A simple population protocol for fast robust approximate majority

Dana Angluin ${ }^{1}$ James Aspnes ${ }^{1} \quad$ David Eisenstat ${ }^{2}$
${ }^{1}$ Department of Computer Science
Yale University
${ }^{2}$ Department of Computer Science
Princeton University
DISC 2007, September 24th, 2007

Outline

(1) Population protocols

- Model
- Previous work
- Fast robust approximate majority
(2) Analysis of fast robust approximate majority
- Overview
- State change bound
- Correctness
- Interaction bound
- Byzantine resistance
(3) One application and open problems
- One application
- Open problems

Definition

- A population protocol (Angluin, Aspnes, Diamadi, Fischer and Peralta, PODC 2004):
- Q - a finite set of states
- $\delta: Q \times Q \rightarrow Q \times Q$ - a joint transition function
- ...
- Agents have states in Q
- An execution step:
- Select an initiator and a responder at random
- Update their states according to δ

$$
\left(q_{i}^{\prime}, q_{r}^{\prime}\right)=\delta\left(q_{i}, q_{r}\right)
$$

- n is the number of agents
- Parallel time is the number of steps per agent

Example: OR

- $Q=\{0,1\}$
- The transition function $\delta\left(q_{i}, q_{r}\right)=\left(q_{i}, q_{i} \vee q_{r}\right)$:

$$
10 \rightarrow 11
$$

All other interactions have no effect.

Example: OR

- $Q=\{0,1\}$
- The transition function $\delta\left(q_{i}, q_{r}\right)=\left(q_{i}, q_{i} \vee q_{r}\right)$:

$$
10 \rightarrow 11
$$

All other interactions have no effect.

Example: OR

- $Q=\{0,1\}$
- The transition function $\delta\left(q_{i}, q_{r}\right)=\left(q_{i}, q_{i} \vee q_{r}\right)$:

$$
10 \rightarrow 11
$$

All other interactions have no effect.

Example: OR

- $Q=\{0,1\}$
- The transition function $\delta\left(q_{i}, q_{r}\right)=\left(q_{i}, q_{i} \vee q_{r}\right)$:

$$
10 \rightarrow 11
$$

All other interactions have no effect.

Example: OR

- $Q=\{0,1\}$
- The transition function $\delta\left(q_{i}, q_{r}\right)=\left(q_{i}, q_{i} \vee q_{r}\right)$:

$$
10 \rightarrow 11
$$

All other interactions have no effect.

Example: OR

- $Q=\{0,1\}$
- The transition function $\delta\left(q_{i}, q_{r}\right)=\left(q_{i}, q_{i} \vee q_{r}\right)$:

$$
10 \rightarrow 11
$$

All other interactions have no effect.

Example: OR

- $Q=\{0,1\}$
- The transition function $\delta\left(q_{i}, q_{r}\right)=\left(q_{i}, q_{i} \vee q_{r}\right)$:

$$
10 \rightarrow 11
$$

All other interactions have no effect.

Example: OR

- $Q=\{0,1\}$
- The transition function $\delta\left(q_{i}, q_{r}\right)=\left(q_{i}, q_{i} \vee q_{r}\right)$:

$$
10 \rightarrow 11
$$

All other interactions have no effect.

Example: OR

- $Q=\{0,1\}$
- The transition function $\delta\left(q_{i}, q_{r}\right)=\left(q_{i}, q_{i} \vee q_{r}\right)$:

$$
10 \rightarrow 11
$$

All other interactions have no effect.

One motivation

- Chemical systems as distributed systems
- What can they compute?
- What can we say about their dynamics?
- Replace "agent" with "molecule" \Rightarrow Chemical Master Equation (modulo details)
- Objection: in real life, some pairs of agents are more likely to interact than others
- Agents in the same state are interchangeable
- In a well-stirred chemical mixture, reaction types occur with the right probabilities (Gillespie, Physica A 1992)

Majority framework

- Agents start in one of two states, x or y
- The population must eventually agree on the majority value with probability 1
- Assume that there is no tie
- A map o: $Q \rightarrow\{x, y\}$ extracts output values from states
- Termination is not required
- These conditions may be relaxed
- Add a leader
- Allow error with probability $n^{-\Theta(1)}$
- Allow error when there are about as many x 's as y 's

Previous work

The original population protocol for majority (Angluin et al., PODC 2004)

- Works by canceling x 's and y 's and electing a leader to dictate the result
- Runs in (expected) parallel time $O(n \log n)$
- Adapted to handle stabilizing inputs (Angluin, Aspnes, Chan, Fischer, Jiang and Peralta, DCOSS 2005)
- Adapted to use one-way communication with queuing (Angluin, Aspnes, E. and Ruppert, OPODIS 2005)
- Adapted to handle $O(1)$ crash failures (Delporte-Gallet, Fauconnier, Guerraoui and Ruppert, DCOSS 2006)
- Modified to run in parallel time $O(n)$ (Angluin, Aspnes and E., DISC 2006)

Previous work (continued)

Majority on a simulated register machine (Angluin et al., DISC 2006)

- Requires a leader
- Uses the timing properties of epidemics to achieve partial synchrony with high probability
- The phase-clock construction
- Works by alternating rounds of
- Canceling x 's and y 's partially
- Doubling the numbers of each until only the majority value remains
- Runs in parallel time $O\left(\log ^{2} n\right): O(\log n)$ rounds, each of which takes $O(\log n)$ parallel time
- Fails with probability $n^{-\Theta(1)}$ unless the previous algorithm is used as a fail-safe

Fast robust approximate majority

- $Q=\{x, y, b\}$
- b is the blank state
- The transition function δ :

$$
\begin{array}{ll}
x y \rightarrow x b & x b \rightarrow x x \\
y x \rightarrow y b & y b \rightarrow y y
\end{array}
$$

All other interactions have no effect.

- Why not $b x \rightarrow x x$ or $x y \rightarrow b b$? Requires two-way communication, can lose the last non-blank
- The transition graph of the responder:

Intuitions behind fast robust approximate majority

- Multiplicative increase, additive decrease
- x 's and y 's recruit b 's in proportion to their numbers BUT
- An $x y$ interaction is as likely as a $y x$
- Small initial gap widens to total domination
- Analogy to the register machine algorithm
- $x y$ and $y x$ interactions are like the canceling rounds
- $x b$ and $y b$ interactions are like the doubling rounds
- Faster because we don't wait $O(\log n)$ parallel time for the last agent to double
- Approximate because the rate of each process is random
- Next: proof sketch

Overview

- Using martingales, we show that with high probability,
- The number of state changes before converging is $O(n \log n)$
- The total number of interactions before converging is $O(n \log n)$
- The final outcome is correct if the initial disparity is $\omega(\sqrt{n \log n})$
- This algorithm is the fastest possible
- Must wait $\Omega(n \log n)$ steps in expectation for all agents to interact
- Finally, we consider the effect of Byzantine agents

Bounding the number of state changes (1)

- Define

x	the number of x 's
y	the number of $y^{\prime} s$
b	the number of $b^{\prime} s$
u	$x-y$
$S^{v b}$	the number of $x b$ and $y b$ interactions so far
$S^{x y}$	the number of $x y$ and $y x$ interactions so far

- Claim: $\left|S^{v b}-S^{x y}\right| \leq n-1$
- The left-hand side is how much the number of non-blank agents has changed

Configuration space

$|u|=|x-y|$ is a pretty good measure of progress

Bounding the number of state changes (2)

- Given an $x y$ or $y x$ interaction:
- u increases by 1 with probability $1 / 2$
- u decreases by 1 with probability $1 / 2$

Like a random walk

- Given an $x b$ or $y b$ interaction:
- u increases by 1 with probability $x /(x+y)$
- u decreases by 1 with probability $y /(x+y)$

The expected increase is roughly proportional to u : like exponential growth

Bounding the number of state changes (3)

- f is the potential function
- We design f to increase on $x b$ and $y b$ interactions and decrease less on $x y$ and $y x$ interactions
- For $|u|$ small, f should resemble the potential function for a random walk, u^{2}
- For $|u|$ large, f should resemble the potential function for exponential growth, $\log |u|$

Bounding the number of state changes (3)

- f is the potential function
- We design f to increase on $x b$ and $y b$ interactions and decrease less on $x y$ and $y x$ interactions
- For $|u|$ small, f should resemble the potential function for a random walk, u^{2}
- For $|u|$ large, f should resemble the potential function for exponential growth, $\log |u|$

$$
f(u)=\log \left(\frac{3}{2} n+u^{2}\right)
$$

Bounding the number of state changes (4)

- f and the two functions it behaves like:

- f increases by $\sim 2 /(3 n)$ conditioned on $x b$ or $y b$
- f decreases by $\sim 1 /(12 n)$ conditioned on $x y$ or $y x$
- Martingales: $E[\Delta f]$ is $\Omega\left(n^{-1 / 2}\right)$, so f attains its maximum in $\Theta(\log n) / \Omega(1 / n)=O(n \log n)$ steps whp

Correctness of fast robust approximate majority

Fast robust approximate majority is correct given that the initial margin is $\omega(\sqrt{n \log n})$

- Couple (u_{i}) with an unbiased random walk $\left(t_{i}\right)$ so that $\left|t_{i}\right| \leq\left|u_{i}\right|$
- $\operatorname{Pr}[u$ increases $] \geq 1 / 2$ for $u \geq 0$
- $\operatorname{Pr}[u$ decreases $] \geq 1 / 2$ for $u \leq 0$
- Suppose $t_{0}=u_{0}=x_{0}-y_{0}=\omega(\sqrt{n \log n})$
- Whp, random walk is positive for $\Theta(n \log n)$ steps $\Rightarrow x$ wins
- Argue symmetrically wrt y

Bounding the total number of interactions

- Why doesn't the bound on state changes suffice?
- State changes are infrequent in the corners
- Solution: introduce auxiliary potential functions

b corner	$\log (x+y)$
x corner	$-\log (1+b+3 y)$
y corner	$-\log (1+b+3 x)$

- In their respective corners, these functions increase by $\Omega(1 / n)$ in expectation
- The decrease elsewhere is bounded by the number of state changes \Rightarrow the desired bound

Byzantine resistance

- Suppose there are $z=o(\sqrt{n})$ Byzantine agents
- Can change their state at will
- Cannot control the scheduling of interactions
- No information about the future
- Weaker guarantees wrt convergence and correctness
- Our proof of convergence requires
- \sqrt{n} non-blank agents to start with
- Redefining convergence to be when at most $O(\sqrt{n})$ agents have the wrong value
- Truncating the execution after exponentially many steps (instead of never)
- Allowing probability $O\left(n^{-c}\right)$ of failure
- Correctness requires a slightly larger margin of $\omega(\sqrt{n} \log n)$

Proof sketch of Byzantine resistance

- Maximum "error" in potential function analysis is $o(1 / n)$: not enough to cause trouble in the center
- Byzantine interaction probability is $\frac{o(\sqrt{n}) \cdot O(n)}{n(n-1)}=o(1 / \sqrt{n})$
- Maximum potential function change is $O(1 / \sqrt{n})$
- Strong pressure out of the b corner
- Strong pressure into the x and y corners
- In both cases, Byzantine agents "winning" involves completing biased random walks in reverse \Rightarrow not for exponentially many steps
- The Byzantine agents are not numerous enough to keep the protocol in the center for long
- Make fast comparison exact whp
- Make unary representation robust by using multiples of $\Theta\left(n^{2 / 3}\right)$
- Add " $1 / 2$ " to avoid non-deterministic behavior for comparing equal quantities
- Together with other tricks, reduce amortized per-step overhead of
- addition
- subtraction
- comparison
- division by a constant
to $O(\log n)$ parallel time per step-improved by several log factors
- Better proofs for fast robust approximate majority
- Obstacles:
- Does not resemble a well-studied random process (coupon collector, random walk) throughout the configuration space
- No closed-form solution to the analogous differential equations
- Any proof at all for several protocols described in the paper (have only empirical evidence)
- Three or more values \Rightarrow "Fast robust approximate plurality"
- Phase-clock that stabilizes in $O(\log n)$ parallel time
- Leader election in $O(\log n)$ parallel time

One application
Open problems

Thank you!

