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Definition

A population protocol (Angluin, Aspnes, Diamadi, Fischer
and Peralta, PODC 2004):

Q — a finite set of states
δ : Q × Q → Q × Q — a joint transition function
. . .

Agents have states in Q

An execution step:

Select an initiator and a responder at random
Update their states according to δ

(q′i , q
′
r ) = δ(qi , qr )

n is the number of agents

Parallel time is the number of steps per agent

Dana Angluin, James Aspnes, David Eisenstat Fast robust approximate majority



Population protocols
Analysis of fast robust approximate majority

One application and open problems

Model
Previous work
Fast robust approximate majority

Example: OR

Q = {0, 1}
The transition function δ(qi , qr ) = (qi , qi ∨ qr ):

10 → 11

All other interactions have no effect.

a1 b0

c0
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One motivation

Chemical systems as distributed systems

What can they compute?
What can we say about their dynamics?

Replace “agent” with “molecule” ⇒ Chemical Master
Equation (modulo details)

Objection: in real life, some pairs of agents are more likely to
interact than others

Agents in the same state are interchangeable
In a well-stirred chemical mixture, reaction types occur with
the right probabilities (Gillespie, Physica A 1992)
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Majority framework

Agents start in one of two states, x or y

The population must eventually agree on the majority value
with probability 1

Assume that there is no tie
A map o : Q → {x , y} extracts output values from states
Termination is not required

These conditions may be relaxed

Add a leader
Allow error with probability n−Θ(1)

Allow error when there are about as many x ’s as y ’s
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Previous work

The original population protocol for majority (Angluin et al.,
PODC 2004)

Works by canceling x ’s and y ’s and electing a leader to
dictate the result

Runs in (expected) parallel time O(n log n)

Adapted to handle stabilizing inputs (Angluin, Aspnes, Chan,
Fischer, Jiang and Peralta, DCOSS 2005)

Adapted to use one-way communication with queuing
(Angluin, Aspnes, E. and Ruppert, OPODIS 2005)

Adapted to handle O(1) crash failures (Delporte-Gallet,
Fauconnier, Guerraoui and Ruppert, DCOSS 2006)

Modified to run in parallel time O(n) (Angluin, Aspnes and
E., DISC 2006)
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Previous work (continued)

Majority on a simulated register machine (Angluin et al., DISC
2006)

Requires a leader

Uses the timing properties of epidemics to achieve partial
synchrony with high probability

The phase-clock construction

Works by alternating rounds of
Canceling x ’s and y ’s partially
Doubling the numbers of each

until only the majority value remains

Runs in parallel time O(log2 n): O(log n) rounds, each of
which takes O(log n) parallel time

Fails with probability n−Θ(1) unless the previous algorithm is
used as a fail-safe
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Fast robust approximate majority

Q = {x , y , b}
b is the blank state

The transition function δ:

xy → xb xb → xx

yx → yb yb → yy

All other interactions have no effect.

Why not bx → xx or xy → bb? Requires two-way
communication, can lose the last non-blank

The transition graph of the responder:

x b
y

x
y

y

x
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Intuitions behind fast robust approximate majority

Multiplicative increase, additive decrease

x ’s and y ’s recruit b’s in proportion to their numbers BUT
An xy interaction is as likely as a yx
Small initial gap widens to total domination

Analogy to the register machine algorithm

xy and yx interactions are like the canceling rounds
xb and yb interactions are like the doubling rounds
Faster because we don’t wait O(log n) parallel time for the last
agent to double
Approximate because the rate of each process is random

Next: proof sketch
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Overview

Using martingales, we show that with high probability,

The number of state changes before converging is O(n log n)

The total number of interactions before converging is
O(n log n)
The final outcome is correct if the initial disparity is
ω(
√

n log n)

This algorithm is the fastest possible

Must wait Ω(n log n) steps in expectation for all agents to
interact

Finally, we consider the effect of Byzantine agents
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Bounding the number of state changes (1)

Define

x the number of x ’s

y the number of y ’s

b the number of b’s

u x − y

Svb the number of xb and yb interactions so far

Sxy the number of xy and yx interactions so far

Claim: |Svb − Sxy | ≤ n − 1

The left-hand side is how much the number of non-blank
agents has changed
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Configuration space

xy

00

nn

|u| = |x − y | is a pretty good measure of progress
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Bounding the number of state changes (2)

Given an xy or yx interaction:

u increases by 1 with probability 1/2
u decreases by 1 with probability 1/2

Like a random walk

Given an xb or yb interaction:

u increases by 1 with probability x/(x + y)
u decreases by 1 with probability y/(x + y)

The expected increase is roughly proportional to u: like
exponential growth
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Bounding the number of state changes (3)

f is the potential function

We design f to increase on xb and yb interactions and
decrease less on xy and yx interactions

For |u| small, f should resemble the potential function for a
random walk, u2

For |u| large, f should resemble the potential function for
exponential growth, log |u|

f (u) = log

(
3

2
n + u2

)
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Bounding the number of state changes (4)

f and the two functions it behaves like:

 4

 5

 6

 7

 8

 9

 10

-40 -30 -20 -10  0  10  20  30  40

log(x**2)
log(150 + x**2)

log(150) + x**2/150

f increases by ∼ 2/(3n) conditioned on xb or yb
f decreases by ∼ 1/(12n) conditioned on xy or yx
Martingales: E [∆f ] is Ω(n−1/2), so f attains its maximum in
Θ(log n)/Ω(1/n) = O(n log n) steps whp
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Correctness of fast robust approximate majority

Fast robust approximate majority is correct given that the initial
margin is ω(

√
n log n)

Couple (ui ) with an unbiased random walk (ti ) so that
|ti | ≤ |ui |

Pr[u increases] ≥ 1/2 for u ≥ 0
Pr[u decreases] ≥ 1/2 for u ≤ 0

Suppose t0 = u0 = x0 − y0 = ω(
√

n log n)

Whp, random walk is positive for Θ(n log n) steps ⇒ x wins

Argue symmetrically wrt y
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Bounding the total number of interactions

Why doesn’t the bound on state changes suffice?

State changes are infrequent in the corners

Solution: introduce auxiliary potential functions
b corner log(x + y)

x corner − log(1 + b + 3y)

y corner − log(1 + b + 3x)

In their respective corners, these functions increase by Ω(1/n)
in expectation

The decrease elsewhere is bounded by the number of state
changes ⇒ the desired bound
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Byzantine resistance

Suppose there are z = o(
√

n) Byzantine agents

Can change their state at will
Cannot control the scheduling of interactions
No information about the future

Weaker guarantees wrt convergence and correctness

Our proof of convergence requires√
n non-blank agents to start with

Redefining convergence to be when at most O(
√

n) agents
have the wrong value
Truncating the execution after exponentially many steps
(instead of never)
Allowing probability O(n−c) of failure

Correctness requires a slightly larger margin of ω(
√

n log n)
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Proof sketch of Byzantine resistance

Maximum “error” in potential function analysis is o(1/n): not
enough to cause trouble in the center

Byzantine interaction probability is o(
√

n)·O(n)
n(n−1) = o(1/

√
n)

Maximum potential function change is O(1/
√

n)

Strong pressure out of the b corner

Strong pressure into the x and y corners

In both cases, Byzantine agents “winning” involves completing
biased random walks in reverse ⇒ not for exponentially many
steps
The Byzantine agents are not numerous enough to keep the
protocol in the center for long
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Make fast comparison exact whp

Make unary representation robust by using multiples of Θ(n2/3)
Add “1/2” to avoid non-deterministic behavior for comparing
equal quantities

Together with other tricks, reduce amortized per-step
overhead of

addition
subtraction
comparison
division by a constant

to O(log n) parallel time per step—improved by several log
factors
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Better proofs for fast robust approximate majority

Obstacles:

Does not resemble a well-studied random process (coupon
collector, random walk) throughout the configuration space
No closed-form solution to the analogous differential equations

Any proof at all for several protocols described in the paper
(have only empirical evidence)

Three or more values ⇒ “Fast robust approximate plurality”
Phase-clock that stabilizes in O(log n) parallel time
Leader election in O(log n) parallel time
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Thank you!
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