Fast Computation by Population Protocols
With a Leader

Dana Angluin (Yale)
James Aspnes (Yale)
David Eisenstat (Rochester/Princeton)

September 18th, 2006

DISC 2006, September 18th, 2006 Population Protocols With a Leader

Population protocols
Population protocols Motivation

Stable computations

Stably computable predicates

What'’s next?

Population protocols

@ A population protocol
(Angluin, Aspnes, Diamadi,

Fischer, and Peralta, PODC e

2004) consists of a

. . . 0.0 00
collection of finite-state ’ ’
. . e — leader 0.0 00
agents organized in an
. . e = non-leader 0,0 — 00
interaction graph.
0000

@ An interaction between two

neighbors updates the state /o\\

of both agents according to)
a joint transition function. \

@ Interactions are asymmetric:
one agent is the initiator

and one the responder.
DISC 2006, September 18th, 2006 Population Protocols With a Leader

Population protocols
Population protocols Motivation

Stable computations

Stably computable predicates

What'’s next?

Population protocols

@ A population protocol
(Angluin, Aspnes, Diamadi,

Fischer, and Peralta, PODC e

2004) consists of a

. . . 0.0 00
collection of finite-state ’ ’
. . e — leader 0.0 00
agents organized in an
. . e = non-leader 0,0 — 00
interaction graph.
0000

@ An interaction between two

neighbors updates the state /o\\

of both agents according to)
a joint transition function. \

@ Interactions are asymmetric:
one agent is the initiator

and one the responder.
DISC 2006, September 18th, 2006 Population Protocols With a Leader

Population protocols
Population protocols Motivation

Stable computations

Stably computable predicates

What'’s next?

Population protocols

@ A population protocol
(Angluin, Aspnes, Diamadi,

Fischer, and Peralta, PODC e

2004) consists of a

. . . 0.0 00
collection of finite-state ’ ’
. . e — leader 0.0 00
agents organized in an
. . e = non-leader 0,0 — 00
interaction graph.
0000

@ An interaction between two

neighbors updates the state /o\\

of both agents according to)
a joint transition function. \

@ Interactions are asymmetric:
one agent is the initiator

and one the responder.
DISC 2006, September 18th, 2006 Population Protocols With a Leader

Population protocols
Population protocols Motivation

Stable computations

Stably computable predicates

What'’s next?

Population protocols

@ A population protocol
(Angluin, Aspnes, Diamadi,

Fischer, and Peralta, PODC e

2004) consists of a

. . . 0.0 00
collection of finite-state ’ ’
. . e — leader 0.0 00
agents organized in an
. . e = non-leader 0,0 — 00
interaction graph.
0000

@ An interaction between two

neighbors updates the state /o\
\ .

of both agents according to)
a joint transition function. \

@ Interactions are asymmetric:
one agent is the initiator

and one the responder.
DISC 2006, September 18th, 2006 Population Protocols With a Leader

Population protocols
Population protocols Motivation

Stable computations

Stably computable predicates

What'’s next?

Population protocols

@ A population protocol
(Angluin, Aspnes, Diamadi,

Fischer, and Peralta, PODC e

2004) consists of a

. . . 0.0 00
collection of finite-state ’ ’
. . e — leader 0.0 00
agents organized in an
. . e = non-leader 0,0 — 00
interaction graph.
0000

@ An interaction between two

neighbors updates the state /o\\

of both agents according to)
a joint transition function. \

@ Interactions are asymmetric:
one agent is the initiator

and one the responder.
DISC 2006, September 18th, 2006 Population Protocols With a Leader

Population protocols
Population protocols Motivation

Stable computations

Stably computable predicates

What'’s next?

Population protocols

@ A population protocol
(Angluin, Aspnes, Diamadi,

Fischer, and Peralta, PODC e

2004) consists of a

. . . 0.0 00
collection of finite-state ’ ’
. . e — leader 0.0 00
agents organized in an
. . e = non-leader 0,0 — 00
interaction graph.
0000

@ An interaction between two

neighbors updates the state /o\/\

of both agents according to)
a joint transition function. \

@ Interactions are asymmetric:
one agent is the initiator

and one the responder.
DISC 2006, September 18th, 2006 Population Protocols With a Leader

Population protocols
Population protocols Motivation

Stable computations

Stably computable predicates

What'’s next?

Population protocols

@ A population protocol
(Angluin, Aspnes, Diamadi,

Fischer, and Peralta, PODC e

2004) consists of a

. . . 0.0 00
collection of finite-state ’ ’
. . e — leader 0.0 00
agents organized in an
. . e = non-leader 0,0 — 00
interaction graph.
0000

@ An interaction between two

neighbors updates the state /o\\

of both agents according to)
a joint transition function. \

@ Interactions are asymmetric:
one agent is the initiator

and one the responder.
DISC 2006, September 18th, 2006 Population Protocols With a Leader

Population protocols
Population protocols Motivation

Stable computations

Stably computable predicates

What'’s next?

Population protocols

@ A population protocol
(Angluin, Aspnes, Diamadi,

Fischer, and Peralta, PODC e

2004) consists of a

. . . 0.0 00
collection of finite-state ’ ’
. . e — leader 0.0 00
agents organized in an
. . e = non-leader 0,0 — 00
interaction graph.
0000

@ An interaction between two

neighbors updates the state /o\\

of both agents according to)

a joint transition function. \o

@ Interactions are asymmetric:
one agent is the initiator

and one the responder.
DISC 2006, September 18th, 2006 Population Protocols With a Leader

Population protocols
Population protocols Motivation

Stable computations

Stably computable predicates

What'’s next?

Population protocols

@ A population protocol
(Angluin, Aspnes, Diamadi,

Fischer, and Peralta, PODC e

2004) consists of a

. . . 0.0 00
collection of finite-state ’ ’
. . e — leader 0.0 00
agents organized in an
. . e = non-leader 0,0 — 00
interaction graph.
0000

@ An interaction between two

neighbors updates the state /o\\

of both agents according to)
a joint transition function. \

@ Interactions are asymmetric:
one agent is the initiator

and one the responder.
DISC 2006, September 18th, 2006 Population Protocols With a Leader

Population protocols
Population protocols Motivation

Stable computations

Stably computable predicates

What'’s next?

Population protocols

@ A population protocol
(Angluin, Aspnes, Diamadi,

Fischer, and Peralta, PODC e

2004) consists of a

. . . 0.0 00
collection of finite-state ’ ’
. . e — leader 0.0 00
agents organized in an
. . e = non-leader 0,0 — 00
interaction graph.
0000

@ An interaction between two

neighbors updates the state /o\&

of both agents according to)
a joint transition function. \

@ Interactions are asymmetric:
one agent is the initiator

and one the responder.
DISC 2006, September 18th, 2006 Population Protocols With a Leader

Population protocols
Population protocols Motivation

Stable computations

Stably computable predicates

What'’s next?

Population protocols

@ A population protocol
(Angluin, Aspnes, Diamadi,

Fischer, and Peralta, PODC e

2004) consists of a

. . . 0.0 00
collection of finite-state ’ ’
. . e — leader 0.0 00
agents organized in an
. . e = non-leader 0,0 — 00
interaction graph.
0000

@ An interaction between two

neighbors updates the state /o\\

of both agents according to)
a joint transition function. \

@ Interactions are asymmetric:
one agent is the initiator

and one the responder.
DISC 2006, September 18th, 2006 Population Protocols With a Leader

Population protocols
Population protocols Motivation

Stable computations

Stably computable predicates

What'’s next?

Why do we care?

@ Original official motivation: Sensor networks with really dumb
Sensors.

@ Revised official motivation: Chemical (especially biochemical)
systems.

@ Unofficial motivation: Cool mathematical structures that
might actually be useful.

DISC 2006, September 18th, 2006 Population Protocols With a Leader

Population protocols
Population protocols Motivation

Stable computations

Stably computable predicates

What'’s next?

Stable computations

@ Input map converts inputs

(at each agent) to initial In: O, 0% — 0, 0«
states. X — Xk 0%, 1x — 1, 1%
e Output map extracts Ik, 0% — 1, 1x
outputs from states. Out: 1%, 1% — 0, 0%
e Fairness condition enforces X=X X, Y% — ¥,y
that any reachable state is Xk — X

Xk, Y — X, X%
eventually reached.
@ A stable computation 1*
converges to the same 0* /\\\ 0*
1*

output at all agents.

DISC 2006, September 18th, 2006 Population Protocols With a Leader

Population protocols
Population protocols Motivation

Stable computations

Stably computable predicates

What'’s next?

Stable computations

@ Input map converts inputs

(at each agent) to initial In: O, 0% — 0, 0«
states. X — Xk 0%, 1x — 1, 1%
e Output map extracts Ik, 0% — 1, 1x
outputs from states. Out: 1%, 1% — 0, 0%
e Fairness condition enforces X=X X, Y% — ¥,y
that any reachable state is Xk — X

Xk, Y — X, X*
eventually reached.

@ A stable computation 1*
converges to tﬁe same 0* <\\ 0*
1*

output at all agents.

DISC 2006, September 18th, 2006 Population Protocols With a Leader

Population protocols
Population protocols Motivation

Stable computations

Stably computable predicates

What'’s next?

Stable computations

@ Input map converts inputs

(at each agent) to initial In: O, 0% — 0, 0«
states. X — Xk 0%, 1x — 1, 1%
e Output map extracts Ik, 0% — 1, 1x
outputs from states. Out: 1%, 1% — 0, 0%
e Fairness condition enforces X=X X, Y% — ¥,y
that any reachable state is Xk — X

Xk, Y — X, X*
eventually reached.
@ A stable computation 1*
converges to the same 1 <\\ 0*
1*

output at all agents.

DISC 2006, September 18th, 2006 Population Protocols With a Leader

Population protocols
Population protocols Motivation

Stable computations

Stably computable predicates

What'’s next?

Stable computations

@ Input map converts inputs

(at each agent) to initial In: O, 0% — 0, 0«
states. X — Xk 0%, 1x — 1, 1%
e Output map extracts Ik, 0% — 1, 1x
outputs from states. Out: 1%, 1% — 0, 0%
e Fairness condition enforces X=X X, Y% — ¥,y
that any reachable state is Xk — X

Xk, Y — X, X*
eventually reached.

@ A stable computation /1*
1 \0*
converges to the same \
1*

output at all agents.

DISC 2006, September 18th, 2006 Population Protocols With a Leader

Population protocols
Population protocols Motivation

Stable computations

Stably computable predicates

What'’s next?

Stable computations

@ Input map converts inputs

(at each agent) to initial In: O, 0% — 0, 0«
states. X — Xk 0%, 1x — 1, 1%
e Output map extracts Ik, 0% — 1, 1x
outputs from states. Out: 1%, 1% — 0, 0%
e Fairness condition enforces X=X X, Y% — ¥,y
that any reachable state is Xk — X

eventually reached.

o A stable computation /1\
converges to the same 1 \
output at all agents. \

DISC 2006, September 18th, 2006 Population Protocols With a Leader

1*

Population protocols
Population protocols Motivation

Stable computations

Stably computable predicates

What'’s next?

Stable computations

@ Input map converts inputs

(at each agent) to initial In: O, 0% — 0, 0«
states. X — Xk 0%, 1x — 1, 1%
e Output map extracts Ik, 0% — 1, 1x
outputs from states. Out: 1%, 1% — 0, 0%
e Fairness condition enforces X=X X, Y% — ¥,y
that any reachable state is Xk — X

Xk, Y — X, X*
eventually reached.

@ A stable computation 1
converges to the same 1 <X/\ 1*
1*

output at all agents.

DISC 2006, September 18th, 2006 Population Protocols With a Leader

Population protocols
Population protocols Motivation

Stable computations

Stably computable predicates

What'’s next?

Stable computations

@ Input map converts inputs
(at each agent) to initial In: 0,0« = 0,0«
states. X — X% Ox,1x — 1, 1%
e Output map extracts 1x,0% — 1,1«
outputs from states. Out: 1%, 1% — 0, 0%
o Fairness condition enforces X=X X, Y% — ¥,y
that any reachable state is XX kY X, xH
eventually reached.
. 1%
o A stable cton:Eutatlon 1/ \\1*
converges to the same
output at all agents. \1

DISC 2006, September 18th, 2006 Population Protocols With a Leader

Population protocols
Population protocols Motivation

Stable computations

Stably computable predicates

What'’s next?

Stable computations

@ Input map converts inputs
(at each agent) to initial In: O, 0% — 0, 0«
states. X — X% Ox,1x — 1, 1%
e Output map extracts Ix,0% — 1,1
outputs from states. Out: 1%, 1% — 0, 0%
o Fairness condition enforces X=X X, Y% — ¥,y
that any reachable state is Xk — X X%, Y — X, X
eventually reached.
. 1%
@ A stable computation e T ,
converges to the same 1 \ 1
output at all agents. \1

DISC 2006, September 18th, 2006 Population Protocols With a Leader

Population protocols
Population protocols Motivation

Stable computations

Stably computable predicates

What'’s next?

Stable computations

@ Input map converts inputs
(at each agent) to initial In: 0,0« = 0,0«
states. X — X% Ox,1x — 1, 1%
e Output map extracts 1x,0% — 1,1«
outputs from states. Out: 1%, 1% — 0, 0%
o Fairness condition enforces X=X X, Y% — ¥,y
that any reachable state is XX kY X, xH
eventually reached.
. 1%
o A stable cton:Eutatlon 1/ \\1*
converges to the same
output at all agents. \1

DISC 2006, September 18th, 2006 Population Protocols With a Leader

Population protocols
Population protocols Motivation

Stable computations

Stably computable predicates

What'’s next?

Stable computations

@ Input map converts inputs

(at each agent) to initial In: O, 0% — 0, 0«
states. X — Xk 0%, 1x — 1, 1%
e Output map extracts Ik, 0% — 1, 1x
outputs from states. Out: 1%, 1% — 0, 0%
e Fairness condition enforces X=X X, Y% — ¥,y
that any reachable state is Xk — X

eventually reached.

o A stable computation /1*&
converges to the same 1 \
output at all agents. \

DISC 2006, September 18th, 2006 Population Protocols With a Leader

Population protocols
Population protocols Motivation

Stable computations

Stably computable predicates

What'’s next?

Stable computations

@ Input map converts inputs

(at each agent) to initial In: O, 0% — 0, 0«
states. X — Xk 0%, 1x — 1, 1%
e Output map extracts Ik, 0% — 1, 1x
outputs from states. Out: 1%, 1% — 0, 0%
e Fairness condition enforces X=X X, Y% — ¥,y
that any reachable state is Xk — X

Xk, Y — X, X%
eventually reached.
@ A stable computation 0*
converges to the same Il /\\\0
1

output at all agents.

DISC 2006, September 18th, 2006 Population Protocols With a Leader

Population protocols
Population protocols Motivation

Stable computations

Stably computable predicates

What'’s next?

Stable computations

@ Input map converts inputs

(at each agent) to initial In: O, 0% — 0, 0«
states. X — Xk 0%, 1x — 1, 1%
e Output map extracts Ik, 0% — 1, 1x
outputs from states. Out: 1%, 1% — 0, 0%
e Fairness condition enforces X=X X, Y% — ¥,y
that any reachable state is Xk — X

Xk, Y — X, X*
eventually reached.

@ A stable computation

0*
converges to the same : = /\\0
V
\ 1

output at all agents.

DISC 2006, September 18th, 2006 Population Protocols With a Leader

Population protocols
Population protocols Motivation

Stable computations

Stably computable predicates

What'’s next?

Stable computations

@ Input map converts inputs

(at each agent) to initial In: O, 0% — 0, 0«
states. X — Xk 0%, 1x — 1, 1%
e Output map extracts Ik, 0% — 1, 1x
outputs from states. Out: 1%, 1% — 0, 0%
e Fairness condition enforces X=X X, Y% — ¥,y
that any reachable state is Xk — X

Xk, Y — X, X*
eventually reached.

o A stable computation /0\
converges to the same 1 \
output at all agents. \

DISC 2006, September 18th, 2006 Population Protocols With a Leader

O*

Population protocols
Population protocols Motivation

Stable computations

Stably computable predicates

What'’s next?

Stable computations

@ Input map converts inputs

(at each agent) to initial In: O, 0% — 0, 0«
states. X — Xk 0%, 1x — 1, 1%
e Output map extracts Ik, 0% — 1, 1x
outputs from states. Out: 1%, 1% — 0, 0%
e Fairness condition enforces X=X X, Y% — ¥,y
that any reachable state is Xk — X

Xk, Y — X, X*
eventually reached.

o A stable computation /0\\

converges to the same 1\
output at all agents.

DISC 2006, September 18th, 2006 Population Protocols With a Leader

O*

Population protocols
Population protocols Motivation

Stable computations

Stably computable predicates

What'’s next?

Stable computations

@ Input map converts inputs

(at each agent) to initial In: O, 0% — 0, 0«
states. X — Xk 0%, 1x — 1, 1%
e Output map extracts Ik, 0% — 1, 1x
outputs from states. Out: 1%, 1% — 0, 0%
e Fairness condition enforces X=X X, Y% — ¥,y
that any reachable state is Xk — X

Xk, Y — X, X*
eventually reached.

o A stable computation /0
converges to the same 0*\\\0
0

output at all agents.

DISC 2006, September 18th, 2006 Population Protocols With a Leader

Population protocols
Population protocols Motivation

Stable computations

Stably computable predicates

What'’s next?

Presburger predicates

@ Trick: represent numbers by tokens scattered across the
population.

@ Population protocols on connected graphs can stably
compute all of first-order Presburger arithmetic on counts
of input tokens, including

Addition.

Subtraction.

Multiplication by a constant k.

Remainder mod k.

>, <, and =.

A, V, 7, Vx, and dx, applied to above.

@ Example: “Are there at least twice as many cold sensors as
hot sensors?”

DISC 2006, September 18th, 2006 Population Protocols With a Leader

Population protocols
Population protocols Motivation
Stable computations

Stably computable predicates

What'’s next?

Presburger predicates (continued)

e Computable for fixed inputs (Angluin et al., PODC 2004)

e Computable if inputs converge after some finite time (Angluin,
Aspnes, Chan, Fischer, Jiang, and Peralta, DCOSS 2005).

e Computable with one-way communication (Angluin, Aspnes,
Eisenstat, Ruppert, OPODIS 2005).

e Computable if a small number of agents fail (Delporte-Gallet,
Fauconnier, Guerraoui, Ruppert, DCOSS 2006).

@ Nothing else is computable on a complete interaction
graph, i.e. if any agent can interact with any other (Angluin,
Aspnes, Eisenstat, PODC 2006).

e Example: can't compute “Is the number of cold sensors the
square of the number of hot sensors?”

DISC 2006, September 18th, 2006 Population Protocols With a Leader

Population protocols
Population protocols Motivation

Stable computations

Stably computable predicates

What'’s next?

Hooray! No more population protocol papers!

@ Question: If we have an exact characterization of what
population protocols can do, aren’'t we done?

DISC 2006, September 18th, 2006 Population Protocols With a Leader

Population protocols
Population protocols Motivation

Stable computations

Stably computable predicates

What'’s next?

Hooray! No more population protocol papers!

@ Question: If we have an exact characterization of what
population protocols can do, aren’'t we done?

@ Answer: No.

DISC 2006, September 18th, 2006 Population Protocols With a Leader

Population protocols
Population protocols Motivation
Stable computations

Stably computable predicates
What'’s next?

Hooray! No more population protocol papers!

@ Question: If we have an exact characterization of what
population protocols can do, aren’'t we done?
@ Answer: No.

e Bounded-degree interaction graph gives all of LINSPACE
(Angluin et al., DCOSS 2005).

e Random scheduling in a complete graph gives all of
LOGSPACE (Angluin et al., PODC 2004).

o These results involve very slow Turing machine simulations.

DISC 2006, September 18th, 2006 Population Protocols With a Leader

Population protocols
Population protocols Motivation
Stable computations

Stably computable predicates
What'’s next?

Hooray! No more population protocol papers!

@ Question: If we have an exact characterization of what
population protocols can do, aren’'t we done?
@ Answer: No.
e Bounded-degree interaction graph gives all of LINSPACE
(Angluin et al., DCOSS 2005).
e Random scheduling in a complete graph gives all of
LOGSPACE (Angluin et al., PODC 2004).
o These results involve very slow Turing machine simulations.
@ Today: Fast simulations of register machines, assuming
random scheduling.

DISC 2006, September 18th, 2006 Population Protocols With a Leader

Randomized population protocols
Basic structure
Computation by epidemic Phase clock

More advanced operations
Results

Randomized population protocols

@ Assume next pair of agents to interact is chosen uniformly
(i.e. with probability m)

@ This gives the randomized population protocol model from
(Angluin et al., PODC 2004).

@ It also is the uniform-rate case of the standard model for
well-mixed chemical systems (e.g. (Gillespie 1977)).

@ Expected time is obtained by dividing expected interactions
by N—each agent interacts at a fixed rate regardless of size of
the population.

DISC 2006, September 18th, 2006 Population Protocols With a Leader

Randomized population protocols
Basic structure

Computation by epidemic Phase clock
More advanced operations
Results

A test-tube computer

o Register values (up to O(N)) are stored
as tokens distributed across the
population. A

@ A unique leader agent acts as the B
(finite-state) CPU. @

@ We want to support the usual operations A g A
of addition, subtraction, comparison,
multiplication, division, etc. B

@ We want to do them all in polylogarithmic A B,
time (O(N log®®) N) interactions). B

o We'll accept a small (O(N—©(1))) B
probability of error.

DISC 2006, September 18th, 2006 Population Protocols With a Leader

Randomized population protocols
Basic structure

Computation by epidemic Phase clock
More advanced operations
Results

Epidemics

@ Key fact: An epidemic starting from one infected agent
spreads to all agents in ©(log V) time with high probability.

@ This gives us a broadcast primitive.

DISC 2006, September 18th, 2006 Population Protocols With a Leader

Computation by epidemic

Instruction cycle

Randomized population protocols
Basic structure

Phase clock

More advanced operations
Results

@ Leader propagates a new opcode via

epidemic.
@ Followers carry out chosen operation: A
o A« 0: Erase your A token upon receipt B
of opcode.
o A— A+ B: Make a new A token for A B A
eac7h B token. B B
e A =0: Start a counter-epidemic if you
have an A. B B
o A>B, A— A— B, etc.: more A B A
complicated. 5
@ Leader collects response (if any) from B c

counter-epidemic, updates its state, and

starts a new cycle.

DISC 2006, September 18th, 2006

Population Protocols With a Leader

Randomized population protocols
Basic structure

Computation by epidemic Phase clock
More advanced operations

Results

Instruction cycle

@ Leader propagates a new opcode via
epidemic. T
o Followers carry out chosen operation:

o A« 0: Erase your A token upon receipt
of opcode.

o A— A+ B: Make a new A token for
eac7h B token.

o A = 0: Start a counter-epidemic if you
have an A.

o A>B, A— A— B, etc.: more
complicated.

@ Leader collects response (if any) from
counter-epidemic, updates its state, and
starts a new cycle.

DISC 2006, September 18th, 2006 Population Protocols With a Leader

Randomized population protocols

Basic structure
Computation by epidemic Phase clock

More advanced operations

Results

Instruction cycle

@ Leader propagates a new opcode via
epidemic.
o Followers carry out chosen operation:
o A« 0: Erase your A token upon receipt
of opcode.
o A— A+ B: Make a new A token for
eac7h B token.
o A = 0: Start a counter-epidemic if you
have an A.
o A>B, A— A— B, etc.: more
complicated.

@ Leader collects response (if any) from
counter-epidemic, updates its state, and
starts a new cycle.

%

DISC 2006, September 18th, 2006 Population Protocols With a Leader

Randomized population protocols
Basic structure

Computation by epidemic Phase clock
More advanced operations

Results

Phase clock

@ Each agent is in a phase in
the range 0 to m — 1.

@ An initiator in a later phase
mod m recruits agents in
earlier phases.

@ The leader advances if it
sees an initiator in its own
phase.

@ Result: Leader goes all the

way around every ©(log n)
time units.

DISC 2006, September 18th, 2006 Population Protocols With a Leader

Randomized population protocols
Basic structure

Computation by epidemic Phase clock
More advanced operations
Results

Phase clock: simulation results

1000
900
800 -
700
600 -
500 —
400 +
300
200
100
0 \ |

0 50000 100000 150000 200000

Interactions
Phase clock with N = 1000 and m = 8.

DISC 2006, September 18th, 2006 Population Protocols With a Leader

Randomized population protocols
Basic structure
Computation by epidemic Phase clock

More advanced operations
Results

Phase clock: simulation results

20
15 - i
10 |- L
5 L
0 ‘ J
0 50000 100000 150000 200000

Interactions

Zoomed view of phase 0 and phase 4.

DISC 2006, September 18th, 2006 Population Protocols With a Leader

Randomized population protocols
Basic structure

Computation by epidemic Phase clock
More advanced operations
Results

Why it works

@ Phases i and higher act as an epidemic wiping out phases
i — 1 and lower.

@ This epidemic finishes in alog N time (with high probability).
@ When the leader advances, it takes at least blog N time
(w.h.p.) to generate at least N agents in the same phase =

leader advances before blog N time (a short phase) with
probability NO(€)-1,

e For sufficiently large m, chance of too many short phases in a
row is O(N~°).

@ Amazing fact: m depends on ¢ but not N.

DISC 2006, September 18th, 2006 Population Protocols With a Leader

Randomized population protocols
Basic structure

Computation by epidemic Phase clock
More advanced operations
Results

Other operations

@ Operations like assignment and addition that don't require
tokens to interact can be done in one instruction cycle
(O(log N) time).

@ Operations that do require interaction may take longer.

?
o Naive A > B algorithm: Have A and B tokens cancel until

only one kind is left.
o This takes Q(N?) interactions if there are few A's and B's.

@ How can we do cancellation faster?

DISC 2006, September 18th, 2006 Population Protocols With a Leader

Randomized population protocols
Basic structure

Computation by epidemic Phase clock
More advanced operations
Results

Cancellation by amplification

Cancellation is fast if there are many tokens to cancel.
Solution: Alternate between canceling and doubling.
Invariant |[Ax — Bx| = 25| Ag — By after k rounds.

If no winner in 2log N rounds, Ag = Bp.

?
This gives A < B in O(log® N) time.

DISC 2006, September 18th, 2006 Population Protocols With a Leader

Randomized population protocols
Basic structure

Computation by epidemic Phase clock
More advanced operations
Results

Subtraction and division by binary search

@ To compute C « A — B, do binary search for C such that
A=B+C.

o This takes O(log) rounds of binary search at O(log? N)
time each = O(log® N) time.

e Similar approach for division gives O(log* N) time. (This is
our most expensive operation.)

DISC 2006, September 18th, 2006 Population Protocols With a Leader

Randomized population protocols
Basic structure

Computation by epidemic Phase clock
More advanced operations
Results

Results

For a randomized population protocol with a unique initial leader,
we have:

@ Register machine simulation:
o O(log N)-bit registers.
o O(log* N) expected time per operation.
o O(N~°) probability of failure.
@ Presburger predicate computation:
o O(log* N) expected time. (Cf. O(N) for previous protocols.)
e Zero probability of failure.
o Trick: Combine fast fallible protocol with slow robust one.

DISC 2006, September 18th, 2006 Population Protocols With a Leader

Open problems

What's left?

@ What happens if we don’t have a leader to start with?

o Election by fratricide takes ©(N?) interactions.
o Phase clock is irretrievably corrupted during election process.

@ Can we elect a leader faster?
@ Can we build a more robust phase clock?
@ Can we cut down the polylog overhead?

We have some promising simulation results, but better analytical
tools may be needed.

DISC 2006, September 18th, 2006 Population Protocols With a Leader

	Population protocols
	Population protocols
	Motivation
	Stable computations
	Stably computable predicates
	What's next?

	Computation by epidemic
	Randomized population protocols
	Basic structure
	Phase clock
	More advanced operations
	Results

	Open problems

