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Counters

Our goal: build a cheap
counter for an asynchronous
shared-memory system.

Two operations: increment
and read.

Read returns number of
previous increments.
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Model

Processes can read and write
shared atomic registers.

Read on an atomic register
returns value of last write.

Timing of operations is
controlled by an adversary.

Cost of a high-level
operation is number of
low-level operations (register
reads and writes) used.
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Executions

Time

High-level operations are overlapping sequences of
low-level operations.

Wait-free if all high-level operations finish in finite time for
any interleaving.

Linearizable if all high-level operations look like they happen
atomically at some point in their execution interval.
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Executions

Time

1

3

2 4 5

High-level operations are overlapping sequences of
low-level operations.

Wait-free if all high-level operations finish in finite time for
any interleaving.

Linearizable if all high-level operations look like they happen
atomically at some point in their execution interval.
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Implementing a counter

Each process writes its
increments so far to a
separate register.

To read the counter, read all
registers and add them up.

Sum always includes writes
that finish before read

Cost: 1 for write, n − 1 for
read.

Also works for other
combining functions (e.g.,
max instead of sum).
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Properties of the collect-based counter

Easy to show that it’s wait-free: counter reads and writes are
always 1 and n − 1 operations each.

Can also show linearizability:

For a counter increment, linearization point is time of its
low-level write.
For a counter read that returns k , linearization point is either
the start of the counter read, or just after the k-th increment,
whichever comes later.
This works because a counter read that starts after k
increments always returns at least k , while a counter read that
finishes before k ′ increments always returns less than k ′.

But: still too expensive.
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Lost update problem

What if we try to use fewer
registers?

Two processes must write to
same register.

First write is lost.

Second write may be very
out-of-date.

This is the lost update
problem.

Usually solved with locks
(not wait-free) or stronger
low-level objects (we don’t
have them).

3 1
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Avoiding lost updates

Can we get around the lost update problem?

No. (Jayanti, Tan, and Toeug, 2000):

Any deterministic solo-terminating1 implementation of a
perturbable object2 from registers3 requires at least n − 1
space and n − 1 register operations for some high-level
operation in the worst case.

1includes wait-free implementations
2includes counters
3or various other primitives
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JTT lower bound: intuition

Consider sequence of
registers read by
(deterministic) counter read.

Build an execution where
each of these registers is
covered by a delayed write
from an old increment.

New increment must write
to new register.

Delay that write to cover
another register.

Continue until n − 1
registers covered.

1

3

2

November 18th, 2009 Max Registers, Counters and Monotone Circuits



Counters
Max registers

Monotone circuits
Conclusion

Model
Collects
Lower bound

JTT lower bound: intuition

Consider sequence of
registers read by
(deterministic) counter read.

Build an execution where
each of these registers is
covered by a delayed write
from an old increment.

New increment must write
to new register.

Delay that write to cover
another register.

Continue until n − 1
registers covered.

1
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JTT lower bound: details

Bad execution ΛiΣiΠi is constructed inductively:

Λi = λ1λ2 . . . λi consists of high-level operations by processes
1 through n − 1, some of which are incomplete.

Σi = σ1σ2 . . . σi delivers pending write operations to distinct
registers.

Πi is a counter read operation by process n that reads all
registers written in Σi .
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JTT lower bound: more details

We are building an execution

ΛiΣiΠi = λ1λ2 . . . λiσ1σ2 . . . σiΠi

where Σi writes to i distinct registers, all read by Πi .

Basis: Λ0Σ0 is empty.

Induction step:
Consider all sequences γ of operations by processes < n and
not in Σi such that the reader returns different values after
ΛiγΣi and ΛiΣi . (Perturbable = some such sequence exists.)
Each of these must write to some uncovered register r . Choose
the r that is read by the reader first and a γ that writes to it.
Write γ = λ′

i+1σi+1τi+1 where σi+1 writes to r .
Let λi+1 extend λ′

i+1 by finishing all other pending operations.

At end of induction, Πn−1 reads ≥ n − 1 distinct registers.
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We are doomed!

Nobody is going to pay n − 1 operations to read a counter.

But wait: maybe there is a way around JTT.
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Max registers

Max register read operation
returns the maximum value
ever written to it.

Solves the lost update
problem: writes are
(effectively) ordered by
value, not time.

Easy implementation using
collects: read all registers
and compute max.

Problem: max registers are
perturbable, so JTT applies
to them too.

7

1

3

6

7

November 18th, 2009 Max Registers, Counters and Monotone Circuits



Counters
Max registers

Monotone circuits
Conclusion

Max registers
Bounded max registers
Lower bound

Bounded max registers

We will escape JTT by considering bounded max registers.

2-valued max register =
1-bit atomic register.

Write(v) operation: If
v = 1, write 1, else do
nothing.

Read operation: Just read
the register.

Trivially wait-free and
linearizable.

0

read0

write(0)
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Bounded max registers

We will escape JTT by considering bounded max registers.

2-valued max register =
1-bit atomic register.

Write(v) operation: If
v = 1, write 1, else do
nothing.

Read operation: Just read
the register.

Trivially wait-free and
linearizable.

1

read

write(1)

1

write(0)
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Tree-based max registers

Multiplex two max registers
through one selector bit.

Left register holds values
0 . . . t − 1.

Right register holds values
≥ t. 0..(t−1) t..(m−1)
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Tree-based max registers

Multiplex two max registers
through one selector bit.

Left register holds values
0 . . . t − 1.

Right register holds values
≥ t.

To write k :

If k < t, read selector bit
first: if 0, write k to left
register (else do nothing).
If k ≥ t, write k − t to
right register, then write 1
to selector bit.

0..(t−1) t..(m−1)

?
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Tree-based max registers

Multiplex two max registers
through one selector bit.

Left register holds values
0 . . . t − 1.

Right register holds values
≥ t.

To write k :

If k < t, read selector bit
first: if 0, write k to left
register (else do nothing).
If k ≥ t, write k − t to
right register, then write 1
to selector bit.

0..(t−1) t..(m−1)

1
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Tree-based max registers

Multiplex two max registers
through one selector bit.

Left register holds values
0 . . . t − 1.

Right register holds values
≥ t.

To read the register: If
selector = 0, return
read(left), else return
read(right)+t.

0..(t−1) t..(m−1)

?

November 18th, 2009 Max Registers, Counters and Monotone Circuits



Counters
Max registers

Monotone circuits
Conclusion

Max registers
Bounded max registers
Lower bound

Linearizability

Claim: If child registers are linearizable, so is combined
register.

Proof: By constructing an explicit linearization.
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Linearizability (continued)

Two categories of operations, based on value of the selector
bit:

0 1

Read left Read right
Write left Write right

Don’t write left

Linearize column 0 before column 1.

Within each column, linearize operations using linearization
order for left/right registers.

This omits no-op writes. These have no effect, so put them
anywhere consistent with timing.
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Cost of bounded max register

Cost of read and write =
depth of tree.

For m-valued max register,
use balanced tree of depth
dlg me.
If m ≥ 2n−1, use collects
instead.

Cost: min(dlg me , n − 1). 0/1 2/3 4/5 6/7
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Cost of unbounded max register

Use unbalanced tree to
make cost of write/read
proportional to value v .

Simplest scheme is to have
left register double in size at
each level.

More efficient trees can be
derived from prefix-free
codes. (Bentley and Yao,
1976)

Cost of operations:
O(min(lg(v + 1), n)) where
v is value written (or read).

0..1

6..13

14..29

2..5

30+
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Lower bound for max registers

Is there a lower bound for bounded max registers?

Yes: And it exactly matches the min(dlg me , n − 1) upper
bound from the tree-based construction.

Even stronger: given any solo-terminating, linearizable max
register, we can extract an equally good tree-based max
register from it.
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Lower bound: details

Consider executions consisting of (a) max-register writes Λ
(possibly incomplete) by processes 1 through n − 1 followed
by (b) a single max-register read Π by process n. Let T (m, n)
be optimal reader cost for executions with this structure with
m values.

Let r be the first register read by process n.

Let Sk be the set of all sequences of writes that only write
values ≤ k.

Let t be the smallest value such that some execution in St

writes to r .
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Lower bound: two cases

Recall: r is first register read by process n, t is smallest value such
that some execution α, with max value t, writes to r .
First case:

Since t is smallest, no execution in St−1 writes to r .

If we restrict writes to values ≤ t − 1, we can omit reading r .

Thus, T (t, n) ≤ T (m, n)− 1⇒ T (m, n) ≥ T (t, n) + 1
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Lower bound: two cases

Recall: r is first register read by process n, t is smallest value such
that some execution α, with max value t, writes to r .
Second case:

Split α as α′δβ where δ is first write to r , by some process pi .

Construct a new execution α′ν by letting all max-register
writes except the one performing δ finish.

Now consider any execution α′νγδ, where γ is any sequence
of max-register writes with values ≥ t that excludes pi and pn.

Reader always sees the same value in r following these
executions, but otherwise (starting after α′ν) we have an
(n − 1)-process max-register with values t through m − 1.

Omit read of r to get T (m, n) ≥ T (m − t, n − 1) + 1.
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Lower bound: recurrence

We’ve shown this recurrence:

T (m, n) ≥ 1 + min
t

(max (T (t, n),T (m − t, n − 1))) .

T (1, n) = 0.

T (m, 1) = 0.

Solution is exactly T (m, n) = min (dlg me , n − 1).

Also gives same recursive split as tree-based implementation.

Same argument works for m-valued counters.

November 18th, 2009 Max Registers, Counters and Monotone Circuits



Counters
Max registers

Monotone circuits
Conclusion

Counter circuits
Other circuits

From max-registers to counters

Now that we understand max-registers, how does this help us
with counters?

November 18th, 2009 Max Registers, Counters and Monotone Circuits



Counters
Max registers

Monotone circuits
Conclusion

Counter circuits
Other circuits

Counting with one incrementer

1-incrementer counter = one
atomic register.

Increment operation:
r ← r + 1.

Read operation: Just read
the register.

Trivially wait-free and
linearizable.

read

inc

read

read

9
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Counter with more incrementers

Combine two k-incrementer
counters to get a
2k-incrementer counter.

Max register at root holds
C1 + C2.

Increment operation:
1 Increment Ci .
2 Read C1 and C2.
3 Store C1 + C2 in max

register.

Read operation: just read
the root.

p1..pk p(k+1)..p(2k)

38

+

12 26
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Linearizability

Root register is max register and thus monotone increasing.

Root register never exceeds C1 + C2.

Each increment can be assigned the value of C1 + C2 when it
finishes its sub-counter increment.

The i-th increment writes at least i to root before it finishes.

The i-th increment can be linearized at the first time a value
≥ i is written to root (sort by i if there are ties).
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Cost

Increment operation uses O(log n) max-register operations.

Read operations uses 1 max-register read.

So an m-valued counter costs O(log n log m) for an increment
and O(log m) for a read.

For polynomial m, this is O(log2 n) and O(log n).

Read cost is tight (max register lower bound extends to
counters).

Write cost might not be tight.
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General monotone circuits

Same construction as used
for counter works for any
monotone combining
functions.

Update operation:
1 Update Ci .
2 Read C1 and C2.
3 Store f (C1,C2) in max

register.

Also works for non-trees if
we propagate in the right
order.

Result is generally not
linearizable.

1226

12 26

f
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Examples

Generalized counters:

f (x , y) = x + y .
But no requirement that incrementers increase inputs by just 1.

Approximate counters:

f (x , y) =
⌈
log1+ε((1 + ε)x + (1 + ε)y )

⌉
.

These reduce the size of the intermediate max registers (and
thus the cost of updates).

Threshold objects:

Like a generalized counter, but final output is just < t or ≥ t.
Linearizable.
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Monotone consistency

If general monotone circuits aren’t linearizable, what good are
they?

Monotone consistency:

Output is non-decreasing.
Output is always as least as big as it should be:
r ≥ f (x1 . . . xn), where x1 . . . xn are values of all updates that
finish before the read starts.
Output is never bigger than it should be: r ≤ f (X1 . . .Xn),
where X1 . . .Xn are values of all updates that start before the
read finishes.

This is good enough for testing thresholds.
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What we have

New max register data structure with an optimal
implementation from atomic registers.

New implementation of bounded counters with
polylogarithmic operations.

General method for replacing linear-time collects and
snapshots with polylogarithmic-time circuits, when computing
monotone summary functions.

For more details, see our paper in PODC 2009.
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Open problems

Can we reduce the cost of a counter write?

Does randomization help?

Lower bound: If writes cost at most w , randomized reads cost
Ω(log n/(log w + log log n)) operations with probability
1− o(1).
Not clear if this is tight.

Can we improve the monotone circuit construction?

A fast snapshot operation on pairs of max registers could give
us linearizability instead of monotone consistency.
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