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Abstract Fast algorithms are presented for performing
computations in a probabilistic population model. This is a
variant of the standard population protocol model—in which
finite-state agents interact in pairs under the control of an ad-
versary scheduler—where all pairs are equally likely to be
chosen for each interaction. It is shown that when a unique
leader agent is provided in the initial population, the popula-
tion can simulate a virtual register machine with high prob-
ability in which standard arithmetic operations like compar-
ison, addition, subtraction, and multiplication and division
by constants can be simulated in O(n log5 n) interactions us-
ing a simple register representation or in O(n log2 n) inter-
actions using a more sophisticated representation that re-
quires an extra O(n logO(1) n)-interaction initialization step.
The central method is the extensive use of epidemics to prop-
agate information from and to the leader, combined with
an epidemic-based phase clock used to detect when these
epidemics are likely to be complete. Applications include
a reduction of the cost of computing a semilinear predi-
cate to O(n log5 n) interactions from the previously best-
known bound of O(n2 logn) interactions and simulation of a
LOGSPACE Turing machine using O(n log2 n) interactions
per step after an initial O(n logO(1) n)-interaction startup
phase. These bounds on interactions translate into polylog-
arithmic time per step in a natural parallel model in which
each agent participates in an expected Θ(1) interactions per
time unit. Open problems are discussed, together with sim-
ulation results that suggest the possibility of removing the
initial-leader assumption.
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1 Introduction

The population protocol model of Angluin et al. [3] con-
sists of a population of finite-state agents that interact in
pairs, where each interaction updates the state of both par-
ticipants according to a transition function based on the par-
ticipants’ previous states and the goal is to have all agents
eventually converge to a common output value that repre-
sents the result of the computation, typically a predicate on
the initial state of the population. A population protocol that
always converges to the correct output is said to perform sta-
ble computation and a predicate that can be so computed is
called stably computable.

The model is motivated by systems of highly-restricted
computational agents with little control over their movements,
as in a chemical solution or a sensor network where sen-
sors are attached to highly mobile objects (e.g., vehicles or
animals). In this latter case, the predicate computed by the
population will be some useful global property of the com-
bination of sensor inputs.

In the simplest version of the model, any pair of agents
may interact, but which interaction occurs at each step is
under the control of an adversary, subject to a fairness con-
dition that essentially says that any continuously reachable
global configuration is eventually reached. The class of sta-
bly computable predicates in this model is now very well un-
derstood: it consists precisely of the semilinear predicates
(those predicates on counts of input agents definable in first-
order Presburger arithmetic [28]), where semilinearity was
shown to be sufficient in [3] and necessary in [6, 10]. How-
ever, the fact that a protocol will eventually converge to the
correct value of a semilinear predicate says little about how
long such convergence will take.

Our fundamental measure of convergence is the total num-
ber of pairwise interactions until all agents have the correct
output value, considered as a function of n, the number of
agents in the population. We may also consider models in
which reactions occur in parallel according to a Poisson pro-
cess (as assumed in e.g. [21, 22]); this gives an equivalent
distribution over sequences of reactions but suggests a mea-
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sure of parallel time based on assuming each agent partici-
pates in an expected Θ(1) interactions per time unit. It is not
hard to see that this time measure is asymptotically equal to
the number of interactions divided by n.

To bound these measures, it is necessary to place fur-
ther restrictions on the adversary: a merely fair adversary
may wait an arbitrary number of interactions before it allows
a particular important interaction to occur. In the present
work, we consider the natural probabilistic model, proposed
in [3], in which each interaction occurs between a pair of
agents chosen uniformly at random. In this model, it was
shown in [3] that any semilinear predicate can be computed
in O(n2 logn) expected interactions using a protocol based
on leader election in which the leader communicates the out-
come by interacting with every other agent; the large number
of interactions is caused by the delay until the last surviving
leader directly meets every other agent at least once. Pro-
tocols were also given to simulate randomized LOGSPACE
computations with polynomial slowdown, allowing an in-
verse polynomial probability of failure.

We give a new method for the design of probabilistic
population protocols, based on controlled use of self-timed
epidemics to disseminate control information rapidly through
the population. This method organizes a population as an ar-
ray of registers that can hold values linear in the size of the
population, stored in unary. The simulated registers support
the usual arithmetic operations, including addition, subtrac-
tion, multiplication and division by constants, and compar-
ison, with implementations that complete with high prob-
ability in O(n log5 n) interactions and polylogarithmic par-
allel time per operation. As a consequence, any semilinear
predicate can be computed without error by a probabilis-
tic population protocol that converges in O(n log5 n) inter-
actions with high probability, and randomized LOGSPACE
computation can be simulated with inverse polynomial error
with only polylogarithmic slowdown. These bounds are op-
timal up to polylogarithmic factors, because Ω(n logn) in-
teractions are necessary to ensure that every agent has par-
ticipated in at least one interaction with high probability. We
also incorporate results of [7] that show that combining the
approximate majority protocol that appeared there with a
more sophisticated register representation can reduce many
of these bounds to O(n log2 n), at the cost of an initialization
step that takes polylogarithmic parallel time.

However, in order to achieve these low running times, it
is necessary to assume a leader in the form of some unique
input agent. This is a reasonable assumption in sensor net-
work models as a typical sensor network will have some
small number of sensors that perform the specialized task
of communicating with the user and we can appoint one
of these as leader. Assuming the existence of a leader does
not trivialize the problem; for example, any protocol that
requires that the leader personally visit every agent in the
population runs in expected number of at least Ω(n2 logn)
interactions.

If a leader is not provided, it is in principle possible
to elect one; however, the best known expected bounds for

leader election in a population protocol is still the Θ(n2) in-
teractions or Θ(n) parallel time of a naive protocol in which
candidate leaders drop out only on encountering other lead-
ers. It is an open problem whether a leader can be elected
significantly faster. We present simulation results for a com-
plex leader election protocol that suggest that faster leader
election is possible, but better techniques are needed to prove
correctness of this protocol.

In building a register machine from agents in a popu-
lation protocol, we must solve many of the same problems
as hardware designers building register machines from elec-
trons. Thus the structure of the paper roughly follows the de-
sign of increasing layers of abstraction in a CPU. We present
the underlying physics of the world—the population pro-
tocol model—in Section 2. Section 3 gives concentration
bounds on the number of interactions to propagate the epi-
demics that take the place of electrical signals and describes
the phase clock used to coordinate the virtual machine’s in-
struction cycle. Section 4 describes the microcode level of
our machine, showing how to implement operations that are
convenient to implement but hard to program with. More
traditional register machine operations are then built on top
of these microcode operations in Section 5, culminating in a
summary of our main construction in Theorem 2. The fur-
ther optimizations that originally appeared in [7] are de-
scribed in Section 6. Applications to simulating LOGSPACE
Turing machines and computing semilinear predicates are
described in Section 7. The fast leader election protocol and
an improved phase clock, along with simulation results for
these protocols, are described in Section 8. Some directions
for future work are described in Section 9.

Many of our results are probabilistic, and our algorithms
include tuning parameters that can be used to adjust the prob-
ability of success. For example, the algorithm that imple-
ments a given register machine program is designed to run
for nk instructions for some k, and the probability of failure
for each instruction must be bounded by a suitable inverse
polynomial in n. We say that a statement holds with high
probability if for any constant c there is a setting of the tun-
ing parameters that cause the statement to hold with proba-
bility at least 1−n−c. The cost of achieving a larger value of
c is a constant factor slowdown in the number of interactions
(or time) used by the algorithms.

1.1 Related work

The population protocol model has been the subject of sev-
eral recent papers. Diamadi and Fischer introduced a ver-
sion of the probabilistic model to study the propagation of
trust in a social network [19], and a related model of urn
automata was explored in [2]. One motivation for the basic
model studied in [3] was to understand the computational
capabilities of populations of passively mobile sensors with
very limited computational power. In the simplest form of
the model, any agent may interact with any other, but vari-
ations of the model include limits on which pairs of agents
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may interact [1, 3, 4], various forms of one-way and delayed
communication [9,10], and failures of agents [18]. The prop-
erties computed by population protocols have also been ex-
tended from predicates on the initial population to predicates
on the underlying interaction graph [1], self-stabilizing be-
haviors [11], and stabilizing consensus [12].

Similar systems of pairwise interaction have previously
been used to model the interaction of small molecules in
solution [22, 23] and the propagation in a human popula-
tion of rumors [16] or epidemics of infectious disease [14].
One distinction in the literature on epidemics is whether in-
dividuals are removed (for example, by quarantine) from the
population after they become infectious, thus becoming nei-
ther infectious nor susceptible to infection. The epidemics
we construct are of the simple type, in which an infectious
agent remains infectious until it receives a control signal to
the contrary.

Birman et al. [15] introduced, analyzed and implemented
a probabilistic bimodal multicast protocol based on gossip
protocols and the mathematics of epidemics. In the simplest
form of the protocol, in each of R rounds, each process that
receives a gossip message for the first time sends it to a ran-
dom subset of other processes (chosen by flipping a coin
of bias β for each other process) and then removes itself
from the protocol. The full analysis considers process and
message delivery failures, and gives a recursive method of
calculating a bound on the probability of failure of the mul-
ticast.

The notion of a “phase clock” as used in our protocol is
common in the self-stabilizing literature, e.g. [25]. There is
a substantial stream of research on building self-stabilizing
synchronized clocks dating back to to the work of Arora et
al. [13]. Recent work such as [20] shows that it is possi-
ble to perform self-stabilizing clock synchronization in tra-
ditional distributed systems even with a constant fraction of
Byzantine faults; however, the resulting algorithms require
more network structure and computational capacity at each
agent than is available in a population protocol. An intrigu-
ing protocol of Daliot et al. [17] constructs a protocol for the
closely-related problem of pulse synchronization inspired
directly by biological models. Though this protocol also ex-
ceeds the finite-state limits of population protocols, it may
be possible to construct a useful phase clock for our model
by adapting similar techniques.

2 Model

In this paper we consider only the complete all-pairs inter-
action graph, so we can simplify the general definition of
a probabilistic population protocol as follows. A popula-
tion protocol consists of a finite set Q of states, of which
a nonempty subset X are the initial states (thought of as in-
puts), a deterministic transition function (a,b) 7→ (a′,b′) that
maps ordered pairs of states to ordered pairs of states, and
an output function that maps states to an output alphabet Y .
The population consists of agents numbered 1 through n;

agent identities are not visible to the agents themselves, but
facilitate the description of the model. A configuration C
is a map from the population to states, giving the current
state of every agent. An input configuration is a map from
the population to X , representing an input consisting of a
multiset of elements of X . C can reach C′ in one interac-
tion, denoted C→ C′, if there exist distinct agents i and j
such that C(i) = a, C( j) = b, the transition function specifies
(a,b) 7→ (a′,b′) and C′(i) = a′, C′( j) = b′ and C′(k) = C(k)
for all k other than i and j. In this interaction, i is the initia-
tor and j is the responder – this asymmetry of roles is an
assumption of the model [4].

An execution is a sequence C1,C2, . . . of configurations
such that for each i, Ci →Ci+1. An execution converges to
an output y ∈ Y , if there exists an i such that for every j ≥ i,
the output function applied to every state occurring in C j is
y. In general, individual agents may not know when conver-
gence to a common output has been reached, and protocols
are generally designed not to halt. An execution is fair if for
any Ci and C j such that Ci→C j and Ci occurs infinitely often
in the execution, C j also occurs infinitely often in the execu-
tion. A protocol stably computes a predicate P on multisets
of elements of X if for any input configuration C, every fair
execution of the protocol starting with C converges to 1 if P
is true on the multiset of inputs represented by C, and con-
verges to 0 otherwise. Note that a fixed protocol must be
able to handle populations of arbitrary finite size – there is
no dependence of the number of states on n, the population
size.

For a probabilistic population protocol, we stipulate
a particular probability distribution over executions from a
given configuration C1 as follows. We generate Ck+1 from Ck
by drawing an ordered pair (i, j) of agents independently and
uniformly, applying the transition function to (Ck(i),Ck( j)),
and updating the states of i and j accordingly to obtain Ck+1.
(Note that an execution generated this way will be fair with
probability 1.) In the probabilistic model we consider both
the random variable of the number of interactions until con-
vergence and the probabilities of various error conditions in
our algorithms.

3 Tools

Here we give the basic tools used to construct our virtual
machine. These consist of concentration bounds on the num-
ber of interactions needed to spread epidemics through the
population (Section 3.1), which are then used to construct
a phase clock that controls the machine’s instruction cycle
(Section 3.2). Basic protocols for duplication (Section 3.3),
cancellation (Section 3.4), and probing (Section 3.5) are then
defined and analyzed.

3.1 Epidemics

By a one-way epidemic we denote the population pro-
tocol with state space {0,1} and transition rule (x,y) 7→
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(x,max(x,y)). Interpreting 0 as “susceptible” and 1 as “in-
fected,” this protocol corresponds to a simple epidemic in
which transmission of the infection occurs if and only if the
initiator is infected and the responder is susceptible. We wish
to show that the number of interactions for the epidemic to
finish (that is, infect every agent) is Θ(n logn) with high
probability.

To do so, we reduce the number of interactions of the
epidemic protocol to the number of operations in the well-
known coupon collector problem, in which balls are thrown
uniformly at random into bins until every bin contains at
least one ball. We show the following bounds on the number
of operations to fill the last k of n bins based on an occupancy
bound of Kamath et al. [26]. Because of the high variance
associated with filling the last few bins, we consider only
k ≥ nε for ε > 0.

Lemma 1 Let S(k,n) be the number of operations to fill the
last k of n bins in the coupon collector problem. Then for
any fixed ε > 0 and c > 0, there exist positive constants c1
and c2 such that for all sufficiently large n and any k > nε ,
c1n lnk≤ S(k,n)≤ c2n lnk with probability at least 1−n−c.

Proof Observe that each step of collecting a specific k of n
coupons can be split into (a) choosing to pick one of the
k coupons with probability k/n and (if (a) is successful)
(b) choosing the specific coupon to pick. The number of
steps of type (b) before all coupons are collected is exactly
S(k,k). It is easy to see that E[S(k,n)] = n

k E[S(k,k)] and a
simple application of Chernoff bounds shows that S(k,n) =
Θ( n

k S(k,k)) with high probability (assuming k is polynomial
in n).

We will now show that S(k,k) = Ω(k logk) with high
probability. Theorem 2 of [26] states that with m balls tossed
uniformly into n bins,

Pr[|Z−µ| ≥ ρµ]≤ 2exp

(
−

ρ2µ2(n− 1
2 )

n2−µ2

)
, (1)

where Z is the number of empty bins and µ = E[Z] = n(1−
1/n)m = Θ(ne−m/n).

Our goal is to bound the probability that Z = 0, i.e. that
all coupons have been collected after m operations. Sub-
stitute n = k and m = (1/4)k lnk in (1). This gives µ =
Θ(ke−(1/4) lnk) = Θ(k · k−1/4) = Θ(k3/4). For Z to equal 0
we must have |Z−µ| ≥ µ or ρ = 1. So

Pr[Z = 0]≤ 2exp

(
−

µ2(k− 1
2 )

k2−µ2

)

= 2exp

(
−Θ

(
k3/2k

k2

))
= 2exp

(
−Θ

(
k1/2

))
.

For k polynomial in n we get an exponentially small
probability that S(k,k)≤ 1

4 k lnk, which tells us that S(k,n−
1) = Ω( n−1

k · k lnk) = Ω(n lnk) with high probability.

For the upper bound, if m = ak lnk and n = k then E[Z] =
k(1−1/k)ak lnk ≤ ke−a lnk = k1−a can be made an arbitrarily
small polynomial in n by choosing a sufficiently large, and
by Markov’s inequality this bounds Pr[Z ≥ 1].

Let T (k) denote the number of interactions to infect the
last k agents in a one-way epidemic. To get concentration
bounds for T (k), we now reduce the number of interactions
for an epidemic to the number of operations for coupon col-
lector. The intuition is that once half the agents are infected,
we have a coupon collector problem (collecting susceptible
responders) that is delayed by at most a factor of two by oc-
casionally choosing uninfected initiators. When fewer than
half the agents are infected, we use the symmetry of the wait-
ing times for each new infection to apply the same bounds.

It will be useful to have a slightly more general lemma
that bounds the time to infect the first k susceptible agents.
Because of the high variance associated with filling the last
few bins in the coupon collection problem, we consider only
k ≥ nε for ε > 0.

Lemma 2 Let T (k) be number of interactions before a one-
way epidemic starting with a single infected agent infects k
agents. For any fixed ε > 0 and c > 0, there exist positive
constants c1 and c2 such that for sufficiently large n and any
k > nε , c1n lnk ≤ T (k) ≤ c2n lnk with probability at least
1−n−c.

Proof We start by observing some useful symmetry prop-
erties. The probability that an interaction produces i + 1 in-
fected nodes starting from i infected nodes, which is i(n−i)

n(n−1) ,
is also the probability that an interaction produces n− i + 1
infected nodes starting from n− i infected nodes. It follows
that the distribution of T (i+1)−T (i) is identical to the dis-
tribution of T (n− i + 1)− T (n− i) and in general that the
distribution of T (k) = T (k)−T (1)—the number of interac-
tions to infect the first k−1 susceptibles—is identical to that
of T (n)−T (n−k+1)—the number of interactions to infect
the last k−1.

Next we’ll bound the number of interactions to infect
the last k susceptibles using Lemma 1. Consider each step
of the epidemic process as consisting of (a) a random choice
of whether or not the initiator is infected and (b) a random
choice of a responder. Then step (b) makes progress with
probability k/(n−1), exactly the same probability as in the
coupon collector problem with k remaining coupons out of
n− 1. Step (a) corresponds to a random choice (with prob-
ability (n− k)/n lying between 1/2 and 1) of whether to
draw a coupon or not. A straightforward Chernoff bound ar-
gument applied to (a) then shows that the number of inter-
actions to infect the last k susceptibles lies with high prob-
ability between S(k,n− 1) and 2S(k,n− 1) where S(k,n−
1) is the time to collect the last k of n− 1 coupons. From
Lemma 1, we have that S(k,n−1) lies between c1(n−1) lnk
and c2(n− 1) lnk with high probability, which simplifies to
Θ(n lnk) as claimed.
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3.2 The phase clock

The core of our construction is a phase clock that allows a
leader to determine when an epidemic or sequence of trig-
gered epidemics is likely to have finished. In essence, the
phase clock allows a finite-state leader to count off Θ(n logn)
total interactions with high probability; by adjusting the con-
stants in the clock, the resulting count is enough to outlast
the c2n lnn interactions needed to complete an epidemic by
Lemma 2. Like physical clocks, the phase clock is based on
a readily-available natural phenomenon with the right dura-
tion constant. A good choice for this natural phenomenon,
in a probabilistic population protocol, turns out to be itself
the spread of an epidemic. Like the one-way epidemic of
Section 3.1, the phase clock requires only one-way commu-
nication.

Here is the protocol: each agent has a state in the range
0 . . .m− 1 for some constant m that indicates which phase
of the clock it is infected with. (The value of m will be cho-
sen independent of n, but depending on c, where 1− n−c is
the desired success probability.) Up to a point, later phases
overwrite earlier phases: a responder in phase i will adopt
the phase of any initiator in phases i + 1 mod m through
i + m/2 mod m, but will ignore initiators in other phases.
This behavior completely describes the transition function
for non-leader responders.

New phases are triggered by a unique leader agent. When
the leader encounters an initiator with its own phase, it spon-
taneously moves to the next phase. The leader ignores inter-
actions with initiators in other phases. The initial configura-
tion of the phase clock has the leader in phase 0 and all other
agents in phase m−1. A round consists of m phases. A new
round starts when the leader enters phase 0.

The normal operation of the phase clock has all the agents
in a very few adjacent states, with the leader in the fore-
most one. When that state becomes populated enough for
the leader to encounter another agent in that state, the leader
moves on to the next state (modulo m) and the followers are
pulled along. Successive rounds should be Θ(n logn) inter-
actions apart with high probability; the lower bound allows
messages sent epidemically to reach the whole population,
and the upper bound is essential for the overall efficiency of
our algorithms.

3.2.1 Analysis

We wish to show that for appropriate constants c and m,
any epidemic (running in parallel with the phase clock) that
starts in phase i completes by the next occurrence of phase
(i + c) mod m with high probability. To simplify the argu-
ment, we first consider an infinite-state version of the phase
clock with state space Z×{leader, follower} and transition
rules

(x,b),(y, follower) 7→ (x,b),(max(x,y), follower)
(x,b),(x, leader) 7→ (x,b),(x+1, leader)
(x,b),(y, leader) 7→ (x,b),(y, leader) [y 6= x]

We assume the initial configuration (at interaction 0) has
the leader in state 0 and each follower in state −1. This
infinite-state protocol has the useful invariant that every agent
has a phase less than or equal to that of the leader. We define
phase i as starting when the leader agent first adopts phase
i. This result bounds the probability that a phase “ends too
early” by n−1/2.

Lemma 3 Let phase i start at interaction t. Then there is a
constant a such that for sufficiently large n, phase i+1 starts
before interaction t +an lnn with probability at most n−1/2.

Proof Call an agent infected if and only if its phase is at
least i. At the start of phase i, we have exactly one infected
agent, and an examination of the infinite-state transition rule
reveals that infection spreads as in a standard one-way epi-
demic.

We wish to bound the probability that the leader encoun-
ters an infected initiator by interaction t +an lnn. We can do
so using the following bit of trickery: consider an alternative
version of the epidemic where at the start of phase i it is not
the leader who is infected but a follower. In this modified
epidemic the distribution on the number of infected agents
after each interaction is identical to the original protocol, but
as there is one more infected follower the probability that
the leader encounters an infected agent is only increased and
thus the probability that the leader has not encountered an in-
fected follower by interaction t + an lnn has decreased. But
we can easily detect in the modified epidemic whether the
leader has encountered an infected follower: it has done so
if and only if it is infected itself.

Now observe from Lemma 2 that there is a constant c1
such that the probability that more than n1/4 (say) agents are
infected by interaction t + c1n lnn1/4 = t +(c1/4)n lnn is at
most n−1. By symmetry, if only n1/4 agents are infected, the
probability that the leader is one of this agents is bounded by
n−3/4. So the probability that the leader is infected at interac-
tion t +an lnn when a = c1/4 is at most n−1 +n−3/4≤ n−1/2.

Observing that several phases must “end too early” in
order for a round to “end too early” allows us to go from a
failure probability of n−1/2 for a phase to n−c for a round.

Corollary 1 Let phase i start at interaction t. Then for any
c > 0 and d > 0, there is a constant k such that for sufficiently
large n, phase i+k starts before t +dn lnn interactions with
probability at most n−c.

Proof Call phase j short if it finishes within an lnn interac-
tions, where a is as in Lemma 3. For any fixed odd k, the
probability that more than half of the k phases i through i +
k−1 are short is bounded by 2k−1(n−1/2)(k+1)/2 = 2k−1n−(k+1)/4≤
n−k/8 when n > 28.

If fewer than half the phases are short, the other k/2
or more phases must take at least an lnn interactions each,
for a total of at least a(k/2)n lnn interactions. Setting k =
max(8c,2d/a) then gives the claimed bound.
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The following theorem gives probabilistic guarantees for
a polynomial number of rounds of the phase clock. In the
proof the probability of failure due to a “straggler” (agent
so far behind that it appears to be ahead modulo m) must
be also be appropriately bounded, to ensure that m may be a
constant independent of n.

Theorem 1 For any fixed c,d1 > 0, there exist constants m
and d2 such that, for all sufficiently large n, with probability
at least 1− n−c the finite-state phase clock with parameter
m, starting from an initial state consisting of one leader in
phase 0 and n− 1 followers in phase m− 1, completes nc

rounds of m phases each, where the minimum number of in-
teractions in any of the nc rounds is at least d1n lnn and the
maximum is at most d2n lnn,

Proof The essential idea of the lower bound is to apply Corol-
lary 1 twice: once to show that with high probability the
number of interactions between phase i + 1 and phase i +
m/2 is long enough for any old phase-i agents to be eaten up
(thus avoiding any problems with wrap-around), and once to
show the lower bound on the length of a round.

To show that no agent is left behind, consider, in the
infinite-state protocol, the fate of agents in phase i or lower
once at least one agent in phase i + 1 or higher exists. If we
map all phases i or lower to 0 and all phases i+1 or higher to
1, then encounters between agents have the same effect after
the mapping as in a one-way epidemic. By Lemma 2, there
is a constant c2 such that all n agents are infected by inter-
action c2n lnn with probability at least 1− n−3c. By Corol-
lary 1, there is a constant k1 such that phase i+ k1 +1 starts
at least c2n lnn interactions after phase i + 1 with probabil-
ity at least 1−n−3c. Setting m > 2(k1 +1) then ensures that
all phase i (or lower) agents have updated their phase before
phase i+m/2 with probability at least 1−2n−3c. If we sum
the probability of failure over all mnc phases in the first nc

rounds, we get a probability of at most 2mn−2c that some
phase i agent survives long enough to cause trouble.

Assuming that no such trouble occurs, we can simulate
the finite-state phase clock by mapping the phases of the
infinite-state phase clock mod m. Now by Corollary 1 there
is a constant k2 such that the number of interactions to com-
plete k2 consecutive phases is at least d1n lnn with proba-
bility at least 1− n−3c. Setting m ≥ k2 thus gives that all nc

rounds take at least d1n lnn interactions with probability at
least 1−ncn−3c = 1−n−2c. Thus the total probability of fail-
ure on the lower bound side is bounded by 2mn−2c +n−2c.

For the upper bound, choose c2 in Lemma 2 so that each
epidemic completes at most c2n lnn interactions with proba-
bility at least 1−n−3c. If this condition holds for all m phases
of a round, then the round completes in at most d1n lnn in-
teractions where d1 = mc2. The probability that this bound
fails, summed over all mnc phases, is at most mn−2c.

The total probability of failure on both the lower and up-
per bound side is thus bounded by 3mn−2c +n−2c < n−c for
sufficiently large n.

3.3 Duplication

A duplication protocol has state space {(1,1),(0,1),(0,0)}
and transition rules:

(1,1),(0,0) 7→ (0,1),(0,1)
(0,0),(1,1) 7→ (0,1),(0,1)

with all other encounters having no effect.
When run to convergence, a duplication protocol start-

ing with a “active” agents in state (1,1) and the rest in the
null state (0,0) converges to 2a “inactive” agents in state
(0,1), provided 2a is less than n; otherwise it converges to a
population of mixed active and inactive agents with no unre-
cruited agents left in the null state. The invariant is that the
total number of 1 tokens is preserved while eliminating as
many double-token agents as possible. We do not consider
agents in a (1,0) state as they can be converted to (0,1) im-
mediately at the start of the protocol.

When the initial number of active agents a is close to
n/2, duplication may take as much as Θ(n2) interactions to
converge, as the last few active agents wait to encounter the
last few null agents. But for smaller values of a the protocol
converges more quickly.

Lemma 4 Let 2a + b ≤ n/2. The probability that a dupli-
cation protocol starting with a active agents and b inactive
agents, has not converged after (2c+1)n lnn interactions is
at most n−c.

Proof Note that 2a + b is the number of agents that will
eventually be in a non-null state if the protocol converges.
Under the assumption that 2a + b ≤ n/2, at least half the
agents remain in the null state throughout the protocol. So
the probability that a particular active agent is selected as ini-
tiator and encounters a null responder on any given interac-
tion is at least 1

2n . The probability that it never becomes inac-
tive in 2(c+1)n lnn interactions is thus (1−1/2n)2(c+1)n lnn≤
exp
(
− 2(c+1)n lnn

2n

)
= n−c−1. The expected number of sur-

viving active agents after 2(c+1)n lnn steps is thus at most
an−c−1 < n−c and the full result follows from Markov’s in-
equality.

3.4 Cancellation

A cancellation protocol has states {(0,0),(1,0),(0,1)} and
transition rules:

(1,0),(0,1) 7→ (0,0),(0,0)
(0,1),(1,0) 7→ (0,0),(0,0)

It maintains the invariant that the number of 1 tokens in the
left-hand position minus the number of 1 tokens in the right-
hand position is fixed. It converges when only (1,0) and
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(0,0) or only (0,1) and (0,0) agents remain. We assume
that there are no (1,1) agents as these can be converted to
(0,0) agents at the start of the protocol. We refer to agents
in state (1,0) or (0,1) as nonzero agents.

As with duplication, the number of interactions to con-
verge when (1,0) and (0,1) are nearly equally balanced can
be as many as Θ(n2), since we must wait in the end for the
last few survivors to find each other. This is too slow to use
cancellation to implement subtraction directly. Instead, we
will use cancellation for inequality testing, using duplica-
tion to ensure that there is a large enough majority of one
value or the other to ensure fast convergence. We will use
the following fact.

Lemma 5 Starting from any initial configuration, with prob-
ability at least 1− n−c, after 4(c + 1)n lnn interactions a
cancellation protocol has either converged or has at most
n/8 of each type of nonzero agent.

Proof Assume without loss of generality that there are at
least as many (1,0) agents as (0,1) agents. Pick a particular
(0,1) agent from the initial population and for each t let At
be the event that after t interactions this agent is still in state
(0,1) and there are at least n/8 agents in state (1,0).

We will show by induction on t that Pr[At ] ≤
(
1− 1

4n

)t
.

The base case is trivial. For the induction step, we have
Pr[At ] = Pr[At |At−1]Pr[At−1]+Pr[At |At−1 = 0]Pr[At−1 = 0] =
Pr[At |At−1]Pr[At−1]≤ Pr[At |At−1]

(
1− 1

4n

)t−1
.

Now let us bound Pr[At |At−1]. Since At−1 occurs, after
t−1 interactions our target (0,1) agent has not yet encoun-
tered a (1,0) agent and there are still at least n/8 surviv-
ing (1,0) agents. The probability that the target agent and a
(1,0) agent are selected in interaction t is thus at least 1

4n .
Thus there is a probability of at most

(
1− 1

4n

)
that the target

agent survives, and we have

Pr[At ]≤ Pr[At |At−1]
(

1− 1
4n

)t−1

≤
(

1− 1
4n

)t

.

Setting t = 4(c+1)n lnn gives

Pr[At ]≤
(

1− 1
4n

)4(c+1)n lnn

≤ exp
(
−4(c+1)n lnn

4n

)
= n−c−1.

Taking a union bound over all (0,1) agents in the original
population shows that with probability at least 1− n−c ei-
ther every (0,1) agent is gone or there are at most n/8 (1,0)
agents. In the latter case, there are also at most n/8 (0,1)
agents by the assumption that (1,0) was not initially in the
minority, and this condition is preserved by the protocol.

3.5 Probing

A probing protocol is used to detect if any agents satisfying
a given predicate exist. It uses three states 0, 1, and 2 (in ad-
dition to any state tested by the predicate) and has transition
rules

(x,y) 7→ (x,max(x,y))

when the responder does not satisfy the predicate and

(0,y) 7→ (0,y)
(x,y) 7→ (x,2) [x > 0]

when the responder does. Note that this is a one-way proto-
col.

To initiate a probe, a leader starts in state 1; this state
spreads through an initial population of state 0 agents as in a
one-way epidemic and triggers the epidemic spread of state
2 if it reaches an agent that satisfies the predicate.

Lemma 6 For any c > 0, there is a constant d such that for
sufficiently large n, with probability at least 1−n−c it is the
case that after dn lnn interactions in the probing protocol
either (a) no agent satisfies the predicate and every agent is
in state 1, or (b) some agent satisfies the predicate and every
agent is in state 2.

Proof For case (a), apply Lemma 2. For case (b), apply
Lemma 2 first to show that some satisfying agent is reached
and again to show that the resulting 2 epidemic spreads to
all agents.

4 Computation by epidemic: the microcode level

In this section, we describe how to construct an abstract
register machine on top of a population protocol. This ma-
chine has a constant number of registers each capable of
holding integer values in the range 0 to n, and supports the
usual arithmetic operations on these registers, including ad-
dition, subtraction, multiplication and division by constants,
inequality tests, and so forth. Each of these operations takes
at most a polylogarithmic number of basic instruction cy-
cles, where an instruction cycle takes Θ(n logn) interactions
or Θ(logn) parallel time.

The simulation is probabilistic; there is an inverse poly-
nomial probability of error for each operation, on which the
exponent can be made arbitrarily large at the cost of increas-
ing the constant factor in the running time.

The value of each register is distributed across the pop-
ulation in unary. For each register A, every member i of the
population maintains one bit Ai and the current value of A
is simply ∑i Ai. Thus the finite state of each agent can be
thought of as a finite set of finite-valued control variables,
and one boolean variable for each of a finite set of regis-
ters. Recall that the identities of agents are invisible to the
agents themselves, and are used to facilitate description of
the model.
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Instruction Effect on state of agent i
NOOP No effect.
SET(A) Set Ai = 1.
COPY(A,B) Copy Ai to Bi
DUP(A,B) Run duplication protocol on state (Ai,Bi).
CANCEL(A,B) Run cancellation protocol on state (Ai,Bi).
PROBE(A) Run probe protocol with predicate Ai = 1.

Table 1 Instructions at the microcode level.

We assume there is a leader agent that organizes the com-
putation; part of the leader’s state stores the finite-state con-
trol for the register machine. We make a distinction between
the “microcode layer” of the machine, which uses the ba-
sic mechanisms of Section 3, and the “machine code” layer,
which provides familiar arithmetic operations.

At the microcode layer, we implement a basic instruc-
tion cycle in which the leader broadcasts an instruction to
all agents using an epidemic. The agents then carry out this
instruction until stopped by a second broadcast from the
leader. This process repeats until the computation terminates.

To track the current instruction, each agent (including
the leader) has a current instruction register in addition to
its other state. These instructions are tagged with a round
number in the range 0,1,2, where round i instructions are
overwritten by round i+1 (mod 3) instructions.

The instructions and their effects are given in Table 1.
Most take registers as arguments. We also allow any oc-
currence of a register to be replaced by its negation, in
which case the operation applies to those agents in which
the appropriate bit is not set. For example, SET(¬A) re-
sets Ai, PROBE(¬A) tests for agents in which Ai is not set,
COPY(¬A,B) sets Bi to the negation of Ai, and so forth.

To interpret the table entries: when an agent changes its
current instruction register to SET(A), it sets its boolean
variable for register A to 1 and waits for the next instruc-
tion. Similarly, when it changes its current instruction regis-
ter to COPY(A,B), then the agent sets its boolean variable
for register B to the value of its boolean variable for reg-
ister A. When its current instruction becomes DUP(A,B),
then the agent begins running the duplication protocol (Sec-
tion 3.3) on the ordered pair of its boolean variables for
registers A and B. (In the case of (1,0), it immediately ex-
changes them to (0,1), and in the cases of (1,1) and (0,0),
it participates in the duplication protocol when it interacts
with other agents with current instruction DUP(A,B), until
either its pair becomes inactive or a new instruction super-
sedes the current one.) CANCEL(A,B) and PROBE(A) are
handled analogously, where the predicate probed is whether
the agent’s boolean variable for register A is 1. We omit de-
scribing the underlying transitions as the details are straight-
forward but lengthy.

When the leader updates its own current instruction reg-
ister, the new value spreads to all other agents in Θ(n logn)
interactions with high probability (Lemma 2). The NOOP,
SET, and COPY operations take effect immediately, so no
additional interactions are required. The PROBE operation

may require waiting for a second triggered epidemic, but the
total interactions are still bounded by O(n logn) with high
probability (by Lemma 6). Only the DUP and CANCEL op-
erations may take longer to converge. Because subsequent
operations overwrite each agent’s current instruction regis-
ter, issuing a new operation has the effect of cutting these op-
erations off early. But if this new operation is issued Ω(n logn)
interactions later, the DUP operation converges with high
probability unless it must recruit more than half the agents
(Lemma 4), and the CANCEL operation either converges
or leaves at most n/4 uncanceled values (Lemma 5). Note
that for either operation, which outcome occurred can be de-
tected with COPY and PROBE operations.

Thus, the leader waits for Ω(n logn) interactions between
issuing successive instructions, where the constant is chosen
based on the desired error bound. But this can be done us-
ing a phase clock with appropriate parameter (Theorem 1):
if it is large enough that both the probability that an opera-
tion completes too late and the probability that some phase
clock triggers too early is o(n−2c) per operation, then the
total probability that any of nc operations fails is o(n−c).

5 Computation by epidemic: higher-level operations

The operations of the previous section are not very conve-
nient for programming. In this section, we describe how to
implement more traditional register operations.

These can be divided into two groups: those that require
a constant number of microcode instructions, and those that
are implemented using loops. The first group, shown in Ta-
ble 2, includes assignment, addition, multiplication by a con-
stant, and zero tests. The second group includes comparison
(testing for A < B, A = B, or A > B), subtraction, and division
by a constant (including obtaining the remainder). These op-
erations are described in more detail below.

5.1 Comparison

For comparison, it is tempting just to apply CANCEL and
see what tokens survive. But if the two registers A and B
being compared are close in value, then CANCEL may take
Θ(n2) interactions to converge. Instead, we apply up to 2lgn
rounds of cancellation, alternating with duplication steps that
double the discrepancy between A and B. If A > B or B > A,
the difference soon becomes large enough that all of the mi-
nority tokens are eliminated. The case where A = B is de-
tected by failure to converge, using a counter variable C that
doubles every other round.

The algorithm is given as Algorithm 1. It uses registers
A′,B′, and C plus a bit r to detect even-numbered rounds.

Lemma 7 The COMPARE algorithm (Algorithm 1) returns
the correct answer with high probability after executing at
most O(logn) microcode operations.
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Operation Effect Implementation Notes
Constant 0 A← 0 SET(¬A)

Constant 1 A← 1 SET(¬A)
Aleader← 1

Assignment A← B COPY(B,A)

Addition A← A+B
COPY(B,X)
DUP(X ,A)
PROBE(X)

May fail with X 6= 0 if A+B > n/2.

Multiplication A← kB Use repeated addition. k = O(1)
Zero test A 6= 0? PROBE(A)

Table 2 Simple high-level operations and their implementations. Register X is an auxiliary register.

Algorithm 1 Comparison algorithm COMPARE.
1: A′← A.
2: B′← B.
3: C← 1.
4: r← 0.
5: while true do
6: CANCEL(A′,B′).
7: if A′ = 0 and B′ = 0 then
8: return A = B.
9: else if A′ = 0 then

10: return A < B.
11: else if B′ = 0 then
12: return A > B.
13: end if
14: r← 1− r.
15: if r = 0 then
16: C←C +C.
17: if addition failed then
18: return A = B.
19: end if
20: end if
21: A′← A′+A′.
22: B′← B′+B′.
23: end while

Proof Observe that A′−B′ is initially equal to A−B, and
that the value of A′−B′ is preserved by the CANCEL oper-
ation in step 6. By Lemma 5, if the loop does not termi-
nate with A′ or B′ equal to zero, both registers hold val-
ues of at most n/8. It follows that the addition operations
in steps 21 and 22 succeed with high probability, leaving
A′−B′ = 2i(A−B) after i such doublings. In particular, after
dlgne doublings, |A′−B′| ≥ n|A−B|, a contradiction unless
A = B. So if the protocol does not terminate before dlgne
passes through the loop, we have A = B, which is eventu-
ally detected after at most 2 lgn passes when C grows too
large. Since there are only O(1) microcode operations per
iteration, the claim follows.

5.2 Subtraction

Subtraction is the inverse of addition, and addition is a mono-
tone operation. It follows that we can implement subtraction
using binary search. The cost of this implementation is high
(O(log3 n) microcode operations per subtraction), but it is
the best we know how to do with a simple unary register

representation. With a more sophisticated representation, the
cost is no higher than addition (see Section 6.2 below).

Our rather rococo algorithm for computing C← A−B,
given as Algorithm 2, repeatedly looks for the largest power
of two that can be added to the candidate difference C with-
out making the sum of the difference C and the subtrahend
B greater than the minuend A. It obtains one more 1 bit of
the difference for each iteration.

The algorithm assumes A ≥ B. An initial cancellation
step is used to handle particularly large inputs. This allows
the algorithm to work even when A lies outside the safe
range of the addition operation.

The algorithm uses several auxiliary registers to keep
track of the power of two to add to C (this is the D regis-
ter) and to perform various implicit sums and tests (as in
computing B′+C +D+D).

Algorithm 2 Subtraction algorithm SUBTRACT.
1: A′← A.
2: B′← B.
3: CANCEL(A′,B′).
4: if B′ = 0 then
5: C← A.
6: return.
7: end if
8: C← 0.
9: while A′ 6= B′+C do

10: D← 1.
11: while A′ ≥ B′+C +D+D do
12: D← D+D.
13: end while
14: C←C +D.
15: end while

Lemma 8 When A ≥ B, the SUBTRACT algorithm (Algo-
rithm 2) computes C ← A − B with high probability in
O(log3 n) microcode operations.

Proof By Lemma 5, after Line 3 either B′ = 0 or A′ ≤ n/8
with high probability. In the former case the algorithm re-
turns immediately, so we can safely assume A′ ≤ n/8 for the
remainder. This also gives bounds of n/8 on B′, C, and D,
so that the largest sum computed is B′+C + D + D ≤ n/2,
which lies within the safe addition range.

To show that the algorithm terminates as advertised, ob-
serve that each iteration of the outer loop sets C← C + D
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where B′+C + D ≤ A′ < B′+C + 2D, from which D is the
largest power of two such that C + D ≤ A′ − B′ = A− B.
Thus each iteration of the outer loop adds a distinct 1 bit to
C’s binary representation, and after dlgn/8e such iterations
there are no more bits to be added. Since the inner loop dou-
bles D each iteration, it also runs for at most dlgne iterations
each time it is invoked, for a total of O(log2 n) lines exe-
cuted. However, the comparison in Line 11 may take up to
O(logn) microcode operations, so the total cost is O(log3 n)
operations as claimed.

5.3 Division

Division of A by a constant k is analogous to subtraction; we
set A′← A and B← 0 and repeatedly seek the largest power
of two D such that kD can be successfully computed (i.e.,
does not cause addition to overflow) and kD ≤ A′. We then
subtract kD from A′ and add D to B.

The protocol terminates when A′ < k, i.e. when no value
of D works. At this point B holds the quotient bA/kc and
A′ the remainder A mod k. Since each iteration adds one bit
to the quotient, there are at most O(logn) iterations of the
outer loop, for a total cost of O(log4 n) microcode operations
(since each outer loop iteration requires one subtraction op-
eration). This yields a total cost for division of O(n log5 n)
interactions on average.1

One curious property of this protocol is that the leader
does not learn the value of the remainder, even though it is
small enough to fit in its limited memory. If it is important
for the leader to learn the remainder, it can do so using k
addition and comparison operations, by successively testing
the remainder A′ for equality with the values 0,1,1 + 1,1 +
1+1, . . . ,k. The cost of this test is dominated by the cost of
the division algorithm.

5.4 Other operations

Multiplication and division by constants give us the ability to
extract individual bits of a register value A. This is sufficient
to implement basic operations like A← B ·C, A←bB/Cc in
polylogarithmic time using standard bitwise algorithms.

5.5 Summary

Combining preceding results gives:

Theorem 2 A probabilistic population with an initial leader
can simulate steps of a virtual machine with a constant num-
ber of registers holding integer values in the range 0 to n,
where each step consists of (a) assigning a constant 0 or 1
value to a register; (b) assigning the value of one register
to another; (c) adding the value of one register to another,
provided the total does not exceed n/2; (d) multiplying a

1 This value was incorrectly reported as O(n log4 n) in [5].

register by a constant, provided the result does not exceed
n/2; (e) testing if a register is equal to zero; (f) comparing
the values of two registers; (g) subtracting the values of two
registers; or (h) dividing the value of a register by a con-
stant and computing the remainder. The probability that for
any single operation the simulation fails or takes more than
O(n log5 n) interactions can be made O(n−c) for any fixed c.

6 Further optimizations

By using a more sophisticated representation for registers
together with our recent protocol for fast approximate ma-
jority [7], we can remove several of the logarithmic factors
in the cost of our register machine construction.2

6.1 Faster comparison using approximate majority

A major bottleneck in our construction is the cost of com-
parison operations.

In a recent paper [7], we showed that a simple three-
state algorithm computes the majority bit among its input
bits in O(n logn) interactions with high probability, provided
the initial majority is sufficiently large and all agents start
the approximate majority protocol at the same time. An ex-
tended version of this result, found in the journal version
of the paper [8], shows that the same result holds with an
initial majority of Ω(n3/4+ε) if all but one agent is initially
dormant and the rest are added to the protocol using an epi-
demic wake-up process. We can use this result to speed up
comparisons in our register machine construction.

To apply this to our register machine, we change the reg-
ister representation to ensure that a large enough gap be-
tween any two different register values exists. We guaran-
tee this by having registers hold values that are multiples
of n4/5; five such registers are sufficient to represent n =
(n1/5)5 different values, thinking of them as five wide-digits
of a number in base n1/5. Thus, to compare two wide digits,
say A and B, we do an approximate majority comparison of
A +(1/2)n4/5 with B; if the result is that A is in the major-
ity, then we conclude that B ≤ A, otherwise that A < B. To
compare two registers composed of O(1) wide-digits it suf-
fices to proceed digit by digit. The actual digit comparison
operation is a straightforward application of the fast robust
approximate majority protocol, where the wake-up process
is implemented by the epidemic instructing all agents to ex-
ecute the comparison operation.

6.2 Faster subtraction using a balanced representation

The subtraction operation of Section 5.2 requires O(logn)
rounds of binary search, where the O(log2 n) parallel time
comparison operation dominates the cost of each round.

2 Much of the material in this section originally appeared in [7].
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Though we could replace these comparisons with our faster
comparison operation and reduce the cost of subtraction to
O(log2 n), we can obtain a still better reduction to O(logn)
parallel time by use the logician’s construction of the in-
tegers from the natural numbers: the value A in a regis-
ter is represented by the difference A+ − A− of values in
two different registers. To compute C← A+B, we compute
C+← A+ +B+ and C−← A−+B−. To compute C← A−B,
we compute C+← A+ +B− and C−← A−+B+. These op-
erations both take parallel time O(logn), because addition
is already O(logn) in the previous construction. To keep the
+ and − parts of the registers from growing too large, we
permit them to cancel in any interaction, reducing each of
A+ and A− by 1. To ensure sufficient cancellation to avoid
overflow, we can add one clock cycle of cancellation to the
end of each addition or subtraction operation.

For registers with this balanced representation, we must
revisit comparison. To compare A with B, we compare (A++
B−) with (A−+B+). Since these differ by a multiple of n4/5,
our previous comparison method works. The result is that
subtraction can be done with O(1) additions and compar-
isons, which gives parallel time of O(logn).

6.3 Faster division by applying previous optimizations

Our most expensive operation is division by a constant, which
is based on O(logn) rounds of binary search in which sub-
traction dominates the cost of each round. The improved cost
of subtraction immediately reduces the parallel time for di-
vision to O(log2 n) without any change to the division algo-
rithm.

6.4 Converting inputs

The remaining issue is how to convert the input values in
the registers, which are represented in simple unary, into the
wide-digits representation. We use the unoptimized machine
operations of Section 5 to create a reference value of mag-
nitude Θ(n4/5) in a register and the usual base-conversion
algorithms to extract the wide digits of each input register
value and store them multiplied by the reference value; this
initialization takes polylogarithmic parallel time, after which
the per-step overhead of simulating the register machine is
O(log2 n).

Thus we have:

Theorem 3 The per-step bound on the number of interac-
tions in Theorem 2 can be improved to O(n log2 n) at the cost
of an initial O(n logO(1) n)-interaction startup phase, where
the probability of failure during either the simulation or the
startup phase can be made O(n−c) for any fixed c.

7 Applications

7.1 Simulating RL

In [3], it was shown that a probabilistic population proto-
col with a leader could simulate a randomized LOGSPACE
Turing machine with a constant number of read-only unary
input tapes with polynomial slowdown. The basic technique
was to use the standard reduction of Minsky [27] of a Tur-
ing machine to a counter machine, in which a Turing ma-
chine tape is first split into two stacks and then each stack is
represented as a base-b number stored in unary. Because the
construction in [3] could only increment or decrement coun-
ters, each movement of the Turing machine head required
decrementing a counter to zero in order to implement divi-
sion or multiplication. Using Theorem 3, we can perform di-
vision and multiplication in O(n log2 n) interactions, which
thus gives the number of interactions for a single Turing ma-
chine step (the initial startup cost is amortized over subse-
quent steps for a sufficiently long execution). If we treat this
quantity as O(log2 n) parallel time, we get a simulation with
polylogarithmic slowdown.

Theorem 4 For any fixed c > 0, there is a constant d such
that a probabilistic population protocol on a complete graph
with a leader that can simulate nc steps of a randomized
LOGSPACE Turing machine with a constant number of read-
only unary input tapes using d log2 n parallel time per step
with a probability of failure bounded by n−c.

Proof We run a simulated register machine adjusted so
that the probability of failure of each basic operations is
O(n−2c−1); since we use a constant number of register ma-
chine operations per Turing machine step, the total proba-
bility of failure in nc Turing machine steps is O(ncn−2c−1),
which is less than n−c for sufficiently large n.

The contents of each input tape is placed in a pair of
registers representing the number of 1’s to the left of the read
head and the number of 1’s to the right of the read head. For
an alphabet of size k, we can represent blogk n/2c cells of
the work tape in a register holding values up to n/2; if we
want a larger tape, we use multiple registers to hold each
tape segment. The state of the finite-state controller is stored
in the leader.

The head position on the work tape is represented by a
pair (i,ks) where i is a constant-size segment identifier stored
in the leader and ks is a segment offset stored in a virtual reg-
ister S; (i,ks) represents the position iblogk(n/2)c+s. Read-
ing the symbol under the tape head consists of computing
(Si/ks) mod k. Shifting the head right involves multiplying
S by k; if as a result it overflows or reaches kblogk(n/2)c, we re-
set S to 0 and increment i. Shifting the head left involves di-
viding S by k, decrementing i and resetting S to kblogk(n/2)c−1

if S is 1 initially. These operations require at most two divi-
sions and some comparisons and assignments assuming the
value kblogk(n/2)c−1 has been precomputed during the initial-
ization of the simulation.
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To implement random choices, the leader initializes two
disjoint populations of roughly n/2 agents with heads or tail
tokens, and chooses the result of a coin flip by waiting to see
which token it sees first. This again takes at most dn ln2 n
interactions with high probability.

7.2 Protocols for semilinear predicates

In this section we consider the problem of computing a semi-
linear predicate. We first show that a simple improvement on
the standard protocol of [3] reduces the expected number of
interactions from Θ(n2 logn) to Θ(n2), even without assum-
ing a leader. If a leader is available, Theorem 2 can be used
to further reduce the number of interactions to O(n log5 n),
both in expectation and with high probability. (We do not
use the faster simulation of Theorem 3 in this case because
the startup time would exceed the cost of using the simpler
simulation.)

The best previously known protocol for computing semi-
linear predicates in a probabilistic population protocol is that
of [3], which proceeds in two stages: (a) a coalescing stage
equivalent to leader election, where all agents start as candi-
date leaders and candidates drop out when they meet other
candidates; and (b) a broadcast stage where the last surviv-
ing leader personally informs all other agents of the outcome
of the protocol (which it computes based on data gathered
during the coalescing stage). Since the expected number of
interactions to eliminate one candidate given k candidates is
n(n−1)
k(k−1) , the coalescing stage takes

n

∑
k=2

n(n−1)
k(k−1)

= n(n−1)
n

∑
k=2

1
k(k−1)

= n(n−1) · n−1
n

= (n−1)2

interactions on average. But the broadcast stage is equivalent
to coupon collector with a factor-of-n slowdown (since inter-
actions between non-leaders have no effect) and thus takes
Θ(n2 logn) interactions.

We can reduce the cost of the broadcast stage slightly
by allowing non-leaders to recruit each other. The resulting
protocol, which we call random-walk broadcast, has state
space {0,1}×Y where 0 indicates a non-leader, 1 a leader,
and Y is the output alphabet ({0,1} when computing a pred-
icate). Its transitions are given by

(b,y),(0,y′) 7→ (b,y),(0,y)

with all other transitions being no-ops. The intuition is that
any interaction between two non-leaders with different out-
put values is equally likely to propagate one or the other,
as each non-leader is equally likely to be the initiator. If we
map the output alphabet to correct and incorrect values, the
number of correct values is driven in a random walk by such

interactions. But the leader cannot be persuaded by non-
leaders and produces a bias in the direction of the absorbing
state in which all agents have the correct output.

Theorem 5 Starting from any initial configuration with a
single leader, the random walk broadcast protocol converges
to a configuration in which all agents have the same output
value in an expected O(n2) interactions.

Proof The number of agents whose answers agree with a
unique leader (including the leader) is a Markov chain on
1, . . . ,n, where n is the size of the population. We are inter-
ested in the maximum hitting time of the chain to n.

Let Tn(k) be the hitting time where k is the number of
agents that agree with the leader. Then we have Tn(n) = 0
and the recurrence

Tn(k) =
n(n−1)
2k(n− k)

+
k(n− k)+1 · (n− k)

2k(n− k)
Tn(k +1)

+
k(n− k)−1 · (n− k)

2k(n− k)
Tn(k−1)

or

Tn(k) =
n(n−1)
2k(n− k)

+
k +1

2k
Tn(k +1)+

k−1
2k

Tn(k−1),

which we can rewrite as

2kTn(k)
n(n−1)

=
1

n− k
+

k +1
n(n−1)

Tn(k +1)+
k−1

n(n−1)
Tn(k−1).

Let Un(k) := kTn(k)
n(n−1) . Then

2Un(k) =
1

n− k
+Un(k +1)+Un(k−1).

The solution is

Un(k) = (n− k)
n

∑
j=n−k+1

1
j
.

Clearly, Un(0) = 0. We check the recurrence:

2Un(k) = 2(n− k)
n

∑
j=n−k+1

1
j

= (n− (k +1))
n

∑
j=n−k+1

1
j
+(n− (k−1))

n

∑
j=n−k+1

1
j

= Un(k +1)− n− k−1
n− k

+Un(k−1)+
n− k +1
n− k +1

=
1

n− k
+Un(k +1)+Un(k−1).

Thus

Tn(k) =
n(n−1)(n− k)

k

n

∑
j=n−k+1

1
j

and Tn(k)≤ Tn(1) = (n−1)2.
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Now let us consider what we can do with a leader.
From [3] we have that it is sufficient to be able to compute
congruence modulo k, +, and < to compute any semilinear
predicate. From Theorem 2 we have that all of these opera-
tions can be computed with a leader in O(n log5 n) interac-
tions with high probability. The final stage of broadcasting
the result to all agents can also be performed in O(n logn)
interactions with high probability using an epidemic.

However, there is some chance of never converging to
the correct answer if the protocol fails. To eliminate this pos-
sibility, we construct an optimistic hybrid protocol in which
the fast but potentially inaccurate O(n log5 n)-interaction pro-
tocol is supplemented by an O(n2) leaderless protocol, with
the leader choosing (in case of disagreement) to switch its
output from that of the fast protocol to that of the slow pro-
tocol when it is likely the slow protocol has finished. The
resulting hybrid protocol converges to the correct answer in
all executions while still converging in O(n log5 n) interac-
tions in expectation and with high probability.

Theorem 6 For any semilinear predicate P, and for any c >
0, there is a probabilistic population protocol on a complete
graph with a leader to compute P without error that con-
verges in O(n log5 n) interactions with probability at least
1−n−c and in expectation.

Proof First apply Theorem 6 to evaluate P and broadcast the
result in O(n log5 n) interactions with probability of error at
most 1− n−2c−7. To eliminate the error, we will in paral-
lel run the O(n2) coalescing protocol of [3] as modified to
use random-walk broadcast. The output of the protocol will
switch from the fast algorithm to the slow one only when the
second has converged with high probability; if the fast algo-
rithm is correct, this has no effect on the output and does not
increase the convergence time. But if the fast algorithm is
incorrect, the slow algorithm saves it, by having the leader
personally write the slow algorithm output on each agent.

To simplify the analysis of the coalescing algorithm, we
assume that the leader retains its candidate bit even when
interacting with another candidate. This enforces that the fi-
nal remaining candidate will in fact be the leader, and that
its output value will converge to the correct value. Since no
candidate survives an encounter with the leader, once the
leader meets every other agent it has the correct output value
in the coalescing protocol. This is an instance of coupon
collector—slowed down by a factor of n on average—and
so a simple application of Lemma 1 together with Chernoff
bounds applied to the number of leader interactions shows
that there is a constant d such that the leader obtains the cor-
rect output after dn2 lnn < n3 interactions with probability
at least 1−n−4c.

We now show how to switch from the possibly erroneous
result (or results) of the epidemic-based protocol to the re-
sult of the coalescing protocol. Upon its first interaction as
initiator, the leader recruits a single marker agent which it
uses to implement a probabilistic trigger following a tech-
nique suggested in [2]: the trigger fires if the leader responds

to the marker agent 2c+5 interactions in a row without any
intervening interactions.

The trigger fires on any particular leader interaction with
probability at most n−2c−5 and on any interaction with prob-
ability at most n−2c−6. The expected number of firings in
the first n3 interactions is thus at most n−2c−3 by linearity of
expectation.

We now consider several possible cases, depending on
whether the fast algorithm delivers the correct output to all
agents within O(n log5 n) interactions and whether the trig-
ger fires before n3 interactions.

1. Fast algorithm works, trigger fires at n3 interactions
or later. Here every agent has the correct output after
O(n log5 n) interactions, and they continue to have the
correct output thereafter unless the slow algorithm has
not converged, which occurs with probability at most
n−4c. Even conditioning on failure to converge after
n3 interactions, the slow algorithm runs at most an ex-
pected O(n2 logn) additional interaction before converg-
ing, contributing O(n3n−4c) = o(1) to the total expected
interactions.

2. Fast algorithm works, trigger fires before n3 interactions.
Here an unconverged slow algorithm may produce bad
outputs after O(n log5 n) interactions. This case occurs
with probability at most n−2c−3. Since the slow algo-
rithm eventually converges in O(n3) expected interac-
tions, this case also adds at most n3n−2c−3 = o(1) to the
total expected interactions.

3. Fast algorithm fails. This case occurs with probability at
most n−2c−7. Here the expected number of interactions
is dominated by the waiting time for the trigger, which
is O(n2c+6) interactions; this contributes n2c+6n−2c−7 =
o(1) to the expectation.

Summing the error probabilities gives n−4c + n−2c−3 +
n−2c−7 � n−c for sufficiently large n. Summing the contri-
butions of each case to the expectation gives O(n log5 n)+
o(1) = O(n log5 n) expected total interactions.

8 Removing the initial leader?

All of the results so far assume a unique initial leader agent.
It still remains open whether we can build fast population
protocols starting from a uniform initial population. In prin-
ciple, we can execute an initial leader election phase using
the simple algorithm of [3] (where each would-be leader
drops out upon encountering another leader), then have the
last surviving leader personally shut off all other agents one
at a time in O(n2 logn) interactions, and restart them in the
same number of interactions; however, the leader may have
to wait an additional large polynomial time to be confident
that it has in fact reached all agents. Even if we are willing
to amortize the cost of the initial leader election phase over
a long computation, a faster, proven algorithm is still desir-
able.
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We present a construction based on an improved phase
clock, which combines the original phase clock with a multi-
valued generalization of the approximate majority protocol
from [7]. This consensus phase clock appears to be robust,
but must be started with at most a polynomial number of
leaders. We also describe a “disposable” phase clock that ap-
pears to be able to generate an O(nε)-sized junta of leaders
and start the consensus phase clock from an initial config-
uration with all agents in the same state. The combination
of these two protocols appears to give a robust phase clock
without requiring designated leaders in the initial configura-
tion.3

These mechanisms have not been proven correct; instead,
we rely on simulation results that show that they appear to
work with high probability. A full proof of correctness is
likely to require the development of better analytical tools.

8.1 Fast leader elimination

Simulation results suggest that the following protocol can
start up a phase clock with high probability in Θ(logn) par-
allel time. This protocol is one-way; we use δ (q1,q2) to de-
note the new state of a responder in state q2 that interacts
with an initiator in state q1.

This protocol is the combination of several components,
where transitions in each component may depend on the
states of previous components. The first component allows
us to make approximate coin tosses. The states are Qcoin =
{0,1}, with initial value xcoin = 0, and the transition function
is δcoin(q,q′) = 1−πcoin(q). Starting from any configuration,
this protocol rapidly converges towards an equal proportion
of agents in each state. The second component counts the
number of consecutive coin values equal to 1 the agent has
seen immediately prior, up to a maximum of ` > 0. The
states are Qcount = {0,1, . . . , `}, xcount = 0, and the transition
function δcount(q,q′) = πcoin(q)(min{πcount(q′)+1, `}).

The third component approximates an exponential decay
process. There is a parameter k1≤ `. The states are Qdecay1 =
{0,1}, xdecay1 = 1, and the update function is δdecay1(q,q′) =
[πcount(q) < k1]πdecay1(q′). The idea is that for all 0 < α < 1
and 0 < c, we can find k1 such that with high probability,
there is a period of cn logn steps where the number of agents
with decay1 value of 1 is between 1 and nα . In this period,
using agents with decay1 value of 1 as temporary leaders,
we can run a disposable phase clock that functions correctly
only for a constant number of phases before all the values of
decay1 become 0. This phase clock is used to choose a stable
leader population of size Θ(n1−ε), which in turn supports a
second copy of the phase clock that runs for polynomially
many steps.

3 Much of the material in this section originally appeared in [7].

8.2 A consensus-enforcing phase clock

Our consensus variant of the phase clock works as follows.
In addition to the phases 0,1, . . . ,φ − 1, we have a blank
“phase” b. Thus Qphase1 = {b,0,1, . . . ,φ−1} and xphase1 = 0.
If x is a nonblank phase, then let succ(x) = (x+1) mod φ be
the successor phase of x. We have

δphase1(q,q′)=



p′ if p = b
p if p′ = b
p′ if p′ = p 6= b and πdecay1(q) = 0
succ(p′) if p′ = p 6= b and πdecay1(q) = 1
p′ if p, p′ 6= b and p′ = succ(p)
p if p, p′ 6= b and succ(p′) = p
b otherwise,

where p = πphase1(q) and p′ = πphase1(q′). If the phase of
the initiator is blank or one behind the responder’s, the re-
sponder’s phase is unchanged. If the phase of the responder
is blank, it copies the phase of the initiator. If the phases
are non-blank and equal, the responder increments its phase
if and only if the initiator has decay1 value 1 (temporary
leader status.) If the initiator’s phase is one more than the
responder’s, the responder increments its phase. In all other
cases, the responder sets its phase to blank. In summary, we
are following a multiple-valued generalization of the 3-state
majority algorithm except when the phases are nonblank and
within distance 1 of one another. In this case, we revert to
behavior like that of the original phase clock.

8.3 Combining the mechanisms

Once the disposable phase clock is running, it is used to se-
lect the real phase clock’s leaders. This is accomplished by
having another exponential decay process that is reset by the
disposable phase clock each complete cycle. Thus we need
a way to detect approximately the onset of each cycle. Our
criterion is for each agent to keep a local “maximum” of
the phases it has been in, and perform the reset when this
maximum wraps around. Formally, Qmax = {0,1, . . . ,φ−1},
xmax = 0, and

δmax(q,q′) =


p′ if p′ 6= b and

(p′−πmax(q′)) mod φ ≤ φ/2
πmax(q′) otherwise,

where p′ = δphase1(q,q′). Since the last cycle may be partial,
we also need a one-value history for the decay process. Now
Qdecay2 = {0,1}×{0,1}, xdecay2 = (1,1), and

δdecay2(q,q′) =


(1,y) if δmax(q,q′)

< πmax(q′)
([πcount(q) < k2]y,y′) otherwise,

where (y,y′) = δdecay2(q′). The final set of leaders are those
agents with y′ = 1 when the disposable phase clock stops
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Fig. 1 Simulation results: parallel time of leader election and final
number of leaders
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running. A second copy of the consensus phase clock, run-
ning from the initial configuration using y′ = 1 to designate
leaders, rapidly converges in simulation to correct robust
phase clock behavior when the number of leaders becomes
appropriate.

8.4 Simulation results

We implemented the disposable phase clock leader election
protocol and tried it once on each value of b1.01nc between
100 and 100000 for integers n, with every agent in the same
initial state. There are three parameters to tune: φ , k1, and
k2. The protocol is not very sensitive to the settings of these
parameters, but the setting φ = 9, k1 = 5, and k2 = 4 worked
better than many others.

The results are depicted in Figure 1. As can be seen, it
seems that the protocol generally leaves Θ(n1−ε) leaders and
completely converges in O(logn) parallel time.

8.5 Reduction to a single leader

The distinction between one leader and a polynomial num-
ber of leaders is not important for the phase clock, but may
become so in the register machine simulation; for example,
a single leader can easily initialize a unary register to 1 by
recruiting a spare agent, but multiple leaders will have a hard
time recruiting exactly one such agent. Fortunately, once the
phase clock is running, the leadership cadre can be reduced
to a single leader by flipping coins. In each round, every
leader chooses a 0 or 1 value and propagates it by epidemic.

If both values appear, any leader with a 1 drops out and the
0 leader (or leaders) restart the register machine simulation.
We thus obtain a single leader an expected O(n log2 n) inter-
actions after the phase clock stabilizes.

9 Open problems

The most pressing open problem is whether the assumption
of an initial leader can be provably eliminated without drasti-
cally raising the cost of our protocols. Though the simulation
results of Section 8.4 are promising, at present we have no
fast, provably correct protocol for rapidly producing a single
leader.

A related question is whether it is possible to make the
register machine simulation and other constructions robust
against errors. The redundancy inherent in the wide-digit
representation of Section 6.1 together with a junta of lead-
ers running in lockstep suggests the possibility of tolerat-
ing crash failures where agents drop out of the population,
though detailed analysis will be needed to ensure that er-
rors do not accumulate over long computations. Byzantine
failures seem much more dangerous, as a single Byzantine
agent could initiate new epidemics that quickly overwhelm
and disrupt the correct computation. Here the possibility
of “dueling epidemics” to constrain the effects of Byzan-
tine agents, as in the Byzantine-resistant approximate ma-
jority protocol of [7], or the adoption of an extended model
incorporating minimal identity information, as used in the
Byzantine-resistant community protocols of Guerraoui and
Ruppert [24], may give reason for hope.

Finally, it would be interesting to explore the effect of
assuming a interaction distribution that is non-uniform—
perhaps even one that changes over time—to reflect the
physical effects of spatial dispersion and/or movement of the
agents.
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