
Learning Large-Alphabet and Analog Circuits

with Value Injection Queries

Dana Angluin1, James Aspnes1,⋆, Jiang Chen2,⋆⋆, and Lev Reyzin1,⋆ ⋆ ⋆

1 Computer Science Department, Yale University
{angluin,aspnes}@cs.yale.edu, lev.reyzin@yale.edu

2 Center for Computational Learning Systems, Columbia University
criver@cs.columbia.edu

Abstract. We consider the problem of learning an acyclic discrete cir-
cuit with n wires, fan-in bounded by k and alphabet size s using value
injection queries. For the class of transitively reduced circuits, we de-
velop the Distinguishing Paths Algorithm, that learns such a circuit us-
ing (ns)O(k) value injection queries and time polynomial in the number
of queries. We describe a generalization of the algorithm to the class of
circuits with shortcut width bounded by b that uses (ns)O(k+b) value
injection queries. Both algorithms use value injection queries that fix
only O(kd) wires, where d is the depth of the target circuit. We give a
reduction showing that without such restrictions on the topology of the
circuit, the learning problem may be computationally intractable when
s = nΘ(1), even for circuits of depth O(log n). We then apply our large-
alphabet learning algorithms to the problem of approximate learning of
analog circuits whose gate functions satisfy a Lipschitz condition. Fi-
nally, we consider models in which behavioral equivalence queries are
also available, and extend and improve the learning algorithms of [5]
to handle general classes of gates functions that are polynomial time
learnable from counterexamples.

1 Introduction

We consider learning large-alphabet and analog acyclic circuits in the value
injection model introduced in [5]. In this model, we may inject values of our
choice on any subset of wires, but we can only observe the one output of the
circuit. However, the value injection query algorithms in that paper for boolean
and constant alphabet networks do not lift to the case when the size of the
alphabet is polynomial in the size of the circuit.

One motivation for studying the boolean network model includes gene reg-
ulatory networks. In a boolean model, each node in a gene regulatory network
can represent a gene whose state is either active or inactive. However, genes may
have a large number of states of activity. Constant-alphabet network models

⋆ Supported in part by NSF grant CNS-0435201.
⋆⋆ Supported in part by a research contract from Consolidated Edison.

⋆ ⋆ ⋆ Supported by a Yahoo! Research Kern Family Scholarship.

may not adequately capture the information present in these networks, which
motivates our interest in larger alphabets.

Akutsu et al. [2] and Ideker, Thorsson, and Karp [9] consider the discovery
problem that models the experimental capability of gene disruption and over-
expression. In such experiments, it is desirable to manipulate as few genes as
possible. In the particular models considered in these papers, node states are
fully observable – the gene expression data gives the state of every node in the
network at every time step. Their results show that in this model, for bounded
fan-in or sufficiently restricted gene functions, the problem of learning the struc-
ture of a network is tractable.

In contrast, there is ample evidence that learning boolean circuits solely
from input-output behaviors may be computationally intractable. Kearns and
Valiant [12] show that specific cryptographic assumptions imply that NC1 cir-
cuits and TC0 circuits are not PAC learnable in polynomial time. These negative
results have been strengthened to the setting of PAC learning with membership
queries [6], even with respect to the uniform distribution [13]. Furthermore,
positive learnability results exist only for fairly limited classes, including propo-
sitional Horn formulas [3], general read once Boolean formulas [4], and decision
trees [7], and those for specific distributions, including AC0 circuits [14], DNF
formulas [10], and AC0 circuits with a limited number of majority gates [11].3

Thus, Angluin et al. [5] look at the relative contributions of full observation
and full control of learning boolean networks. Their model of value injection
allows full control and restricted observation, and it is the model we study in
this paper. Interestingly, their results show that this model gives the learner
considerably more power than with only input-output behaviors but less than
the power with full observation. In particular, they show that with value injection
queries, NC1 circuits and AC0 circuits are exactly learnable in polynomial time,
but their negative results show that depth limitations are necessary.

A second motivation behind our work is to study the relative importance of
the parameters of the models for learnability results. The impact of alphabet
size on learnability becomes a natural point of inquiry, and ideas from fixed
parameter tractability are very relevant [8, 15].

2 Preliminaries

2.1 Circuits

We give a general definition of acyclic circuits whose wires carry values from a set
Σ. For each nonnegative integer k, a gate function of arity k is a function from
Σk to Σ. A circuit C consists of a finite set of wires w1, . . . , wn, and for each
wire wi, a gate function gi of arity ki and an ordered ki-tuple wσ(i,1), . . . , wσ(i,ki)

of wires, the inputs of wi. We define wn to be the output wire of the circuit.
We may think of wires as outputs of gates in C.

3 Algorithms in both [14] and [11] for learning AC0 circuits and their variants run in
quasi-polynomial time.

The unpruned graph of a circuit C is the directed graph whose vertices

are the wires and whose edges are pairs (wi, wj) such that wi is an input of wj in
C. A wire wi is output-connected if there is a directed path in the unpruned
graph from that wire to the output wire. Wires that are not output-connected
cannot affect the output value of a circuit. The graph of a circuit C is the
subgraph of its unpruned graph induced by the output-connected wires.

A circuit is acyclic if its graph is acyclic. In this paper we consider only
acyclic circuits. If u and v are vertices such that u 6= v and there is a directed
path from u to v, then we say that u is an ancestor of v and that v is a
descendant of u. The depth of an output-connected wire wi is the length of
a longest path from wi to the output wire wn. The depth of a circuit is the
maximum depth of any output-connected wire in the circuit. A wire with no
inputs is an input wire; its default value is given by its gate function, which
has arity 0 and is constant.

We consider the property of being transitively reduced [1] and a generaliza-
tion of it: bounded shortcut width. Let G be an acyclic directed graph. An edge
(u, v) of G is a shortcut edge if there exists a directed path in G of length
at least two from u to v. G is transitively reduced if it contains no shortcut
edges. A circuit is transitively reduced if its graph is transitively reduced.

The shortcut width of a wire wi is the number of wires wj such that wj is
both an ancestor of wi and an input of a descendant of wi. (Note that we are
counting wires, not edges.) The shortcut width of a circuit C is the maximum
shortcut width of any output-connected wire in C. A circuit is transitively re-
duced if and only if it has shortcut width 0. A circuit’s shortcut width turns out
to be a key parameter in its learnability by value injection queries.

2.2 Experiments on circuits

Let C be a circuit. An experiment e is a function mapping each wire of C to
Σ∪{∗}, where ∗ is not an element of Σ. If e(wi) = ∗, then the wire wi is free in
e; otherwise, wi is fixed in e. If e is an experiment that assigns ∗ to wire w, and
σ ∈ Σ, then e|w=σ is the experiment that is equal to e on all wires other than w,
and fixes w to σ. We define an ordering � on Σ ∪{∗} in which all elements of Σ
are incomparable and precede ∗, and lift this to the componentwise ordering on
experiments. Then e1 � e2 if every wire that e2 fixes is fixed to the same value
by e1, and e1 may fix some wires that e2 leaves free.

For each experiment e we inductively define the value wi(e) ∈ Σ, of each
wire wi in C under the experiment e as follows. If e(wi) = σ and σ 6= ∗, then
wi(e) = σ. Otherwise, if the values of the input wires of wi have been defined,
then wi(e) is defined by applying the gate function gi to them, that is, wi(e) =
gi(wσ(i,1)(e), . . . , wσ(i,ki)(e)). Because C is acyclic, this uniquely defines wi(e) ∈
Σ for all wires wi. We define the value of the circuit to be the value of its output
wire, that is, C(e) = wn(e) for every experiment e.

Let C and C′ be circuits with the same set of wires and the same value
set Σ. If C(e) = C′(e) for every experiment e, then we say that C and C′ are
behaviorally equivalent. To define approximate equivalence, we assume that

there is a metric d on Σ mapping pairs of values from Σ to a real-valued distance
between them. If d(C(e), C′(e)) ≤ ǫ for every experiment e, then we say that C
and C′ are ǫ-equivalent.

We consider two principal kinds of circuits. A discrete circuit is a circuit for
which the set Σ of wire values is a finite set. An analog circuit is a circuit for
which Σ = [0, 1]. In this case we specify the distance function as d(x, y) = |x−y|.

2.3 The learning problems

We consider the following general learning problem. There is an unknown target
circuit C∗ drawn from a known class of possible target circuits. The set of wires
w1, . . . , wn and the value set Σ are given as input. The learning algorithm may
gather information about C∗ by making calls to an oracle that will answer value
injection queries. In a value injection query, the algorithm specifies an exper-
iment e and the oracle returns the value of C∗(e). The algorithm makes a value
injection query by listing a set of wires and their fixed values; the other wires are
assumed to be free, and are not explicitly listed. The goal of a learning algorithm
is to output a circuit C that is either exactly or approximately equivalent to C∗.

In the case of learning discrete circuits, the goal is behavioral equivalence and
the learning algorithm should run in time polynomial in n. In the case of learning
analog circuits, the learning algorithm has an additional parameter ǫ > 0, and
the goal is ǫ-equivalence. In this case the learning algorithm should run in time
polynomial in n and 1/ǫ. In Section 5.1, we consider algorithms that may use
equivalence queries in addition to value injection queries.

3 Learning Large-Alphabet Circuits

In this section we consider the problem of learning a discrete circuit when the
alphabet Σ of possible values is of size nO(1). In Section 4 we reduce the problem
of learning an analog circuit whose gate functions satisfy a Lipschitz condition to
that of learning a discrete circuit over a finite value set Σ; the number of values
is nΘ(1) for an analog circuit of depth O(log n). Using this approach, in order to
learn analog circuits of even moderate depth, we need learning algorithms that
can handle large alphabets.

The algorithm Circuit Builder [5] uses value injection queries to learn acyclic
discrete circuits of unrestricted topology and depth O(log n) with constant fan-
in and constant alphabet size in time polynomial in n. However, the approach
of [5] to building a sufficient set of experiments does not generalize to alphabets
of size nO(1) because the total number of possible settings of side wires along a
test path grows superpolynomially. In fact, we give evidence in Section 3.1 that
this problem becomes computationally intractable for an alphabet of size nΘ(1).

In turn, this negative result justifies a corresponding restriction on the topol-
ogy of the circuits we consider. We first show that a natural top-down algorithm
using value-injection queries learns transitively reduced circuits with arbitrary
depth, constant fan-in and alphabet size nO(1) in time polynomial in n. We then

give a generalization of this algorithm to circuits that have a constant bound on
their shortcut width. The topological restrictions do not result in trivial classes;
for example, every levelled graph is transitively reduced.

3.1 Hardness for large alphabets with unrestricted topology

We give a reduction that turns a large-alphabet circuit learning algorithm into
a clique tester. Because the clique problem is complete for the complexity class
W [1] (see [8, 15]), this suggests the learning problem may be computationally
intractable for classes of circuits with large alphabets and unrestricted topology.

The Reduction. Suppose the input is (G, k), where k ≥ 2 is an integer and
G = (V, E) is a simple undirected graph with n ≥ 3 vertices, and the desired
output is whether G contains a clique of size k. We construct a circuit C of
depth d =

(

k
2

)

as follows. The alphabet Σ is V ; let v0 be a particular element of
V . Define a gate function g with three inputs s, u, and v as follows: if (u, v) is
an edge of G, then the output of g is equal to the input s; otherwise, the output
is v0. The wires of C are s1, . . . , sd+1 and x1, x2, . . . , xk. The wires xj have no
inputs; their gate functions assign them the default value v0. For i = 1, . . . , d,
the wire si+1 has corresponding gate function g, where the s input is si, and
the u and v inputs are the i-th pair (xℓ, xm) with ℓ < m in the lexicographic
ordering. Finally, the wire s1 has no inputs, and is assigned some default value
from V − {v0}. The output wire is sd+1.

To understand the behavior of C, consider an experiment e that assigns
values from V to each of x1, . . . , xk, and leaves the other wires free. The gates g
pass along the default value of s1 as long as the values e(xℓ) and e(xm) are an
edge of G, but if any of those checks fail, the output value will be v0. Thus the
default value of s1 will be passed all the way to the output wire if and only if
the vertex values assigned to x1, . . . , xk form a clique of size k in G.

We may use a learning algorithm as a clique tester as follows. Run the learning
algorithm using C to answer its value-injection queries e. If for some queried
experiment e, the values e(x1), . . . , e(xk) form a clique of k vertices in G, stop
and output the answer “yes.” If the learning algorithm halts and outputs a
circuit without making such a query, then output the answer “no.” Clearly a
“yes” answer is correct, because we have a witness clique. And if there is a
clique of size k in G, the learning algorithm must make such a query, because in
that case, the default value assigned to s1 cannot otherwise be learned correctly;
thus, a “no” answer is correct. Then we have the following.

Theorem 1. If for some nonconstant computable function d(n) an algorithm

using value injection queries can learn the class of circuits of at most n wires,

alphabet size s, fan-in bound 3, and depth bound d(n) in time polynomial in n
and s, then there is an algorithm to decide whether a graph on n vertices has a

clique of size k in time f(k)nα, for some function f and constant α.

Because the clique problem is complete for the complexity class W [1], a
polynomial time learning algorithm as hypothesized in the theorem for any non-
constant computable function d(n) would imply fixed-parameter tractability of

all the problems in W [1] [8, 15]. However, we show that restricting the circuit
to be transitively reduced (Theorem 2), or more generally, of bounded shortcut
width (Theorem 3), avoids the necessity of a depth bound at all.4

3.2 Distinguishing Paths

This section develops some properties of distinguishing paths, making no as-
sumptions about shortcut width. Let C∗ be a circuit with n wires, an alphabet
Σ of cardinality s, and fan-in bounded by a constant k. An arbitrary gate func-
tion for such a circuit can be represented by a gate table with sk entries, giving
the value of the gate function for each possible k-tuple of input symbols.

Experiment e distinguishes σ from τ for w if e sets w to ∗ and C∗(e|w=σ) 6=
C∗(e|w=τ). If such an experiment exists, the values σ and τ are distinguishable

for wire w; otherwise, σ and τ are indistinguishable for w.
A test path π for a wire w in C∗ consists of a directed path of wires from w

to the output wire, together with an assignment giving fixed values from Σ to
some set S of other wires; S must be disjoint from the set of wires in the path,
and each element of S must be an input to some wire beyond w along the path.
The wires in S are the side wires of the test path π. The length of a test path
is the number of edges in its directed path. There is just one test path of length
0, consisting of the output wire and no side wires.

We may associate with a test path π the partial experiment pπ that assigns
∗ to each wire on the path, and the specified value from Σ to each wire in S. An
experiment e agrees with a test path π if e extends the partial experiment pπ,
that is, pπ is a subfunction of e. We also define the experiment eπ that extends
pπ by setting all the other wires to ∗.

If π is a test path and V is a set of wires disjoint from the side wires of π,
then V is functionally determining for π if for any experiment e agreeing
with π and leaving the wires in V free, for any experiment e′ obtained from e by
setting the wires in V to fixed values, the value of C∗(e′) depends only on the
values assigned to the wires in V . That is, the values on the wires in V determine
the output of the circuit, given the assignments specified by pπ. A test path π
for w is isolating if {w} is functionally determining for π.

Lemma 1. If π is an isolating test path for w then the set V of inputs of w is

functionally determining for π.

We define a distinguishing path for wire w and values σ, τ ∈ Σ to be an
isolating test path π for w such that eπ distinguishes between σ and τ for w. The
significance of distinguishing paths is indicated by the following lemma, which
is analogous to Lemma 10 of [5].

Lemma 2. Suppose σ and τ are distinguishable for wire w. Then for any mini-

mal experiment e distinguishing σ from τ for w, there is a distinguishing path π
for wire w and values σ and τ such that the free wires of e are exactly the wires

of the directed path of π, and e agrees with π.

4 The target circuit C constructed in the reduction is of shortcut width k − 1.

Conversely, a shortest distinguishing path yields a minimal distinguishing
experiment, as follows. This does not hold for circuits of general topology without
the restriction to a shortest path.

Lemma 3. Let π be a shortest distinguishing path for wire w and values σ and

τ . Then the experiment e obtained from pπ by setting every unspecified wire to

an arbitrary fixed value is a minimal experiment distinguishing σ from τ for w.

3.3 The Distinguishing Paths Algorithm

In this section we develop the Distinguishing Paths Algorithm.

Theorem 2. The Distinguishing Paths Algorithm learns any transitively re-

duced circuit with n wires, alphabet size s, and fan-in bound k, with O(n2k+1s2k+2)
value injection queries and time polynomial in the number of queries.

Lemma 4. If C∗ is a transitively reduced circuit and π is a test path for w in

C∗, then none of the inputs of w is a side wire of π.

The Distinguishing Paths Algorithm builds a directed graph G whose vertices
are the wires of C∗, in which an edge (v, w) represents the discovery that v is an
input of w in C∗. The algorithm also keeps for each wire w a distinguishing

table Tw with
(

s

2

)

entries, one for each unordered pair of values from Σ. The
entry for (σ, τ) in Tw is 1 or 0 according to whether or not a distinguishing path
has been found to distinguish values σ and τ on wire w. Stored together with
each 1 entry is a corresponding distinguishing path and a bit marking whether
the entry is processed or unprocessed.

At each step, for each distinguishing table Tw that has unprocessed 1 entries,
we try to extend the known distinguishing paths to find new edges to add to G
and new 1 entries and corresponding distinguishing paths for the distinguishing
tables of inputs of w. Once every 1 entry in every distinguishing table has been
marked processed, the construction of distinguishing tables terminates. Then a
circuit C is constructed with graph G by computing gate tables for the wires;
the algorithm outputs C and halts.

To extend a distinguishing path for a wire w, it is necessary to find an input
wire of w. Given a distinguishing path π for wire w, an input v of w is relevant

with respect to π if there are two experiments e1 and e2 that agree with π, that
set the inputs of w to fixed values, that differ only by assigning different values
to v, and are such that C∗(e1) 6= C∗(e2). Let V (π) denote the set of all inputs
v of w that are relevant with respect to π. It is only relevant inputs of w that
need be found, as shown by the following.

Lemma 5. Let π be a distinguishing path for w. Then V (π) is functionally

determining for π.

Given a distinguishing path π for wire w, we define its corresponding input

experiments Eπ to be the set of all experiments e that agree with π and set

up to 2k additional wires to fixed values and set the rest of the wires free. Note
that each of these experiments fix at most 2k more values than are already fixed
in the distinguishing path. Consider all pairs (V, Y) of disjoint sets of wires not
set by pπ such that |V | ≤ k and |Y | ≤ k; for every possible way of setting V ∪Y
to fixed values, there is a corresponding experiment in Eπ .

Find-Inputs. We now describe a procedure, Find-Inputs, that uses the exper-
iments in Eπ to find all the wires in V (π). Define a set V of at most k wires
not set by pπ to be determining if for every disjoint set Y of at most k wires
not set by pπ and for every assignment of values from Σ to the wires in V ∪ Y ,
the value of C∗ on the corresponding experiment from Eπ is determined by the
values assigned to wires in V , independent of the values assigned to wires in Y .
Find-Inputs finds all determining sets V and outputs their intersection.

Lemma 6. Given a distinguishing path π for w and its corresponding input

experiments Eπ, the procedure Find-Inputs returns V (π).

Find-Paths. We now describe a procedure, Find-Paths, that takes the set V (π) of
all inputs of w relevant with respect to π, and searches, for each triple consisting
of v ∈ V (π) and σ, τ ∈ Σ, for two experiments e1 and e2 in Eπ that fix all the
wires of V (π)− {v} in the same way, but set v to σ and τ , respectively, and are
such that C∗(e1) 6= C∗(e2). On finding such a triple, the distinguishing path π
for w can be extended to a distinguishing path π′ for v by adding v to the start
of the path, and making all the wires in V (π) − {v} new side wires, with values
fixed as in e1. If this gives a new 1 for entry (σ, τ) in the distinguishing paths
table Tv, then we change the entry, add the corresponding distinguishing path
for v to the table, and mark it unprocessed. We have to verify the following.

Lemma 7. Suppose π′ is a path produced by Find-Paths for wire v and values

σ and τ . Then π′ is a distinguishing path for wire v and values σ, τ .

The Distinguishing Paths Algorithm initializes the simple directed graph G
to have the set of wires of C∗ as its vertex set, with no edges. It initializes Tw

to all 0’s, for every non-output wire w. Every entry in Twn
is initialized to 1,

with a corresponding distinguishing path of length 0 with no side wires, and
marked as unprocessed. The Distinguishing Paths Algorithm is summarized in
Algorithm 1; the procedure Construct-Circuit is described below.

We now show that when processing of the tables terminates, the tables Tw

are correct and complete. We first consider the correctness of the 1 entries.

Lemma 8. After the initialization, and after each new 1 entry is placed in a

distinguishing table, every 1 entry in a distinguishing table Tw for (σ, τ) has a

corresponding distinguishing path π for wire w and values σ and τ .

A distinguishing table Tw is complete if for every pair of values σ, τ ∈ Σ
such that σ and τ are distinguishable for w, Tw has a 1 entry for (σ, τ).

Lemma 9. When the Distinguishing Paths Algorithm terminates, Tw is com-

plete for every wire w in C∗.

Algorithm 1 Distinguishing Paths Algorithm

Initialize G to have the wires as vertices and no edges.
Initialize Twn

to all 1’s, marked unprocessed.
Initialize Tw to all 0’s for all non-output wires w.
while there is an unprocessed 1 entry (σ, τ) in some Tw do

Let π be the corresponding distinguishing path.
Perform all input experiments Eπ.
Use Find-Inputs to determine the set V (π).
Add any new edges (v, w) for v ∈ V (π) to G.
Use Find-Paths to find extensions of π for elements of V (π).
for each extension π′ that gives a new 1 entry in some Tv do

Put the new 1 entry in Tv with distinguishing path π′.
Mark this new 1 entry as unprocessed.

Mark the 1 entry for (σ, τ) in Tw as processed.
Use Construct-Circuit with G and the tables Tw to construct a circuit C.
Output C and halt.

Construct-Circuit. Now we show how to construct a circuit C behaviorally equiv-
alent to C∗ given the graph G and the final distinguishing tables. G is the graph
of C, determining the input relation between wires. Note that G is a subgraph of
the graph of C∗, because edges are added only when relevant inputs are found.

Gate tables for wires in C will keep different combinations of input values and
their corresponding output. Since some distinguishing tables for wires may have
0 entries, we will record values in gate tables up to equivalence, where σ and τ are
in the same equivalence class for w if they are indistinguishable for w. We process
one wire at a time, in arbitrary order. We first record, for one representative σ
of each equivalence class of values for w, the outputs C∗(eπ|w = σ) for all the
distinguishing paths π in Tw. Given a setting of the inputs to w (in C), we can
tell which equivalence class of values of w it should map to as follows. For each
distinguishing path π in Tw, we record the output of C∗ for the experiment equal
to eπ with the inputs of w set to the given fixed values and w = ∗. The value
of σ with recorded outputs that match these outputs for all π is written in w’s
gate table as the output for this setting of the inputs. Repeating this for every
setting of w’s inputs completes w’s gate table, and we continue to the next gate.

Lemma 10. Given the graph G and distinguishing tables as constructed in the

Distinguishing Paths Algorithm, the procedure Construct-Circuit constructs a

circuit C behaviorally equivalent to C∗.

We analyze the total number of value injection queries used by the Distin-
guishing Paths Algorithm; the running time is polynomial in the number of
queries. To construct the distinguishing tables, each 1 entry in a distinguishing
table is processed once. The total number of possible 1 entries in all the tables is
bounded by ns2. The processing for each 1 entry is to take the corresponding dis-
tinguishing path π and construct the set Eπ of input experiments, each of which
consists of choosing up to 2k wires and setting them to arbitrary values from Σ,

for a total of O(n2ks2k) queries to construct Eπ. Thus, a total of O(n2k+1s2k+2)
value injection queries are used to construct the distinguishing tables.

To build the gate tables, for each of n wires, we try at most s2 distinguishing
path experiments for at most s values of the wire, which takes at most s3 queries.
We then run the same experiments for each possible setting of the inputs to the
wire, which takes at most sks2 experiments. Thus Construct-Circuit requires a
total of O(n(s3 +sk+2)) experiments, which are already among the ones made in
constructing the distinguishing tables. Note that every experiment fixes at most
O(kd) wires, where d is the depth of C∗. This concludes the proof of Theorem 2.

3.4 The Shortcuts Algorithm

In this section we sketch the Shortcuts Algorithm, which generalizes the Distin-
guishing Paths Algorithm to circuits with bounded shortcut width.

Theorem 3. The Shortcuts Algorithm learns the class of circuits having n wires,

alphabet size s, fan-in bound k, and shortcut width bounded by b using a num-

ber of value injection queries bounded by (ns)O(k+b) and time polynomial in the

number of queries.

When C∗ is not transitively reduced, there may be edges of its graph that
are important to the behavior of the circuit, but are not completely determined
by the behavior of the circuit. For example, three circuits given in [5] are behav-
iorally equivalent, but have different topologies; a behaviorally correct circuit
cannot be constructed with just the edges that are common to the three circuit
graphs. Thus, the Shortcuts Algorithm focuses on finding a sufficient set of
experiments for C∗, and uses Circuit Builder [5] to build the output circuit C.

On the positive side, we can learn quite a bit about the topology of a circuit
C∗ from its behavior. An edge (v, w) of the graph of C∗ is discoverable if
it is the initial edge on some minimal distinguishing experiment e for v and
some values σ1 and σ2. This is a behaviorally determined property; all circuits
behaviorally equivalent to C∗ must contain all the discoverable edges of C∗.

We generalize the definition of a distinguishing path to a distinguishing

path with shortcuts, which has an additional set of cut wires K, which is
disjoint from the path wires and the side wires, and is such that every wire in
K is an input to some wire beyond w on the path (where w is the initial wire.)
Moreover, {w} ∪ K is functionally determining for the path.

Like the Distinguishing Paths Algorithm, the Shortcuts Algorithm maintains
a directed graph G containing known edges (v, w) of the graph of C∗, and a set
of distinguishing tables Tw indexed by triples (B, a1, a2), where B is a set of at
most b wires not containing w, and a1 and a2 are assignments of fixed values to
the wires in {w}∪B. If there is an entry for (B, a1, a2) in Tw, it is a distinguishing
path with shortcuts π such that K ⊆ B and K ∩ S = ∅ and it distinguishes a1

from a2. Each entry is marked as processed or unprocessed.
The algorithm processes an entry by using the distinguishing path π for

(w, B) to find new edges (v, w) in G, and to find new or updated entries in the

tables Tv such that (v, w) is in G. An entry is updated if a new distinguishing
path for the entry is shorter than the current one, which it then replaces. When
an entry is created or updated, it is marked as unprocessed. All entries in Tw

are also marked as unprocessed when a new edge (v, w) is added to G.
We show that when processing of the tables Tw is complete, G contains every

discoverable edge of C∗ and for every wire w and the shortcut wires B(w) of w
in C∗, if the assignments a1 and a2 are distinguishable for (w, B(w)), then there
is a correct entry for (B(w), a1, a2) in Tw. The final tables Tw are used to create
experiments for Circuit Builder. To guarantee a sufficient set of experiments,
this procedure is iterated for every restriction of C∗ obtained by selecting at
most k possible input wires and assigning arbitrary fixed values to them.

4 Learning Analog Circuits via Discretization

We show how to construct a discrete approximation of an analog circuit, assum-
ing its gate functions satisfy a Lipschitz condition with constant L, and apply
the large-alphabet learning algorithm of Theorem 3.

4.1 A Lipschitz condition

An analog function g of arity k satisfies a Lipschitz condition with constant L if
for all x1, . . . , xk and x′

1, . . . , x
′

k from [0, 1] we have

|g(x1, . . . , xk) − g(x′

1, . . . , x
′

k)| ≤ L max
i

|xi − x′

i|.

Let m be a positive integer. We define a discretization function Dm from [0, 1]
to the m points {1/2m, 3/2m, . . . , (2m − 1)/2m} by mapping x to the closest
point in this set (choosing the smaller point if x is equidistant from two of them.)
Then |x − Dm(x)| ≤ 1/2m for all x ∈ [0, 1]. We extend Dm to discretize analog
experiments e by defining Dm(∗) = ∗ and applying it componentwise to e.

Lemma 11. If g is an analog function of arity k, satisfying a Lipschitz condition

with constant L and m is a positive integer, then for all x1, . . . , xk in [0, 1],
|g(x1, . . . , xk) − g(Dm(x1), . . . , Dm(xk))| ≤ L/2m.

4.2 Discretizing analog circuits

We describe a discretization of an analog gate function in which the inputs and
the output may be discretized differently. Let g be an analog function of arity k
and r, s be positive integers. The (r, s)-discretization of g is g′, defined by

g′(x1, . . . , xk) = Dr(g(Ds(x1), . . . , Ds(xk))).

Let C be an analog circuit of depth dmax and let L and N be positive integers.
Define md = N(3L)d for all nonnegative integers d. We construct a particular

discretization C′ of C by replacing each gate function gi by its (md, md+1)-
discretization, where d is the depth of wire wi. We also replace the value set
Σ = [0, 1] by the value set Σ′ equal to the union of the ranges of Dmd

for
0 ≤ d ≤ dmax. Note that the wires and tuples of inputs remain unchanged. The
resulting discrete circuit C′ is termed the (L, N)-discretization of C.

Lemma 12. Let L and N be positive integers. Let C be an analog circuit of

depth dmax whose gate functions all satisfy a Lipschitz condition with constant

L. Let C′ denote the (L, N)-discretization of C and let M = N(3L)dmax . Then

for any experiment e for C, |C(e) − C′(DM (e))| ≤ 1/N.

This lemma shows that if every gate of C satisfies a Lipschitz condition with
constant L, we can approximate C’s behavior to within ǫ using a discretization
with O((3L)d/ǫ) points, where d is the depth of C. For d = O(log n), this bound
is polynomial in n and 1/ǫ.

Theorem 4. There is a polynomial time algorithm that approximately learns

any analog circuit of n wires, depth O(log n), constant fan-in, gate functions

satisfying a Lipschitz condition, and shortcut width bounded by a constant.

5 Learning with Experiments and Counterexamples

In this section, we consider the problem of learning circuits using both value
injection queries and counterexamples. In a counterexample query, the al-
gorithm proposes a hypothesis C and receives as answer either the fact that C
exactly equivalent to the target circuit C∗, or a counterexample, that is, an
experiment e such that C(e) 6= C∗(e). In [5], polynomial-time algorithms are
given that use value injection queries and counterexample queries to learn (1)
acyclic circuits of arbitrary depth with arbitrary gates of constant fan-in, and
(2) acyclic circuits of arbitrary depth with NOT gates and AND, OR, NAND,
and NOR gates of arbitrary fan-in.

The algorithm that we now develop generalizes both previous algorithms by
permitting any class of gates that is polynomial time learnable with counterex-
amples. It also guarantees that the depth of the output circuit is no greater than
the depth of the target circuit and the number of additional wires fixed in value
injection queries is bounded by O(kd), where k is a bound on the fan-in and d
is a bound on the depth of the target circuit.

5.1 The learning algorithm

The algorithm proceeds in a cycle of proposing a hypothesis, getting a coun-
terexample, processing the counterexample, and then proposing a new hypoth-
esis. Whenever we receive a counterexample e, we process the counterexample
so that we can “blame” at least one gate in C; we find a witness experiment e∗

eliminating a gate g in C. In effect, we reduce the problem of learning a circuit
to the problem of learning individual gates with counterexamples.

An experiment e∗ is a witness experiment eliminating g, if and only if e∗

fixes all inputs of g but sets g free and C(e∗|w=g(e∗)) 6= C(e∗). It is important
that we require e∗ fix all inputs of g, because then we know it is g and not its
ancestors computing wrong values. The main operation of the procedure that
processes counterexamples is to fix wires.

Given a counterexample e, let procedure minimize fix wires in e while pre-
serving the property that C(e) 6= C′(e) until it cannot fix any more. Therefore,
e∗ = minimize(e) is a minimal counterexample for C′ under the partial order �
defined in Sect. 2.2. The following lemma is a consequence of Lemma 10 in [5].

Lemma 13. If e∗ is a minimal counterexample for C′, there exists a gate g in

C′ such that e∗ is a witness experiment for g.

Now we run a separate counterexample learning algorithm for each individ-
ual wire. Whenever C′ receives a counterexample, at least one of the learning
algorithms will receive one. However, if we run all the learning algorithms simul-
taneously and let each learning algorithm propose a gate function, the hypothesis
circuit may not be acyclic. Instead we will use Algorithm 2 to coordinate them,
which can be viewed as a generalization of the circuit building algorithm for
learning AND/OR circuits in [5]. Conflicts are defined below.

Algorithm 2 Learning with experiments and counterexamples

Run an individual learning algorithm for each wire w. Each learning algorithm takes
as candidate inputs only wires that have fewer conflicts.
Let C be the hypothesis circuit.
while there is a counterexample for C do

Process the counterexample to obtain a counterexample for a wire w.
Run the learning algorithm for w with the new counterexample.
if there is a conflict for w then

Restart the learning algorithms for w and all wires whose candidate inputs have
changed.

The algorithm builds an acyclic circuit C because each wire has as inputs only
wires that have fewer conflicts. At the start, each individual learning algorithm
runs with an empty candidate input set since there is yet no conflict. Thus,
each of them tries to learn each gate as a constant gate, and some of them
will not succeed. A conflict for w happens when there is no hypothesis in the
hypothesis space that is consistent with the set of counterexamples received by
w. For constant gates, there is a conflict when we receive a counterexample for
each of the |Σ| possible constant functions. We note that there will be no conflict
for a wire w if the set of candidate inputs contains the set of true inputs of w in
the target circuit C∗, because then the hypothesis space contains the true gate.

Whenever a conflict occurs for a wire, it has a chance of having more wires
as candidate inputs. Therefore, our learning algorithm can be seen as repeatedly
rebuilding a partial order over wires based on their numbers of conflicts. Another

natural partial order on wires is given by the level of a wire, defined as the length
of a longest directed path in C∗ from a constant gate to the wire. The following
lemma shows an interesting connection between levels and numbers of conflicts.

Lemma 14. The number of conflicts each wire receives is bounded by its level.

Corollary 1. The depth of C is at most the depth of C∗.

In fact, the depth of C is bounded by the minimum depth of any circuit
behaviorally equivalent to C∗.

Theorem 5. Circuits whose gates are polynomial time learnable with counterex-

amples are learnable in polynomial time with experiments and counterexamples.

Proof. By the learnability assumption of each gate, Algorithm 2 will receive only
polynomially many counterexamples between two conflicts, because the candi-
date inputs for every wire are unchanged. (A conflict can be detected when the
number of counterexamples exceeds the polynomial bound.) Lemma 14 bounds
the number of conflicts for each wire by its level, which then bounds the total
number of counterexamples of Algorithm 2 by a polynomial. It is clear that we
use O(n) experiments to process each counterexample. Thus, the total number
of experiments is bounded by a polynomial as well.

5.2 A new diagnosis algorithm

A shortcoming of minimize is that it fixes many wires, which may be undesir-
able in the context of gene expression experiments. In this section, we propose a
new diagnosis algorithm to find a witness experiment e∗ for some gate g in C. If
the hypothesis circuit C has depth d and fan-in bound k, the new algorithm fixes
only O(dk) more gates than the number fixed in the original counterexample.

Given a counterexample e, we first gather a list of potentially wrong wires.
Let wC(e) be the value of wire w in C under experiment e. We can compute
wC(e) given e because we know C. The potentially wrong wires are those w’s
such that C∗(e|w=wC(e)) 6= C∗(e). It is not hard to see that a potentially wrong
wire must be a free wire in e. We can gather all potentially wrong wires by
conducting n experiments, each fixing one more wire than e does.

Now, pick an arbitrary potentially wrong wire w and let g be its gate function
in C. If g’s inputs are fixed in e, then e is a witness experiment for g, and we
are done. Otherwise, fix all g’s free input wires to their values in C, and let e′

be the resulting experiment. There are two cases: either g is wrong or one of g’s
inputs computes a wrong value.

1. If C∗(e′|w=wC(e)) 6= C∗(e′), then e′ is a witness experiment for g.
2. Otherwise, we have C∗(e′|w=wC(e)) = C∗(e′). Because C∗(e|w=wC(e)) 6=

C∗(e), we have either C∗(e′) 6= C∗(e) or C∗(e′|w=wC(e)) 6= C∗(e|w=wC(e)).
Note that the only difference between e and e′ is that e′ fixes free inputs of
g to their values in C. So either e or e|w=wC(e) is an experiment in which

fixing all g’s free inputs gives us a change in the circuit outputs. We then
start from whichever experiment gives us such a change and fix free inputs
of g in C one after another, until the circuit output changes. We will find
an experiment e′′, for which one of g’s inputs is potentially wrong. We then
restart the process with e′′ and this input of g.

At each iteration, we go to a deeper gate in C. The process will stop within d
iterations. If C has fan-in at most k, the whole process will fix at most d(k−1)+1
more gates than were fixed in the original experiment e.

References

1. Alfred V. Aho, M. R. Garey, and Jeffrey D. Ullman. The transitive reduction of a
directed graph. SIAM J. Comput., 1:131–137, 1972.

2. Tatsuya Akutsu, Satoru Kuhara, Osamu Maruyama, and Satoru Miyano. Identifi-
cation of gene regulatory networks by strategic gene disruptions and gene overex-
pressions. In SODA ’98: Proceedings of the Ninth Annual ACM-SIAM Symposium

on Discrete Algorithms, pages 695–702, Philadelphia, PA, USA, 1998. Society for
Industrial and Applied Mathematics.

3. D. Angluin, M. Frazier, and L. Pitt. Learning conjunctions of Horn clauses. Ma-

chine Learning, 9:147–164, 1992.
4. D. Angluin, L. Hellerstein, and M. Karpinski. Learning read-once formulas with

queries. J. ACM, 40:185–210, 1993.
5. Dana Angluin, James Aspnes, Jiang Chen, and Yinghua Wu. Learning a circuit

by injecting values. In Proceedings of the Thirty-Eighth Annual ACM Symposium

on Theory of Computing, pages 584–593, New York, NY, USA, 2006. ACM Press.
6. Dana Angluin and Michael Kharitonov. When won’t membership queries help? J.

Comput. Syst. Sci., 50(2):336–355, 1995.
7. Nader H. Bshouty. Exact learning boolean functions via the monotone theory. Inf.

Comput., 123(1):146–153, 1995.
8. R. G. Downey and M. R. Fellows. Parameterized Complexity. Springer-Verlag,

1999.
9. T. Ideker, V. Thorsson, and R Karp. Discovery of regulatory interactions through

perturbation: Inference and experimental design. In Pacific Symposium on Bio-

computing 5, pages 302–313, 2000.
10. Jeffrey C. Jackson. An efficient membership-query algorithm for learning DNF

with respect to the uniform distribution. J. Comput. Syst. Sci., 55(3):414–440,
1997.

11. Jeffrey C. Jackson, Adam R. Klivans, and Rocco A. Servedio. Learnability beyond
AC0. In STOC ’02: Proceedings of the thirty-fourth annual ACM symposium on

Theory of computing, pages 776–784, New York, NY, USA, 2002. ACM Press.
12. Michael Kearns and Leslie Valiant. Cryptographic limitations on learning boolean

formulae and finite automata. J. ACM, 41(1):67–95, 1994.
13. Michael Kharitonov. Cryptographic hardness of distribution-specific learning. In

STOC ’93: Proceedings of the twenty-fifth annual ACM symposium on Theory of

computing, pages 372–381, New York, NY, USA, 1993. ACM Press.
14. Nathan Linial, Yishay Mansour, and Noam Nisan. Constant depth circuits, Fourier

transform, and learnability. Journal of the ACM, 40(3):607–620, 1993.
15. Rolf Niedermeier. Invitation to Fixed-Parameter Algorithms. Oxford University

Press, 2006.

