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Yale University

June 30th, 2005

DCOSS 2005, Los Angeles, California, June 30th, 2005 Stably Computable Properties of Network Graphs



Topology of sensor networks
Population protocols
Protocols on graphs

Getting organized
Is it practical?

Topology of sensor networks

Consider a sensor network with radio communication
between nearby sensors.

For some applications, we need to compute sensor positions
(localization).

But for other applications, computing the topology of the
network may be enough.

Our question is: how much can we learn about the topology with
extremely limited memory at each node and no built-in identities?
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Why no identities is a problem

Every day, a neighbor rings my doorbell.

Is it one neighbor who keeps coming back or many neighbors who
take turns?
For a finite-state machine, it’s hard to remember.
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Population protocols

A population
protocol [AAD+04] consists
of a collection of
finite-state nodes
organized in an interaction
graph.

An interaction between two
neighbors updates the state
of both nodes according to a
joint transition function.

Interactions are asymmetric:
one node is the initiator
and one the responder.

Example: Leader Election

= leader
= non-leader

, → ,
, → ,
, → ,
, → ,
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Stable computations

Input map converts inputs
(at each agent) to initial
states.

Output map extracts
outputs from states.

Fairness condition enforces
that any reachable state is
eventually reached.

A stable computation
converges to the same
output at all nodes.

Example: Parity

In:
x → x∗

Out:
x → x

x∗ → x

0∗, 0∗ → 0, 0∗
0∗, 1∗ → 1, 1∗
1∗, 0∗ → 1, 1∗
1∗, 1∗ → 0, 0∗
x , y∗ → y∗, y
x∗, y → x , x∗

0*

1*

0*

1*
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Presburger predicates

Population protocols on connected graphs can stably compute all
of first-order Presburger arithmetic on counts of input letters,
including

Addition

Subtraction

Multiplication by a constant k

Remainder mod k

> k, < k, = k

∧, ∨, ¬, ∀x , ∃x , applied to above.

Shown for fixed inputs in [AAD+04]. Still true even if inputs are
not fixed, but converge after some finite time [current paper].
Conjecture: In a complete interaction graph, this is it.
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Leaders and followers
Distance-2 colorings

Protocols on graphs

Counting input tokens tells us nothing about the graph.
Should we care?

Detecting graph structure may tell us something about node
locations.

Some graphs may give more computational power. For
example, nodes in a line can be organized into a cellular
automaton (equivalent in power to a Turing machine!)
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Leaders and followers
Distance-2 colorings

Leaders and followers

Generate a single wandering
leader token as in parity
protocol.

Leader deploys followers to
mark out subgraphs.

When two leaders collide,
survivor cleans up extra
followers.

Example: Computing degrees

Leader ( ) obtains lower bound on
degree by placing followers ( ) on
adjacent nodes.
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Distance-2 colorings

In bounded-degree graphs,
we can color the nodes so
that all neighbors of any
given node have different
colors, giving a distance-2
coloring.

Colors act as local
identifiers, allowing a node
to point to particular
neighbors.

Colorizer agent walks
around replacing forbidden
colors.

Example: Distance-2 coloring
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Spanning trees

Can build a spanning tree
starting at some unique
root.

Assumes we already have a
distance-2 coloring.

Solution: build tree in
parallel with coloring, reset
tree builder whenever a node
changes color.

Example: Spanning tree
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Building a tree
Distributed computation

Distributed computation

Unroll DFS traversal of spanning tree to get a linear Turing
machine tape. [IL94]

⇒ bounded-degree graph can compute all of LINSPACE.
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Is it practical?

Population protocol model simplifies away many details of real
systems.

Two-way interactions may be unrealistic.

Node failures are assumed not to occur.

Running forever will run down batteries.

Problem is to incorporate more realism without losing simplicity.
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Is it practical?

Algorithms have poor performance even if we assume
non-adversarial interaction pattern.

No performance analysis (yet).

Wandering leaders may require O(n3) cover time to visit all
nodes.

Unique leader/colorizer/walker agents are bottlenecks.

Perhaps we can do better using a dominating-set approach as in
ad-hoc networks.
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