A simple population protocol for fast robust approximate majority

Dana Angluin¹ James Aspnes¹ David Eisenstat²

¹Department of Computer Science Yale University

²Department of Computer Science Princeton University

DISC 2007, September 24th, 2007

< A >

Outline

- Population protocols
 - Model
 - Previous work
 - Fast robust approximate majority
- 2 Analysis of fast robust approximate majority
 - Overview
 - State change bound
 - Correctness
 - Interaction bound
 - Byzantine resistance
- One application and open problems
 - One application
 - Open problems

Analysis of fast robust approximate majority One application and open problems **Model** Previous work Fast robust approximate majority

イロト イポト イヨト イヨト

Definition

- A **population protocol** (Angluin, Aspnes, Diamadi, Fischer and Peralta, PODC 2004):
 - Q a finite set of **states**
 - $\delta: Q \times Q \rightarrow Q \times Q$ a joint transition function
 - . . .
- Agents have states in Q
- An execution step:
 - Select an initiator and a responder at random
 - $\bullet~$ Update their states according to $\delta~$

$$(q_i',q_r')=\delta(q_i,q_r)$$

- *n* is the number of agents
- Parallel time is the number of steps per agent

Analysis of fast robust approximate majority One application and open problems **Model** Previous work Fast robust approximate majority

Image: A image: A

Example: OR

- $Q = \{0, 1\}$
- The transition function $\delta(q_i, q_r) = (q_i, q_i \lor q_r)$:

 $10 \rightarrow 11$

Analysis of fast robust approximate majority One application and open problems **Model** Previous work Fast robust approximate majority

< □ > < □ >

Example: OR

- $Q = \{0, 1\}$
- The transition function $\delta(q_i, q_r) = (q_i, q_i \lor q_r)$:

 $10 \rightarrow 11$

Analysis of fast robust approximate majority One application and open problems **Model** Previous work Fast robust approximate majority

Image: A image: A

Example: OR

- $Q = \{0, 1\}$
- The transition function $\delta(q_i, q_r) = (q_i, q_i \lor q_r)$:

 $10 \rightarrow 11$

Analysis of fast robust approximate majority One application and open problems **Model** Previous work Fast robust approximate majority

- 4 同 🕨 - 4 目 🕨 - 4 目

Example: OR

- $Q = \{0, 1\}$
- The transition function $\delta(q_i, q_r) = (q_i, q_i \lor q_r)$:

 $10 \rightarrow 11$

Analysis of fast robust approximate majority One application and open problems **Model** Previous work Fast robust approximate majority

Image: A image: A

Example: OR

- $Q = \{0, 1\}$
- The transition function $\delta(q_i, q_r) = (q_i, q_i \lor q_r)$:

 $10 \rightarrow 11$

Analysis of fast robust approximate majority One application and open problems **Model** Previous work Fast robust approximate majority

Image: A image: A

Example: OR

- $Q = \{0, 1\}$
- The transition function $\delta(q_i, q_r) = (q_i, q_i \lor q_r)$:

 $10 \rightarrow 11$

Analysis of fast robust approximate majority One application and open problems **Model** Previous work Fast robust approximate majority

Image: A image: A

Example: OR

- $Q = \{0, 1\}$
- The transition function $\delta(q_i, q_r) = (q_i, q_i \lor q_r)$:

 $10 \rightarrow 11$

Analysis of fast robust approximate majority One application and open problems **Model** Previous work Fast robust approximate majority

▲ 同 ▶ → 三 ▶

Example: OR

- $Q = \{0, 1\}$
- The transition function $\delta(q_i, q_r) = (q_i, q_i \lor q_r)$:

 $10 \rightarrow 11$

Analysis of fast robust approximate majority One application and open problems **Model** Previous work Fast robust approximate majority

- 4 同 ト 4 ヨ ト 4 ヨ ト

Example: OR

- $Q = \{0, 1\}$
- The transition function $\delta(q_i, q_r) = (q_i, q_i \lor q_r)$:

 $10 \rightarrow 11$

Analysis of fast robust approximate majority One application and open problems **Model** Previous work Fast robust approximate majority

One motivation

- Chemical systems as distributed systems
 - What can they compute?
 - What can we say about their dynamics?
- Replace "agent" with "molecule" ⇒ Chemical Master Equation (modulo details)
- Objection: in real life, some pairs of agents are more likely to interact than others
 - Agents in the same state are interchangeable
 - In a **well-stirred** chemical mixture, reaction *types* occur with the right probabilities (Gillespie, Physica A 1992)

Analysis of fast robust approximate majority One application and open problems **Model** Previous work Fast robust approximate majority

・ロト ・同ト ・ヨト ・

Majority framework

- Agents start in one of two states, x or y
- The population must eventually agree on the majority value with probability 1
 - Assume that there is no tie
 - A map $o: Q \rightarrow \{x, y\}$ extracts output values from states
 - Termination is not required
- These conditions may be relaxed
 - Add a leader
 - Allow error with probability $n^{-\Theta(1)}$
 - Allow error when there are about as many x's as y's

Model **Previous work** Fast robust approximate majority

Previous work

The original population protocol for majority (Angluin et al., PODC 2004)

- Works by canceling x's and y's and electing a leader to dictate the result
- Runs in (expected) parallel time $O(n \log n)$
- Adapted to handle stabilizing inputs (Angluin, Aspnes, Chan, Fischer, Jiang and Peralta, DCOSS 2005)
- Adapted to use one-way communication with queuing (Angluin, Aspnes, E. and Ruppert, OPODIS 2005)
- Adapted to handle O(1) crash failures (Delporte-Gallet, Fauconnier, Guerraoui and Ruppert, DCOSS 2006)
- Modified to run in parallel time O(n) (Angluin, Aspnes and E., DISC 2006)

Model **Previous work** Fast robust approximate majority

Previous work (continued)

Majority on a simulated register machine (Angluin et al., DISC 2006)

- Requires a leader
- Uses the timing properties of epidemics to achieve partial synchrony with high probability
 - The phase-clock construction
- Works by alternating rounds of
 - Canceling x's and y's partially
 - Doubling the numbers of each

until only the majority value remains

- Runs in parallel time $O(\log^2 n)$: $O(\log n)$ rounds, each of which takes $O(\log n)$ parallel time
- Fails with probability $n^{-\Theta(1)}$ unless the previous algorithm is used as a fail-safe

Model Previous work Fast robust approximate majority

Fast robust approximate majority

- $Q = \{x, y, b\}$
- b is the **blank** state
- The transition function δ :

$$xy \rightarrow xb$$
 $xb \rightarrow xx$
 $yx \rightarrow yb$ $yb \rightarrow yy$

- Why not bx → xx or xy → bb? Requires two-way communication, can lose the last non-blank
- The transition graph of the responder:

Model Previous work Fast robust approximate majority

Intuitions behind fast robust approximate majority

- Multiplicative increase, additive decrease
 - x's and y's recruit b's in proportion to their numbers BUT
 - An xy interaction is as likely as a yx
 - Small initial gap widens to total domination
- Analogy to the register machine algorithm
 - xy and yx interactions are like the canceling rounds
 - xb and yb interactions are like the doubling rounds
 - Faster because we don't wait $O(\log n)$ parallel time for the last agent to double
 - Approximate because the rate of each process is random
- Next: proof sketch

Overview State change bound Correctness Interaction bound Byzantine resistance

Overview

- Using martingales, we show that with high probability,
 - The number of state changes before converging is $O(n \log n)$
 - The total number of interactions before converging is $O(n \log n)$
 - The final outcome is correct if the initial disparity is $\omega(\sqrt{n \log n})$
- This algorithm is the fastest possible
 - Must wait Ω(n log n) steps in expectation for all agents to interact

・ ロ ト ・ 同 ト ・ 三 ト ・

• Finally, we consider the effect of Byzantine agents

Overview State change bound Correctness Interaction bound Byzantine resistance

Bounding the number of state changes (1)

Define

x	the number of x's
y	the number of y's
b	the number of <i>b</i> 's
u	<i>x</i> – <i>y</i>
Svb	the number of xb and yb interactions so far
Sxy	the number of xy and yx interactions so far

- Claim: $|S^{vb} S^{xy}| \le n 1$
 - The left-hand side is how much the number of non-blank agents has changed

< 日 > < 同 > < 三 > < 三 >

Overview State change bound Correctness Interaction bound Byzantine resistance

Image: A = A

Configuration space

|u| = |x - y| is a pretty good measure of progress

Overview State change bound Correctness Interaction bound Byzantine resistance

< A >

Bounding the number of state changes (2)

- Given an xy or yx interaction:
 - u increases by 1 with probability 1/2
 - u decreases by 1 with probability 1/2

Like a random walk

- Given an *xb* or *yb* interaction:
 - *u* increases by 1 with probability x/(x + y)
 - *u* decreases by 1 with probability y/(x + y)

The expected increase is roughly proportional to u: like exponential growth

Overview State change bound Correctness Interaction bound Byzantine resistance

Bounding the number of state changes (3)

- f is the potential function
- We design f to increase on xb and yb interactions and decrease less on xy and yx interactions
- For |u| small, f should resemble the potential function for a random walk, u^2
- For |u| large, f should resemble the potential function for exponential growth, $\log |u|$

$$f(u) = \log\left(\frac{3}{2}n + u^2\right)$$

< A >

Overview State change bound Correctness Interaction bound Byzantine resistance

Bounding the number of state changes (3)

- f is the potential function
- We design f to increase on xb and yb interactions and decrease less on xy and yx interactions
- For |u| small, f should resemble the potential function for a random walk, u^2
- For |u| large, f should resemble the potential function for exponential growth, $\log |u|$

$$f(u) = \log\left(\frac{3}{2}n + u^2\right)$$

< A >

Overview State change bound Correctness Interaction bound Byzantine resistance

Bounding the number of state changes (4)

• f and the two functions it behaves like:

• f increases by $\sim 2/(3n)$ conditioned on xb or yb

- f decreases by $\sim 1/(12n)$ conditioned on xy or yx
- Martingales: $E[\Delta f]$ is $\Omega(n^{-1/2})$, so f attains its maximum in $\Theta(\log n)/\Omega(1/n) = O(n \log n)$ steps whp $\Box \to \langle \Box \rangle \to \langle \Box \rangle$ at $\Box \to \langle \Box \rangle$

Dana Angluin, James Aspnes, David Eisenstat

Overview State change bound Correctness Interaction bound Byzantine resistance

Correctness of fast robust approximate majority

Fast robust approximate majority is correct given that the initial margin is $\omega(\sqrt{n \log n})$

- Couple (u_i) with an unbiased random walk (t_i) so that $|t_i| \le |u_i|$
 - $\Pr[u \text{ increases}] \ge 1/2 \text{ for } u \ge 0$
 - $\Pr[u \text{ decreases}] \ge 1/2 \text{ for } u \le 0$
- Suppose $t_0 = u_0 = x_0 y_0 = \omega(\sqrt{n \log n})$
- Whp, random walk is positive for $\Theta(n \log n)$ steps $\Rightarrow x$ wins

< ロ > < 同 > < 回 > < 回 >

• Argue symmetrically wrt y

Overview State change bound Correctness Interaction bound Byzantine resistance

Bounding the total number of interactions

- Why doesn't the bound on state changes suffice?
 - State changes are infrequent in the corners
- Solution: introduce auxiliary potential functions

b corner	$\log(x+y)$
x corner	$-\log(1+b+3y)$
y corner	$-\log(1+b+3x)$

- In their respective corners, these functions increase by $\Omega(1/n)$ in expectation
- The decrease elsewhere is bounded by the number of state changes \Rightarrow the desired bound

Overview State change bound Correctness Interaction bound Byzantine resistance

Byzantine resistance

- Suppose there are $z = o(\sqrt{n})$ Byzantine agents
 - Can change their state at will
 - Cannot control the scheduling of interactions
 - No information about the future
- Weaker guarantees wrt convergence and correctness
- Our proof of convergence requires
 - \sqrt{n} non-blank agents to start with
 - Redefining convergence to be when at most $O(\sqrt{n})$ agents have the wrong value
 - Truncating the execution after exponentially many steps (instead of never)
 - Allowing probability $O(n^{-c})$ of failure
- Correctness requires a slightly larger margin of $\omega(\sqrt{n}\log n)$

Overview State change bound Correctness Interaction bound Byzantine resistance

Proof sketch of Byzantine resistance

- Maximum "error" in potential function analysis is o(1/n): not enough to cause trouble in the center
 - Byzantine interaction probability is $\frac{o(\sqrt{n}) \cdot O(n)}{n(n-1)} = o(1/\sqrt{n})$
 - Maximum potential function change is $O(1/\sqrt{n})$
- Strong pressure out of the *b* corner
- Strong pressure into the x and y corners
 - In both cases, Byzantine agents "winning" involves completing biased random walks in reverse \Rightarrow not for exponentially many steps
 - The Byzantine agents are not numerous enough to keep the protocol in the center for long

・ ロ ト ・ 同 ト ・ 三 ト ・

- Make fast comparison exact whp
 - Make unary representation robust by using multiples of $\Theta(n^{2/3})$
 - $\bullet\,$ Add $\,`'1/2''\,$ to avoid non-deterministic behavior for comparing equal quantities
- Together with other tricks, reduce amortized per-step overhead of
 - addition
 - subtraction
 - comparison
 - division by a constant

to $O(\log n)$ parallel time per step—improved by several log factors

- Better proofs for fast robust approximate majority
- Obstacles:
 - Does not resemble a well-studied random process (coupon collector, random walk) throughout the configuration space
 - No closed-form solution to the analogous differential equations
- Any proof at all for several protocols described in the paper (have only empirical evidence)
 - $\bullet~$ Three or more values $\Rightarrow~$ "Fast robust approximate plurality"
 - Phase-clock that stabilizes in $O(\log n)$ parallel time
 - Leader election in $O(\log n)$ parallel time

One application Open problems

イロト イポト イヨト イヨト

э

Thank you!

Dana Angluin, James Aspnes, David Eisenstat Fast robust approximate majority