Randomized Consensus in Expected O(n?)
Total Work Using Single-Writer Registers

James Aspnes*

Yale University

Abstract. A new weak shared coin protocol yields a randomized wait-
free shared-memory consensus protocol that uses an optimal O(n?) ex-
pected total work with single-writer registers despite asynchrony and
process crashes. Previously, no protocol was known that achieved this
bound without using multi-writer registers.

1 Introduction

The consensus problem is to get a group of n processes to agree on a bit. In a
wait-free randomized consensus protocol, each process starts with an input
bit and produces a decision bit; the protocol is correct if it satisfies agreement,
where all processes that finish the protocol choose the same decision bit; valid-
ity, where every decision bit is equal to some process’s input; and probabilistic
termination, where every non-faulty process completes the protocol after a fi-
nite number of its own steps with probability 1. These conditions are required
to hold despite asynchrony and up to n — 1 crash failures.

We consider consensus in an asynchronous shared-memory system where the
timing of events and failures is under the control of an adaptive adversary, one
that can observe the complete state of the system—including the internal states
of process—but that cannot predict future coin flips made by the processes.

Processes communicate by reading and writing a collection of atomic reg-
isters, which may be single-writer (only one particular process is allowed to
write to each register) or multi-writer (any process can write to any register).
In either case we assume that a register can be read by all processes. The cost of
a protocol is measured by counting either the expected total number of opera-
tions carried out by all processes (the total work or total step complexity) or
the maximum expected number of operations carried out by any single process
(the individual work or individual step complexity). For either measure,
a worst-case adversary is assumed.

Single-writer registers were used in most early shared-memory consensus pro-
tocols [1,3,6,8,11-14, 18]. More recent protocols [4,7] have used multi-writer
registers for increased efficiency. Though multi-writer registers can be imple-
mented from single-writer registers (see, for example, [9, Theorem 10.9]), this
imposes a linear blow-up in the costs, and the question of whether a stronger

* Supported in part by NSF grant CCF-0916389.

lower bound might apply to single-writer register protocols than to multi-writer
register protocols has remained open [7]. We answer this question, by giving a
wait-free randomized consensus protocol using only single-writer registers that
matches the lower bound on total step complexity for multi-writer registers.

1.1 Prior Work

Wait-free randomized consensus can be solved using shared memory by reduc-
tion to a weak shared coin [5]. A weak shared coin is a protocol in which
each process chooses a bit, with the property that there is some agreement
parameter § > 0 such that for each possible value b, all processes choose b with
probability at least § for any adversary strategy. A construction of Aspnes and
Herlihy [5], which uses only single-writer registers, shows that any weak shared
coin protocol with expected total work T(n) and agreement parameter § can be
used to solve consensus with O ((n? + T (n)) /) expected total work. In partic-
ular, finding a weak shared coin with total work O(n?) and constant agreement
parameter gives consensus in O(n?) expected total work.

Though early randomized consensus protocols [1,13] did not use a shared
coin, much of the subsequent development of randomized consensus protocols
for the adaptive-adversary model has been based on this technique [3,4,6-8,11,
12,14,18]. The typical structure of a shared coin protocol is to have the processes
collectively generate ©(n?) random =1 votes, and have each process choose what
it sees as the majority value. The intuition is that after ©(n?) votes, the margin
of the majority value is likely to be £2(n), large enough that the adversary cannot
disguise it by selectively delaying processes casting votes it doesn’t like.

The main variation between protocols is in how they detect when enough
votes have been cast. For many years, the best known protocol was that of
Bracha and Rachman [12]. In this protocol, each process maintains in its own
register both a count of how many votes it has generated so far and the sum of
all of its votes. After every n/logn votes, a process collects all of the register
values (by reading all n registers), and decides on the majority value if the
sum of the counts exceeds n2. The dominant cost is the cost of the collect, which
amortizes at O(logn) register operations for each of the O(n?) total votes, giving
O(n?logn) total work.

The reason for checking the vote count every n/logn steps is that it guar-
antees that at most n?/logn extra votes can be generated once the initial n?
common votes are cast. It can then be shown that (a) the common votes pro-
duce with constant probability a net majority at any fixed multiple of n, their
standard deviation; while (b) using Hoeffding’s inequality, the net extra votes
seen by any one process have probability less than ﬁ of exceeding 2n, giving a
low probability that any of the processes sees a large shift from the extra votes.
Factoring in the additional shift of up to n — 1 votes that have been generated
but not written still leaves a constant probability that all processes see the same
majority value.

The main excess cost in the Bracha-Rachman protocol is the ©(logn) amor-
tized cost per vote of doing a full collect every n/logn votes. This is needed

to keep the extra votes from diverging too much: if we collect only every ©(n)
votes, we would expect a constant probability for each process that the ©(n?)
extra votes it sees change the majority value.

The goal of finding an O(n?) total-work shared coin with constant agree-
ment parameter was finally achieved by Attiya and Censor using multi-writer
registers [7] in a paper that also showed that 2(n?) total work was necessary
for consensus. The key idea is to use Bracha-Rachman, modified to do collects
every n votes, but add a single termination bit that shuts down voting im-
mediately once some process detects termination. This makes all processes see
essentially the same set of extra votes, meaning that it is no longer necessary to
bound the effect of the extra votes separately for each process. However, a single
multi-writer register is needed to implement the termination bit, even though
the rest of the protocol uses only single-writer registers.

1.2 Our Approach

We show that the multi-writer bit is not needed: it can be replaced by an array
of single-writer termination bits (one for each process) that propagate via a
gossip protocol running in parallel with the voting mechanism at an amortized
cost of O(1) operations per vote. The intuition for why this works is that, as
more processes detect termination, fewer processes are left voting. So while some
processes may see a full O(n?) extra votes, later processes will see fewer; thus
the probability that each process sees enough extra votes to shift the majority
drops geometrically, giving a constant total probability that any process returns
the wrong value. To make this work, a counting argument is used to show that
the k-th process to detect termination sees at most 2n?/k extra votes, and that
this bound holds simultaneously for all k with constant probability. This avoids
a blow-up that would otherwise occur using simple union bounds.

2 The Shared Coin Protocol

Code for the shared coin algorithm is given in Algorithm 1. The structure is
similar to the protocol of Bracha and Rachman [12] as improved by Attiya and
Censor [7], with the single termination bit of the Attiya-Censor protocol replaced
by an array of termination bits that are sampled randomly. The essential idea
is that a process repeatedly generates random +1 votes (using the CoinFlip()
subroutine, which generates each value +1 with equal probability). These are
added to the process’s sum field in a[pid], while at the same time the number of
votes the process has generated is written to the count field. Each process checks
after every n votes to see if the sum of all the count fields exceeds a threshold
T = 64n?, and probes a random termination bit done[r] before every vote. If
either enough votes have been generated or done[r] is set, the process exits the
loop immediately, setting done[pid] and returning the sign of the sum of all the
sum fields.

shared data:
Register a[p] for each process p, with fields a[p].count and a[p].sum, both
initially 0.
Boolean register done[p] for each process p, initially false.
fori+—1...00do
if i mod n = 0 then
if 3°7_, a[p].count > T' then break
end if
Choose 7 uniformly at random from {1...n} \ {pid}.
if done[r] = true then break
v +— CoinFlip()
a[pid] < (a[pid].count 4 1, a[pid].sum + v).
end for
done[pid] < true

return sgn (22:1 a[p].sum)
Algorithm 1: Shared coin protocol.

© 00 N O s W N

o
(=)

=
[

3 Analysis

For the analysis of the protocol, we fix an adversary strategy. This is a func-
tion that selects, after each initial prefix of the computation, which process will
execute the next operation, leaving the results of the calls to CoinFlip and the
random choices of done-bit probes as the only source of nondeterminism. We
then wish to show that each outcome +1 is chosen by all processes with at least
constant probability.

The essential idea is to show first that the sum of the votes generated before
each process detects termination is likely to be large and then that the sums of
the extra votes seen by each process p are likely to be small simultaneously for
all p. In this case, no process’s extra votes causes it to see a majority different
from the common majority. This approach follows similar arguments used for
previous protocols based on Bracha-Rachman [4,6,7,12]. The main new wrinkle
is that we consider non-uniform error probabilities, where a process that sets
done[p] early is more likely to return the wrong value than a process that sets it
later.

We write that a process’s i-th vote is generated when the process executes
the call to CoinFlip() in Line 7. We will be more interested in when a vote
is generated than when it is ultimately added to a[p]. We let X7, Xo, X3, ...
be random variables, with X; representing the return value of the ¢-th call to
CoinFlip() by any process, and let S; = 22:1 X, be the sum of the first ¢
generated votes. Because each X; has expectation zero, the sequence {S;} is a

martingale, and we can use tools for bounding the evolution of martingales to
characterize the total vote trajectory over time.!

Because we are examining votes when they are generated and not when they
are written, we say that a process p observes a vote X; generated by ¢ if X; is
generated before p reads a[q] during its final collect. The observed votes are not
necessarily read by p or included in its final tally; but since at most one vote
generated by ¢ can be missing when p reads alg], the sum that p computes will
differ from the sum it “observes” by at most n — 1.

3.1 Overview of the Proof
We now give an outline of the structure of the proof:

1. We bound how far the values in the registers lag behind the generated votes
(Lemma 1). This bound is used first to bound the total number of votes
generated (in Lemma 2) and later to bound the gap between the generated
votes observed by a process and the sum computed by that process during
its final collect.

2. We show that the sum St of the first T' votes is at least 8n with probability
at least 1/8 (Lemma 3). This 8n majority is our budget for losses in the later
stages of the protocol.

3. If the preceding event holds, the probability that S; ever drops below 4n
during subsequent votes is shown to be less than 1/8 (Lemma 4). This bound
is obtained by combining Kolmogorov’s inequality and the bound on the
total number of votes from Lemma 2. A consequence is that it is likely that,
for every process, S; is above 4n when the process detects termination and
begins its final collect.

4. While a process’s final collect is in progress, extra votes may come in that
reduce the value seen by the process below 4n (this does not contradict
Lemma 4, because the adversary may be selective in when it allows the pro-
cess to read particular registers). While different processes may see different
numbers of extra votes (processes that detect termination later will have
observe fewer other processes still generating votes), we can bound simulta-
neously the number of extra votes seen by each process as a function of the
order in which they set their termination bit (Lemma 5).

5. The extra votes observed by each process also form a martingale, and thus
the probability that they reduce the total by 3n or more can be bounded
using Azuma’s inequality [10]. Even though the different number of extra
votes observed by each process varies, the resulting probability bounds form
a geometric series that sums to less than 1/8 (Lemma 6).

6. After subtracting the 3n bound on extra votes from the 4n bound of the pre-
vious step, we have a constant probability that the number of votes observed
by every process is at least n. Since the actual total read by each process

LA good general reference on martingales (and other stochastic processes) is [15].
Discussion of applications of martingales to analysis of algorithms can be found
in [2,16,17].

differs from the observed value by at most n— 1, this gives that every process
sees at least +1 votes, proving agreement (Theorem 1).

The choice of the thresholds 8n and 4n is somewhat arbitrary; these partic-
ular values happen to be convenient for the proof, but it is likely that further
optimization is possible. The threshold n in the last step is needed because of
the gap between generated votes and the values actually stored in the registers.

We now proceed with the details of the proof.

3.2 Deterministic Bounds on Error and Running Time

The following lemma bounds the difference between the generated votes and the
values in the registers:

Lemma 1. Let v,; = 1 if vote X; is generated by p, and 0 otherwise. In any
state of the protocol after exactly t calls to CoinFlip() have been made, we have:

1.t—=n <30 alpl.count < t.
2. For all p, (Z§=1 'ypiXi) - a[p].sum’ <1.

Proof. Immediate from inspection of the protocol and the observation that for
each process, there can be at most one vote that has been generated in Line 7
but not yet written in Line 8.

Lemma 2. The total number of votes T generated during any execution of the
protocol is at least T and at most T +n? + n.

Proof. Before a process p can finish, it must first write done[p| in Line 10. Con-
sider the first process to do so. This process can only exit the loop after seeing
> p=1 alp].count > T', which occurs only if at least 7' votes have already been
generated (and written).

For the upper bound, suppose that at some time, T' + n votes have been
generated; then from Lemma 1 we have Z;Lzl a[p].count > T. Each process
can generate at most n more votes before executing the test in Line 3 and
exiting. Adding in these votes, summed over all processes, gives a total of at
most (T +n) +n? = T + n? + n votes.

It is easy to see from Lemma 2 that the total work for Algorithm 1 is O(n?);
the main loop contributes an amortized O(1) operations per vote (plus an extra
O(n) operations per process for the first execution of the collect in Line 3),
while the assignment to done[pid] and the final collect contributes O(n) more
operations per process. Summing these contributions gives the claimed bound.

3.3 Common Votes and Extra Votes

For each process p, let k, be the number of votes generated before p either
observes a total number of votes greater than or equal to T in Line 3 or observes

a non-false value in done[r| in Line 6. For each ¢, let £,; be the indicator variable
for the event that both t > x, and a vote X is generated by some process ¢
before p reads alg] in Line 11; formally, &,; = [t > Kkp] A Vpt, Where vy is the
random variable defined in Lemma 1. Since all votes X; ... Xy, are generated
before p executes Line 11, the sum over all ¢ of votes generated by ¢ before p
reads a[g] is given by S, 4 >, & Xy We will refer to these votes as the votes
observed by p, even though (by Lemma 1) up to one such vote for each process
¢ may not be written to a[g] before p reads it.

We will show that, with constant probability, the total votes observed by
every process is bounded away from 0 by at least n in the same direction. The
essentially idea is to show that ’S,Qp’ is likely to be large for all p, and that
the extra votes |)_, £+ X;| are likely to all be small. This argument essentially
follows the structure of the proofs of correctness for the shared coins in [12] and
subsequent work [4,6,7]. The new part is a trick for simultaneously bounding
the number of extra votes observed by each process p after time r,, based on
the effect of the random sampling of the done bits.

3.4 Bound on Common Votes

To simplify the argument, we concentrate on the case where all processes see a
positive total vote; the negative case is symmetric. First we consider the effect
of the pre-threshold votes:

Lemma 3. For sufficiently large n, Pr[St > 8n] > 1/8.

Proof. Immediate from the normal approximation to the binomial distribution:
8n = /T is one standard deviation.

For the remainder of the proof we consider only events that occur after the
T-th vote is generated. The bounds we obtain will thus hold independently of
the value of St.

First, we use Kolmogorov’s inequality (following the approach in [7]) to bound
how far S; can drop after St.

Lemma 4.
1
Pr [min (S — Sr) < —4n] < -
t>T 8

Proof. From Lemma 2, there are at most n? + n votes after T, giving a total
variance of at most n? + n. Thus,

Pr [min (St — St) < —4n] <Pr [max |S: — S| > 44
t>T >T

t

n?4+n

~ (4n)?
1 1
6 " Ton

16
1

where the second inequality follows from Kolmogorov’s inequality and the last
inequality holds for n > 1.

In particular, we have that, with probability at least 7/8, S > St — 4n for
all p.

3.5 Bound on Extra Votes

We now consider the votes generated after a process detects termination but
before it finishes its final collect in Line 11; i.e., those votes X; for which &, =
1. Notice that for each p and ¢, the value of &, is determined before X is
generated; formally, &,+ is measurable F;_;, where F;_; records all events prior
to the generation of X;. It follows that B[, X¢|Fi—1] = &p E[X¢|Fi—1] = 0, since
E[X¢|F:—1] = 0. This implies that extra votes observed by p form a martingale
difference sequence and their sum can be bounded using Azuma’s inequality [10].
If ny, = > &pe, then Pr{}- &, Xy < —2n] < exp(—4n?/n2), and the probability
that any process p observes > &, X; < —3n is bounded by Y exp(—9n*/n?)
by the union bound. The main trick is to show that, with constant probability,
most n, values are small enough that this sum is a small constant.

The basic idea behind this trick is that if a particular vote generated by some
process ¢ might be an extra vote for many processes, then these processes must
all have written their done bits, making it more likely that ¢ will read true on its
next probe of the done array and finish. In particular, this means that the k-th
process to write its done bit will observe at most n/k extra votes on average from
q, and n?/k extra votes on average from all processes. By itself, this would give
a probability-(1/2) bound of 2n?/k on the number of extra votes observed by py,
using Markov’s inequality. But in fact we can show the stronger result that this
bound holds simultaneously for all p, with probability 1/2, by bounding the sum
of the number of termination bits set when each vote is generated and arguing
that each of pi’s extra votes contributes at least k to this sum. The result is the
following:

Lemma 5. Let py be the k-th process to write its done bit. With probability at
least 1/2, it holds simultaneously for all k that n,, =, &pee < 2n%/k.

Proof. For each vote Xy, let its contribution ¢; be >, &, . Consider the se-
quence of votes Xy, , Xy,,... generated by some single process g. If one of these
votes Xy, has contribution wy,, then ¢’s next probe of the done array will find
true with probability at least k/n; in other words, with probability at least k/n,
a contribution k vote is the last vote ¢q generates. Letting C' be the expected total
contribution of ¢’s votes, we get the recurrence

C<k+(1—k/n)C,

which has the solution

no matter how the adversary chooses k. It follows that the expected total con-
tribution of all votes cast by ¢ is at most n, and thus that the expected total
contribution), ¢; of all votes cast by all processes is at most n?. By Markov’s
inequality, we have

Pr

d < Qnﬂ >1/2.
t

Now observe that process pr only observes extra votes of contribution k or
greater, since all other votes were generated before pi wrote its done bit. So
&t = 1 implies ¢; > k, and thus

ngktzézgpktk
t t

1

. fkc
k; prttt
1

- Ct.
kzt:t

IN

IN

This holds for all k. So in the event that Zt ¢; < 2n?, which occurs with prob-
ability at least 1/2, we have Y, &,,+ < 2n?/k for all k.

We now bound the extra votes for each process. To avoid dependencies, we
define a truncated version of the extra votes for each process pp, capped at
{2712 /kj votes; when the bound in Lemma 5 holds, this will be equal to the

actual extra votes. Let &, , = &0 if (3,4 &pus) < |2n%/k| and 0 otherwise.

Then &}, is predictable and the sequence {Zi<t f;kiXi} is a martingale. If we

consider just the sequence of values X;,, X;,,... for which 51’)”

bounded martingale difference sequence of length at most 2n?/k. It follows from
Azuma’s inequality that

= 1, we have a

(3n)”
< (~)
= e~ (O/Dk, (1)

Pr lz Xt < —3n
t

Summing this quantity for all k gives

Lemma 6. Pr 3k, ¢ X; < —3n] < 1/8.

Proof. Using the union bound and (1):

Pr [angth < Sn] < ZPr
t

> g Xi < 34
k=1 t
n
<3 e Ork
k=1

ey
k=1
e 9/4
ST
~ 0.1178...
<1/8.

3.6 Full Result
We can now state the full result:

Theorem 1. Algorithm 1 implements a shared coin with agreement parameter
1/32.

Proof. From Lemma 3, the probability that Sp > 8n is at least 1/8. Suppose
that this event occurs; we now consider the probability that subsequent events
involving X771 ... cause some process to compute a non-positive total vote.

Recall that each process p observes a total vote S, + >, &, X¢, and that the
actual vote computed by the process may be as low as S,, + >, {pe Xt — (0 — 1)
(the n — 1 is from the unwritten votes described in Lemma 1). Lemma 4 gives a
probability of at most 1/8 that any S is less than S7 — 4n. Lemma 5 gives a
probability of at most 1/2 that), &,¢ # >, &, for any p. Finally, Lemma 6 gives
a probability of at most 1/8 that), &, < —3n for any p. These probabilities sum
to 3/4; so there is a probability of at least 1/4 that none of these bad events occur,
in which case the total vote computed by p is at least Sp —4n —3n—(n—1) =
St —8n+ 1.

When St > 8n, this quantity is at least 1, and thus all processes return +1
with probability at least (1/8)(1/4) = 1/32. That all processes return —1 with
at least the same probability follows from symmetry of the algorithm.

Corollary 1. There is a wait-free randomized shared-memory consensus proto-
col using only-single writer registers that evecutes O(n?) expected total operations
against an adaptive adversary.

4 Conclusions

We have shown that the expected total work needed for randomized shared-
memory consensus with an adaptive adversary is O(n?) using only single-writer

registers, matching the upper and lower bounds for multi-writer registers of
Attiya and Censor [7]. This leaves the question of what happens with individual
work. Here the best known lower bound is {2(n), which matches the Attiya-
Censor lower bound and which is immediate from the need for a process in a
solo execution to read at least one register belonging to each other process before
deciding. The best known upper bound is given by an O(nlog?n) algorithm of
Aspnes and Waarts [6] that modifies the Bracha-Rachman protocol by having
processes generate votes of increasing weight. We suspect that the gossip-based
termination detector used here might be able to reduce this upper bound to
O(nlogn), but that closing the gap completely will likely require new techniques.

5 Acknowledgments

I would like to thank Hagit Attiya and Keren Censor for suggesting the possibility
of faster single-writer consensus and for several useful discussions.

References

1. Karl Abrahamson. On achieving consensus using a shared memory. In Proceed-
ings of the Tth Annual ACM Symposium on Principles of Distributed Computing
(PODC), pages 291-302, 1988.

2. Noga Alon and Joel H. Spencer. The Probabilistic Method. John Wiley & Sons,
1992.

3. James Aspnes. Time- and space-efficient randomized consensus. Journal of Algo-
rithms, 14(3):414-431, May 1993.

4. James Aspnes and Keren Censor. Approximate shared-memory counting despite a
strong adversary. In SODA ’09: Proceedings of the Nineteenth Annual ACM -SIAM
Symposium on Discrete Algorithms, pages 441-450, Philadelphia, PA, USA, 2009.
Society for Industrial and Applied Mathematics.

5. James Aspnes and Maurice Herlihy. Fast randomized consensus using shared mem-
ory. Journal of Algorithms, 11(3):441-461, September 1990.

6. James Aspnes and Orli Waarts. Randomized consensus in expected O(N log® N)
operations per processor. SIAM Journal on Computing, 25(5):1024-1044, October
1996.

7. Hagit Attiya and Keren Censor. Tight bounds for asynchronous randomized con-
sensus. Journal of the ACM, 55(5):20, October 2008.

8. Hagit Attiya, Danny Dolev, and Nir Shavit. Bounded polynomial randomized
consensus. In Proceedings of the Fighth Annual ACM Symposium on Principles of
Distributed Computing, pages 281-293, Edmonton, Alberta, Canada, 14-16 August
1989.

9. Hagit Attiya and Jennifer Welch. Distributed Computing: Fundamentals, Simula-
tions, and Advanced Topics. John Wiley & Sons, second edition, 2004.

10. Kazuoki Azuma. Weighted sums of certain dependent random variables. Téhoku
Mathematical Journal, 19(3):357-367, 1967.

11. Gabriel Bracha and Ophir Rachman. Approximated counters and randomized
consensus. Technical Report 662, Technion, 1990.

12.

13.

14.

15.

16.

17.

18.

Gabriel Bracha and Ophir Rachman. Randomized consensus in expected
O(n?logn) operations. In Sam Toueg, Paul G. Spirakis, and Lefteris M. Kirousis,
editors, Distributed Algorithms, 5th International Workshop, volume 579 of Lec-
ture Notes in Computer Science, pages 143-150, Delphi, Greece, 7-9 October 1991.
Springer, 1992.

Benny Chor, Amos Israeli, and Ming Li. Wait-free consensus using asynchronous
hardware. SIAM J. Comput., 23(4):701-712, 1994.

Cynthia Dwork, Maurice Herlihy, Serge Plotkin, and Orli Waarts. Time-lapse
snapshots. SIAM Journal on Computing, 28(5):1848-1874, 1999.

Geoffrey R. Grimmett and David R. Stirzaker. Probability and Random Processes.
Oxford University Press, 2001.

Michael Mitzenmacher and Eli Upfal. Probability and Computing: Randomized
Algorithms and Probabilistic Analysis. Cambridge University Press, 2005.

Rajeev Motwani and Prabhakar Raghavan. Randomized Algorithms. Cambridge
University Press, 1995.

Michael Saks, Nir Shavit, and Heather Woll. Optimal time randomized consensus—
making resilient algorithms fast in practice. In Proceedings of the 2nd annual
ACM-SIAM symposium on Discrete algorithms, pages 351-362, 1991.

