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Abstract. We consider a scenario in which anonymous, finite-state sens-
ing devices are deployed in an ad-hoc communication network of arbi-
trary size and unknown topology, and explore what properties of the
network graph can be stably computed by the devices. We show that
they can detect whether the network has degree bounded by a constant
d, and, if so, organize a computation that achieves asymptotically opti-
mal linear memory use. We define a model of stabilizing inputs to such
devices and show that a large class of predicates of the multiset of final
input values are stably computable in any weakly-connected network.
We also show that nondeterminism in the transition function does not
increase the class of stably computable predicates.

1 Introduction

In some applications, a large number of sensors will be deployed without fine
control of their locations and communication patterns in the target environment.
To enable the distributed gathering and processing of information, the sensors
must constitute themselves into an ad-hoc network and use it effectively. A fun-
damental question in this context is whether there are protocols that determine
enough about the topological properties of this network to exploit its full po-
tential for distributed computation, when sensors are severely limited in their
computational power.

We consider a model introduced in [1] in which communication is represented
by pairwise interactions of anonymous finite-state devices in networks of finite
but unbounded size. These systems correspond to sensor networks with inter-
mittent two-way communications between nearby nodes. A communication
graph describes which pairs of nodes are close enough to eventually interact.
Our goal is to explore what graph-theoretic properties of the communication
graph are stably computable, where a property is stably computable if all
sensors eventually converge to the correct answer. The model assumes that the
devices have no identifiers and only a few bits of memory each. Because each
device is so limited, their collective ability to achieve nontrivial computation
must be based on their capacity to organize a distributed computation in the
network.

In this setting, the structure of the network has a profound influence on its
computational potential. If n is the number of vertices in the communication
graph, previous results show that O(log n) bits of memory are sufficient for a



nondeterministic Turing machine to simulate any protocol in the all-pairs com-
munication graph, in which every pair of vertices is joined by an edge [1]. In
contrast, we give a protocol that can determine whether the communication
graph is a directed cycle and if so, use it as a linear memory of O(n) bits, which
is asymptotically optimal in terms of memory capacity. More generally, we show
that for every d there is a protocol that can organize any communication graph
of maximum degree d into a linear memory of O(n) bits, also asymptotically
optimal.

For general communication graphs, we show that any property that is de-
termined by the existence of a fixed finite subgraph is stably computable, as
are Boolean combinations of such properties. In addition, there are protocols to
compute the following graph properties: whether the communication graph G
is a directed star, whether G is a directed arborescence, whether G contains a
directed cycle, and whether G contains a directed cycle of odd length. Further-
more, for any positive integer d, there is a protocol that stabilizes to a proper
d-coloring of any d-colorable graph, but does not stabilize if the graph is not
d-colorable.

In the model of [1], the sensor readings were all assumed to be available as
inputs at the start of the computation. In this paper, we extend the model to
allow for a more realistic scenario of stabilizing inputs, that may change finitely
many times before attaining a final value. In addition to allowing fluctuations
in the inputs, these results allow composition of stabilizing protocols: a protocol
that works with stabilizing inputs can use the stabilizing outputs of another
protocol. We generalize two fundamental theorems to the case of stabilizing
inputs: all the Presburger-definable predicates are stably computable in the
all-pairs graph, and any predicate stably computable in the all-pairs graph is
stably computable in any weakly connected graph with the same number of
nodes.

Another powerful tool for the design of protocols is to permit a nondetermin-
istic transition function; we give a simulation to show that this does not increase
the class of stably computable predicates.

1.1 Other related work

Population protocols and similar models as defined in [1–3] have connections to
a wide range of theoretical models and problems involving automata of various
kinds, including Petri nets [4–7], semilinear sets and Presburger expressions [8],
vector addition systems [9], the Chemical Abstract Machine [10, 11] and other
models of communicating automata [12,13]. See [1] for a more complete discus-
sion of these connections.

The potential for distributed computation during aggregation of sensor data
is studied in [14, 15], and distributed computation strategies for conserving re-
sources in tracking targets in [16, 17]. Issues of random mobility in a wireless
packet network are considered in [18].

Passively mobile sensor networks have been studied in several practical appli-
cation contexts. The smart dust project [19,20] designed a cloud of tiny wireless



microelectromechanical sensors (MEMS) with wireless communication capacity,
where each sensor or “mote” contains sensing units, computing circuits, bidirec-
tional wireless capacity, and a power supply, while being inexpensive enough to
deploy massively.

2 The model of stable computation

We represent a network communication graph by a directed graph G = (V,E)
with n vertices numbered 1 through n and no multi-edges or self-loops. Each
vertex represents a finite-state sensing device, and an edge (u, v) indicates the
possibility of a communication between u and v in which u is the initiator and
v is the responder.1 We assume G is weakly connected, that is, between any pair
of nodes there is a path (disregarding the direction of the edges in the path).
The all-pairs graph contains all edges (u, v) such that u 6= v.

We first define protocols without inputs, which is sufficient for our initial
results on graph properties, and extend the definition to allow stabilizing inputs
in Section 4.

A protocol consists of a finite set of states Q, an initial state q0 ∈ Q, an
output function O : Q → Y , where Y is a finite set of output symbols, and a
transition function δ that maps every pair of states (p, q) to a nonempty set
of pairs of states. If (p′, q′) ∈ δ(p, q), we call (p, q) 7→ (p′, q′) a transition.

The transition function, and the protocol, is deterministic if δ(p, q) always
contains just one pair of states. In this case we write δ(p, q) = (p′, q′) and define
δ1(p, q) = p′ and δ2(p, q) = q′.

A configuration is a mapping C : V → Q specifying the state of each
device in the network. We assume that there is a global start signal transmitted
simultaneously to all the devices, e.g., from a base station, that puts them all in
the initial state and starts the computation. The initial configuration assigns
the initial state q0 to every device.

Let C and C ′ be configurations, and let u, v be distinct nodes. We say that
C goes to C ′ via pair e = (u, v), denoted C

e→ C ′, if the pair (C ′(u), C ′(v)) is in
δ(C(u), C(v)) and for all w ∈ V −{u, v} we have C ′(w) = C(w). We say that C

can go to C ′ in one step, denoted C → C ′, if C
e→ C ′ for some edge e ∈ E. We

write C
∗→ C ′ if there is a sequence of configurations C = C0, C1, . . . , Ck = C ′,

such that Ci → Ci+1 for all i, 0 ≤ i < k, in which case we say that C ′ is
reachable from C.

A computation is a finite or infinite sequence of population configurations
C0, C1, . . . such that for each i, Ci → Ci+1. An infinite computation is fair if
for every pair of population configurations C and C ′ such that C → C ′, if C
occurs infinitely often in the computation, then C ′ also occurs infinitely often
in the computation. We remark that by induction, if C

∗→ C ′ and C occurs

1 The distinct roles of the two devices in an interaction is a fundamental assumption of
asymmetry in our model; symmetry-breaking therefore does not arise as a problem
within the model.



infinitely often in a fair computation, then C ′ also occurs infinitely often in a
fair computation.

2.1 Leader election

As an example, we define a simple deterministic leader election protocol that
succeeds in any network communication graph. The states of the protocol are
{1, 0} where 1 is the initial state. The transitions are defined by

(1) (1, 1) 7→ (0, 1)
(2) (1, 0) 7→ (0, 1)
(3) (0, 1) 7→ (1, 0)
(4) (0, 0) 7→ (0, 0)

We think of 1 as the leader mark. In every infinite fair computation of this
protocol starting with the initial configuration in any communication graph,
after some finite initial segment of the computation, every configuration has
just one vertex labeled 1 (the leader), and every vertex has label 1 in infinitely
many different configurations of the computation. Thus, eventually there is one
“leader” mark that hops incessantly around the graph, somewhat like an ancient
English king visiting the castles of his lords. Note that in general the devices
have no way of knowing whether a configuration with just one leader mark has
been reached yet.

2.2 The output of a computation

Our protocols are not designed to halt, so there is no obvious fixed time at
which to view the output of the computation. Rather, we say that the output
of the computation stabilizes if it reaches a point after which no device can
subsequently change its output value, no matter how the computation proceeds
thereafter. Stability is a global property of the graph configuration, so individual
devices in general do not know when stability has been reached.2

We define an output assignment y as a mapping from V to the output
symbols Y . We extend the output map O to take a configuration C and produce
an output assignment O(C) defined by O(C)(v) = O(C(v)). A configuration
C is said to be output-stable if O(C ′) = O(C) for all C ′ reachable from C.
Note that we do not require that C = C ′, only that their output assignments be
equal. An infinite computation output-stabilizes if it contains an output-stable
configuration C, in which case we say that it stabilizes to output assignment
y = O(C). Clearly an infinite computation stabilizes to at most one output
assignment.

2 With suitable stochastic assumptions on the rate at which interactions occur, it is
possible to bound the expected number of interactions until the output stabilizes, a
direction explored in [1].



The output of a finite computation is the output assignment of its last con-
figuration. The output of an infinite computation that stabilizes to output as-
signment y is y; the output is undefined if the computation does not stabilize to
any output assignment. Because of the nondeterminism inherent in the choice
of encounters, the same initial configuration may lead to different computations
that stabilize to different output assignments.

2.3 Graph properties

We are interested in what properties of the network communication graph can
be stably computed by protocols in this model. A graph property is a func-
tion P from graphs G to the set {0, 1} where P (G) = 1 if and only if G has
the corresponding property. We are interested in families of graphs, G1,G2, . . .,
where Gn is a set of network graphs with n vertices. The unrestricted family
of graphs contains all possible network communication graphs. The all-pairs
family of graphs contains for each n just the all-pairs graph with n vertices.
For every d, the family of d-degree-bounded graphs contains all the network
communication graphs in which the in-degree and out-degree of each vertex is
bounded by d. Similarly, the family of d-colorable graphs contains all the net-
work communication graphs properly colorable with at most d colors.

We say that a protocol A stably computes the graph property P in the
family of graphs G1,G2, . . . if for every graph G in the family, every infinite fair
computation of A in G starting with the initial configuration stabilizes to the
constant output assignment equal to P (G). Thus the output of every device
stabilizes to the correct value of P (G).

3 Example: is G a directed cycle?

In this section, we show that the property of G being a directed cycle is stably
computable in the unrestricted family of graphs. Once a directed cycle is recog-
nized, it can be organized (using leader-election techniques) to simulate a Turing
machine tape of n cells for the processing of inputs, which vastly increases the
computational power over the original finite-state devices, and is optimal with
respect to the memory capacity of the network.

Theorem 1. Whether G is a directed cycle is stably computable in the unre-
stricted family of graphs.

Proof sketch: A weakly connected directed graph G is a directed cycle if
and only if the in-degree and out-degree of each vertex is 1.

Lemma 1. Whether G has a vertex of in-degree greater than 1 is stably com-
putable in the unrestricted family of graphs.

We give a protocol to determine whether some vertex in G has in-degree at
least 2. The protocol is deterministic and has 4 states: {−, I, R, Y }, where − is



the initial state, I and R stand for “initiator” and “responder” and Y indicates
that there is a vertex of in-degree at least 2 in the graph. The transitions are
as follows, where x is any state and unspecified transitions do not change their
inputs:

(1) (−,−) 7→ (I,R)
(2) (I,R) 7→ (−,−)
(3) (−, R) 7→ (Y, Y )
(4) (Y, x) 7→ (Y, Y )
(5) (x, Y ) 7→ (Y, Y )

The output map takes Y to 1 and the other states to 0. State Y is contagious,
spreading to all states if it ever occurs. If every vertex has in-degree at most 1
then only transitions of types (1) and (2) can occur, and if some vertex has
in-degree at least 2, then in any fair computation some transition of type (3)
must eventually occur.

An analogous four-state protocol detects whether any vertex has out-degree
at least 2. We must also guarantee that every vertex has positive in-degree and
out-degree. The following deterministic two-state protocol stably labels each
vertex with Z if it has in-degree 0 and P if it has in-degree greater than 0. The
initial state is Z. The transitions are given by the following, where x and y are
any states:

(1) (x, y) 7→ (x, P )

To detect whether all states are labeled P in the limit, we would like to treat
the outputs of this protocol as the inputs to a another protocol to detect any
occurrences of Z in the limit. However, to do this, the protocol to detect any
occurrences of Z must cope with inputs that may change before they stabilize to
their final values. In the next section we show that all the Presburger predicates
(of which the problem of Z detection is a simple instance) are stably computable
with such “stabilizing inputs” in the unrestricted family of graphs, establishing
the existence of the required protocol.

Similarly, there is a protocol that stably computes whether every vertex has
out-degree at least 1. By running all four protocols in parallel, we may stably
compute the property: does every vertex have in-degree and out-degree exactly
1? Thus, there is a protocol that stably computes the property of G being a
directed cycle for the unrestricted family of graphs, proving Theorem 1.

These techniques generalize easily to recognize other properties characterized
by conditions on vertices having in-degrees or out-degrees of zero or one. A
directed line has one vertex of in-degree zero, one vertex of out-degree zero, and
all other vertices have in-degree and out-degree one. An out-directed star has
one vertex of in-degree zero and all other vertices of in-degree one and out-degree
zero, and similarly for an in-directed star. An out-directed arborescence has one
vertex of in-degree zero and all other vertices have in-degree one, and similarly
for an in-directed arborescence.

Theorem 2. The graph properties of being a directed line, a directed star, or a
directed arborescence are stably computable in the unrestricted family of graphs.



In a later section, we generalize Theorem 1 to show that for any d there is a
protocol to recognize whether the network communication graph has in-degree
and out-degree bounded by d and to organize it as O(n) cells of linearly ordered
memory if so. We now turn to the issue of inputs.

4 Computing with stabilizing inputs

We define a model of stabilizing inputs to a network protocol, in which the
input to each node may change finitely many times before it stabilizes to a final
value. We are interested in what predicates of the final input assignment are
stably computable. An important open question is whether any predicate stably
computable in a family of graphs is stably computable with stabilizing inputs in
the same family of graphs.

Though we do not fully answer this question, we show that a large class
of protocols can be adapted to stabilizing inputs by generalizing two theorems
from [1] to the case of stabilizing inputs: all Presburger predicates are stably
computable with stabilizing inputs in the all-pairs family of graphs, and any
predicate that can be stably computed with stabilizing inputs in the all-pairs
family of graphs can be stably computed with stabilizing inputs in the unre-
stricted family of graphs.

We assume that there is a finite set of input symbols, and each device has
a separate input port at which its current input symbol (representing a sensed
value) is available at every computation step. Between any two computation
steps, the inputs to any subset of the devices may change arbitrarily.

In the full paper, we define formally an extension of the basic stable com-
putation model that permits protocols with stabilizing inputs. This extension is
used to prove several results concerning such protocols, including:

Lemma 2. Any Boolean combination of a finite set of predicates stably com-
putable with stabilizing inputs in a family of graphs G1,G2, . . . is stably computable
with stabilizing inputs in the same family of graphs.

Theorem 3. For every nondeterministic protocol A there exists a deterministic
protocol B such that if A stably computes a predicate P with stabilizing inputs
in a family of graphs, then B also stably computes P with stabilizing inputs in
the same family of graphs.

4.1 The Presburger predicates

The Presburger graph predicates form a useful class of predicates on the multiset
of input symbols, including such things as “all the inputs are a’s”, “at least 5
inputs are a’s”, “the number of a’s is congruent to 3 modulo 5”, and “twice the
number of a’s exceeds three times the number of b’s” and Boolean combinations
of such predicates. Every Presburger graph predicate is stably computable with
unchanging inputs in the all-pairs family of graphs [1].



We define the Presburger graph predicates as those expressible in the follow-
ing expression language.3 For each input symbol a ∈ X, there is a variable #(a)
that represents the number of occurrences of a in the input. A term is a linear
combination of variables with integer coefficients, possibly modulo an integer.
An atom is two terms joined by one of the comparison operators: <,≤,=,≥, >.
An expression is a Boolean combination of atoms.

Thus, if the input alphabet X = {a, b, c}, the predicate “all the inputs are
a’s” can be expressed as #(b) + #(c) = 0, the predicate that the number of
a’s is congruent to 3 modulo 5 can be expressed as (#(a) mod 5) = 3, and the
predicate that twice the number of a’s exceeds three times the number of b’s by
2#(a) > 3#(b).

In the full paper, we show:

Theorem 4. Every Presburger graph predicate is stably computable with stabi-
lizing inputs in the family of all-pairs graphs.

Theorem 5. For any protocol A there exists a protocol B such that for every
n, if A stably computes predicate P with stabilizing inputs in the all-pairs inter-
action graph with n vertices and G is any communication graph with n vertices,
protocol B stably computes predicate P with stabilizing inputs in G.

The following corollary is an immediate consequence of Theorems 4 and 5.

Corollary 1. The Presburger predicates are stably computable with stabilizing
inputs in the unrestricted family of graphs.

5 Computing in bounded-degree networks

In Section 3 we showed that there is a protocol that stably computes whether
G is a directed cycle. If G is a directed cycle, another protocol can organize a
Turing machine computation of space O(n) in the graph to determine properties
of the inputs. Thus, certain graph structures can be recognized and exploited to
give very powerful computational capabilities.

In this section we generalize this result to the family of graphs with degree
at most d.

Lemma 3. For every positive integer d, there is a protocol that stably computes
whether G has maximum degree less than or equal to d.

Proof sketch: We describe a protocol to determine whether G has any
vertex of out-degree greater than d; in-degree is analogous, and the “nor” of
these properties is what is required. The protocol is nondeterministic and based
on leader election. Every vertex is initially a leader and has output 0. Each
leader repeatedly engages in the following searching behavior. It hops around

3 These are closely related to the Presburger integer predicates defined in [1]. Details
will be given in the full paper.



the vertices of G and decides to check a vertex by marking it and attempting
to place d + 1 markers of a second type at the ends of edges outgoing from the
vertex being checked. It may decide to stop checking, collect a set of markers
corresponding to the ones it set out, and resume its searching behavior. If it
succeeds in placing all its markers, it changes its output to 1, hops around the
graph to collect a set of markers corresponding to the ones it set out, and resumes
its searching behavior.

When two leaders meet, one becomes a non-leader, and the remaining leader
collects a set of markers corresponding to the ones that both had set out, changes
its output back to 0, and resumes its searching behavior. Non-leaders copy the
output of any leader they meet.

After the leader becomes unique and collects the set of markers that it and
the last deposed leader had set out, then the graph is clear of markers and
the unique leader resumes the searching behavior with its output set to 0. If
there is no vertex of out-degree greater than d, the output will remain 0 (and
will eventually be copied by all the non-leaders.) If there is some vertex of out-
degree greater than d, the searching behavior eventually finds it and sets the
output to 1, which will eventually be copied by all the non-leaders.

Note that this technique can be generalized (using a finite collection of dis-
tinguishable markers) to determine the existence of any fixed subgraph in G.
(For the lemma, the fixed subgraph is the out-directed star on d + 2 vertices.)
Another variant of this idea (mark a vertex and try to reach the mark by follow-
ing directed edges) gives protocols to determine whether G contains a directed
cycle or a directed odd cycle.

Theorem 6. There are protocols that stably compute whether G contains a fixed
subgraph, or a directed cycle, or a directed cycle of odd length in the unrestricted
family of graphs.

For bounded-degree graphs, we can organize the nodes into a spanning tree
rooted at a leader, which can then simulate a Turing machine tape of size O(n)
distributed across the nodes. This allows a population with a bounded-degree
interaction graph to compute any function of the graph structure that is com-
putable in linear space.

Theorem 7. For every positive integer d, there is a protocol that for any d-
bounded graph G stably constructs a spanning tree structure in G that can be
used to simulate n cells of Turing machine tape.

Proof sketch: The protocol is rather involved; details are deferred to the
full paper. We give an outline of the protocol here.

The starting point is to label the vertices of G in such a way that no two
neighbors of any vertex have the same label. A vertex can then send messages to
a specific neighbor by waiting to encounter another vertex with the appropriate
label.

To see that such a labeling exists, consider the graph G′ obtained from G by
ignoring the direction of edges and including an edge between any two nodes at



distance 2 in G. A proper coloring of G′ will give the required labeling of G, and
the degree of G′ is at most 4d2, so G′ can be colored with 4d2 + 1 colors.

One part of the protocol eventually constructs a labeling of the desired kind
by using leader election and a searching behavior that attempts to find two
vertices at distance two that have the same label and nondeterministically relabel
both. Eventually there will be no more relabeling.

The other part of the protocol attempts to use the constructed labeling to
build a spanning tree structure in G. This is also based on leader election. Each
leader begins building a spanning tree from the root, recording in each vertex
the labels of the known neighbors of the vertex, and designating (by label) a
parent for each non-root vertex. The leader repeatedly traverses its spanning tree
attempting to recruit new vertices. When it meets another leader, one becomes
a non-leader and the other begins building a new spanning tree from scratch.

The labeling portion of the protocol is running in parallel with the tree-
construction, and it produces a “restart” marker whenever it relabels vertices.
When a leader encounters a “restart” marker, it deletes the marker and again
begins building a new spanning tree from scratch.

Eventually all the relabeling will be completed, and only one leader will re-
main, and the final spanning tree construction will not be restarted. However,
it is important that the spanning tree construction be able to succeed given
a correct labeling but otherwise arbitrary states left over from preceding span-
ning tree construction attempts. The leader repeatedly traverses the constructed
spanning tree, setting a phase indicator (0 or 1) at each pass to detect vertices
that are not yet part of the tree. An arbitrary ordering on the labels gives a
fixed traversal order for the spanning tree, and a portion of each state can be
devoted to simulating a Turing machine tape cell.

Because a leader cannot determine when it is unique, when the labeling is
stable, or when the spanning tree is complete, it simply restarts computation in
the tree each time it begins rebuilding a spanning tree. Eventually, however, the
computation has access to n simulated cells of tape.

Itkis and Levin use a similar construction in their self-stabilizing protocols
for identical nameless nodes in an asynchronous communication network (repre-
sented by an undirected, connected, reflexive graph G) with worst-case transient
faults [21]. In their model, in addition to a finite number of bits of storage, each
node x maintains a finite set of pointers to itself and its neighbors, and can
detect whether a neighbor y has a pointer to x and/or y, and can set a pointer
to point to the first (in a fixed ordering) neighbor with a given property. This
additional information about the graph structure permits them to exploit stor-
age O(|V |) in all cases. By comparison, in our model there are no pointers and
each device truly has only a constant amount of memory regardless of the size
and topology of the network. For this reason, in an all-pairs graph of size n, only
memory proportional to log n is achievable. So the bounded-degree restriction of
Theorem 7, or some other limitation that excludes the all-pairs graph, appears
to be necessary.



6 Discussion and open problems

It is open whether every predicate stably computable with unchanging inputs in
a family of graphs is stably computable with stabilizing inputs in the same family
of graphs. For the family of all-pairs graphs, both classes contain the Presburger
predicates. It follows that if, in this family, some predicate is stably computable
with unchanging inputs but not with stabilizing inputs, that predicate would
not be Presburger. The existence of such a predicate would disprove a conjecture
from [1].

A natural measure of the information-theoretic memory capacity of a graph
G with a finite set of vertex labels L is the log of number of different isomorphism
classes of G with vertex labels drawn from L. If L has at least two elements,
the all-pairs graphs have memory capacity Θ(log n), which can be exploited for
computation in the setting of randomized interactions and computation with
errors [1]. When the cardinality of L is large enough compared to d (O(d2) suf-
fices), the memory capacity of d-degree bounded graphs is Θ(n), which we have
shown above can be exploited by protocols for stable computation. Are there
protocols to exploit the full-information theoretic memory capacity of arbitrary
network communication graphs?

An important future direction is to study the running time of protocols in
this model, perhaps under a stochastic model of pairwise interactions, as in the
model of conjugating automata [1].
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