-
ip bound is not a�ected by changing the model to one that can bedeterministically simulated by shared memory, we get the same lower bound ontotal work in any model that can be so simulated, no matter how powerful itsprimitives are. So, for example, wait-free consensus requires
(n2= log2 n) workeven in a model that supplies counters or O(1)-cost atomic snapshots.4 DiscussionFor those of us who like working with an adaptive adversary, randomization hasgiven only a temporary reprieve from the consequences of Fischer, Lynch, and33

Paterson's impossibility proof for deterministic consensus with faulty processes.Theorem 19 means that even though we can solve consensus using randomiza-tion, we cannot hope to solve it quickly without a small upper bound on thenumber of failures, built-in synchronization primitives, or restrictions on thepower of the adversary.Fortunately, there are a number of natural restrictions on the adversary thatallow fast consensus protocols without eliminating the faults that we mightreasonably expect to observe in real systems. One plausible approach is tolimit the knowledge the adversary has of register contents, to prevent it fromdiscriminating against coin-
ips it dislikes. Various versions of this can be foundin the the consensus work of Chor, Israeli, and Li [CIL87] and Abrahamson[Abr88], and in the O(n log2 n) total work protocol of Aumann and Bender[AB96], the O(log2 n) work-per-process protocol of Chandra [Cha96], and therecent O(logn) work-per-process protocol of Aumann [Aum97]. Restrictions onthe amount of asynchrony can also have a large e�ect [AAT94, SSW91].A question that we have not completely answered is the following: Does themajority of n fair coin-
ips give an optimal coin-
ipping game (in the sense ofhaving minimumbias) with an adversary that can censor up to k
ips? Majorityis optimal for similar models (e.g., in the fair-local-coin model studied by Licht-enstein, Linial, and Saks [LLS89]). Theorem 3 implies that it is not possible toachieve constant bias with more than k = O(pn) faults, the amount toleratedby majority, but there is still a gap between the lower bound of Theorem 3 andthe upper bound of the majority game when k is large relative to pn. It canbe shown using the analysis in Section 2.1 that taking a majority of fair coinscannot be optimal in an absolute sense when biased local coins are allowed, asthe optimal games characterized in that section generally do not use fair localcoins. However it is still possible that majority is close to optimal, and it mightbe possible to show (for example) that no game where the adversary was allowedto hide 2k local coins could have a smaller bias than majority with k hiddencoins.One possible approach to showing majority is close to optimal is suggested bythe fact that the hyperbolic tangent function tanh in Theorem 3 essentially actsas an easier-to-manipulate approximation to the normal distribution function�. If we replace tanh by � and adjust the set of possible game outcomes tomatch the range of �, we get the following conjecture:Conjecture 20 Let G be a game of length n with outcome set f0; 1g. Thenthere exists a constant c > 0 such that for any k � 0, eitherMkG = 1, mkG = 0,or ��1MkG� ��1mkG � ckpn: (15)If true, the conjecture would give a lower bound that would match (up to con-stant factors) the upper bound given by majority voting, and would improve bya factor of logn the lower bound for consensus given in Theorem 19.A still more general question asked by Ben-Or and Linial in [BOL89], alsostill open, is whether majority voting is optimal in a Byzantine model where34

processes may vote more than once but in which the adversary controls allfuture votes of a process once it has been corrupted. Our work shows that thenumber of local coins
ipped in this model must be large relative to the numberof failures, but it does not exclude the possibility that the number of distinctprocesses might still be relatively small.5 AcknowledgmentsThe author is indebted to Russell Impagliazzo for many fruitful discussions ofcoin-
ipping problems, Steven Rudich for a suggestion that eventually becamethe truncation argument used to prove Theorem 10, Mike Saks for encourage-ment and pointers to related work, and Faith Fich, Wai-Kau Lo, Eric Ruppert,and Eric Schenk for many useful comments on an earlier version of this work.References[AAT94] Rajeev Alur, Hagit Attiya, and Gadi Taubenfeld. Time-adaptivealgorithms for synchronization. In Proceedings of the Twenty-SixthAnnual ACM Symposium on Theory of Computing, pages 800{809,Montr�eal, Qu�ebec, Canada, may 1994.[AB96] Yonatan Aumann and Michael Bender. E�cient asynchronous con-sensus with a value-oblivious adversary scheduler. In Proceedingsof the 23rd International Conference on Automata, Languages, andProgramming, July 1996.[Abr88] K. Abrahamson. On achieving consensus using a shared memory.In Proceedings of the Seventh ACM SIGACT-SIGOPS Symposiumon Principles of Distributed Computing, August 1988.[ADS89] Hagit Attiya, Danny Dolev, and Nir Shavit. Bounded polynomialrandomized consensus. In Proceedings of the Eighth ACM Sympo-sium on Principles of Distributed Computing, pages 281{294, Au-gust 1989.[AH90] James Aspnes and Maurice Herlihy. Fast randomized consensus us-ing shared memory. Journal of Algorithms, 11(3):441{461, Septem-ber 1990.[AN90] Noga Alon and Moni Naor. Coin-
ipping games immune againstlinear-sized coalitions. In Proceedings of the 31st Annual Symposiumon Foundations of Computer Science, pages 46{54. IEEE, 1990.[Asp93] James Aspnes. Time- and space-e�cient randomized consensus.Journal of Algorithms, 14(3):414{431, May 1993.35

[Asp97] James Aspnes. Lower bounds for distributed coin-
ipping and ran-domized consensus. In Proceedings of the Twenty-Ninth AnnualACM Symposium on the Theory of Computing, pages 559{568.ACM, May 1997.[Aum97] Yonatan Aumann. E�cient asynchronous consensus with the weakadversary scheduler. In Proceedings of the Sixteenth Annual ACMSymposium on Principles of Distributed Computing, pages 209{218,1997.[AW96] James Aspnes and Orli Waarts. Randomized consensus inO(n log2 n) operations per processor. SIAM Journal on Comput-ing, 25(5):1024{1044, October 1996.[BOL89] Michael Ben-Or and Nathan Linial. Collective coin
ipping. InSilvio Micali, editor, Randomness and Computation, volume 5 ofAdvances in Computing Research, pages 91{115. JAI Press, 1989.[BOLS87] M. Ben-Or, N. Linial, and M. Saks. Collective coin
ipping andother models of imperfect randomness. In Combinatorics, volume 52of Colloquia Mathematic Societatis J�anos Bolyai, pages 75{112,Eger (Hungary), 1987.[BR90] Gabi Bracha and Ophir Rachman. Approximated counters and ran-domized consensus. Technical Report 662, Technion, 1990.[BR91] Gabi Bracha and Ophir Rachman. Randomized consensus in ex-pected O(n2 logn) operations. In Proceedings of the Fifth Workshopon Distributed Algorithms, 1991.[CFG+85] Benny Chor, Joel Friedman, Oded Goldreich, Johan H�astad, StevenRudich, and Roman Smolensky. The bit extraction problem or t-resilient functions. In Proceedings of the 2th Annual Symposium onFoundations of Computer Science, pages 396{407. IEEE, 1985.[Cha96] Tushar Deepak Chandra. Polylog randomized wait-free consensus.In Proceedings of the Fifteenth Annual ACM Symposium on Prin-ciples of Distributed Computing, pages 166{175, May 1996.[CI93] Richard Cleve and Russell Impagliazzo. Martingales with Boolean�nal value must make jumps ofO(1=n1=2) with constant probability.Unpublished manuscript, 1993.[CIL87] B. Chor, A. Israeli, and M. Li. On processor coordination usingasynchronous hardware. In Proceedings of the Sixth ACM Sympo-sium on Principles of Distributed Computing, pages 86{97, 1987.[CL93] Jason Cooper and Nathan Linial. Fast perfect-information leader-election protocol with linear immunity. In Proceedings of theTwenty-Fifth Annual ACM Symposium on the Theory of Comput-ing, pages 662{671. ACM, 1993.36

[DDS87] D. Dolev, C. Dwork, and L. Stockmeyer. On the minimal syn-chronism needed for distributed consensus. Journal of the ACM,34(1):77{97, January 1987.[DHPW92] Cynthia Dwork, Maurice Herlihy, Serge Plotkin, and Orli Waarts.Time-lapse snapshots. In Proceedings of Israel Symposium on theTheory of Computing and Systems, 1992.[FHS93] Faith Fich, Maurice Herlihy, and Nir Shavit. On the complexityof randomized synchronization. In Proceedings of the 12th AnnualACM Symposium on Principles of Distributed Computing, August1993.[FLP85] M. Fischer, N.A. Lynch, and M.S. Paterson. Impossibility of dis-tributed commit with one faulty process. Journal of the ACM,32(2), April 1985.[Fri92] Joel Friedman. On the bit extraction problem. In Proceedings ofthe 33rd Annual Symposium on Foundations of Computer Science,pages 314{319. IEEE, 1992.[Har66] L. H. Harper. Optimal numberings and isoperimetric problems ongraphs. Journal of Combinatorial Theory, 1:385{394, 1966.[Her91] Maurice Herlihy. Wait-free synchronization. ACM Transactionson Programming Languages and Systems, 13(1):124{149, January1991.[LAA87] Michael C. Loui and Hosame H. Abu-Amara. Memory require-ments for agreement among unreliable asynchronous processes. InFranco P. Preparata, editor, Advances in Computing Research, vol-ume 4. JAI Press, 1987.[LLS89] D. Lichtenstein, N. Linial, and M. Saks. Some extremal problemsarising from discrete control processes. Combinatorica, 9:269{287,1989.[Lyn96] Nancy A. Lynch. Distributed Algorithms. Morgan Kaufmann, 1996.[Sak89] Michael Saks. A robust non-cryptographic protocol for collectivecoin
ipping. SIAM Journal on Discrete Mathematics, 2(2):240{244, 1989.[SSW91] Michael Saks, Nir Shavit, and Heather Woll. Optimal time ran-domized consensus | making resilient algorithms fast in practice.In Proceedings of the Second Annual ACM-SIAM Symposium onDiscrete Algorithms, pages 351{362, 1991.37

[Vaz85] Umesh Vazirani. Towards a strong communication complexity the-ory, or generating quasi-random sequences from two communicat-ing slightly-random sources. In Proceedings of the Twenty-NinthAnnual ACM Symposium on the Theory of Computing, pages 366{378. ACM, 1985.

38

