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Population protocols

A population protocol
(Angluin, Aspnes, Diamadi,
Fischer, and Peralta, PODC
2004) consists of a
collection of finite-state
agents organized in an
interaction graph.

An interaction between two
neighbors updates the state
of both agents according to
a joint transition function.

Interactions are asymmetric:
one agent is the initiator
and one the responder.

Leader Election

= leader
= non-leader

, → ,
, → ,
, → ,
, → ,
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Why do we care?

Original official motivation: Sensor networks with really dumb
sensors.

Revised official motivation: Chemical (especially biochemical)
systems.

Unofficial motivation: Cool mathematical structures that
might actually be useful.
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Stable computations

Input map converts inputs
(at each agent) to initial
states.

Output map extracts
outputs from states.

Fairness condition enforces
that any reachable state is
eventually reached.

A stable computation
converges to the same
output at all agents.

Parity

In:
x → x∗

Out:
x → x

x∗ → x

0∗, 0∗ → 0, 0∗
0∗, 1∗ → 1, 1∗
1∗, 0∗ → 1, 1∗
1∗, 1∗ → 0, 0∗
x , y∗ → y∗, y
x∗, y → x , x∗

0*

1*

0*

1*
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Presburger predicates

Trick: represent numbers by tokens scattered across the
population.

Population protocols on connected graphs can stably
compute all of first-order Presburger arithmetic on counts
of input tokens, including

Addition.
Subtraction.
Multiplication by a constant k.
Remainder mod k.
>, <, and =.
∧, ∨, ¬, ∀x , and ∃x , applied to above.

Example: “Are there at least twice as many cold sensors as
hot sensors?”
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Presburger predicates (continued)

Computable for fixed inputs (Angluin et al., PODC 2004)

Computable if inputs converge after some finite time (Angluin,
Aspnes, Chan, Fischer, Jiang, and Peralta, DCOSS 2005).

Computable with one-way communication (Angluin, Aspnes,
Eisenstat, Ruppert, OPODIS 2005).

Computable if a small number of agents fail (Delporte-Gallet,
Fauconnier, Guerraoui, Ruppert, DCOSS 2006).

Nothing else is computable on a complete interaction
graph, i.e. if any agent can interact with any other (Angluin,
Aspnes, Eisenstat, PODC 2006).

Example: can’t compute “Is the number of cold sensors the
square of the number of hot sensors?”
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Hooray! No more population protocol papers!

Question: If we have an exact characterization of what
population protocols can do, aren’t we done?

Answer: No.

Bounded-degree interaction graph gives all of LINSPACE
(Angluin et al., DCOSS 2005).
Random scheduling in a complete graph gives all of
LOGSPACE (Angluin et al., PODC 2004).
These results involve very slow Turing machine simulations.

Today: Fast simulations of register machines, assuming
random scheduling.
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Randomized population protocols

Assume next pair of agents to interact is chosen uniformly
(i.e. with probability 1

N(N−1)).

This gives the randomized population protocol model from
(Angluin et al., PODC 2004).

It also is the uniform-rate case of the standard model for
well-mixed chemical systems (e.g. (Gillespie 1977)).

Expected time is obtained by dividing expected interactions
by N—each agent interacts at a fixed rate regardless of size of
the population.
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A test-tube computer

Register values (up to O(N)) are stored
as tokens distributed across the
population.

A unique leader agent acts as the
(finite-state) CPU.

We want to support the usual operations
of addition, subtraction, comparison,
multiplication, division, etc.

We want to do them all in polylogarithmic
time (O(N logO(1) N) interactions).

We’ll accept a small (O(N−Θ(1)))
probability of error.
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B
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Epidemics

Key fact: An epidemic starting from one infected agent
spreads to all agents in Θ(log N) time with high probability.

This gives us a broadcast primitive.
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Instruction cycle

Leader propagates a new opcode via
epidemic.

Followers carry out chosen operation:

A← 0: Erase your A token upon receipt
of opcode.
A← A + B: Make a new A token for
each B token.
A

?
= 0: Start a counter-epidemic if you

have an A.
A > B, A← A− B, etc.: more
complicated.

Leader collects response (if any) from
counter-epidemic, updates its state, and
starts a new cycle.
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Phase clock

Each agent is in a phase in
the range 0 to m − 1.

An initiator in a later phase
modm recruits agents in
earlier phases.

The leader advances if it
sees an initiator in its own
phase.

Result: Leader goes all the
way around every Θ(log n)
time units.
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Phase clock: simulation results
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Phase clock with N = 1000 and m = 8.
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Phase clock: simulation results
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Zoomed view of phase 0 and phase 4.
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Why it works

Phases i and higher act as an epidemic wiping out phases
i − 1 and lower.

This epidemic finishes in a log N time (with high probability).

When the leader advances, it takes at least b log N time
(w.h.p.) to generate at least Nε agents in the same phase ⇒
leader advances before b log N time (a short phase) with
probability NO(ε)−1.

For sufficiently large m, chance of too many short phases in a
row is O(N−c).

Amazing fact: m depends on c but not N.
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Other operations

Operations like assignment and addition that don’t require
tokens to interact can be done in one instruction cycle
(O(log N) time).

Operations that do require interaction may take longer.

Naive A
?
> B algorithm: Have A and B tokens cancel until

only one kind is left.
This takes Ω(N2) interactions if there are few A’s and B’s.

How can we do cancellation faster?
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Cancellation by amplification

Cancellation is fast if there are many tokens to cancel.

Solution: Alternate between canceling and doubling.

Invariant |Ak − Bk | = 2k |A0 − B0| after k rounds.

If no winner in 2 log N rounds, A0 = B0.

This gives A
?
< B in O(log2 N) time.
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Subtraction and division by binary search

To compute C ← A− B, do binary search for C such that
A = B + C .

This takes O(log N) rounds of binary search at O(log2 N)
time each ⇒ O(log3 N) time.

Similar approach for division gives O(log4 N) time. (This is
our most expensive operation.)
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Results

For a randomized population protocol with a unique initial leader,
we have:

Register machine simulation:

Θ(log N)-bit registers.
O(log4 N) expected time per operation.
O(N−c) probability of failure.

Presburger predicate computation:

O(log4 N) expected time. (Cf. O(N) for previous protocols.)
Zero probability of failure.
Trick: Combine fast fallible protocol with slow robust one.
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What’s left?

What happens if we don’t have a leader to start with?

Election by fratricide takes Θ(N2) interactions.
Phase clock is irretrievably corrupted during election process.

Can we elect a leader faster?

Can we build a more robust phase clock?

Can we cut down the polylog overhead?

We have some promising simulation results, but better analytical
tools may be needed.
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