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Abstract. Most applications of competitive analysis have involved on-
line problems where a candidate on-line algorithm must compete on
some input sequence against an optimal off-line algorithm that can in
effect predict future inputs. Efforts to apply competitive analysis to fault-
tolerant distributed algorithms require accounting for not only this in-
put nondeterminism but also system nondeterminism that arises in dis-
tributed systems prone to asynchrony and failures. This paper surveys
recent efforts to adapt competitive analysis to distributed systems, and
suggests how these adaptations might in turn be useful in analyzing a
wider variety of systems. These include tools for building competitive al-
gorithms by composition, and for obtaining more meaningful competitive
ratios by limiting the knowledge of the off-line algorithm.

1 Introduction.

Like on-line algorithms, distributed algorithms must deal with limited informa-
tion and unpredictable user and system behavior. Unlike on-line algorithms, in
many distributed algorithms the primary source of difficulty is the possibility
that components of the underlying system may fail or behave badly. In a dis-
tributed system, processes may crash, run at wildly varying speeds, or execute
erroneous code; messages may be lost, garbled, or badly delayed. As a conse-
quence, the worst-case performance of many algorithms can be very bad, and
may have little correspondence to performance in more typical cases.

It is not surprising that the technique of competitive analysis [ST85]
should be useful for taming the excesses of worst-case analysis of distributed
algorithms. Of course, new opportunities and complications arise in trying to
apply competitive analysis directly to fault-tolerant distributed systems. Dis-
tributed systems have a natural split between the inputs coming from the users
above and the environment provided by the system below— by exploiting this
split it is possible, among other things, to build competitive algorithms by com-
position. On the other hand, because a distributed system consists of many
individual components with limited information, one must be careful in how
one defines the powers of the “off-line” algorithm so that the boundaries be-
tween these separate components do not become blurred. Work in this area has
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yielded several useful techniques for carefully controlling how much information
the off-line algorithm is allowed to use.

Section 2 discusses distributed systems in general. Section 3 describes com-
petitive analysis in its traditional form. Some variants on traditional competitive
measures that are useful in models in which the nondeterminism naturally splits
into two categories are described in Section 4. For these semicompetitive perfor-
mance measures, composition of algorithms is possible, as described in Section 5.
Examples of applications of these techniques to distributed problems are given
in Sections 6 and 7. Finally, Section 8 discusses directions in which this area
might profitably be extended.

A caveat: this survey is concerned primarily with examples in the distributed
algorithms literature of applying competitive analysis directly to nondetermin-
ism in the underlying system. No attempt is made to cover the vast body of
excellent work on on-line problems, such as distributed paging, load-balancing,
routing, mobile user tracking, etc., that arise in networks and other distributed
systems.

2 Distributed Systems.

There are many forms of distributed systems, and a wide variety of theoretical
models used to study them. However, there are two properties that show up in
most distributed system models, which distinguish them from uniprocessor or
parallel systems. The first and most important property is that a distributed
system consists of more than one process, which may represent a real physi-
cal CPU, or might correspond to an abstract entity like a process or thread
in a timesharing system. The second property is that the multiple processes of
a distributed system are poorly coordinated— each runs its own program; the
communication channels between them may be slow, expensive, and unreliable;
and individual processes may crash, become faulty, or run at varying speeds.
It is this poor coordination that distinguishes distributed systems from parallel
systems, in which processes typically execute the same program in very close
synchrony with each other using a powerful and reliable communication system.
The line between parallel and distributed systems is not a sharp one, but a rea-
sonable rule of thumb is that parallel systems are predictable; the same program
with the same input running on the same parallel machine should give essentially
the same results every time it is run. In contrast, distributed systems are riddled
with nondeterminism— distributed algorithms are always at the mercy of an
unreliable and sometimes hostile infrastructure, and must strive for robustness
and consistency despite it.

Because of this inherent nondeterminism and the difficulty of communication,
an individual process in a distributed system is likely to have only an incomplete
and often out-of-date picture of the state of the system as a whole. Like an on-
line algorithm, it must still make decisions, which may turn out to be suboptimal
later, based on this limited information. This property of distributed algorithms
gives an on-line flavor to most problems that arise in distributed computing, and



suggests that techniques such as competitive analysis that have been useful for
dealing with the unpredictable request sequences of on-line problems should be
useful for dealing with the unpredictable system behavior of distributed prob-
lems. However, it 1s not immediately obvious how on-line techniques can best be
adapted to distributed systems.

The complication is that for many distributed algorithms we can distinguish
between two different sources of nondeterminism. The first source is the user-
supplied input to the algorithm: those distributed algorithms that carry out
inherently on-line tasks such as scheduling or load balancing must suffer the
whims of unpredictable users just as much as any on-line algorithm running on
a single processor. However, these distributed algorithms must also contend with
system nondeterminism, often summarized as a schedule that specifies when
processes can take steps, what order messages are received in, and so forth. This
schedule is just as unpredictable (and is often assumed to be just as adversarial)
as the input.

3 Competitive Analysis.

Competitive analysis [ST85] compares the performance of a general-purpose al-
gorithm given particular inputs against specialized algorithms optimized for each
of those inputs. From an abstract perspective, one considers a class of algorithms
A, aclass of inputs Z, and a cost function cost(A, T) that assigns a non-negative
cost to each algorithm A and input . A particular algorithm A is k-competitive
if there exists a constant ¢ such that for all inputs I in 7 and algorithms A* in

A
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cost(A, T) < k- cost(A*, I) + c.

If ¢ = 0, the algorithm is said to be strictly k-competitive. The minimum
value of k for which an algorithm is k-competitive is the algorithm’s com-
petitive ratio. If ¢ = 0, this quantity is just the maximum over all [ of
cost(A, I)/ ming»¢ 4 cost(A™, ).

The competitive ratio of an algorithm measures its performance on a par-
ticular input relative to all other algorithms. Often it is convenient to speak of
the optimal algorithm for a particular input. When analyzing on-line algorithms,
there is no harm in assuming that the best algorithm is an off-line algorithm—
one that can predict the input— as the ability to choose an optimal algorithm
based on the input i1s equivalent to using single algorithm with such predic-
tive powers. In contrast, the algorithm being evaluated can be described as the
on-line algorithm because it does not have such powers.

For distributed algorithms, the assumption that an algorithm can predict
the input can have surprising consequences, and 1t 1s necessary in some models
to limit the class of algorithms .4 to exclude full clairvoyance. With such a
limitation, it is less misleading to use the neutral term champion to refer to the
optimal algorithm for a particular input, since this term does not suggest any



special knowledge that the champion might have. Similarly, the term candidate
provides a neutral way to refer to the algorithm that is being evaluated.?

Payoffs Instead of Costs. One can also define the competitiveness of an
algorithm whose performance is measured in terms of a non-negative payoff
function payoff(A, I). The idea here is that for some problems it is more natural
to think in terms of how much can be accomplished given a fixed set of resources
than how many resources are needed to accomplish a fixed set of tasks. In terms
of payoffs, an algorithm is k-competitive if there exists a constant ¢ such that

for all 7 inZ and A* in A,
1 *
payoft(A,I) + ¢ > Zpayoﬂ’(A ).

Note that the competitive ratio is inverted for consistency with the cost version;
smaller competitive ratios imply better performance with either measure.

4 Semicompetitive Analysis

For distributed algorithms, it often makes sense to assume that the cost function
depends on three parameters: the algorithm chosen, an input (which may or may
not be common to both the candidate and champion algorithm) and an envi-
ronment (which is always assumed to be common to both the candidate and
champion algorithm). A problem is then defined in terms of a set of algorithms
A, a set of inputs Z, and a set of environments &, together with a cost function
cost(A, I, E) that assigns a non-negative cost to each algorithm A, input I, and
environment &. From an abstract perspective it is not necessary to worry about
how the nondeterminism in a system is split into the input and the environment,
though in practice it may strongly affect how a problem looks.

One effect of such split nondeterminism is that it allows what we will call
semicompetitive analysis, in which a candidate algorithm is measured against
an optimal champion running with the same environment but not necessarily the
same input. The goal is still to be able to measure the performance of a particular
general-purpose candidate algorithm relative to the best specialized algorithms
in some class. However, there are now several possible measures depending on
how the inputs are chosen for the candidate and champion algorithms.

Common Inputs. If one assumes that the input and environment are the same
for both candidate and champion, one has the traditional definition of k-
competitiveness. An algorithm A is traditionally k-competitive if there exists
a constant ¢ such that for all A* in A, [ inZ, and £ in &,

cost(A, I, E) < k -cost(A™, I, E) + c.

2 These terms were suggested by [AADW94].



Worst-Case vs. Best-Case Inputs. A more useful measure arises if one assumes
that the inputs are not shared between the candidate and the champion. Let us
define an algorithm A in a split-nondeterminism framework as k-competitive
if there exists a constant ¢ such that for all A* in A, I and I* in Z, and F in &,

cost(A, I, E) < k - cost(A™, I*, E) + c.

In effect, this definition assumes that the candidate and champion share
the same environment, but that the candidate faces a worst-case input and the
champion a best-case input. The assumption that the candidate and champion
do not have the same inputs— the only difference between this definition and
traditional k-competitiveness— has far-reaching consequences. In particular it
allows the modular construction of competitive algorithms, as described below
in Section b.

The definition of k-competitiveness given above is based on the “throughput
model” of [AW96]. The use of the term “k-competitiveness” for this measure is
justified by several practical considerations. First, the semicompetitive definition
is stronger than the traditional definition. Not only is a k-competitive algorithm
a traditionally k-competitive algorithm (immediate from inspection of the quan-
tifiers), but if one also assumes that the set of inputs consists of a single point
or that the input has no effect on the cost of an algorithm, the new definition
reduces to the traditional definition. Second, in many respects the new measure
captures the intuitive notion of competitiveness at least as well as the traditional
measure in those situations where one can reasonably assume that only part of
the nondeterminism affecting an algorithm is likely to be shared between it and
an optimal algorithm (for example, when considering a subroutine whose input,
in the form of procedure calls, is supplied by a higher-level candidate algorithm).
Finally, there is little chance of confusion between the new and old definitions,
as the new definition applies only in the case of split nondeterminism, and the
presence of such a split will usually be obvious from context.

Worst-Case vs. Worst-Case Inputs. Yet another useful measure is obtained if
it 1s assumed that both the candidate and champion algorithms face worst-case
inputs. Define an algorithm A to be k-optimal if there exists a constant ¢ such
that for all A* in A, [ in Z, and E in &, there exists an input [* in Z such that

cost(A, I, E) < k - cost(A™, I*, E) + c.

The difference between this definition and the previous one lies only in the
choice of quantifiers. In effect, the input I* given to the champion algorithm A*
is a worst-case input, chosen to maximize the champion’s cost. Consequently,
k-optimality is a weaker notion than k-competitiveness; however, it may still be
a useful measure in contexts where k-competitiveness tells us little about the
actual performance of an algorithm. An example is given in Section 7.

The definition of k-optimality given above was suggested by [AW96] by anal-
ogy to their semicompetitive definition of k-competitiveness. It also corresponds
very closely to an earlier measure used by Patt-Shamir and Rajsbaum in their
work on clock synchronization [PSR94].



4.1 Relations Between the Measures

There is a nice relationship between semicompetitive analysis and traditional
competitive analysis:

Theorem 1. If an algorithm is k-competitive, then it is traditionally k-
competitive. If an algorithm is traditionally k-competitive, it s k-optimal.

Proof. Immediate from the definitions. a

In particular, if one has an upper bound on the competitive ratio of an
algorithm (in the split-nondeterminism sense), one immediately gets an upper
bound on the traditional competitive ratio of an algorithm. Similarly, a lower
bound on optimality implies a lower bound on competitiveness. Thus even if one
1s not interested in the semicompetitive measures directly, they may still provide
a useful tool for bounding the traditional competitive ratio of an algorithm.

4.2 Payoffs Instead of Costs

Just as one can define the competitiveness of an algorithm in the traditional sense
in terms of payoffs instead of costs, one can do the same for the semicompetitive
measures. Let us assume as above that we have a class of algorithms 4 against
which the candidate algorithm will compete, a set of inputs Z and a set of
environments £. Suppose further that we have a payoff function assigning a
non-negative value payoff(A, I, F) to each Ain A, I inZ, and F in £.

An algorithm is traditionally k-competitive if there exists a constant ¢ such

that for all A* in A, I inZ, and F in &,

payoff(A4, I, ) 4+ ¢ > — - payoff(4*, I, F).

e

An algorithm is k-competitive if there exists a constant ¢ such that for all

A*in A, I and I* inZ, and F in &,

payoft(A, I, E) + ¢ > — - payoff (A", I, ). (1)

| =

Finally, an algorithm 1s k-optimal if there exists a constant ¢ such that for
all A* in A, I in Z, and F in £, there exists an input /* in Z such that

payoft(A, I, E) + ¢ > — - payoff (A", I, ).

| =

It 1s not difficult to see that k-competitiveness implies traditional k-
competitiveness which in turn implies k-optimality in the payoff model just as
in the cost model.



5 Modularity

One of the fundamental tools in traditional algorithm design is the ability to
construct algorithms by composition. However, competitive analysis in general
appears to forbid such modular constructions of competitive algorithms. If A is
an algorithm that uses a subroutine B, the fact that B is competitive says noth-
ing at all about A’s competitiveness, since A must compete against algorithms
that do not use B. This lack of modularity impedes the development of practical
competitive algorithms.

Fortunately, by treating the input to a subroutine separately from its envi-
ronment, it is possible to recover the ability to compose algorithm while retaining
the advantages of competitive analysis. The key is the notion of relative com-
petitiveness defined by [AW96]. Relative competitiveness is a measure of how
well an algorithm A uses a competitive subroutine B, which takes into account
not only how large A’s cost is relative to B but also whether or not the de-
cision to use B was a good idea in the first place. To do so, it considers the
relative performance of three distinct executions: an execution of the combined
algorithm A o B; an execution of an optimal A* (which may or may not use a
subroutine corresponding to B); and an execution of an optimal B*. This ap-
proach requires operating within a semicompetitive framework, as described in
Section 4, in which the input and environment of an algorithm are treated sep-
arately. The details of the definition of relative competitiveness are given below
in Section 5.1.

The remarkable property of relative competitiveness is that it acts like a tra-
ditional worst-case performance measure when composing algorithms together.
Glossing over some small technical details, if an algorithm A is l-competitive
relative to a subroutine B, and B is itself k-competitive, then the combined
algorithm A o B is kl-competitive, even when compared against algorithms that
do not use B or anything like B. This is exactly the same multiplicative effect
that one gets with traditional worst-case analysis, where a parent algorithm that
calls a subroutine [ times at a cost of k units per call pays kl total cost. Except
that here we are looking at competitive ratios.

The details of how one can compose competitive algorithms in this fashion
are given below in Section 5.2.

5.1 Relative Competitiveness

Formally, it is assumed that we have two sets of inputs and environments. Algo-
rithm A takes an input from Z4 and an environment from &4; similarly, B takes
an input from Zg and an environment from Eg. In the composite algorithm Ao B
the input to B 1s provided by its parent routine A— one can think of this input
as the procedure calls given to B. Similarly, the environment of A is provided by
its subroutine B— one can think of this environment as the return values from
these procedure calls. The input to A and the environment of B are provided by
the adversary.



In the executions of A* and B* the situation is not quite symmetric. The
difference arises from the fact that A* and B* are completely independent algo-
rithms; and while B* is in effect an optimal version of B, A* is not an optimal
version of A but instead is an optimal version of A o B. The effect of this differ-
ence is that while B* takes an input from Zp and an environment from &g, just
as B does, A* takes an input from Z 4 but its environment comes from £p.

To complete the picture, it is necessary to have two cost measures. The first,
cost 4, measures the cost of algorithms that see inputs from Z,4 and environ-
ments from Ep; it will be applied to both the composite algorithm Ao B and the
champion A*. The second, cost g, measures the cost of algorithms that see inputs
from Zp and environments from £p; it will be applied to B (as a component of
Ao B) and B*. To avoid difficulties with division by zero, it is convenient to
require that costp always be positive.

The definition is as follows. Given Ay, Ag, Za, I, €4, £, costap, and
costg, an algorithm A is l-competitive relative to an algorithm B if there exists
a constant ¢ such that for all £ in &g,

costap(Ao B, 14, E)—c¢ HliIlA*eAA,I;eIA costap(A*, I E) 2)
Iixneal)ix costp(B, Ip, E) T minpredy,Inels costp(B*, I, E)

Note that the input Ig to B is the input generated by A when run in inter-
action with B. If the constant c¢ is zero, then A is strictly [-competitive relative
to B.

It is sometimes possible to show that an algorithm A is [-competitive relative
to any algorithm in a class of algorithms Ag. In this case we we write that A is
l-competitive relative to Ag. The competitiveness of an algorithm relative to the
class of all correct subroutines for solving a particular problem is often a more
useful measure than its competitiveness relative to a particular subroutine— it
implies that one can substitute a more efficient subroutine for a less efficient one
and get an improvement in performance.

The payoff version of relative competitiveness is defined analogously as fol-
lows. Given Aa, Ap, Za, Ip, Ea, Eg, payoff 45, and payoffz, an algorithm A
is [-competitive relative to an algorithm B if there exists a constant ¢ such that
for all £ in &g,

payoff y;g(Ao B, I4,F)+c
max
T4€T4 payoﬂB(B,IB,E)

2

1 maxpred, 1mezs PaYOEAB(A* ) Ij:u E)
[ maxp-eap,iyezs payolip(B*, I, E)

Note that the sign of the additive constant ¢ has changed, in order to be consis-
tent with the definition of k-competitiveness. Again, it is required that payoffg
i1s never zero; however, in the payoff model it is in fact possible to drop this
requirement without causing too many difficulties (for details see [AW96]).

It 1s also possible to define relative optimality for both the cost and payoff
models. For relative optimality, the inputs I} and I are chosen to maximize
the costs (minimize the payoffs) of A* and B*; there are no other differences.



5.2 The Composition Theorem

The usefulness of relative competitiveness is captured in Composition Theorem
of [AW96]. The theorem as given here is taken more-or-less directly from [AW96],
where 1t was first stated in a slightly less general form. The version given here
has been adapted slightly to fit into the more general framework used in this
survey. To simplify the statement of the theorem, let us assume throughout this
section that A4, Ap, Za, Tp, £a, £p and either cost4p and costp or payoft , 5
and payoff 5 are fixed.

Theorem 2 (Composition Theorem). Let A be [-competilive relative to B,
B k-competitive, and suppose that there exists a non-negative constant ¢ such
that for all £ in Eg, either

i tap(A*, %, E) > i tp(B*, 15, E 3
s Ty, cotap(An I By z e min | costs(B", 15, E) - (3)
or
* * < * *
e 8 e, payofl  p(A™, I}, E) < L S payoff g(B™, I, E)  (4)

(as appropriate). Then Ao B is kl-competitive.

Proof. The proof given here is adapted from [AW96].

Let us consider only the case of costs; the case of payoffs is nearly identical
and in any case has been covered elsewhere [AW96]. The proof involves only
simple algebraic manipulation, but it is instructive to see where the technical
condition (3) is needed.

To avoid entanglement in a thicket of superfluous parameters let us abbrevi-
ate the cost of each algorithm X with the appropriate input and environment as
C(X), so that costap(Ao B, 14, E) becomes C'(Ao B), costg(B, Ip, ) becomes
C(B), costap(A™, Iy, E) becomes C(A*), and costp(B*, I, E) becomes C(B*).

Fix E. The goal is to show that C'(A o B) < kl - C(A*) + cap, where Cyp
does not depend on E. We may assume without loss of generality that A* and
its input Iy are chosen to minimize C'(A*), and that the input I, is chosen to
maximize C'(A). So in particular C'(A* is equal to the left-hand side of inequality
(3) and the numerator of the right-hand side of inequality (2). Similarly, choose
B* and I}, to minimize C'(B*).

Thus (2) can be rewritten more compactly as

C(AOB) — CAB <. C(A*)
C(B) - OBy

where cp is the constant from (2). Multiplying out the denominators gives
(C(Ao B)—cap)C(B*) <I-C(A")C(B). (5)
Similarly, the k-competitiveness of B means that

C(B)<k-C(B*)+cp, (6)



where cp is an appropriate constant.

Plugging (6) into the right-hand side of (5) gives

(C(Ao B) = cap) C(B*) <1-C(A* - (k- C(B*) + cp)
=kl C(A")C(B*) +1-C(A")ep.

Dividing both sides by C(B*) and moving cap gives

C(4")
C(AoB) <kl -C(A” lep——=. 7
(Ao B) < (A )+ cap + CBC(B*) (7)
The last term is bounded by a constant if (3) holds; thus Ao B is ki-competitive.
a

Much of the complexity of the theorem, including the technical conditions
(3) and (4), is solely a result of having to deal with the additive constant in the
k-competitiveness of B. If one examines the last steps of the proof, it is evident
that the situation is much simpler if B is strictly competitive.

Corollary 3. Let A be [-competitive relative to B and let B be strictly k-
competitive. Then Ao B s kl-competitive. If in addition A is strictly competitive
relative to B, A o B is strictly kl-competitive.

Proof. Consider the proof of Theorem 2. Since B is strictly competitive, cp
in (7) is zero, and the technical condition (3) is not needed. If A is strictly
competitive, then c4p is zero as well, implying A o B is strictly competitive. A
similar argument shows that the corollary also holds in the payoff model. a

Note that the Composition Theorem and its corollary can be applied tran-
sitively: if A is competitive relative to B o €', B is competitive relative to C),
and C'is competitive, then A is competitive (assuming the appropriate technical
conditions hold).

6 Example: The Wait-Free Shared Memory Model

In this section we describe some recent approaches to applying competitive anal-
ysis to problems in the wait-free shared memory model [Her91]. In this
model, a collection of n processes communicate only indirectly through a set of
single-writer atomic registers. A protocol for carrying out some task or sequence
of tasks is wait-free if each process can finish its current task regardless of the
relative speeds of the other processes. Timing is under the control of an adver-
sary scheduler that 1s usually modeled as a function that chooses, based on the
current state of the system, which process will execute the next operation. This
adversary is under no restrictions to be fair; it can, for example, simulate up to
n—1 process crashes simply by choosing never to schedule those processes again.

The wait-free shared memory model is a natural target for competitive anal-
ysis. The first reason is that many of the algorithms that are known for this



model pay for their high resilience (tolerating up to n — 1 crashes and arbitrary
asynchrony) with high worst-case costs. Thus there is some hope that competi-
tive analysis might be useful for showing that in less sever cases these algorithms
perform better. The second reason is that the absence of restrictions on the ad-
versary scheduler makes the mathematical structure of the model very clean.
Thus it 18 a good jumping off point for a more general study of the applicability
of competitive analysis to the fault-tolerant aspects of distributed algorithms.
Finally, a third reason is that under the assumption of single-writer registers,
there is a natural problem (the collect problem) that appears implicitly or explic-
itly in most wait-free shared-memory algorithms. By studying the competitive
properties of this problem, we can learn about the competitive properties of a
wide variety of algorithms.

Sections 6.1 and 6.2 describe the collect problem and solution to it without
regard to issues of competitiveness. Section 6.3 discusses why competitiveness
i1s a useful tool for analyzing the performance of collect algorithms. The fol-
lowing sections describe how it has been applied to such algorithms and the
consequences of doing so.

Some of the material in theses sections is adapted from [AADW94], [AW96],
and [AH96].

6.1 Collects: A Fundamental Problem

When a process starts a task in the wait-free model, it has no means of knowing
what has happened in the system since 1t last woke up. Thus to solve almost all
non-trivial problems a process must be able to carry out a collect, an operation
in which 1t learns some piece of information from each of the other processes.

The collect problem was first abstracted by Saks, Shavit, and Woll [SSW91].
The essential idea is that each process owns a single-writer multi-reader atomic
register, and would like to be able carry out write operations on its own register
and collect operations in which it learns the values in all the registers. The
naive method for performing a collect is simply to read all of the registers di-
rectly; however, this requires at least n — 1 read operations (n if we assume that
a process does not remember the value in its own register). By cooperating with
other processes, it is sometimes possible to reduce this cost by sharing the work
of reading all the registers.

There are several versions of the collect problem. The simplest is the “one-
shot” collect, in which the contents of the registers are fixed and each process
performs only one collect. The one-shot version of the problem will not be dis-
cussed much in this paper, but it is worth noting some of the connections be-
tween one-shot collects and other problems in distributed computing. Without
the single-writer restriction, the one-shot collect would be isomorphic to the
problem of Certified Write-All, in which n processes have to write to n locations
while individually being able to certify that all writes have occurred (indeed, the
collect algorithm of Ajtai et al. [AADWO94] is largely based on a Certified Write-
All algorithm of Anderson and Woll [AW91]). One can also think of the collect

problem as an asynchronous version of the well-known gossip problem [EM89],



in which n persons wish to distribute n rumors among themselves with a mini-
mum number of telephone calls; however, in the gossip problem, which persons
communicate at each time is fixed in advance by the designer of the algorithm,;
with an adversary controlling timing this ceases to be possible.

The more useful version of the problem, and the one that we shall consider
here, 1s the repeated collect problem. This corresponds exactly to simulating
the naive algorithm in which a process reads all n registers to perform a collect.
An algorithm for repeated collects must provide for each process a write pro-
cedure that updates its register and a collect procedure that returns a vector of
values for all of the registers. Each of these procedures may be called repeatedly.
The values returned by the collect procedure must satisfy a safety property called
regularity or freshness: any value that I see as part of the result of a collect
must be fresh in the sense that it was either present in the appropriate register
when my collect started or it was written to that register while my collect was
in progress.

The repeated collect problem appears at the heart of a wide variety of shared-
memory distributed algorithms (an extensive list is given in [AADW94]). What
makes 1t appealing as a target for competitive analysis 1s that the worst-case
performance of any repeated collect algorithm is never better than that of the
naive algorithm. The reason for this is the strong assumptions about scheduling.
In the wait-free shared-memory model, a process cannot tell how long it may
have been asleep between two operations. Thus when a process starts a collect,
it has no way of knowing whether the register values have changed since its
previous collect. In addition, the adversary can arrange that each process does
its collects alone by running only one process at a time. If the adversary makes
these choices, any algorithm must read all of the n — 1 registers owned by the
other processes to satisfy the safety property.

But there is hope: this lower bound applies to any algorithm that satisfies
the safety property— including algorithms that are chosen to be optimal for the
timing pattern of a particular execution. Thus it is plausible that a competitive
approach would be useful.

6.2 A Randomized Algorithm for Repeated Collects

Before jumping into the question of how one would apply competitive analysis
to collects, let us illustrate some of the issues by considering a particular collect
algorithm, the “Follow the Bodies” algorithm of [AH96].

As is often the case in distributed computing, one must be very precise about
what assumptions one makes about the powers of the adversary. The Follow-the-
Bodies algorithm assumes that a process can generate a random value and write
it out as a single atomic operation. This assumption appears frequently in early
work on consensus; it is the “weak model” of Abrahamson [Abr88] and was used
in the consensus paper of Chor, Israeli, and Li [CIL94]. In general, the weak
model in its various incarnations permits much better algorithms (e.g., [AB96,
Cha96]) for such problems as consensus than the best known algorithms in the
more fashionable “strong model” (in which the adversary can stop a process in



between generating a random value and writing it out). The assumption that
the adversary cannot see coin-flips before they are written is justified by an
assumption that in a real system failures, page faults, and similar disastrous
forms of asynchrony are likely to be affected by where each process is reading
and writing values but not by what values are being read or written. For this
reason the adversary in the weak model is sometimes called content-oblivious.

Even with a content-oblivious adversary the collect problem is still difficult.
Nothing prevents the adversary from stopping a process between reading new
information from another process’s register and writing that information to its
own register. Similarly the adversary can stop a process between making a ran-
dom choice of which register to read and the actual read operation. (This rule
corresponds to an assumption that not all reads are equal; some might involve
cache misses, network delays, and so forth.)

This power of the adversary turns out to be quite important. Aspnes and
Hurwood show that an extremely simple algorithm works in the restricted case
where the adversary cannot stop a read selectively depending on its target. Each
process reads registers randomly until it has all the information it needs. How-
ever, the adversary that can stop selected reads can defeat this simple algorithm
simple algorithm by choosing one of the registers to be a “poison pill”: any pro-
cess that attempts to read this register will be halted. Since on average only
one out of every n reads would attempt to read the poisonous register, close to
n? reads would be made before the adversary would be forced to let some process
actually swallow the poison pill.

In order to avoid this problem, in the Follow-the-Bodies algorithm a process
leaves a note saying where it is going before attempting to read a register.? Poison
pills can thus be detected easily by the trail of corpses leading to them. The
distance that a process will pursue this trail will be Alnn, where A is constant
chosen to guarantee that the process reaches its target with high probability.

Figure 1 depicts one pass through the loop of the resulting algorithm. The
description assumes that each process stores in its output register both the set
of values S it has collected so far and its successor, the process it selected to
read from most recently.

— Set p to be a random process, and write out p as our successor.
— Repeat Alnn times:

Read (57, p') from the register of p.

e Set S to be the union of S and 5.

e Set p to p.

e Write out the new S and p.

Fig. 1. The Follow-the-Bodies Algorithm (One Pass Only)

® It is here that the assumption that one can flip a coin and write the outcome atom-
ically is used.



For the moment we have left out the termination conditions for the loop,
as they may depend on whether one is trying to build a one-shot collect or
a repeated collect (which requires some additional machinery to detect fresh
register values).

The Follow-the-Bodies algorithm has the property that it spreads informa-
tion through the processes’ registers rapidly regardless of the behavior of the
adversary. In [AH96] it is shown that:

Theorem4. Suppose that in some starting configuration the register of each
process p contains the information K, and that the successor fields are set ar-
bitrarily. Fiz A > 9, and count the number of operations carried out by each
process until its register contains the union over all p of K, and write W for
the sum of these counts.

2

pr—5"

Prw > 37A%nln’n <

Here the rapidity of the spread of information is measured in terms of total
work. Naturally, the adversary can delay any updates to a particular process’s
register for an arbitrarily long time by putting that process to sleep; what the
theorem guarantees is that (a) when the process wakes up, it will get the in-
formation it needs soon (it is likely that by then the first process it looks at
will have it); and (b) the torpor of any individual process or group of processes
cannot increase the total work of spreading information among their speedier
comrades.

The proof of the theorem is a bit involved, and the interested reader should
consult [AH96] for details. In the hope of making the workings of the algorithm
more clear we mention only that the essence of the proof is to show that after
each phase consisting of O(n In n) passes through the loop, the size of the smallest
set of processes that collectively know all of the information is cut in half. After
O(In n) of these phases some process knows everything, and it is not long before
the other processes read its register and learn everything as well. (The extra log
factor comes from the need to read Alnn registers during each pass through the
loop).

In [AH96] it is shown how to convert this rumor-spreading algorithm to a
repeated-collect algorithm by adding a simple timestamp scheme. Upon starting
a collect a process writes out a new timestamp. Timestamps spread through
the process’s registers in parallel with register values. When a process reads a
value directly from its original register, it tags that value by the most recent
timestamp it has from each of the other processes. Thus if a process sees a value
tagged with its own most recent timestamp, it can be sure that that value was
present in the registers after the process started its most recent collect, i.e. that
the value is fresh.

The resulting algorithm is depicted in Figure 2. Here, S tracks the set of
values (together with their tags) known to the process. The array T lists each
process’s most recent timestamps. Both S, T, and the current successor are
periodically written to the process’s output register.



— Choose a new timestamp 7 and set our entry in 7 to 7.
— While some values are unknown:
e Set p to be a random process, write out p as our successor and 7' as our
list of known timestamps.
e Repeat Alnn times:
+ Read the register of p. Set S to be the union of S and the values field.
Update 7" to include the most recent timestamps for each process.
Set p to the successor field.
* Write out the new S and T
— Return S.

Fig. 2. Repeated Collect Algorithm

The performance of this algorithm is characterized by its collective latency
[AADWY94], an upper bound on the total amount of work needed to complete
all collects in progress at some time #:*

Theorem 5. Fiz a starting timet. Fiz X > 9. Fach process carries out a certain
number of steps between t and the time at which it completes the collect it was
working on at time t. Let W be the sum over all processes of these numbers.

Then
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Proof. Divide the steps contributing to W into two classes: (i) steps taken by
processes that do not yet know timestamps corresponding to all of the collects
in progress at time ¢; and (ii) steps taken by processes that know all n of these
timestamps. To bound the number of steps in class (i), observe that the behavior
of the algorithm in spreading the timestamps during these steps is equivalent
to the behavior of the non-timestamped algorithm. Similarly, steps in class (ii)
correspond to an execution of the non-timestamped algorithm when we consider
the spread of values tagged by all n current timestamps. Thus the total time for
both classes of steps 1s bounded by twice the bound from Theorem 4, except for
a case whose probability 1s at most twice the probability from Theorem 4. O

6.3 Competitive Analysis and Collects

Theorem 5 shows that the Follow-the-Bodies algorithm improves in one respect
on the naive collect algorithm. For the naive algorithm, the collects in progress
at any given time may take n? operations to finish, while with high probability
Follow-the-Bodies finishes them in O(nlog3 n) operations. Unfortunately, this

* The “collective” part of “collective latency” refers not to the fact that the algorithm
is doing collect operations but instead to the fact that the latency it is measuring is
a property of the group of processes as a whole.



improvement does not translate into better performance according to traditional
worst-case measures.

As noted above, if a process is run in isolation it must execute at least
n — 1 operations to carry out a collect, no matter what algorithm it runs, as
it can learn fresh values only by reading them directly. Under these conditions
the naive algorithm is optimal. Even if one considers the amortized cost of a
large number of collects carried out by different processes; the cost per collect
will still be £2(n) if no two processes are carrying out collects simultaneously.
Yet in those situations where the processes have the opportunity to cooperate,
Theorem 5 implies that they can do so successfully, combing their efforts so that
in especially good cases (where a linear number of processes are running at once)
the expected amortized cost of a single collect drops to O(log3 n).

It 1s clear that algorithms like Follow-the-Bodies improve on the naive collect.
But how can one quantify this improvement in a way that is meaningful outside
the limited context of collect algorithms? Ideally, one would like to have a mea-
sure that recognizes that distributed algorithms may be run in contexts where
many or few processes participate, where some processes are fast and some are
slow, and where the behavior of processes may vary wildly from one moment to
the next. Yet no simple parameter describing an execution (such as the number
of active processes) can hope to encompass such detail.

Competitive analysis can. By using the performance of an optimal, special-
ized algorithm as a benchmark, competitive analysis provides an objective mea-
sure of the difficulty of the environment (in this case, the timing pattern of an
asynchronous system) in which a general-purpose algorithm operates. To be com-
petitive, the algorithm must not only perform well in worst-case environments;
its performance must adapt to the ease or difficulty of whatever environment it
faces. Fortunately, it is possible to show that many collect algorithms have this
property.

Some complications arise. In order to use competitive analysis, it is necessary
to specify precisely what is included in the environment— intuitively, on what
playing field the candidate and champion algorithms will be compared. An addi-
tional issue arises because assuming that the champion has complete knowledge
of the environment (as the hypothetical “off-line” algorithm has when computing
the competitive ratio of an on-line algorithm) allows it to implicitly communi-
cate information from one process to another at no cost that a real distributed
algorithm would have to do work to convey. Neither difficulty is impossible to
overcome. In the following sections we describe two measures of competitive
performance for distributed algorithms that do so.

6.4 A Traditional Approach: Latency Competitiveness

The competitive latency model of Ajtai et al. [AADWO94] uses competitive anal-
ysis in its traditional form, in which all nondeterminism in a system is under the
control of the adversary and is shared between both the candidate and champion
algorithms. In the context of the repeated collect problem, it is assumed that
the adversary controls the execution of an algorithm by generating (possibly



Fig. 3. Latency model. New high-level operations (ovals) start at times specified
by the adversary (vertical bars). Adversary also specifies timing of low-level
operations (small circles). Cost to algorithm is number of low-level operations
actually performed (filled circles).

in response to the algorithm’s behavior) a schedule that specifies when collects
start and when each process is allowed to take a step (see Figure 3). A process
halts when it finishes a collect; it is not charged for opportunities to take a step
in between finishing one collect and starting another (intuitively, we imagine
that it is off doing something else). The competitive latency of a candidate
algorithm is the least constant &, if any, that guarantees that the expected total
number of operations carried out by the candidate on a given schedule o is at
most k times the cost of an optimal distributed algorithm running on the same
schedule (modulo an additive constant).

In terms of the general definition of competitive analysis from Section 3, &
consists of all schedules as defined above. The set of algorithms A consists of
all distributed algorithms that satisfy a correctness condition. The cost measure
is just the number of operations required by a particular algorithm. For the
collect problem, this correctness condition requires that an algorithm guarantee
that the values returned are fresh regardless of the schedule. In particular, while
processes in a champion algorithm are allowed to use their implicit knowledge
of the schedule to optimize their choices of what registers to read and how to
cooperate with one another, they cannot use this knowledge to avoid verifying
the freshness of the values they return.

There is a general principle involved here that points out one of the diffi-
culties of applying competitive analysis directly to distributed algorithms. The
difficulty 1s that if one i1s not careful, one can permit the processes in the cham-
pion algorithm to communicate with each other at zero cost by virtue of their
common knowledge of the schedule. For example: consider a schedule in which
no process ever writes to a register. If the champion is chosen after the schedule
1s fixed, as occurs whenever we have an off-line adversary, then i1t can be assumed
that every process in the champion implicitly knows the schedule. In particular,
each process in the champion can observe that no processes are writing to the
registers and thus that the register values never change. So when asked to per-
form a collect, such a process can return a vector consisting of the initial values



of the registers at zero cost. Needless to say, a situation in which the champion
pays zero cost is not likely to yield a very informative competitive ratio.

What happened in this example is that if one assumes that the champion
processes all have access to the schedule, each champion process can then com-
pute the entire state of the system at any time. In effect, one assumes that the
champion algorithm is a global-control algorithm rather than a distributed al-
gorithm. It is not surprising that against a global-control algorithm it 1s difficult
to be competitive, especially for a problem such as collect in which the main
difficulty lies in transmitting information from one process to another.

On the other hand, notice that the champion algorithm in this case is not
correct for all schedules; any schedule in which any register value changes at
some point will cause later collects to return incorrect values. Limiting the class
of champion algorithms to those whose correctness does not depend on operat-
ing with a specific schedule restores the distributed character of the champion
algorithm. Yet while such a limit it prevents pathologies like zero-cost collects, 1t
still allows the champion to be “lucky”, for example by having all the processes
choose to read from the one process that happens in a particular execution
to have already obtained all of the register values. Thus the reduction in the
champion’s power is limited only to excluding miraculous behavior, but not the
surprising cleverness typical of off-line algorithms.

With this condition, Ajtai et al. show that if an algorithm has a maximum
collective latency of L at all times, then its competitive ratio in the latency
model is at most L/n + 1. Though this result is stated only for determinis-
tic algorithms, as observed in [AH96] it can be made to apply equally well to
randomized algorithms given a bound L on the expected collective latency.

The essential idea of the proof in [AADW94] of the relationship between col-
lective latency and competitive latency is to divide an execution into segments
and show that for each such segment, the candidate algorithm carries out at
most L + n operations and the champion carries out at least n operations. The
lower bound on the champion is guaranteed by choosing the boundaries between
the segments so that in each segment processes whose collects start in the seg-
ment are given at least n chances to carry out an operation; either they carry
out these n operations (because their collects have not finished yet) or at least
n read operations must have been executed to complete these collects (because
otherwise the values returned cannot be guaranteed to be fresh). For an algo-
rithm with expected collective latency L, the cost per segment is at most L + n;
n for the n steps during the segment, plus at most an expected L operations to
complete any collects still in progress at the end of the segment. By summing
over all segments this gives a ratio of L/n + 1.

For the Follow-the-Bodies algorithm, the expected value of L is easily seen
to be O(nlog®n) (from Theorem 5). Tt follows that:

Theorem 6. The competitive latency of the Follow-the-Bodies algorithm s
O(log® n).

It is worth noting that this result is very strong; it holds even against an
adaptive off-line adversary [BDBKT90], which is allowed to choose the champion



algorithm after seeing a complete execution of the candidate. In contrast, the
best known lower bound is £2(logn) [AADW94].

It is still open whether or not an equally good deterministic algorithm exists.
The best known deterministic algorithm, from [AADW94], has a competitive
latency of O(n'/?log® n).

6.5 A Semicompetitive Approach: Throughput Competitiveness

Fig. 4. Throughput model. New high-level operations (ovals) start as soon as
previous operations end. Adversary controls only timing of low-level operations
(filled circles). Payoff to algorithm is number of high-level operations completed.

A semicompetitive approach of the sort discussed in Section 4 is used in the
competitive throughput model of Aspnes and Waarts [AW96]. In this model,
the adversary no longer controls the starting time of collects; instead, both the
candidate and the champion try to complete as many collects as possible in
the time available (see Figure 4). It also distinguishes between the environment,
which takes the form of a schedule that now specifies only when low-level op-
erations such as reads and writes occur; and the input, which takes the form
of a specification of what sequence of high-level operations each process is to
perform but not when it must perform them. (For the collect problem the input
is generally not very interesting, since the collect algorithm can only perform
one kind of high-level operation.)

Formally, the model can be viewed as using the semicompetitive definition of
competitiveness from Section 4. The set of algorithms A consists of all correct
distributed algorithms; as in the preceding section, correctness must be defined
independently of any single schedule to avoid pathologies. The set of environ-
ments £ consists of all schedules defining the timing of low-level operations.
The set of inputs Z consists of all sequences of requests to perform high-level
tasks. The competitive throughput model is a payoff model; competitiveness is
defined in terms of a payoff function payoff(4, I, £') that measures how many
of the high-level tasks in I can be completed by A given the schedule F. The
throughput competitiveness of an algorithm A is the least value k& for which
the payoff of A is always within a factor of & of the payoff of an optimal A*
(modulo an additive constant).



The motivation for adopting a semicompetitive measure like throughput com-
petitiveness is that it allows competitive algorithms to be constructed modularly
as described in Section 5. This is particularly important for collect algorithms
since collect appears as a subroutine in such a large number of other algorithms.
If one can show that these algorithms are throughput competitive relative to
collect, then the only thing needed to make them throughput competitive in
their own right is to plug in a throughput-competitive collect subroutine.

In order to do this, a small technical complication must first be dealt with.
No interesting algorithm performs only collects; for information to pass from one
process to another somebody must be writing to the registers. So instead of using
a subroutines that performs only collects one uses a subroutine that supports
two operations: the collect operation as described above, and a write-collect,
consisting of a write operation followed by a collect. The intent is to simulate
an object that provides both writes and collects. However, because throughput
competitiveness assumes a worst-case choice of operations for the candidate to
perform, but a best-case choice for the champion, 1t is important that all opera-
tions supported by the subroutine have roughly the same granularity. Otherwise
it becomes possible for the candidate to be forced to carry out only expensive
operations (like collects) while the champion carries out only cheap operations
(like writes).> Fortunately, in practice in almost all algorithms that use writes
and collects, each process performs at most one write in between each pair of
collects, and so one can treat such algorithms as using write-collect and collect
operations. Furthermore, since all known cooperative collect algorithms start
each collect with a low-level write operation (in order to write out a new times-
tamp), it costs nothing to modify such an algorithm to perform write-collects as
well as collects.

It turns out that the same bound on collective latency— the total number
of operations required to complete all collects in progress at any given time—
used to show the latency competitiveness of a collect algorithm can also be used
to show throughput competitiveness. A second condition is also needed; there
must be a bound on the private latency— the number of operations required
to complete any single collect. This second condition can easily be guaranteed
by dovetailing a collect algorithm that guarantees low collective latency with the
naive algorithm that guarantees low private latency by having a process read all

° In principle, there are other ways to avoid this difficulty. For example, one could
define the payoff function so that completed collect operations produced more value
than completed write operations; but then it might be difficult to show that an al-
gorithm that performed both writes and collects to achieve some higher goal is in
fact competitive relative to this mixed-payoff subroutine. Alternatively, one could
use the notion of k-optimality (where the champion also faces a worst-case input)
instead of k-competitiveness. However, k-optimality is weaker than traditional k-
competitiveness, so results about the performance of higher-level algorithms obtained
using the k-optimality of the collect subroutine would not immediately imply com-
petitiveness of the higher-level algorithms in the traditional sense. Still, there are
not yet very many examples in the literature of the use of these techniques, so it
remains to be seen which approach is likely to be most useful in the long run.



n registers itself.

With this modification, and the earlier modification to add write-collect op-
erations, the Follow-the-Bodies algorithm from Section 6.2 has an collective la-
tency of O(nlog®n) (on average) and a private latency of at most 2n. A general
bound on throughput competitiveness based on these two parameters is given
in [AW96]; plugging in the values for Follow-the-Bodies gives:

Theorem 7. The competitive throughput of the Follow-the-Bodies algorithm s
O(n'/? log®/? n).

The proof of this bound is quite complex and it would be difficult even to try
to summarize it here. Its overall structure is similar to the technique for bounding
latency competitiveness described in Section 6.4, in that it proceeds by dividing
an execution into segments and proving a lower bound on the candidate’s payoff
and an upper bound on the champion’s payoff for each segment. The mechanism
used for this division is a potential function taking into account many fine details
of the execution. The interested reader can find the complete argument in the
full version of [AW96].

It might be surprising that the competitive ratio for essentially the same
algorithm is much larger in the throughput model than in the latency model.
The reason for the difference is the increased restrictions placed on the cham-
pion by the latency model. Because the champion can only start collects when
the candidate does, it is not possible for the champion to take advantage of a
particularly well-structured part of the schedule to finish many collects using
its superior knowledge while the candidate wanders around aimlessly. Instead,
the most the champion can hope to do is finish quickly the same collects that
the candidate will finish more slowly— but the candidate will not finish these
collects too much more slowly if it uses an algorithm with low collective latency.
By contrast, in the throughput model it is possible to construct schedules in
which the champion has a huge advantage. An example (taken from [AW96]) is
given in the following section.

6.6 Lower Bound on Throughput Competitiveness of Collect

To illustrate some of the difficulties that arise in the throughput model, consider
the following theorem and its proof:

Theorem 8. No cooperative collect protocol has a throughput competitiveness

less than 2(\/n).
Proof. (This proof is taken directly from [AW96].)

Because of the additive term in the definition of competitive ratio, it is not
enough to exhibit a single schedule on which a given collect algorithm fails. In-
stead, we will describe a randomized adversary strategy for producing schedules
of arbitrary length on which the ratio between the number of collects performed
by a given candidate algorithm and the number of collects performed by an
optimal champion tends to ©+/n.



The essential idea is that we will build up an arbitrarily-long schedule out
of phases. In each phase, most of the work will be done by a randomly-chosen
“patsy”. Profiting from the patsy’s labors, in the champion algorithm, will be
/1 “active” processes. These same processes, in the candidate algorithm, will
not benefit from the patsy’s work, since we will terminate a phase as soon as
any active process discovers the patsy.

Let us be more specific. The adversary fixes the \/n active processes at the
start of the schedule, and chooses a new patsy uniformly at random from the
set of all non-active processes at the start of each phase. Each phase consists
of one or more rounds. In each round, first each active process takes one step,
then the patsy takes n + /n + 1 steps, and finally each active process takes a
second step. If, during any round, some active process reads the patsy’s register
or learns all n register values, the adversary cleans up by running each active
process and the patsy in an arbitrary order until each finishes its current collect.
A new phase then starts with a new patsy, chosen at random independently of
previous choices.

In the champion algorithm, each active process writes a timestamp to its
register at the start of each round. The patsy then reads these timestamps (1/n
steps), reads all the registers (n steps), and writes a summary of their contents,
together with the timestamps, to its own output register (1 step). Finally, each
active process reads the patsy’s register. The result is that in each round, the
champion algorithm completes \/n + 1 collects. To simplify the analysis, we will
assume that the champion algorithm does no work at all during the clean-up
stage and the end of a phase. Under this assumption the champion completes
k(y/n + 1) collects during a k-round phase.

In the candidate algorithm, each active process completes exactly one collect
during each phase. Since no active process reads the patsy’s register until the
last round of the phase, the patsy cannot use any values obtained by the active
processes prior to the last round. Thus the patsy completes at most one collect
for every n operations that it executes prior to the last round, plus at most
two additional collects during the last round and the clean-up stage. Since the
patsy executes n ++/n + 1 operations per round, the total number of collects it
completes during a k-round phase is thus at most k(1 + \/Lﬁ + %) + 2, and the
total number of collects completed by all processes during a k-round phase is at
most k(l—I—ﬁ-l—%)—l—?—l-\/ﬁ.

It remains only to determine the expected number of rounds in a phase. A
phase can end in two ways: either some process finds the patsy, or some process
learns all n values. Since the patsy 1s chosen at random, finding it requires an
expected (n —+/n+1)/2 reads and at most n — v/n reads. Learning all n values
requires n reads of the registers. Thus finding the patsy 1s a better strategy for
the active processes, and since they together execute 2./n operations per round,
they can find it in an expected (y/n — 1)/4 rounds.

Plugging this quantity in for k gives an expected (n—1)/4 collects per phase

for the champion algorithm and at most an expected @ +24vn<2yn
collects per phase for the candidate. In the limit as the number of phases goes



to infinity, the ratio between the payoff to the candidate and the payoff to the
champion goes to the ratio of these expected values, giving a lower bound on
the competitive ratio of £2(\/n). O

6.7 Competitive Collect as a Subroutine

The importance of collect is that it appears as a subroutine in many wait-free
distributed algorithms. The value of showing that a particular collect algorithm
is competitive in the throughput model is that one can then apply the Composi-
tion Theorem (Theorem 2) to show that many of these algorithms are themselves
competitive when they are modified to use a competitive collect. Several exam-
ples of this approach are given in [AW96]; one simple case is reproduced below,
in order to make more concrete how one might actually show that an algorithm
is competitive relative to some class of subroutines.

A snapshot algorithm, like a collect algorithm, simulates an array of n single-
writer registers. It supports a scan-update operation that writes a value to one
of the registers (this part is the “update”) and then returns a snapshot, which is
a vector of values for all of the registers (this part is the “scan”). Unlike a collect
algorithm, which must satisfy only the requirement that all values returned by a
collect are at least as recent as the start of that collect, the snapshot algorithm
must guarantee that different snapshots appear to be instantaneous. In practice,
this means that process P cannot be shown an older value than process ) in
one register and a newer value in a different register.

There are many known wait-free algorithms for snapshot (a list is given in
[AWO96]). The best algorithm currently known in terms of the asymptotic work
required for a single snapshot is the algorithm of Attiya and Rachman [AR93],
in which each process uses O(logn) alternating writes and collects in order to
complete a single scan-update operation. (The reason why a scan-update requires
several rounds of collects 1s that the processes must negotiate with each other
to ensure that the snapshots they compute are consistent.) If the collects are
implemented using the naive algorithm that simply reads all n registers directly,
this bound translates into a cost of O(nlogn) primitive operations per collect
in the worst case. However, by plugging in a competitive collect algorithm, it is
possible to improve on this bound in many executions.

In order to do so 1t is first necessary to argue that the Attiya-Rachman
algorithm 1s competitive relative to a subroutine providing write-collect and
collect operations as described in Section 6.5. To remain consistent with the
definition given in Section 5.1, which requires nonzero payoffs for the subroutine,
we will consider only schedules in which the candidate collect algorithm used as
subroutine in Attiya-Rachman completes at least one collect.’ We would like to
show that for a suitable choice of [, for any such schedule E, that there exists a

5 Asnoted in Section 5.1, for payoff models like the throughput model this requirement
is not strictly necessary.



constant ¢ such that

payoff yg(Ao B, I, F)+ ¢
T4€T4 payoﬂB(B, Ig, E)
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(8)
holds, where A is the Attiya-Rachman snapshot, B is an arbitrary collect algo-
rithm, and Z4, Zg, etc., are defined appropriately.

It is easy to get an upper bound of one on the ratio on the right-hand side.
Because a single scan-update operation can be used to simulate a single write-
collect or collect, the payoff (i.e., number of scan-updates completed) of an op-
timal snapshot algorithm cannot exceed the payoff (number of collects and/or
write-collects completed) of an optimal collect algorithm. For the left-hand side,
the Attiya-Rachman algorithm completes one scan-update for every O(logn)
write-collects done by any single process. So if ¢ is set to n (to account for
partially completed scan-updates), then

payoff AB(Ao B)+n 1
payoff(B) = O(logn)’

It follows that (8) holds for [ = O(logn).

To use Theorem 2, it is also necessary to show that the technical condition (4)
holds. But this just say that the maximum number of scan-updates that can be
completed in a given schedule is at most a constant times the maximum number
of write-collects. As observed above, this constant is one, and so Theorem 2 im-
plies that plugging Follow-the-Bodies (O(n'/? log3/? n)-competitive) into Attiya-
Rachman (O(logn)-competitive relative to collect) gives an O(n'/? log®/? n)-
competitive snapshot algorithm.

Observe that in the above argument, essentially no properties of the Attiya-
Rachman snapshot algorithm were used except (a) the fact that scan-update is
a “stronger” operation than either collect or write-collect, and (b) the fact that
Attiya-Rachman uses O(logn) write-collects per scan-update. It is not unusual to
be able to treat a parent algorithm as a black box in this way in traditional worst-
case analysis— but this is one of the first examples of being able to do the same
thing while doing competitive analysis. In addition, since almost any operation
is stronger than write-collect in the wait-free model, a similar argument works
for a wide variety of algorithms that use collects. Some additional examples are

given in [AW96].

7 Example: Guessing Your Location in a Metric Space

So far we have seen examples of analyzing distributed problems using both the
traditional definition of competitiveness and the semicompetitive definition of
competitiveness from Section 4. For some problems neither approach is appro-
priate, and instead the notion of k-optimality gives more information about the
actual merits of an algorithm.



One such problem can be described simply as guessing one’s location in a
metric space based on locally available information. Imagine that you have been
placed by an adversary somewhere in a metric space (say, the surface of the
FEarth). You have the ability to observe the local landscape, and you would like
to be able to make as close a guess as possible to your actual location based
on what you see. In some locations (at the base of the Eiffel Tower; in a store
that displays its wide selection of Global Positioning System boxes), the best
possible guess is likely to be quite accurate. In others (somewhere in the Gobi
desert; inside a sealed cardboard box), the best possible guess is likely to be
wildly off. Yet it is clear that some algorithms for making such guesses are
better than others.

How can one measure the performance of an algorithm for this problem? A
traditional competitive approach might look something like this: the actual lo-
cation x is the environment that is shared between the candidate and champion.
Both candidate and champion are shown some view v, a function f(z) of the
location. The cost of a guess y is just the distance between y and =z.

Unfortunately, in this framework, the optimal champion always guesses z
correctly— at a cost of zero— while the candidate must choose among the many
possible y for which f(y) = f(#). Unless the candidate is lucky enough also to
hit # exactly (which the adversary can prevent if it is only moderately clever),
the competitive ratio of any algorithm is infinite.

No improvement comes from moving to a semicompetitive approach. Suppose
that we assume that it is the observed view v that is shared between candidate
and champion, but that the actual locations # and z* may be any two points
for which f(z) = f(z*) = v. More formally, let us use the semicompetitive defi-
nition of k-competitiveness with the shared environment being the view and the
differing inputs being the actual locations of the candidate and champion. Un-
fortunately, once again the champion (which is given a best-case input) guesses
its location exactly, and unless the subset of the metric space that produces the
appropriate view is very small indeed, the candidate once again has an infinite
competitive ratio.

The solution is to use k-optimality. As above, let us assume that the the view
v 18 shared between both candidate and champion, the actual locations x and z*
of the candidate and champion may be distinct; but in this case, suppose that
both candidate and champion are given worst-case locations. Now the cost to the
champion of choosing y* will be the distance between y* and the most distant z*
for which f(x*) = v. If the candidate algorithm chooses any point y for which
fly) = v, then from the triangle inequality d(y,x) < d(y,y") + d(y*,z*) <
2d(y*, z*), and so any candidate algorithm that is smart enough makes a guess
consistent with what it sees will be 2-optimal. Particularly clever algorithms
(say, those which always guess a center of the set of points consistent with the
observed data) can be as good as l-optimal. Though the range of optimality
ratios 18 not large, it does give us a way to distinguish exceptionally stupid
algorithms (worse than 2-optimal) from plausible algorithms (2-optimal) from
good algorithms (1-optimal).



This example has been abstracted almost to the point of triviality, but it
does illustrate issues that have been studied in the context of real distributed
systems. The example is inspired by work on clock synchronization by Patt-
Shamir and Rajsbaum [PSR94]; in this work, the goal of a clock synchronization
algorithm 1s to make a good estimate of the offsets between different clocks in
a distributed system based on data piggybacked on the messages sent by some
underlying algorithm. For some communication patterns (e.g., ones in which no
messages are exchanged), it is impossible to make a very accurate estimate—
but the possibility of using traditional competitive analysis is foreclosed by the
ability of an off-line algorithm to guess the correct offsets exactly. Their solution
was to use a notion of l-optimality, which the definition in Section 4 generalizes.

Of course, how one actually computes a good estimate of the offsets between
clocks in a distributed system based on limited information is a much more
complicated problem than simply picking a good point somewhere in the middle
of the appropriate metric space. The interested reader will find algorithms for
solving several interesting variants of the problem in [PSR94].

8 Conclusions

The preceding sections have concentrated on how the techniques of competitive
analysis have been useful for analyzing fault-tolerant distributed algorithms,
where the primary source of difficulty is not unpredictable inputs but unpre-
dictable behavior in the underlying system. This approach is still quite new, and
there are many questions that have yet to be considered. Not only may it be pos-
sible to apply competitive analysis to a wider variety of distributed models, but
the adaptations needed to fit competitive analysis to the models described above
may be useful for analyzing problems that do not necessarily involve distributed
systems. There are three main areas of research suggested by this work.

Extensions to other models of distributed computation. The models described in
Section 6 depend on a number of details of the wait-free shared-memory model.
This model is a good testbed for new measures, since the lack of restraints on
the behavior of the adversary makes the model relatively simple from a formal
perspective; however, in many cases other models are more realistic. These in-
clude models in which there are much tighter controls on the timing of events
(for example, those in which synchrony or fairness conditions hold or in which a
small upper bound exists on the number of failures), models with different com-
munications primitives, and models in which not all processes can be trusted
to carry out the algorithm correctly. Very little has been done to study how
competitive analysis can be used to analyze how algorithms respond to hostile
system behavior in these models.

Non-distributed applications of relative competitiveness. Relative competitive-
ness and the composition theorem were defined in [AW96] to analyze a class
of problems that arise in a particular model of distributed systems. However,



as the authors of [AW96] point out, when viewed abstractly there is nothing
about relative competitiveness that depends on having a distributed system.
The notion of relative competitiveness opens up the possibility of constructing
competitive algorithms for a wide variety of problems by composition: building
them up one subroutine at a time, with the competitiveness of each subroutine,
proved separately, contributing to the competitiveness of the whole. With this
ability, in addition to looking for good superproblems, like k-servers or Metri-
cal Task Systems, that subsume many on-line problems, it may be fruitful to
look for good subproblems whose solutions can be used as subroutines in many
relative-competitive algorithms.

Limiting the clairvoyance of the off-line algorithm. Competitive analysis is not
very useful for “lady or the tiger” problems (like the example in Section 7)
in which an off-line algorithm can always guess correctly information that no
on-line algorithm could ever hope to obtain. In many such cases it is known
from real-world constraints that no algorithm of any kind could deduce the
correct information. When this is true, it makes sense to limit the knowledge of
the off-line algorithm to what might reasonably be available in the real-world
situation being modeled. However, traditional competitive analysis provides no
mechanism for doing so. © Here, a semicompetitive approach using k-optimality
may be useful. Information that the champion algorithm is allowed to use on
can be made part of the environment shared with the candidate. Information
that the champion algorithm is not allowed to use can be made part of the input
that is assumed to be worst-case for both champion and candidate.
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" The technique of comparative analysis [KP94] might secem to be the right an-
swer to these problems. Comparative analysis measures the value of information by
comparing the best algorithms in two “information regimes” (e.g., paging algorithms
with [-lookahead versus paging algorithms with no lookahead). A complication, from
the point of view of someone trying to construct algorithms, is that the definition
of comparative analysis assumes that the algorithm in the weaker class is chosen
only after the algorithm in the stronger class is known. This does not prevent the
stronger algorithm from knowing at birth bizarrely detailed properties of the request
sequence (for example, a paging algorithm might know that if page 127 is requested
first, the remainder of the request sequence includes twice as many even as odd-
numbered pages); it just means that some hypothetical weaker algorithm may know
these properties too. Thus comparative analysis is the opposite of what we want:
instead of taking away the implausible knowledge of the off-line algorithm, it merely
adds to the implausible knowledge of its on-line competitor.
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