
Competitive Analysis of Distributed AlgorithmsJames Aspnes?Yale University, Department of Computer ScienceAbstract. Most applications of competitive analysis have involved on-line problems where a candidate on-line algorithm must compete onsome input sequence against an optimal o�-line algorithm that can ine�ect predict future inputs. E�orts to apply competitive analysis to fault-tolerant distributed algorithms require accounting for not only this in-put nondeterminism but also system nondeterminism that arises in dis-tributed systems prone to asynchrony and failures. This paper surveysrecent e�orts to adapt competitive analysis to distributed systems, andsuggests how these adaptations might in turn be useful in analyzing awider variety of systems. These include tools for building competitive al-gorithms by composition, and for obtaining more meaningful competitiveratios by limiting the knowledge of the o�-line algorithm.1 Introduction.Like on-line algorithms, distributed algorithms must deal with limited informa-tion and unpredictable user and system behavior. Unlike on-line algorithms, inmany distributed algorithms the primary source of di�culty is the possibilitythat components of the underlying system may fail or behave badly. In a dis-tributed system, processes may crash, run at wildly varying speeds, or executeerroneous code; messages may be lost, garbled, or badly delayed. As a conse-quence, the worst-case performance of many algorithms can be very bad, andmay have little correspondence to performance in more typical cases.It is not surprising that the technique of competitive analysis [ST85]should be useful for taming the excesses of worst-case analysis of distributedalgorithms. Of course, new opportunities and complications arise in trying toapply competitive analysis directly to fault-tolerant distributed systems. Dis-tributed systems have a natural split between the inputs coming from the usersabove and the environment provided by the system below| by exploiting thissplit it is possible, among other things, to build competitive algorithms by com-position. On the other hand, because a distributed system consists of manyindividual components with limited information, one must be careful in howone de�nes the powers of the \o�-line" algorithm so that the boundaries be-tween these separate components do not become blurred. Work in this area has? Yale University, Department of Computer Science, 51 Prospect Street/P.O. Box208285, New Haven CT 06520-8285. Supported by NSF grants CCR-9410228 andCCR-9415410. E-mail: aspnes-james@cs.yale.edu



yielded several useful techniques for carefully controlling how much informationthe o�-line algorithm is allowed to use.Section 2 discusses distributed systems in general. Section 3 describes com-petitive analysis in its traditional form. Some variants on traditional competitivemeasures that are useful in models in which the nondeterminism naturally splitsinto two categories are described in Section 4. For these semicompetitive perfor-mance measures, composition of algorithms is possible, as described in Section 5.Examples of applications of these techniques to distributed problems are givenin Sections 6 and 7. Finally, Section 8 discusses directions in which this areamight pro�tably be extended.A caveat: this survey is concerned primarily with examples in the distributedalgorithms literature of applying competitive analysis directly to nondetermin-ism in the underlying system. No attempt is made to cover the vast body ofexcellent work on on-line problems, such as distributed paging, load-balancing,routing, mobile user tracking, etc., that arise in networks and other distributedsystems.2 Distributed Systems.There are many forms of distributed systems, and a wide variety of theoreticalmodels used to study them. However, there are two properties that show up inmost distributed system models, which distinguish them from uniprocessor orparallel systems. The �rst and most important property is that a distributedsystem consists of more than one process, which may represent a real physi-cal CPU, or might correspond to an abstract entity like a process or threadin a timesharing system. The second property is that the multiple processes ofa distributed system are poorly coordinated| each runs its own program; thecommunication channels between them may be slow, expensive, and unreliable;and individual processes may crash, become faulty, or run at varying speeds.It is this poor coordination that distinguishes distributed systems from parallelsystems, in which processes typically execute the same program in very closesynchrony with each other using a powerful and reliable communication system.The line between parallel and distributed systems is not a sharp one, but a rea-sonable rule of thumb is that parallel systems are predictable; the same programwith the same input running on the same parallel machine should give essentiallythe same results every time it is run. In contrast, distributed systems are riddledwith nondeterminism| distributed algorithms are always at the mercy of anunreliable and sometimes hostile infrastructure, and must strive for robustnessand consistency despite it.Because of this inherent nondeterminismand the di�culty of communication,an individual process in a distributed system is likely to have only an incompleteand often out-of-date picture of the state of the system as a whole. Like an on-line algorithm, it must still make decisions, which may turn out to be suboptimallater, based on this limited information. This property of distributed algorithmsgives an on-line avor to most problems that arise in distributed computing, and



suggests that techniques such as competitive analysis that have been useful fordealing with the unpredictable request sequences of on-line problems should beuseful for dealing with the unpredictable system behavior of distributed prob-lems. However, it is not immediately obvious how on-line techniques can best beadapted to distributed systems.The complication is that for many distributed algorithms we can distinguishbetween two di�erent sources of nondeterminism. The �rst source is the user-supplied input to the algorithm: those distributed algorithms that carry outinherently on-line tasks such as scheduling or load balancing must su�er thewhims of unpredictable users just as much as any on-line algorithm running ona single processor. However, these distributed algorithms must also contend withsystem nondeterminism, often summarized as a schedule that speci�es whenprocesses can take steps, what order messages are received in, and so forth. Thisschedule is just as unpredictable (and is often assumed to be just as adversarial)as the input.3 Competitive Analysis.Competitive analysis [ST85] compares the performance of a general-purpose al-gorithm given particular inputs against specialized algorithms optimized for eachof those inputs. From an abstract perspective, one considers a class of algorithmsA, a class of inputs I, and a cost function cost(A; I) that assigns a non-negativecost to each algorithmA and input I. A particular algorithmA is k-competitiveif there exists a constant c such that for all inputs I in I and algorithms A� inA, cost(A; I) � k � cost(A�; I) + c:If c = 0, the algorithm is said to be strictly k-competitive. The minimumvalue of k for which an algorithm is k-competitive is the algorithm's com-petitive ratio. If c = 0, this quantity is just the maximum over all I ofcost(A; I)=minA�2A cost(A�; I).The competitive ratio of an algorithm measures its performance on a par-ticular input relative to all other algorithms. Often it is convenient to speak ofthe optimal algorithm for a particular input. When analyzing on-line algorithms,there is no harm in assuming that the best algorithm is an o�-line algorithm|one that can predict the input| as the ability to choose an optimal algorithmbased on the input is equivalent to using single algorithm with such predic-tive powers. In contrast, the algorithm being evaluated can be described as theon-line algorithm because it does not have such powers.For distributed algorithms, the assumption that an algorithm can predictthe input can have surprising consequences, and it is necessary in some modelsto limit the class of algorithms A to exclude full clairvoyance. With such alimitation, it is less misleading to use the neutral term champion to refer to theoptimal algorithm for a particular input, since this term does not suggest any



special knowledge that the champion might have. Similarly, the term candidateprovides a neutral way to refer to the algorithm that is being evaluated.2Payo�s Instead of Costs. One can also de�ne the competitiveness of analgorithm whose performance is measured in terms of a non-negative payo�function payo�(A; I). The idea here is that for some problems it is more naturalto think in terms of how much can be accomplished given a �xed set of resourcesthan how many resources are needed to accomplish a �xed set of tasks. In termsof payo�s, an algorithm is k-competitive if there exists a constant c such thatfor all I in I and A� in A,payo�(A; I) + c � 1k payo�(A�; I):Note that the competitive ratio is inverted for consistency with the cost version;smaller competitive ratios imply better performance with either measure.4 Semicompetitive AnalysisFor distributed algorithms, it often makes sense to assume that the cost functiondepends on three parameters: the algorithm chosen, an input (which may or maynot be common to both the candidate and champion algorithm) and an envi-ronment (which is always assumed to be common to both the candidate andchampion algorithm). A problem is then de�ned in terms of a set of algorithmsA, a set of inputs I, and a set of environments E , together with a cost functioncost(A; I;E) that assigns a non-negative cost to each algorithm A, input I, andenvironment E. From an abstract perspective it is not necessary to worry abouthow the nondeterminism in a system is split into the input and the environment,though in practice it may strongly a�ect how a problem looks.One e�ect of such split nondeterminism is that it allows what we will callsemicompetitive analysis, in which a candidate algorithm is measured againstan optimal champion running with the same environment but not necessarily thesame input. The goal is still to be able to measure the performance of a particulargeneral-purpose candidate algorithm relative to the best specialized algorithmsin some class. However, there are now several possible measures depending onhow the inputs are chosen for the candidate and champion algorithms.Common Inputs. If one assumes that the input and environment are the samefor both candidate and champion, one has the traditional de�nition of k-competitiveness. An algorithmA is traditionally k-competitive if there existsa constant c such that for all A� in A, I in I, and E in E ,cost(A; I;E) � k � cost(A�; I; E) + c:2 These terms were suggested by [AADW94].



Worst-Case vs. Best-Case Inputs. A more useful measure arises if one assumesthat the inputs are not shared between the candidate and the champion. Let usde�ne an algorithm A in a split-nondeterminism framework as k-competitiveif there exists a constant c such that for all A� in A, I and I� in I, and E in E ,cost(A; I;E) � k � cost(A�; I�; E) + c:In e�ect, this de�nition assumes that the candidate and champion sharethe same environment, but that the candidate faces a worst-case input and thechampion a best-case input. The assumption that the candidate and championdo not have the same inputs| the only di�erence between this de�nition andtraditional k-competitiveness| has far-reaching consequences. In particular itallows the modular construction of competitive algorithms, as described belowin Section 5.The de�nition of k-competitiveness given above is based on the \throughputmodel" of [AW96]. The use of the term \k-competitiveness" for this measure isjusti�ed by several practical considerations. First, the semicompetitive de�nitionis stronger than the traditional de�nition. Not only is a k-competitive algorithma traditionally k-competitive algorithm (immediate from inspection of the quan-ti�ers), but if one also assumes that the set of inputs consists of a single pointor that the input has no e�ect on the cost of an algorithm, the new de�nitionreduces to the traditional de�nition. Second, in many respects the new measurecaptures the intuitive notion of competitiveness at least as well as the traditionalmeasure in those situations where one can reasonably assume that only part ofthe nondeterminism a�ecting an algorithm is likely to be shared between it andan optimal algorithm (for example, when considering a subroutine whose input,in the form of procedure calls, is supplied by a higher-level candidate algorithm).Finally, there is little chance of confusion between the new and old de�nitions,as the new de�nition applies only in the case of split nondeterminism, and thepresence of such a split will usually be obvious from context.Worst-Case vs. Worst-Case Inputs. Yet another useful measure is obtained ifit is assumed that both the candidate and champion algorithms face worst-caseinputs. De�ne an algorithm A to be k-optimal if there exists a constant c suchthat for all A� in A, I in I, and E in E , there exists an input I� in I such thatcost(A; I;E) � k � cost(A�; I�; E) + c:The di�erence between this de�nition and the previous one lies only in thechoice of quanti�ers. In e�ect, the input I� given to the champion algorithm A�is a worst-case input, chosen to maximize the champion's cost. Consequently,k-optimality is a weaker notion than k-competitiveness; however, it may still bea useful measure in contexts where k-competitiveness tells us little about theactual performance of an algorithm. An example is given in Section 7.The de�nition of k-optimality given above was suggested by [AW96] by anal-ogy to their semicompetitive de�nition of k-competitiveness. It also correspondsvery closely to an earlier measure used by Patt-Shamir and Rajsbaum in theirwork on clock synchronization [PSR94].



4.1 Relations Between the MeasuresThere is a nice relationship between semicompetitive analysis and traditionalcompetitive analysis:Theorem1. If an algorithm is k-competitive, then it is traditionally k-competitive. If an algorithm is traditionally k-competitive, it is k-optimal.Proof. Immediate from the de�nitions. utIn particular, if one has an upper bound on the competitive ratio of analgorithm (in the split-nondeterminism sense), one immediately gets an upperbound on the traditional competitive ratio of an algorithm. Similarly, a lowerbound on optimality implies a lower bound on competitiveness. Thus even if oneis not interested in the semicompetitive measures directly, they may still providea useful tool for bounding the traditional competitive ratio of an algorithm.4.2 Payo�s Instead of CostsJust as one can de�ne the competitiveness of an algorithm in the traditional sensein terms of payo�s instead of costs, one can do the same for the semicompetitivemeasures. Let us assume as above that we have a class of algorithms A againstwhich the candidate algorithm will compete, a set of inputs I and a set ofenvironments E . Suppose further that we have a payo� function assigning anon-negative value payo�(A; I;E) to each A in A, I in I, and E in E .An algorithm is traditionally k-competitive if there exists a constant c suchthat for all A� in A, I in I, and E in E ,payo�(A; I;E) + c � 1k � payo�(A�; I; E):An algorithm is k-competitive if there exists a constant c such that for allA� in A, I and I� in I, and E in E ,payo�(A; I;E) + c � 1k � payo�(A�; I�; E): (1)Finally, an algorithm is k-optimal if there exists a constant c such that forall A� in A, I in I, and E in E , there exists an input I� in I such thatpayo�(A; I;E) + c � 1k � payo�(A�; I�; E):It is not di�cult to see that k-competitiveness implies traditional k-competitiveness which in turn implies k-optimality in the payo� model just asin the cost model.



5 ModularityOne of the fundamental tools in traditional algorithm design is the ability toconstruct algorithms by composition. However, competitive analysis in generalappears to forbid such modular constructions of competitive algorithms. If A isan algorithm that uses a subroutine B, the fact that B is competitive says noth-ing at all about A's competitiveness, since A must compete against algorithmsthat do not use B. This lack of modularity impedes the development of practicalcompetitive algorithms.Fortunately, by treating the input to a subroutine separately from its envi-ronment, it is possible to recover the ability to compose algorithmwhile retainingthe advantages of competitive analysis. The key is the notion of relative com-petitiveness de�ned by [AW96]. Relative competitiveness is a measure of howwell an algorithm A uses a competitive subroutine B, which takes into accountnot only how large A's cost is relative to B but also whether or not the de-cision to use B was a good idea in the �rst place. To do so, it considers therelative performance of three distinct executions: an execution of the combinedalgorithm A � B; an execution of an optimal A� (which may or may not use asubroutine corresponding to B); and an execution of an optimal B�. This ap-proach requires operating within a semicompetitive framework, as described inSection 4, in which the input and environment of an algorithm are treated sep-arately. The details of the de�nition of relative competitiveness are given belowin Section 5.1.The remarkable property of relative competitiveness is that it acts like a tra-ditional worst-case performance measure when composing algorithms together.Glossing over some small technical details, if an algorithm A is l-competitiverelative to a subroutine B, and B is itself k-competitive, then the combinedalgorithm A �B is kl-competitive, even when compared against algorithms thatdo not use B or anything like B. This is exactly the same multiplicative e�ectthat one gets with traditional worst-case analysis, where a parent algorithm thatcalls a subroutine l times at a cost of k units per call pays kl total cost. Exceptthat here we are looking at competitive ratios.The details of how one can compose competitive algorithms in this fashionare given below in Section 5.2.5.1 Relative CompetitivenessFormally, it is assumed that we have two sets of inputs and environments. Algo-rithm A takes an input from IA and an environment from EA; similarly,B takesan input from IB and an environment from EB . In the composite algorithmA�Bthe input to B is provided by its parent routine A| one can think of this inputas the procedure calls given to B. Similarly, the environment of A is provided byits subroutine B| one can think of this environment as the return values fromthese procedure calls. The input to A and the environment of B are provided bythe adversary.



In the executions of A� and B� the situation is not quite symmetric. Thedi�erence arises from the fact that A� and B� are completely independent algo-rithms; and while B� is in e�ect an optimal version of B, A� is not an optimalversion of A but instead is an optimal version of A �B. The e�ect of this di�er-ence is that while B� takes an input from IB and an environment from EB , justas B does, A� takes an input from IA but its environment comes from EB.To complete the picture, it is necessary to have two cost measures. The �rst,costAB , measures the cost of algorithms that see inputs from IA and environ-ments from EB; it will be applied to both the composite algorithmA�B and thechampionA�. The second, costB , measures the cost of algorithms that see inputsfrom IB and environments from EB; it will be applied to B (as a component ofA � B) and B�. To avoid di�culties with division by zero, it is convenient torequire that costB always be positive.The de�nition is as follows. Given AA, AB , IA, IB, EA, EB , costAB , andcostB , an algorithm A is l-competitive relative to an algorithm B if there existsa constant c such that for all E in EB ,maxIA2IA costAB(A �B; IA; E)� ccostB(B; IB ; E) � l � minA�2AA;I�A2IA costAB(A�; I�A; E)minB�2AB;I�B2IB costB(B�; I�B; E) : (2)Note that the input IB to B is the input generated by A when run in inter-action with B. If the constant c is zero, then A is strictly l-competitive relativeto B.It is sometimes possible to show that an algorithmA is l-competitive relativeto any algorithm in a class of algorithms AB . In this case we we write that A isl-competitive relative to AB . The competitiveness of an algorithm relative to theclass of all correct subroutines for solving a particular problem is often a moreuseful measure than its competitiveness relative to a particular subroutine| itimplies that one can substitute a more e�cient subroutine for a less e�cient oneand get an improvement in performance.The payo� version of relative competitiveness is de�ned analogously as fol-lows. Given AA, AB, IA, IB, EA, EB , payo�AB , and payo�B, an algorithm Ais l-competitive relative to an algorithm B if there exists a constant c such thatfor all E in EB,maxIA2IA payo�AB(A �B; IA; E) + cpayo�B(B; IB ; E) � 1l � maxA�2AA;I�A2IA payo�AB(A�; I�A; E)maxB�2AB;I�B2IB payo�B(B�; I�B; E) :Note that the sign of the additive constant c has changed, in order to be consis-tent with the de�nition of k-competitiveness. Again, it is required that payo�Bis never zero; however, in the payo� model it is in fact possible to drop thisrequirement without causing too many di�culties (for details see [AW96]).It is also possible to de�ne relative optimality for both the cost and payo�models. For relative optimality, the inputs I�A and I�B are chosen to maximizethe costs (minimize the payo�s) of A� and B�; there are no other di�erences.



5.2 The Composition TheoremThe usefulness of relative competitiveness is captured in Composition Theoremof [AW96]. The theorem as given here is taken more-or-less directly from [AW96],where it was �rst stated in a slightly less general form. The version given herehas been adapted slightly to �t into the more general framework used in thissurvey. To simplify the statement of the theorem, let us assume throughout thissection that AA, AB , IA, IB, EA, EB and either costAB and costB or payo�ABand payo�B are �xed.Theorem2 (Composition Theorem). Let A be l-competitive relative to B,B k-competitive, and suppose that there exists a non-negative constant c suchthat for all E in EE , eitherminI�A2IA;A�2AA costAB(A�; I�A; E) � c minI�B2IB;B�2AB costB(B�; I�B; E) (3)or maxI�A2IA;A�2AA payo�AB(A�; I�A; E) � c maxI�B2IB;B�2AB payo�B(B�; I�B; E) (4)(as appropriate). Then A �B is kl-competitive.Proof. The proof given here is adapted from [AW96].Let us consider only the case of costs; the case of payo�s is nearly identicaland in any case has been covered elsewhere [AW96]. The proof involves onlysimple algebraic manipulation, but it is instructive to see where the technicalcondition (3) is needed.To avoid entanglement in a thicket of superuous parameters let us abbrevi-ate the cost of each algorithmX with the appropriate input and environment asC(X), so that costAB(A�B; IA; E) becomes C(A�B), costB(B; IB ; E) becomesC(B), costAB(A�; I�A; E) becomes C(A�), and costB(B�; I�B ; E) becomes C(B�).Fix E. The goal is to show that C(A � B) � kl � C(A�) + cAB, where CABdoes not depend on E. We may assume without loss of generality that A� andits input I�A are chosen to minimize C(A�), and that the input IA is chosen tomaximize C(A). So in particular C(A� is equal to the left-hand side of inequality(3) and the numerator of the right-hand side of inequality (2). Similarly, chooseB� and I�B to minimize C(B�).Thus (2) can be rewritten more compactly asC(A �B) � cABC(B) � l � C(A�)C(B�) ;where cAB is the constant from (2). Multiplying out the denominators gives(C(A �B) � cAB)C(B�) � l �C(A�)C(B): (5)Similarly, the k-competitiveness of B means thatC(B) � k �C(B�) + cB; (6)



where cB is an appropriate constant.Plugging (6) into the right-hand side of (5) gives(C(A �B) � cAB)C(B�) � l �C(A� � (k �C(B�) + cB)= kl �C(A�)C(B�) + l �C(A�)cB :Dividing both sides by C(B�) and moving cAB givesC(A �B) � kl �C(A�) + cAB + lcB C(A�)C(B�) : (7)The last term is bounded by a constant if (3) holds; thus A�B is kl-competitive.utMuch of the complexity of the theorem, including the technical conditions(3) and (4), is solely a result of having to deal with the additive constant in thek-competitiveness of B. If one examines the last steps of the proof, it is evidentthat the situation is much simpler if B is strictly competitive.Corollary 3. Let A be l-competitive relative to B and let B be strictly k-competitive. Then A�B is kl-competitive. If in addition A is strictly competitiverelative to B, A �B is strictly kl-competitive.Proof. Consider the proof of Theorem 2. Since B is strictly competitive, cBin (7) is zero, and the technical condition (3) is not needed. If A is strictlycompetitive, then cAB is zero as well, implying A �B is strictly competitive. Asimilar argument shows that the corollary also holds in the payo� model. utNote that the Composition Theorem and its corollary can be applied tran-sitively: if A is competitive relative to B � C, B is competitive relative to C,and C is competitive, then A is competitive (assuming the appropriate technicalconditions hold).6 Example: The Wait-Free Shared Memory ModelIn this section we describe some recent approaches to applying competitive anal-ysis to problems in the wait-free shared memory model [Her91]. In thismodel, a collection of n processes communicate only indirectly through a set ofsingle-writer atomic registers. A protocol for carrying out some task or sequenceof tasks is wait-free if each process can �nish its current task regardless of therelative speeds of the other processes. Timing is under the control of an adver-sary scheduler that is usually modeled as a function that chooses, based on thecurrent state of the system, which process will execute the next operation. Thisadversary is under no restrictions to be fair; it can, for example, simulate up ton�1 process crashes simply by choosing never to schedule those processes again.The wait-free shared memory model is a natural target for competitive anal-ysis. The �rst reason is that many of the algorithms that are known for this



model pay for their high resilience (tolerating up to n� 1 crashes and arbitraryasynchrony) with high worst-case costs. Thus there is some hope that competi-tive analysis might be useful for showing that in less sever cases these algorithmsperform better. The second reason is that the absence of restrictions on the ad-versary scheduler makes the mathematical structure of the model very clean.Thus it is a good jumping o� point for a more general study of the applicabilityof competitive analysis to the fault-tolerant aspects of distributed algorithms.Finally, a third reason is that under the assumption of single-writer registers,there is a natural problem (the collect problem) that appears implicitly or explic-itly in most wait-free shared-memory algorithms. By studying the competitiveproperties of this problem, we can learn about the competitive properties of awide variety of algorithms.Sections 6.1 and 6.2 describe the collect problem and solution to it withoutregard to issues of competitiveness. Section 6.3 discusses why competitivenessis a useful tool for analyzing the performance of collect algorithms. The fol-lowing sections describe how it has been applied to such algorithms and theconsequences of doing so.Some of the material in theses sections is adapted from [AADW94], [AW96],and [AH96].6.1 Collects: A Fundamental ProblemWhen a process starts a task in the wait-free model, it has no means of knowingwhat has happened in the system since it last woke up. Thus to solve almost allnon-trivial problems a process must be able to carry out a collect, an operationin which it learns some piece of information from each of the other processes.The collect problem was �rst abstracted by Saks, Shavit, and Woll [SSW91].The essential idea is that each process owns a single-writer multi-reader atomicregister, and would like to be able carry out write operations on its own registerand collect operations in which it learns the values in all the registers. Thenaive method for performing a collect is simply to read all of the registers di-rectly; however, this requires at least n� 1 read operations (n if we assume thata process does not remember the value in its own register). By cooperating withother processes, it is sometimes possible to reduce this cost by sharing the workof reading all the registers.There are several versions of the collect problem. The simplest is the \one-shot" collect, in which the contents of the registers are �xed and each processperforms only one collect. The one-shot version of the problem will not be dis-cussed much in this paper, but it is worth noting some of the connections be-tween one-shot collects and other problems in distributed computing. Withoutthe single-writer restriction, the one-shot collect would be isomorphic to theproblem of Certi�ed Write-All, in which n processes have to write to n locationswhile individually being able to certify that all writes have occurred (indeed, thecollect algorithm of Ajtai et al. [AADW94] is largely based on a Certi�ed Write-All algorithm of Anderson and Woll [AW91]). One can also think of the collectproblem as an asynchronous version of the well-known gossip problem [EM89],



in which n persons wish to distribute n rumors among themselves with a mini-mum number of telephone calls; however, in the gossip problem, which personscommunicate at each time is �xed in advance by the designer of the algorithm;with an adversary controlling timing this ceases to be possible.The more useful version of the problem, and the one that we shall considerhere, is the repeated collect problem. This corresponds exactly to simulatingthe naive algorithm in which a process reads all n registers to perform a collect.An algorithm for repeated collects must provide for each process a write pro-cedure that updates its register and a collect procedure that returns a vector ofvalues for all of the registers. Each of these procedures may be called repeatedly.The values returned by the collect procedure must satisfy a safety property calledregularity or freshness: any value that I see as part of the result of a collectmust be fresh in the sense that it was either present in the appropriate registerwhen my collect started or it was written to that register while my collect wasin progress.The repeated collect problem appears at the heart of a wide variety of shared-memory distributed algorithms (an extensive list is given in [AADW94]). Whatmakes it appealing as a target for competitive analysis is that the worst-caseperformance of any repeated collect algorithm is never better than that of thenaive algorithm. The reason for this is the strong assumptions about scheduling.In the wait-free shared-memory model, a process cannot tell how long it mayhave been asleep between two operations. Thus when a process starts a collect,it has no way of knowing whether the register values have changed since itsprevious collect. In addition, the adversary can arrange that each process doesits collects alone by running only one process at a time. If the adversary makesthese choices, any algorithm must read all of the n � 1 registers owned by theother processes to satisfy the safety property.But there is hope: this lower bound applies to any algorithm that satis�esthe safety property| including algorithms that are chosen to be optimal for thetiming pattern of a particular execution. Thus it is plausible that a competitiveapproach would be useful.6.2 A Randomized Algorithm for Repeated CollectsBefore jumping into the question of how one would apply competitive analysisto collects, let us illustrate some of the issues by considering a particular collectalgorithm, the \Follow the Bodies" algorithm of [AH96].As is often the case in distributed computing, one must be very precise aboutwhat assumptions one makes about the powers of the adversary. The Follow-the-Bodies algorithm assumes that a process can generate a random value and writeit out as a single atomic operation. This assumption appears frequently in earlywork on consensus; it is the \weak model" of Abrahamson [Abr88] and was usedin the consensus paper of Chor, Israeli, and Li [CIL94]. In general, the weakmodel in its various incarnations permits much better algorithms (e.g., [AB96,Cha96]) for such problems as consensus than the best known algorithms in themore fashionable \strong model" (in which the adversary can stop a process in



between generating a random value and writing it out). The assumption thatthe adversary cannot see coin-ips before they are written is justi�ed by anassumption that in a real system failures, page faults, and similar disastrousforms of asynchrony are likely to be a�ected by where each process is readingand writing values but not by what values are being read or written. For thisreason the adversary in the weak model is sometimes called content-oblivious.Even with a content-oblivious adversary the collect problem is still di�cult.Nothing prevents the adversary from stopping a process between reading newinformation from another process's register and writing that information to itsown register. Similarly the adversary can stop a process between making a ran-dom choice of which register to read and the actual read operation. (This rulecorresponds to an assumption that not all reads are equal; some might involvecache misses, network delays, and so forth.)This power of the adversary turns out to be quite important. Aspnes andHurwood show that an extremely simple algorithm works in the restricted casewhere the adversary cannot stop a read selectively depending on its target. Eachprocess reads registers randomly until it has all the information it needs. How-ever, the adversary that can stop selected reads can defeat this simple algorithmsimple algorithm by choosing one of the registers to be a \poison pill": any pro-cess that attempts to read this register will be halted. Since on average onlyone out of every n reads would attempt to read the poisonous register, close ton2 reads would be made before the adversary would be forced to let some processactually swallow the poison pill.In order to avoid this problem, in the Follow-the-Bodies algorithm a processleaves a note saying where it is going before attempting to read a register.3 Poisonpills can thus be detected easily by the trail of corpses leading to them. Thedistance that a process will pursue this trail will be � lnn, where � is constantchosen to guarantee that the process reaches its target with high probability.Figure 1 depicts one pass through the loop of the resulting algorithm. Thedescription assumes that each process stores in its output register both the setof values S it has collected so far and its successor, the process it selected toread from most recently.{ Set p to be a random process, and write out p as our successor.{ Repeat � lnn times:� Read (S0; p0) from the register of p.� Set S to be the union of S and S0.� Set p to p0.� Write out the new S and p.Fig. 1. The Follow-the-Bodies Algorithm (One Pass Only)3 It is here that the assumption that one can ip a coin and write the outcome atom-ically is used.



For the moment we have left out the termination conditions for the loop,as they may depend on whether one is trying to build a one-shot collect ora repeated collect (which requires some additional machinery to detect freshregister values).The Follow-the-Bodies algorithm has the property that it spreads informa-tion through the processes' registers rapidly regardless of the behavior of theadversary. In [AH96] it is shown that:Theorem4. Suppose that in some starting con�guration the register of eachprocess p contains the information Kp and that the successor �elds are set ar-bitrarily. Fix � � 9, and count the number of operations carried out by eachprocess until its register contains the union over all p of Kp, and write W forthe sum of these counts. PrW � 37�2n ln3 n � 2n��5 :Here the rapidity of the spread of information is measured in terms of totalwork. Naturally, the adversary can delay any updates to a particular process'sregister for an arbitrarily long time by putting that process to sleep; what thetheorem guarantees is that (a) when the process wakes up, it will get the in-formation it needs soon (it is likely that by then the �rst process it looks atwill have it); and (b) the torpor of any individual process or group of processescannot increase the total work of spreading information among their speediercomrades.The proof of the theorem is a bit involved, and the interested reader shouldconsult [AH96] for details. In the hope of making the workings of the algorithmmore clear we mention only that the essence of the proof is to show that aftereach phase consisting ofO(n lnn) passes through the loop, the size of the smallestset of processes that collectively know all of the information is cut in half. AfterO(lnn) of these phases some process knows everything, and it is not long beforethe other processes read its register and learn everything as well. (The extra logfactor comes from the need to read � lnn registers during each pass through theloop).In [AH96] it is shown how to convert this rumor-spreading algorithm to arepeated-collect algorithm by adding a simple timestamp scheme. Upon startinga collect a process writes out a new timestamp. Timestamps spread throughthe process's registers in parallel with register values. When a process reads avalue directly from its original register, it tags that value by the most recenttimestamp it has from each of the other processes. Thus if a process sees a valuetagged with its own most recent timestamp, it can be sure that that value waspresent in the registers after the process started its most recent collect, i.e. thatthe value is fresh.The resulting algorithm is depicted in Figure 2. Here, S tracks the set ofvalues (together with their tags) known to the process. The array T lists eachprocess's most recent timestamps. Both S, T , and the current successor areperiodically written to the process's output register.



{ Choose a new timestamp � and set our entry in T to � .{ While some values are unknown:� Set p to be a random process, write out p as our successor and T as ourlist of known timestamps.� Repeat � lnn times:� Read the register of p. Set S to be the union of S and the values �eld.Update T to include the most recent timestamps for each process.Set p to the successor �eld.� Write out the new S and T .{ Return S. Fig. 2. Repeated Collect AlgorithmThe performance of this algorithm is characterized by its collective latency[AADW94], an upper bound on the total amount of work needed to completeall collects in progress at some time t:4Theorem5. Fix a starting time t. Fix � � 9. Each process carries out a certainnumber of steps between t and the time at which it completes the collect it wasworking on at time t. Let W be the sum over all processes of these numbers.Then PrW � 74�2n ln3 n � 4n��5 :Proof. Divide the steps contributing to W into two classes: (i) steps taken byprocesses that do not yet know timestamps corresponding to all of the collectsin progress at time t; and (ii) steps taken by processes that know all n of thesetimestamps. To bound the number of steps in class (i), observe that the behaviorof the algorithm in spreading the timestamps during these steps is equivalentto the behavior of the non-timestamped algorithm. Similarly, steps in class (ii)correspond to an execution of the non-timestamped algorithm when we considerthe spread of values tagged by all n current timestamps. Thus the total time forboth classes of steps is bounded by twice the bound from Theorem 4, except fora case whose probability is at most twice the probability from Theorem 4. ut6.3 Competitive Analysis and CollectsTheorem 5 shows that the Follow-the-Bodies algorithm improves in one respecton the naive collect algorithm. For the naive algorithm, the collects in progressat any given time may take n2 operations to �nish, while with high probabilityFollow-the-Bodies �nishes them in O(n log3 n) operations. Unfortunately, this4 The \collective" part of \collective latency" refers not to the fact that the algorithmis doing collect operations but instead to the fact that the latency it is measuring isa property of the group of processes as a whole.



improvement does not translate into better performance according to traditionalworst-case measures.As noted above, if a process is run in isolation it must execute at leastn � 1 operations to carry out a collect, no matter what algorithm it runs, asit can learn fresh values only by reading them directly. Under these conditionsthe naive algorithm is optimal. Even if one considers the amortized cost of alarge number of collects carried out by di�erent processes, the cost per collectwill still be 
(n) if no two processes are carrying out collects simultaneously.Yet in those situations where the processes have the opportunity to cooperate,Theorem 5 implies that they can do so successfully, combing their e�orts so thatin especially good cases (where a linear number of processes are running at once)the expected amortized cost of a single collect drops to O(log3 n).It is clear that algorithms like Follow-the-Bodies improve on the naive collect.But how can one quantify this improvement in a way that is meaningful outsidethe limited context of collect algorithms? Ideally, one would like to have a mea-sure that recognizes that distributed algorithms may be run in contexts wheremany or few processes participate, where some processes are fast and some areslow, and where the behavior of processes may vary wildly from one moment tothe next. Yet no simple parameter describing an execution (such as the numberof active processes) can hope to encompass such detail.Competitive analysis can. By using the performance of an optimal, special-ized algorithm as a benchmark, competitive analysis provides an objective mea-sure of the di�culty of the environment (in this case, the timing pattern of anasynchronous system) in which a general-purpose algorithmoperates. To be com-petitive, the algorithm must not only perform well in worst-case environments;its performance must adapt to the ease or di�culty of whatever environment itfaces. Fortunately, it is possible to show that many collect algorithms have thisproperty.Some complications arise. In order to use competitive analysis, it is necessaryto specify precisely what is included in the environment| intuitively, on whatplaying �eld the candidate and champion algorithms will be compared. An addi-tional issue arises because assuming that the champion has complete knowledgeof the environment (as the hypothetical \o�-line" algorithm has when computingthe competitive ratio of an on-line algorithm) allows it to implicitly communi-cate information from one process to another at no cost that a real distributedalgorithm would have to do work to convey. Neither di�culty is impossible toovercome. In the following sections we describe two measures of competitiveperformance for distributed algorithms that do so.6.4 A Traditional Approach: Latency CompetitivenessThe competitive latency model of Ajtai et al. [AADW94] uses competitive anal-ysis in its traditional form, in which all nondeterminism in a system is under thecontrol of the adversary and is shared between both the candidate and championalgorithms. In the context of the repeated collect problem, it is assumed thatthe adversary controls the execution of an algorithm by generating (possibly



Fig. 3. Latency model. New high-level operations (ovals) start at times speci�edby the adversary (vertical bars). Adversary also speci�es timing of low-leveloperations (small circles). Cost to algorithm is number of low-level operationsactually performed (�lled circles).in response to the algorithm's behavior) a schedule that speci�es when collectsstart and when each process is allowed to take a step (see Figure 3). A processhalts when it �nishes a collect; it is not charged for opportunities to take a stepin between �nishing one collect and starting another (intuitively, we imaginethat it is o� doing something else). The competitive latency of a candidatealgorithm is the least constant k, if any, that guarantees that the expected totalnumber of operations carried out by the candidate on a given schedule � is atmost k times the cost of an optimal distributed algorithm running on the sameschedule (modulo an additive constant).In terms of the general de�nition of competitive analysis from Section 3, Econsists of all schedules as de�ned above. The set of algorithms A consists ofall distributed algorithms that satisfy a correctness condition. The cost measureis just the number of operations required by a particular algorithm. For thecollect problem, this correctness condition requires that an algorithm guaranteethat the values returned are fresh regardless of the schedule. In particular, whileprocesses in a champion algorithm are allowed to use their implicit knowledgeof the schedule to optimize their choices of what registers to read and how tocooperate with one another, they cannot use this knowledge to avoid verifyingthe freshness of the values they return.There is a general principle involved here that points out one of the di�-culties of applying competitive analysis directly to distributed algorithms. Thedi�culty is that if one is not careful, one can permit the processes in the cham-pion algorithm to communicate with each other at zero cost by virtue of theircommon knowledge of the schedule. For example: consider a schedule in whichno process ever writes to a register. If the champion is chosen after the scheduleis �xed, as occurs whenever we have an o�-line adversary, then it can be assumedthat every process in the champion implicitly knows the schedule. In particular,each process in the champion can observe that no processes are writing to theregisters and thus that the register values never change. So when asked to per-form a collect, such a process can return a vector consisting of the initial values



of the registers at zero cost. Needless to say, a situation in which the championpays zero cost is not likely to yield a very informative competitive ratio.What happened in this example is that if one assumes that the championprocesses all have access to the schedule, each champion process can then com-pute the entire state of the system at any time. In e�ect, one assumes that thechampion algorithm is a global-control algorithm rather than a distributed al-gorithm. It is not surprising that against a global-control algorithm it is di�cultto be competitive, especially for a problem such as collect in which the maindi�culty lies in transmitting information from one process to another.On the other hand, notice that the champion algorithm in this case is notcorrect for all schedules; any schedule in which any register value changes atsome point will cause later collects to return incorrect values. Limiting the classof champion algorithms to those whose correctness does not depend on operat-ing with a speci�c schedule restores the distributed character of the championalgorithm. Yet while such a limit it prevents pathologies like zero-cost collects, itstill allows the champion to be \lucky", for example by having all the processeschoose to read from the one process that happens in a particular executionto have already obtained all of the register values. Thus the reduction in thechampion's power is limited only to excluding miraculous behavior, but not thesurprising cleverness typical of o�-line algorithms.With this condition, Ajtai et al. show that if an algorithm has a maximumcollective latency of L at all times, then its competitive ratio in the latencymodel is at most L=n + 1. Though this result is stated only for determinis-tic algorithms, as observed in [AH96] it can be made to apply equally well torandomized algorithms given a bound L on the expected collective latency.The essential idea of the proof in [AADW94] of the relationship between col-lective latency and competitive latency is to divide an execution into segmentsand show that for each such segment, the candidate algorithm carries out atmost L + n operations and the champion carries out at least n operations. Thelower bound on the champion is guaranteed by choosing the boundaries betweenthe segments so that in each segment processes whose collects start in the seg-ment are given at least n chances to carry out an operation; either they carryout these n operations (because their collects have not �nished yet) or at leastn read operations must have been executed to complete these collects (becauseotherwise the values returned cannot be guaranteed to be fresh). For an algo-rithm with expected collective latency L, the cost per segment is at most L+n;n for the n steps during the segment, plus at most an expected L operations tocomplete any collects still in progress at the end of the segment. By summingover all segments this gives a ratio of L=n+ 1.For the Follow-the-Bodies algorithm, the expected value of L is easily seento be O(n log3 n) (from Theorem 5). It follows that:Theorem6. The competitive latency of the Follow-the-Bodies algorithm isO(log3 n).It is worth noting that this result is very strong; it holds even against anadaptive o�-line adversary [BDBK+90], which is allowed to choose the champion



algorithm after seeing a complete execution of the candidate. In contrast, thebest known lower bound is 
(logn) [AADW94].It is still open whether or not an equally good deterministic algorithm exists.The best known deterministic algorithm, from [AADW94], has a competitivelatency of O(n1=2 log2 n).6.5 A Semicompetitive Approach: Throughput Competitiveness
Fig. 4. Throughput model. New high-level operations (ovals) start as soon asprevious operations end. Adversary controls only timing of low-level operations(�lled circles). Payo� to algorithm is number of high-level operations completed.A semicompetitive approach of the sort discussed in Section 4 is used in thecompetitive throughputmodel of Aspnes and Waarts [AW96]. In this model,the adversary no longer controls the starting time of collects; instead, both thecandidate and the champion try to complete as many collects as possible inthe time available (see Figure 4). It also distinguishes between the environment,which takes the form of a schedule that now speci�es only when low-level op-erations such as reads and writes occur; and the input, which takes the formof a speci�cation of what sequence of high-level operations each process is toperform but not when it must perform them. (For the collect problem the inputis generally not very interesting, since the collect algorithm can only performone kind of high-level operation.)Formally, the model can be viewed as using the semicompetitive de�nition ofcompetitiveness from Section 4. The set of algorithms A consists of all correctdistributed algorithms; as in the preceding section, correctness must be de�nedindependently of any single schedule to avoid pathologies. The set of environ-ments E consists of all schedules de�ning the timing of low-level operations.The set of inputs I consists of all sequences of requests to perform high-leveltasks. The competitive throughput model is a payo� model; competitiveness isde�ned in terms of a payo� function payo�(A; I;E) that measures how manyof the high-level tasks in I can be completed by A given the schedule E. Thethroughput competitiveness of an algorithm A is the least value k for whichthe payo� of A is always within a factor of k of the payo� of an optimal A�(modulo an additive constant).



The motivation for adopting a semicompetitivemeasure like throughput com-petitiveness is that it allows competitive algorithms to be constructed modularlyas described in Section 5. This is particularly important for collect algorithmssince collect appears as a subroutine in such a large number of other algorithms.If one can show that these algorithms are throughput competitive relative tocollect, then the only thing needed to make them throughput competitive intheir own right is to plug in a throughput-competitive collect subroutine.In order to do this, a small technical complication must �rst be dealt with.No interesting algorithm performs only collects; for information to pass from oneprocess to another somebody must be writing to the registers. So instead of usinga subroutines that performs only collects one uses a subroutine that supportstwo operations: the collect operation as described above, and a write-collect,consisting of a write operation followed by a collect. The intent is to simulatean object that provides both writes and collects. However, because throughputcompetitiveness assumes a worst-case choice of operations for the candidate toperform, but a best-case choice for the champion, it is important that all opera-tions supported by the subroutine have roughly the same granularity. Otherwiseit becomes possible for the candidate to be forced to carry out only expensiveoperations (like collects) while the champion carries out only cheap operations(like writes).5 Fortunately, in practice in almost all algorithms that use writesand collects, each process performs at most one write in between each pair ofcollects, and so one can treat such algorithms as using write-collect and collectoperations. Furthermore, since all known cooperative collect algorithms starteach collect with a low-level write operation (in order to write out a new times-tamp), it costs nothing to modify such an algorithm to perform write-collects aswell as collects.It turns out that the same bound on collective latency| the total numberof operations required to complete all collects in progress at any given time|used to show the latency competitiveness of a collect algorithm can also be usedto show throughput competitiveness. A second condition is also needed; theremust be a bound on the private latency| the number of operations requiredto complete any single collect. This second condition can easily be guaranteedby dovetailing a collect algorithm that guarantees low collective latency with thenaive algorithm that guarantees low private latency by having a process read all5 In principle, there are other ways to avoid this di�culty. For example, one couldde�ne the payo� function so that completed collect operations produced more valuethan completed write operations; but then it might be di�cult to show that an al-gorithm that performed both writes and collects to achieve some higher goal is infact competitive relative to this mixed-payo� subroutine. Alternatively, one coulduse the notion of k-optimality (where the champion also faces a worst-case input)instead of k-competitiveness. However, k-optimality is weaker than traditional k-competitiveness, so results about the performance of higher-level algorithms obtainedusing the k-optimality of the collect subroutine would not immediately imply com-petitiveness of the higher-level algorithms in the traditional sense. Still, there arenot yet very many examples in the literature of the use of these techniques, so itremains to be seen which approach is likely to be most useful in the long run.



n registers itself.With this modi�cation, and the earlier modi�cation to add write-collect op-erations, the Follow-the-Bodies algorithm from Section 6.2 has an collective la-tency of O(n log3 n) (on average) and a private latency of at most 2n. A generalbound on throughput competitiveness based on these two parameters is givenin [AW96]; plugging in the values for Follow-the-Bodies gives:Theorem7. The competitive throughput of the Follow-the-Bodies algorithm isO(n1=2 log3=2 n).The proof of this bound is quite complex and it would be di�cult even to tryto summarize it here. Its overall structure is similar to the technique for boundinglatency competitiveness described in Section 6.4, in that it proceeds by dividingan execution into segments and proving a lower bound on the candidate's payo�and an upper bound on the champion's payo� for each segment. The mechanismused for this division is a potential function taking into account many �ne detailsof the execution. The interested reader can �nd the complete argument in thefull version of [AW96].It might be surprising that the competitive ratio for essentially the samealgorithm is much larger in the throughput model than in the latency model.The reason for the di�erence is the increased restrictions placed on the cham-pion by the latency model. Because the champion can only start collects whenthe candidate does, it is not possible for the champion to take advantage of aparticularly well-structured part of the schedule to �nish many collects usingits superior knowledge while the candidate wanders around aimlessly. Instead,the most the champion can hope to do is �nish quickly the same collects thatthe candidate will �nish more slowly| but the candidate will not �nish thesecollects too much more slowly if it uses an algorithm with low collective latency.By contrast, in the throughput model it is possible to construct schedules inwhich the champion has a huge advantage. An example (taken from [AW96]) isgiven in the following section.6.6 Lower Bound on Throughput Competitiveness of CollectTo illustrate some of the di�culties that arise in the throughput model, considerthe following theorem and its proof:Theorem8. No cooperative collect protocol has a throughput competitivenessless than 
(pn).Proof. (This proof is taken directly from [AW96].)Because of the additive term in the de�nition of competitive ratio, it is notenough to exhibit a single schedule on which a given collect algorithm fails. In-stead, we will describe a randomized adversary strategy for producing schedulesof arbitrary length on which the ratio between the number of collects performedby a given candidate algorithm and the number of collects performed by anoptimal champion tends to �pn.



The essential idea is that we will build up an arbitrarily-long schedule outof phases. In each phase, most of the work will be done by a randomly-chosen\patsy". Pro�ting from the patsy's labors, in the champion algorithm, will bepn \active" processes. These same processes, in the candidate algorithm, willnot bene�t from the patsy's work, since we will terminate a phase as soon asany active process discovers the patsy.Let us be more speci�c. The adversary �xes the pn active processes at thestart of the schedule, and chooses a new patsy uniformly at random from theset of all non-active processes at the start of each phase. Each phase consistsof one or more rounds. In each round, �rst each active process takes one step,then the patsy takes n + pn + 1 steps, and �nally each active process takes asecond step. If, during any round, some active process reads the patsy's registeror learns all n register values, the adversary cleans up by running each activeprocess and the patsy in an arbitrary order until each �nishes its current collect.A new phase then starts with a new patsy, chosen at random independently ofprevious choices.In the champion algorithm, each active process writes a timestamp to itsregister at the start of each round. The patsy then reads these timestamps (pnsteps), reads all the registers (n steps), and writes a summary of their contents,together with the timestamps, to its own output register (1 step). Finally, eachactive process reads the patsy's register. The result is that in each round, thechampion algorithm completes pn+ 1 collects. To simplify the analysis, we willassume that the champion algorithm does no work at all during the clean-upstage and the end of a phase. Under this assumption the champion completesk(pn+ 1) collects during a k-round phase.In the candidate algorithm, each active process completes exactly one collectduring each phase. Since no active process reads the patsy's register until thelast round of the phase, the patsy cannot use any values obtained by the activeprocesses prior to the last round. Thus the patsy completes at most one collectfor every n operations that it executes prior to the last round, plus at mosttwo additional collects during the last round and the clean-up stage. Since thepatsy executes n+pn+ 1 operations per round, the total number of collects itcompletes during a k-round phase is thus at most k(1 + 1pn + 1n ) + 2, and thetotal number of collects completed by all processes during a k-round phase is atmost k(1 + 1pn + 1n ) + 2 +pn.It remains only to determine the expected number of rounds in a phase. Aphase can end in two ways: either some process �nds the patsy, or some processlearns all n values. Since the patsy is chosen at random, �nding it requires anexpected (n�pn+ 1)=2 reads and at most n�pn reads. Learning all n valuesrequires n reads of the registers. Thus �nding the patsy is a better strategy forthe active processes, and since they together execute 2pn operations per round,they can �nd it in an expected (pn� 1)=4 rounds.Plugging this quantity in for k gives an expected (n�1)=4 collects per phasefor the champion algorithm and at most an expected pn�1=n4 + 2 +pn � 2pncollects per phase for the candidate. In the limit as the number of phases goes



to in�nity, the ratio between the payo� to the candidate and the payo� to thechampion goes to the ratio of these expected values, giving a lower bound onthe competitive ratio of 
(pn). ut6.7 Competitive Collect as a SubroutineThe importance of collect is that it appears as a subroutine in many wait-freedistributed algorithms. The value of showing that a particular collect algorithmis competitive in the throughput model is that one can then apply the Composi-tion Theorem (Theorem 2) to show that many of these algorithms are themselvescompetitive when they are modi�ed to use a competitive collect. Several exam-ples of this approach are given in [AW96]; one simple case is reproduced below,in order to make more concrete how one might actually show that an algorithmis competitive relative to some class of subroutines.A snapshot algorithm, like a collect algorithm, simulates an array of n single-writer registers. It supports a scan-update operation that writes a value to oneof the registers (this part is the \update") and then returns a snapshot, which isa vector of values for all of the registers (this part is the \scan"). Unlike a collectalgorithm, which must satisfy only the requirement that all values returned by acollect are at least as recent as the start of that collect, the snapshot algorithmmust guarantee that di�erent snapshots appear to be instantaneous. In practice,this means that process P cannot be shown an older value than process Q inone register and a newer value in a di�erent register.There are many known wait-free algorithms for snapshot (a list is given in[AW96]). The best algorithm currently known in terms of the asymptotic workrequired for a single snapshot is the algorithm of Attiya and Rachman [AR93],in which each process uses O(logn) alternating writes and collects in order tocomplete a single scan-update operation. (The reason why a scan-update requiresseveral rounds of collects is that the processes must negotiate with each otherto ensure that the snapshots they compute are consistent.) If the collects areimplemented using the naive algorithm that simply reads all n registers directly,this bound translates into a cost of O(n logn) primitive operations per collectin the worst case. However, by plugging in a competitive collect algorithm, it ispossible to improve on this bound in many executions.In order to do so it is �rst necessary to argue that the Attiya-Rachmanalgorithm is competitive relative to a subroutine providing write-collect andcollect operations as described in Section 6.5. To remain consistent with thede�nition given in Section 5.1, which requires nonzero payo�s for the subroutine,we will consider only schedules in which the candidate collect algorithm used assubroutine in Attiya-Rachman completes at least one collect.6 We would like toshow that for a suitable choice of l, for any such schedule E, that there exists a6 As noted in Section 5.1, for payo� models like the throughput model this requirementis not strictly necessary.



constant c such thatmaxIA2IA payo�AB(A �B; IA; E) + cpayo�B(B; IB ; E) � 1l � maxA�2AA;I�A2IA payo�AB(A�; I�A; E)maxB�2AB;I�B2IB payo�B(B�; I�B; E)(8)holds, where A is the Attiya-Rachman snapshot, B is an arbitrary collect algo-rithm, and IA, IB, etc., are de�ned appropriately.It is easy to get an upper bound of one on the ratio on the right-hand side.Because a single scan-update operation can be used to simulate a single write-collect or collect, the payo� (i.e., number of scan-updates completed) of an op-timal snapshot algorithm cannot exceed the payo� (number of collects and/orwrite-collects completed) of an optimal collect algorithm. For the left-hand side,the Attiya-Rachman algorithm completes one scan-update for every O(logn)write-collects done by any single process. So if c is set to n (to account forpartially completed scan-updates), thenpayo�AB(A �B) + npayo�(B) � 1O(logn) :It follows that (8) holds for l = O(logn).To use Theorem 2, it is also necessary to show that the technical condition (4)holds. But this just say that the maximum number of scan-updates that can becompleted in a given schedule is at most a constant times the maximumnumberof write-collects. As observed above, this constant is one, and so Theorem 2 im-plies that plugging Follow-the-Bodies (O(n1=2 log3=2 n)-competitive) into Attiya-Rachman (O(logn)-competitive relative to collect) gives an O(n1=2 log5=2 n)-competitive snapshot algorithm.Observe that in the above argument, essentially no properties of the Attiya-Rachman snapshot algorithm were used except (a) the fact that scan-update isa \stronger" operation than either collect or write-collect, and (b) the fact thatAttiya-Rachmanuses O(logn) write-collects per scan-update. It is not unusual tobe able to treat a parent algorithm as a black box in this way in traditional worst-case analysis| but this is one of the �rst examples of being able to do the samething while doing competitive analysis. In addition, since almost any operationis stronger than write-collect in the wait-free model, a similar argument worksfor a wide variety of algorithms that use collects. Some additional examples aregiven in [AW96].7 Example: Guessing Your Location in a Metric SpaceSo far we have seen examples of analyzing distributed problems using both thetraditional de�nition of competitiveness and the semicompetitive de�nition ofcompetitiveness from Section 4. For some problems neither approach is appro-priate, and instead the notion of k-optimality gives more information about theactual merits of an algorithm.



One such problem can be described simply as guessing one's location in ametric space based on locally available information. Imagine that you have beenplaced by an adversary somewhere in a metric space (say, the surface of theEarth). You have the ability to observe the local landscape, and you would liketo be able to make as close a guess as possible to your actual location basedon what you see. In some locations (at the base of the Ei�el Tower; in a storethat displays its wide selection of Global Positioning System boxes), the bestpossible guess is likely to be quite accurate. In others (somewhere in the Gobidesert; inside a sealed cardboard box), the best possible guess is likely to bewildly o�. Yet it is clear that some algorithms for making such guesses arebetter than others.How can one measure the performance of an algorithm for this problem? Atraditional competitive approach might look something like this: the actual lo-cation x is the environment that is shared between the candidate and champion.Both candidate and champion are shown some view v, a function f(x) of thelocation. The cost of a guess y is just the distance between y and x.Unfortunately, in this framework, the optimal champion always guesses xcorrectly| at a cost of zero| while the candidate must choose among the manypossible y for which f(y) = f(x). Unless the candidate is lucky enough also tohit x exactly (which the adversary can prevent if it is only moderately clever),the competitive ratio of any algorithm is in�nite.No improvement comes frommoving to a semicompetitive approach. Supposethat we assume that it is the observed view v that is shared between candidateand champion, but that the actual locations x and x� may be any two pointsfor which f(x) = f(x�) = v. More formally, let us use the semicompetitive de�-nition of k-competitiveness with the shared environment being the view and thedi�ering inputs being the actual locations of the candidate and champion. Un-fortunately, once again the champion (which is given a best-case input) guessesits location exactly, and unless the subset of the metric space that produces theappropriate view is very small indeed, the candidate once again has an in�nitecompetitive ratio.The solution is to use k-optimality. As above, let us assume that the the viewv is shared between both candidate and champion, the actual locations x and x�of the candidate and champion may be distinct; but in this case, suppose thatboth candidate and champion are given worst-case locations. Now the cost to thechampion of choosing y� will be the distance between y� and the most distant x�for which f(x�) = v. If the candidate algorithm chooses any point y for whichf(y) = v, then from the triangle inequality d(y; x) � d(y; y�) + d(y�; x�) �2d(y�; x�), and so any candidate algorithm that is smart enough makes a guessconsistent with what it sees will be 2-optimal. Particularly clever algorithms(say, those which always guess a center of the set of points consistent with theobserved data) can be as good as 1-optimal. Though the range of optimalityratios is not large, it does give us a way to distinguish exceptionally stupidalgorithms (worse than 2-optimal) from plausible algorithms (2-optimal) fromgood algorithms (1-optimal).



This example has been abstracted almost to the point of triviality, but itdoes illustrate issues that have been studied in the context of real distributedsystems. The example is inspired by work on clock synchronization by Patt-Shamir and Rajsbaum [PSR94]; in this work, the goal of a clock synchronizationalgorithm is to make a good estimate of the o�sets between di�erent clocks ina distributed system based on data piggybacked on the messages sent by someunderlying algorithm. For some communication patterns (e.g., ones in which nomessages are exchanged), it is impossible to make a very accurate estimate|but the possibility of using traditional competitive analysis is foreclosed by theability of an o�-line algorithm to guess the correct o�sets exactly. Their solutionwas to use a notion of 1-optimality, which the de�nition in Section 4 generalizes.Of course, how one actually computes a good estimate of the o�sets betweenclocks in a distributed system based on limited information is a much morecomplicated problem than simply picking a good point somewhere in the middleof the appropriate metric space. The interested reader will �nd algorithms forsolving several interesting variants of the problem in [PSR94].8 ConclusionsThe preceding sections have concentrated on how the techniques of competitiveanalysis have been useful for analyzing fault-tolerant distributed algorithms,where the primary source of di�culty is not unpredictable inputs but unpre-dictable behavior in the underlying system. This approach is still quite new, andthere are many questions that have yet to be considered. Not only may it be pos-sible to apply competitive analysis to a wider variety of distributed models, butthe adaptations needed to �t competitive analysis to the models described abovemay be useful for analyzing problems that do not necessarily involve distributedsystems. There are three main areas of research suggested by this work.Extensions to other models of distributed computation. The models described inSection 6 depend on a number of details of the wait-free shared-memory model.This model is a good testbed for new measures, since the lack of restraints onthe behavior of the adversary makes the model relatively simple from a formalperspective; however, in many cases other models are more realistic. These in-clude models in which there are much tighter controls on the timing of events(for example, those in which synchrony or fairness conditions hold or in which asmall upper bound exists on the number of failures), models with di�erent com-munications primitives, and models in which not all processes can be trustedto carry out the algorithm correctly. Very little has been done to study howcompetitive analysis can be used to analyze how algorithms respond to hostilesystem behavior in these models.Non-distributed applications of relative competitiveness. Relative competitive-ness and the composition theorem were de�ned in [AW96] to analyze a classof problems that arise in a particular model of distributed systems. However,



as the authors of [AW96] point out, when viewed abstractly there is nothingabout relative competitiveness that depends on having a distributed system.The notion of relative competitiveness opens up the possibility of constructingcompetitive algorithms for a wide variety of problems by composition: buildingthem up one subroutine at a time, with the competitiveness of each subroutine,proved separately, contributing to the competitiveness of the whole. With thisability, in addition to looking for good superproblems, like k-servers or Metri-cal Task Systems, that subsume many on-line problems, it may be fruitful tolook for good subproblems whose solutions can be used as subroutines in manyrelative-competitive algorithms.Limiting the clairvoyance of the o�-line algorithm. Competitive analysis is notvery useful for \lady or the tiger" problems (like the example in Section 7)in which an o�-line algorithm can always guess correctly information that noon-line algorithm could ever hope to obtain. In many such cases it is knownfrom real-world constraints that no algorithm of any kind could deduce thecorrect information. When this is true, it makes sense to limit the knowledge ofthe o�-line algorithm to what might reasonably be available in the real-worldsituation being modeled. However, traditional competitive analysis provides nomechanism for doing so. 7 Here, a semicompetitive approach using k-optimalitymay be useful. Information that the champion algorithm is allowed to use oncan be made part of the environment shared with the candidate. Informationthat the champion algorithm is not allowed to use can be made part of the inputthat is assumed to be worst-case for both champion and candidate.9 AcknowledgmentsSome of the material in this survey has been adapted from [AADW94], [AW96],and [AH96]. None of this work would have been possible without the e�orts ofmy co-authors Miklos Ajtai, Cynthia Dwork, Will Hurwood, and Orli Waarts.7 The technique of comparative analysis [KP94] might seem to be the right an-swer to these problems. Comparative analysis measures the value of information bycomparing the best algorithms in two \information regimes" (e.g., paging algorithmswith l-lookahead versus paging algorithms with no lookahead). A complication, fromthe point of view of someone trying to construct algorithms, is that the de�nitionof comparative analysis assumes that the algorithm in the weaker class is chosenonly after the algorithm in the stronger class is known. This does not prevent thestronger algorithm from knowing at birth bizarrely detailed properties of the requestsequence (for example, a paging algorithm might know that if page 127 is requested�rst, the remainder of the request sequence includes twice as many even as odd-numbered pages); it just means that some hypothetical weaker algorithm may knowthese properties too. Thus comparative analysis is the opposite of what we want:instead of taking away the implausible knowledge of the o�-line algorithm, it merelyadds to the implausible knowledge of its on-line competitor.
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