
Atomic snapshots in O(log3 n) steps
using randomized helping∗

James Aspnes† Keren Censor-Hillel‡

September 7, 2018

Abstract

A randomized construction of single-writer snapshot objects from
atomic registers is given. The cost of each snapshot operation is
O(log3 n) atomic register steps with high probability, where n is the
number of processes, even against an adaptive adversary. This is an
exponential improvement on the linear cost of the previous best known
snapshot construction [12, 17] and on the linear lower bound for deter-
ministic constructions [18], and does not require limiting the number
of updates as in previous sublinear constructions [5]. One of the main
ingredients in the construction is a novel randomized helping technique
that allows out-of-date processes to obtain up-to-date information.

Our construction can be adapted to implement snapshots in
a message-passing system. While a direct adaptation using the
Attiya-Bar-Noy-Dolev construction gives a cost of O(log3 n) time and
O(n log3 n) messages per operation with high probability, we show that
exploiting the inherent parallelism of a message-passing system can
eliminate the need for randomized helping and reduce the complex-
ity to O(log2 n) time and O(n log2 n) messages per operation in the
worst case. This implementation includes an O(1)-time, O(n)-message
construction of an unbounded-value max register that may be of inde-
pendent interest.

∗A preliminary version of this work appeared in the proceedings of the 27th Interna-
tional Symposium on Distributed Computing (DISC), pages 254–268, 2013. We mention
that the implementation of the unbounded max array given in the conference version does
not give the claimed step complexity, and is replaced here by a different construction.
†Yale University, Department of Computer Science. Supported in part by NSF grants

CCF-0916389, CCF-1637385, and CCF-1650596.
‡Technion, Department of Computer Science.

1

1 Introduction
An atomic snapshot object allows processes to obtain the entire contents
of a shared array as an atomic operation. The first known wait-free imple-
mentations of snapshot from atomic registers [2, 3, 9] required Θ(n2) steps
to carry out a snapshot with n processes; subsequent work [12, 17] reduced
this cost to O(n), which was shown to be optimal in the worst case for
non-blocking deterministic algorithms by Jayanti et al. [18].

The Jayanti et al. lower bound applies to any object that is per-
turbable, which roughly means that the output of a future read operation
can be affected by inserting new updates into an execution, no matter how
these updates are linearized with respect to incomplete operations already
present in the execution.1 In addition to snapshots, other examples of per-
turbable objects are max registers [4] (which support ReadMax operations
that return the largest value written by earlier WriteMax operations) and
counters.

Limitations of the lower bound technique of [18] became apparent with
the development of wait-free sublinear-complexity limited-use and bounded-
value variants of these objects. These included deterministic implementa-
tions of max registers and counters [4], and later of snapshot objects [5].
In each case, these implementations had step complexity polylogarithmic in
the number of operations applied to them.2 These objects still have linear
cost in the worst case, but the worst case is reached only after exponentially
many operations.

The dependence on the range of possible values was shown to be neces-
sary initially for max registers [4], where a lower bound of min(dlogme , n−1)
was shown3 for an m-bounded-value max register, and later for a variety of
objects [7], which satisfy a perturbability condition similar to that used in
the Jayanti et al. lower bound. For randomized implementations, a lower
bound of Ω(logn/ log (w logn)) for ReadMax operations was shown [4], where
w is an upper bound for the complexity of WriteMax operations. That is,
for every correct implementation, there is a strategy for an adaptive ad-
versary that yields, with high probability, a schedule that contains either a
WriteMax operation that takes w steps or a ReadMax operation that takes
Ω(logn/ log (w logn)) steps.

1The full definition is a bit more technical; see [18] for details.
2In the case of snapshot, this requires both registers large enough to hold a complete

snapshot and the cooperation of updaters. The assumption of large registers may be
avoidable for some applications of snapshot where only summary information is needed.

3All of the logarithms taken in this paper are with base 2.

2

We show that significantly larger lower bounds are impossible. Using
a new randomized helping procedure along with a simple unbounded max
register implementation, it is possible to adapt the max register implemen-
tation of [4] so that every operation finishes in O(logn) steps with high
probability4, regardless of the number of previous operations, provided the
max register value does not change too quickly.

The significance of this improvement goes beyond the implementation
of max registers. Max registers were previously used in [5] to implement a
bounded-value 2-component max array, a kind of specialized snapshot
object that contains two fields, each of which is a multiwriter max register,
and that provides the ability to take a snapshot of these two max registers
atomically. This was a key component in implementing a limited-use snap-
shot, which the authors of [5] constructed using a tree of 2-component max
arrays to consolidate partial snapshots into a single snapshot readable at
the root (this algorithm is described in more detail Section 5). A central
result of the current work is removing the limited-use requirement for this
algorithm. This requires building an unlimited-use 2-component max array.

Unfortunately, applying our techniques directly to the 2-component max
array of [5], as was done in the conference version of this paper, does not give
O(log2 n) step complexity. Instead, we provide a different construction of a
2-component max array, which uses the same randomized helping technique
as in our max register construction to get O(log2 n) expected step complexity
for all operation,s provided that its component values do not change too
quickly. We use this new implementation of a 2-component max array in the
snapshot algorithm of [5] to get a snapshot object whose operations require
O(log3 n) steps with high probability, even when an unbounded number of
operations are applied to it.

We further adapt our construction to a message-passing system, show-
ing that we can obtain an improvement in performance, compared to a
naïve conversion using the atomic register simulation of Attiya, Bar-Noy,
and Dolev [11] (commonly known as ABD), while also removing the need
for randomization. This adaptation includes a deterministic construction of
an unbounded-value max register for a message-passing system that runs
in O(1) time and O(n) messages per operation, assuming t < n/2 crash
failures.

Most of the results in this paper previously appeared in DISC 2013 [8].
New results include a different 2-component max array construction, the

4Throughout the paper, we use the term with high probability to refer to an event that
happens with probability at least 1 − 1/nc, for any fixed constant c ≥ 1.

3

extension to message-passing, and the round-robin technique used in the
helping mechanism.

1.1 Model

We consider two models: a standard wait-free shared-memory model in
which processes {p0, . . . , pn−1} communicate by reading and writing multi-
writer multi-reader atomic registers, and a standard asynchronous message-
passing model tolerating t < n/2 crash failures. In both models, we represent
concurrency by interleaving.

In the shared-memory model, each non-faulty process is always carrying
out some high-level operation, and has a pending step on some register in
each state. In each state, an adversary chooses which of these pending steps
is applied next. When a non-faulty process completes its operation, the
adversary chooses which operation it performs next, including the values of
any arguments to that operation.

In the message-passing model, processes send and receive messages, with
the adversary determining the timing of message delivery subject to the
requirements that any message sent by a non-faulty process is eventually
delivered. To ensure interleaving, we also require that no two messages are
received at the same time. The adversary also determines when a process
takes a step, which means that it sends a message.

Processes are probabilistic, and may use local coins to decide what to
do next. A local coin operation provides a random value to the process that
performs it, and is not visible to other processes.

1.1.1 The adversary

We assume an adaptive adversary that can observe the internal states of
the processes and thus effectively observes the outcome of each local coin
as soon as it is generated, although it cannot predict the outcome of future
coins. Formally, the adversary corresponds to a scheduler that chooses the
next pending event based on the local states of all processes and the content
of the shared memory. Moreover, the adversary chooses the sequence of
operations on the implementation that each process performs. In contrast,
an oblivious adversary must choose which process carries out the next
operation at each step without reference to the state of the system. That
is, an oblivious adversary is a scheduler that chooses the sequence of steps
in advance before the execution starts. We do not consider an oblivious
adversary for our algorithms, although an oblivious adversary plays a role

4

in some of the lower bounds referenced in the paper. Naturally, such lower
bounds apply a fortiori to the stronger adaptive adversary.

1.1.2 Implementations and linearizability

A sequential object provides one or more operations that may update
the state of the object and return a value. An implementation of an object
provides, for each operation, an algorithm that allows it to be carried out
using atomic register operations (in a shared-memory system) or messages
(in a message-passing system). Each instance of an operation is invoked
through an explicit step internal to some process, and completes by some
explicit return step. The execution interval of an operation is the interval
between the invocation and return steps of the operation.

An implementation is linearizable [16] if, for any execution H of the
implementation, it is possible to order all operations that have returned and
some subset of the operations that have been invoked but not returned to
obtain an execution S of the sequential object, such that each operation
that returns in H returns the same value in S, and whenever π1 and π2 are
operations in H such that π1 finishes before π2 starts, π1 appears before π2
in S. If these properties hold, S is called a linearization of H. A common
method of constructing a linearization of H is to assign each operation π
to be included in S a linearization point somewhere within the execution
interval of π, and order the operations by their linearization points.

1.1.3 Complexity measures

Fixing a particular adversary removes all nondeterminism from the system
other than the outcomes of the local coin-flips. This means that we can as-
sign a probability to each execution equal to the probability of the sequence
of coin-flips that occurs in this execution. When measuring the complex-
ity of an algorithm, we need to take this distribution over executions into
account.

For example, to compute the individual step complexity of an oper-
ation in a single execution, we look at the number of steps carried out by
the process performing the operation in that execution. The worst-case
expected individual step complexity is then the maximum over all ad-
versaries of the expected number of such operations. If, for all adversary
strategies, the probability of the operation taking more than O(f(n)) steps
is bounded by n−c for any constant c > 0, then we write that the operation
has individual step complexity O(f(n)) with high probability. We will

5

generally be interested in high-probability bounds.
In the message-passing model, we consider both message complexity (the

number of messages sent and received by all processes while carrying out
some operation) and time complexity (the time from the start to finish of
an operation assuming that all messages are delivered after at most one
time unit and that each message is sent as soon as possible). As in the
shared-memory case, we may consider either bounds on the expected values
of these measures for a worst-case adversary, or bounds that hold with high
probability for all adversaries.

A complication in both models is that it is impossible to measure the
complexity of an operation that does not occur, and the choice of which
operations to invoke and when is also under the control of the adversary.
To avoid this complication, when discussing the complexity of a particu-
lar operation, we condition on the partial execution up until the operation
starts.

1.2 Some standard objects

A max register [4] supports two operations: A WriteMax operation, which
has an input v, and a ReadMax operation, which returns the value of the
largest input to any WriteMax operation that is linearized before it. Equiva-
lently, a max register is a register where ReadMax simply returns the state of
the register while WriteMax will only overwrite a value with a larger value.

A 2-component max array [5] supports a MaxUpdate operation, which
specifies a value and a component, and a MaxScan operation, which returns
the maximum values written to each of the two components in all MaxUpdate
operations linearized before it.

A single-writer snapshot [2] object consists of n locations and sup-
ports two operations. One operation is an Update operation with argument
v by process i, which does not have a return value. The other operation
is a Scan operation, which takes no input and returns n values, such that
the value corresponding to each location i is the value of the last Update
operation by process i that has been linearized before the Scan operation.
A multi-writer snapshot object is similar to the above, with the differ-
ence that the number of locations can be arbitrary, and each location can
be updated by every process.

6

1.2.1 Read and write operations

Randomized helping as defined in Section 2 works by having operations that
change the state of the object also read the state of the object and store the
result for use by operations that read the object. In defining this mechanism,
it is helpful to adopt an object-oriented approach to object operations. Given
an object O, we will let O.write and O.read be the appropriate write and
read operations for this object. Applying this to the objects described above:

1. If M is a max register, then M.write is WriteMax and M.read is
ReadMax.

2. If A is a max array, then A.write is MaxUpdate and A.read is MaxScan.

3. If S is a snapshot object, then S.write is Update and S.read is Scan.

Note that in some cases, the write operation may take additional pa-
rameters beyond the value written.

When convenient, we will use the assignment operator ← as syntactic
sugar for write or read operations. An expression of the form

x← O

is interpreted as

x← O.read()

while an expression of the form

O ← x

is interpreted as

O.write(x).

1.3 Previous constructions

Before giving more detail on our construction, we give a quick review of the
previous work on which it is based. The basic building block of the limited-
use snapshot construction in [5] is a bounded-value 2-component max array,
which is in turn built from bounded-value max registers. To directly build
an unlimited-use snapshot object, we need an unbounded-value 2-component
max array, which in turn requires an unbounded-value max register.

7

The max register construction of [4] consists of a tree of switches, which
are one-bit registers that initially hold the value 0 and can only be set to
1. Each leaf represents a value for the register. A WriteMax(v) operation
follows the path towards the leaf representing value v and sets the switches
along it for which the path descends to the right, from bottom to top. A
ReadMax operation follows the rightmost path of set switches, descending
to the left child if a switch is unset, and returns the value corresponding
to the leaf it reached, which is the largest value written. The problem
with an unbounded-value max register according to this construction is that
the length of an operation reading the rightmost path in the infinite tree
construction is unbounded. This is because this operation is searching for
the first node on the rightmost path whose switch is 0, and the depth of
this node depends on the values that have been written, which are now
unbounded. Even worse, such an operation is not guaranteed to be wait-
free, as it might not terminate if new WriteMax operations keep coming in
with greater values, forcing it to continue moving down the tree to the right.
To handle this, the tree in [4] is truncated and combined with an unlimited-
use single-writer snapshot object with O(n) step complexity per operation.
The latter is used for larger values in order to bound the number of steps.
Formally, this means that at some threshold level, the node on the rightmost
path of switches no longer points to an infinite subtree of switches but rather
to this unlimited-use single-writer snapshot object. All WriteMax operations
writing values that are at least the threshold set the switch at this node after
writing their value to the snapshot object. All ReadMax operations accessing
this node continue by performing a Scan operation on the snapshot object. If
the threshold is set to Θ(2n), this gives a step complexity of O(min (log v, n))
for a ReadMax or WriteMax operation with the value v.

The bounded-value 2-component max-array construction of [5] builds
upon the above max register construction by combining the trees of the
two components in a subtle manner. The data structure consists of a main
tree, corresponding to the tree of the first component. The tree of the second
component is embedded in the main tree at every node. That is, each switch
of the main tree is associated with a separate copy of the tree of the second
component. Writing to the first component is done by writing to the main
tree, ignoring the copies of the second component at the switches. Writing
to the second component is done by writing to the copy associated with
the root of the main tree. The coordination between the pairs of values is
left for the MaxScan operations. Such an operation travels down the main
tree in order to read the value of the first component, while dragging down
the maximal value it reads for the second component along its path. It is

8

proven in [5] that this implementation gives a linearizable bounded-value
2-component max array.

In the snapshot algorithm of [5], processes are organized into a tree,
where each internal node in the tree holds a 2-component max array and each
leaf represents the updates provided by a single process. This 2-component
max array is used to track the number of updates in the node’s left and right
subtrees. Scans of the max array provide a sequence of pairs of counts that
are non-decreasing in both sides, which gives a consistent interleaving of
update events in the two subtrees. This interleaving is used by updaters to
propagate partial scans to the root of each subtree representing all updates
carried out by processes in that subtree. At the root of the whole tree stands
a single max register that indexes a table containing complete snapshots.

1.4 Our contributions

Our first contribution is a construction of an unbounded-value max register
in which the step complexity of each operation is O(logn+ log k) in expec-
tation and with high probability, under the assumption that the maximum
value written to the register increases by at most k per write operation (this
is formalized more carefully in Section 3.1).

In effect, this assumption of bounded increments substitutes for the
assumption of bounded values required by the previous max register con-
struction of [4]. Because that construction encodes each value of a max
register as a leaf in a binary tree of one-bit registers, either the tree must
be made finite, giving a bounded-value max register; or the tree must have
unbounded depth, giving an unbounded-value max register whose step com-
plexity increases indefinitely as larger values are written.

Our construction, described in Section 3, avoids this difficulty by com-
bining a simple unbounded-tree max register consisting of a single long path
of bits, with an unbounded sequence of bounded max registers that we can
think of as hanging off of this path. The long path encodes the high-order
bits of the max register, while the low-order bits are stored in one of the
bounded max registers. Under the assumption of bounded increments, the
high-order bits do not change often. So a process performing a read oper-
ation can find the last bit set quickly as long as not too many writes have
occurred since the last read by the same process. The low-order bits can
then be read from the appropriate bounded max register.

But if many writes have occurred, the reader will need to get help from
the writers. We implement this help using a novel technique of randomized
helping, described in Section 2. The key idea is to keep the cost of obtaining

9

help down by having the writers supply help and then leave their identities
in an n3-element array of recently active processes, so that, once enough
writes have occurred, choosing a random location in the array is likely to
identify a writer that has supplied a help value recently. This reduces the
cost of finding a good value from the Θ(n) cost of a collect to an expected
O(1) cost of picking a good random location. The price is that it may take
a polynomial number of helping operations to occur before the active array
fills up with pointers to good values.

It is here that the division between high-order bits and low-order bits
comes into play. Because helping is used only for the reader to catch up
on the high-order bits, under the assumption of bounded increments we
can ensure that many writers will have attempted to help the reader if the
high-order bits change significantly. This gives us a construction of a max
register where, with high probability, the step complexity is logarithmic in
the number of processes n and the increment bound k.

We extend this approach to get a similar construction of an unbounded
max array that gets polylogarithmic step complexity with high probability,
again under the assumption of bounded increments (Section 4). Here we
implement a snapshot of the high-order bits of the array components using
a simple double collect, with the low-order bits represented by a bounded
max array as implemented in [5]. As in the classic snapshot of Afek et al. [2],
a write operation must first perform a snapshot and leave the resulting
value as help. Bounded increments mean that the high-order bits change
infrequently: so either the double collect succeeds after O(1) attempts, or
sufficiently many write operations have occurred that the reader can obtain
a snapshot value indirectly from one of these writes with high probability.
The resulting cost of a read or write operation is O(log2 n + log2 k), where
k is now the bound on the increase of either array component as the result
of a single write.

Plugging these two constructions into the limited-used snapshot imple-
mentation of [5] gives an implementation of an unlimited-use single-writer
snapshot object with an O(log3 n) step complexity (with high probability)
for updating or scanning the object (Section 5).

Finally, we adapt our implementation to a message-passing system (Sec-
tion 6), obtaining a single-writer snapshot implementation with O(log2 n)
time and O(n log2 n) messages per operation. While a direct use of the
classic Attiya-Bar-Noy-Dolev (ABD) simulation [11] gives a complexity of
O(log3 n) time and O(n log3 n) messages per operation, we show how to
leverage the capability of a message-passing system to consolidate multiple
messages into a single one in order to reduce the complexity. This is done

10

by simply collecting all elements of an n-element array of help values in
the same O(1) time and O(n) messages as is needed for a single read/write
register, instead of sampling an n3-element array as our shared-memory im-
plementation does.

2 Randomized helping
Traditional helping mechanisms are designed to turn obstruction-free proto-
cols into wait-free protocols by allowing fast processes that are obstructing
the progress of slow processes to carry out operations on the slow processes’
behalf. This is particularly useful for read operations, where the state of
the object is not updated, because an operation that does change the state
can carry out a read without having to know in advance whether another
process will need the value or not.

The problem with helping in a deterministic algorithm is that it is ex-
pensive for the recipient to identify which process has provided it with help.
For example, the helping mechanisms of Herlihy’s universal construction [15]
or the atomic snapshot of Afek et al. [2] require a process seeking help to
perform a collect over n registers, which is far too expensive for our appli-
cations.

We describe instead a randomized helping mechanism, based on sam-
pling from an active array containing the identities of recently active pro-
cesses. This allows the recipient of help to find it quickly—inO(1) operations
with high probability—at the cost of potentially having to wait for polyno-
mially many updates to fill the active array. This will work best for objects
where reads do not need help unless many updates occur.

Help values are provided through an array of atomic registers helpVal[i],
one for each helping process pi. Each helped process pj has a register TS[j]
which records increasing timestamps. For each pair of processes pi and pj ,
the register helpTS[i][j] is a copy of a value from TS[j]; when this value
equals the current value of TS[j], then the value in helpVal[i] was read by pi
no earlier than when pj wrote TS[j]. This allows pj to discard out-of-date
help values.5

5To keep things simple, our implementation assumes unbounded timestamps. With
some ingenuity, it might be possible to replace these timestamps with a bilateral hand-
shaking mechanism similar to that used by Afek et al. [2]. However, a naive implementa-
tion would require the reader to do Θ(n) work each time it asks for help to invalidate old
handshakes. We leave the question of bounding the size of registers used to coordinate
helping to future work.

11

These arrays in principle allow a reader pj to find help by checking all n
locations in helpTS where the second index is j, but this takes Θ(n) time.
So the remaining part of the mechanism is an array active[0 . . . n3 − 1], in
no particular order, of ids of processes that have recently provided help.

We assume that these arrays are attached to some underlying object
A that supports an A.read() operation whose return value does not de-
pend on the process calling it and that does not alter the state of A. The
helping mechanism consists of three new operations on A: an operation
A.incrementTS() that increments the timestamp for the current process in
helpTS; an operation A.giveHelp() that is used by operations that update
the state of A to provide help; and an operation A.takeHelp() used by
readers to obtain help.

Pseudocode for these operations is given in Algorithm 1. A read oper-
ation that may need help should call A.incrementTS when it starts, and
then call A.takeHelp from time to time if it is not making progress. Other
operations on A that may obstruct read operations should call A.giveHelp
once each time they are invoked.

The intuition behind the mechanism is that, given enough calls toA.giveHelp,
A.active will eventually fill up with the ids of processes that have recently
read both A and A.TS[i] for any particular process pi. So if pi cannot finish
quickly enough on its own, randomly sampling a location in A.active will
soon give it the identity of some process pj that provided usable help in
A.helpVal[j] and A.helpTS[j][i]. We formalize this intuition in the following
lemma:

Lemma 2.1. Fix a partial execution Ξ of Algorithm 1 that ends at the point
t where some process pi starts an A.takeHelp operation τ . Suppose there
is a point s in Ξ such that at least n4 + 1 calls to A.giveHelp start in the
interval [s, t]. Fix an adversary strategy for extending Ξ. Conditioning on
Ξ and the adversary strategy:

1. With probability at least 1−1/n2, if τ returns, it returns a value value
that was returned by a call to A.read that started no earlier than s.

2. If τ returns true following at least one call by pi to A.incrementTS,
then the value returned by τ was previously returned by a call to A.read
that started no earlier than the start of pi’s last call to A.incrementTS
and finished no later than τ .

3. If pi’s last call to A.incrementTS before t finished before s, then with
probability at least 1− 1/n, if τ returns, τ returns true.

12

1 Shared data:
2 A.TS[0 . . . n− 1], an array of registers holding timestamps, initially

all 0
3 A.helpTS[0 . . . n− 1][0 . . . n− 1], an array of registers holding

timestamps, initially all 0
4 A.helpVal[0 . . . n− 1], an array of registers holding help values,

initially all ⊥
5 A.active[0 . . . n3 − 1], an array of registers holding process ids, initially

arbitrary
6 Persistent local data for each process:
7 toHelp, a process id in the range 0 . . . n− 1, initially arbitrary
8 activeNext, an index into A.active in the range 0 . . . n3 − 1, initially

arbitrary
9 procedure A.incrementTS()

10 A.TS[i]← A.TS[i] + 1;
11 procedure A.giveHelp()
12 t← A.TS[toHelp];
13 v ← A.read();
14 A.helpVal[i]← v;
15 A.helpTS[i][toHelp]← t;
16 A.active[activeNext[i]]← i;
17 toHelp← (toHelp + 1) mod n;
18 activeNext← (activeNext + 1) mod n3;

// Return value read, in case it is useful
19 return v;
20 procedure A.takeHelp()
21 r ← random(0 . . . n3 − 1);
22 j ← A.active[r];
23 t← A.helpTS[j][i];
24 v ← A.helpVal[j];
25 return (t ≥ A.TS[i], v);
Algorithm 1: Randomized helping applied to object A. Code for process
pi.

13

Proof. We prove each claim in turn.
For the first claim, the adversary’s goal will be to get pi to read a process

id j from A.active[r] such that either A.helpVal[j] contains a value from a call
to A.read that does not start after s, or A.helpTS[j][i] contains a timestamp
less than A.TS[i]. We wish to show that most choices of r will make this
impossible.

By the Pigeonhole Principle, among the n4 + 1 A.giveHelp operations
that start in [s, t], there is some process pj that executes at least n3 + 1 of
them. The first n3 of these n3 + 1 operations both start and finish in [s, t],
and between these n3 operations, pj writes j to every location in A.active.
Each of these operations also writes a value obtained from a call to A.read
that starts after s to A.helpVal[j], and among the first n of these operations
is one that reads A.TS[i] and copies its value to A.helpTS[j][i].

In the unlikely case that pj were the only process to write to A.active,
pi would observe j in A.active[r] and the claims of the lemma would follow.
But we must consider the possibility that some other process overwrites j
before pi reads A.active[r]. Fortunately no such process pk can write to too
many locations in A.active before itself putting a recent value in A.helpVal[k]
or updating the timestamp in A.helpTS[k][i], as we now demonstrate.

Let ak be the value of pk’s activeNext variable at s. If pk already has an
A.giveHelp operation in progress at s, it may write to A.active[ak] with-
out executing an A.read operation starting after s or reading A.TS[i] after
s. But if pk writes to any other location A.active[a′], it must first com-
plete an A.giveHelp operation to increment its toHelp variable, then start
a new A.giveHelp operation—after s—and run it at least to Line 16. This
new operation will call A.read in Line 13 and write the resulting value to
A.helpVal[k] in Line 14 before reaching Line 16. It follows that if pi chooses
any value r that is not equal to ak for some process k, it will read a process
id ` such that A.helpVal[`] was returned by an A.read operation that started
no earlier than s. Because the ak values are determined by s, well before pi
choose r, they are independent of the choice of r and the chance that r is
equal to one of these at most n values is at most n/n3 = 1/n2. This proves
the first claim in the lemma.

For the second claim, observe that only pi can increment A.TS[i] in
A.incrementTS, and that τ will return true only if pi reads a timestamp T
equal to A.TS[i] in A.helpTS[j][i] for the process pj it chooses to get help
from. For T to appear in A.helpTS[j][i], pj must have read it from A.TS[i]
during a call to A.giveHelp before calling A.read, writing the return value
to A.helpVal[j], and finally setting A.helpTS[j][i] to T . So τ will either
return the value obtained by this A.read operation or by some later A.read

14

operation also called by A.giveHelp; in either case, the operation will start
after the A.TS[i] was last incremented (and thus after the start of the last
call to A.incrementTS by pi) and before A.helpVal[j] is read by τ , which
occurs before τ finishes.

For the third claim, we use a similar argument as for the first. Again
let pk be some process and ak the value of its toHelp variable at s. Then
for pk to write to A.active[(ak + n) mod n3], it must reach Line 16 in n+ 1
executions of A.giveHelp, of which the last n must start no earlier than
s. Each of these n executions will copy A.TS[`] to A.TS[k][`] for some `,
and because pk increments toHelp in each operation, one of these n values
` will be equal to i. It follows that any process pk can write at most n
distinct locations in A.active without copying A.TS[i] to A.helpTS[k][i]. The
set of such possible locations is determined by a0, . . . , an−1 and is again
independent of pi’s choice of r. So the probability that pi reads one of these
at most n2 possible locations is at most n2/n3 = 1/n.

3 Unbounded-value max registers with bounded
increments

Recall that a max register supports operations WriteMax(v) and ReadMax,
where a ReadMax returns the value of the largest input to any WriteMax
operation that is linearized before it. The purpose of a max register is
typically to avoid lost updates, by ensuring that old values (tagged with
smaller timestamps) cannot obscure newer values, regardless of the order
in which they are written. In this section, we show how to construct an
unbounded-value max register that is linearizable in all executions and wait-
free with O(logn) step complexity with high probability in executions which
satisfy a certain restriction which we refer to as bounded increments.

3.1 Bounded increments and sparse increments

Let {xi} = x1, x2, x3 . . . be a sequence of non-negative integer values. We
will write that {xi} has k-bounded increments if x1 ≤ k, and for all i > 1,

xi ≤ k + max
j<i

xj . (1)

This says that the maximum value in the sequence so far can only increase
by k at each step.

Iterating the definition gives:

15

Lemma 3.1. If x1, x2, . . . is a sequence with k-bounded increments, then

1. For each i, xi ≤ ki.

2. For each i and each j ≥ i, xj ≤ xi + k(j − i).

Proof. By induction on i for the first case, and on j − i for the second.

For very slow-growing sequences, we use a different definition. A se-
quence x1, x2, . . . has t-sparse increments if it has 1-bounded increments
and the maximum value increases no more often than every t steps. For-
mally this second condition says that for all integer values c, if xi is the first
element of the sequence that is at least c, and xj is the first element of the
sequence that is at least c+ 1, then j ≥ i+ t.

The purpose of these definitions is that we will demand that the se-
quence of values written to our max register will have bounded increments,
and then use bounded max registers to hold the remainder modulo some
fixed value m, leaving behind quotients that have sparse increments. These
sparse increments mean that the max register holding the quotients will
change so slowly that a reader that fails to catch up to the current value
must have many concurrent writers, allowing it to get help. This technique
exploits a connection between bounded increments of a sequence {xi} and
sparse increments of the related sequence of quotients {bxi/mc}, given in
the following lemma.

Lemma 3.2. Let x1, x2, x3, . . . be a non-negative integer sequence with k-
bounded increments. Letm ≥ 2k. Then the sequence bx1/mc , bx2/mc , bx3/mc , . . .
has (m/k − 1)-sparse increments.

Proof. First let us show that {bxi/mc} has 1-bounded increments. For x1,
it holds trivially that bx1/mc ≤ bk/mc ≤ 1.

Suppose there is some i > 1 such that bxi/mc > 1 + maxj<i bxj/mc.
Then for all j < i, bxi/mc ≥ 2 + bxj/mc. But then xi/m ≥ bxi/mc ≥
2 + bxj/mc > 2 + xj/m − 1 = 1 + xj/m. Multiply both sides by m to get
xi > m + xj ≥ k + xj . Since this holds for all j < i, xi > k + maxj<i xj ,
contradicting k-bounded increments for {xi}.

Next, we must show that maxj≤i bxj/mc does not increase too often.
Fix some integer c. Let i be the first index for which bxi/mc ≥ c and let j
be the first index for which bxj/mc ≥ c+ 1.

If i = 1, then xi = x1 ≤ k and thus bx1/mc ≤ bk/mc = 0. So in this
case, j is the first index for which bxj/mc = 1. But then m ≤ xj , and thus

16

Lemma 3.1 gives m ≤ jk or j ≥ m/k. But then j ≥ i + (m/k − 1), as
required.

If i > 1, we have bxi−1/mc < c and thus xi−1 < cm, giving xi−1 ≤ cm−1.
For xj , we have c + 1 ≤ bxj/mc ≤ xj/m, giving (c + 1)m ≤ xj . We can
bound xj in the other direction with Lemma 3.1 to get (c + 1)m ≤ xj ≤
xi−1 + k · (j− (i− 1)) ≤ cm− 1 + k · (j− (i− 1)) = cm+ (k− 1) + k · (j− i).
Subtracting cm from both sides then gives m ≤ k−1+k ·(j− i). Solving for
j− i gives j− i ≥ (m−k+ 1)/k > m/k− 1, and thus j ≥ i+ (m/k− 1).

We will also need to take into account the effects of reordering caused by
asynchrony. For example, suppose that we have a sequence x1, x2, . . . with
k-bounded increments, that represents the inputs to a sequence of high-level
operations. If these inputs are then passed on to lower-level operations,
the adversary may be able to selectively delay some of the inputs to get a
different permutation of the sequence. This permutation may no longer have
k-bounded increments. A simple case would be the k-bounded-increment
sequence 0, k, 2k; if reordered as 0, 2k, k, the value k no longer serves as a
stepping stone between 0 and 2k, and the new sequence has only 2k-bounded
increments.

Fortunately, we can bound the increments in the new sequence by con-
sidering the fact that the adversary can only delay values by holding them
in one of n processes. This effectively creates a bounded buffer to be used
for the reordering, where each new value in the original sequence {xi} is
placed in the buffer one at a time, and the adversary is forced to remove a
value for the output sequence before inserting a new value once the buffer
reaches its capacity.6

Call a sequence {yi} an n-buffered reordering of a sequence {xi} if
{yi} can be generated from {xi} by this process, where n is the capacity of
the buffer. Formally, this means that for each element xi, its corresponding
element yi′ is preceded by all but at most n− 1 elements xj with j < i.

The following lemma holds:

Lemma 3.3. If {yi} is an n-buffered reordering of a sequence {xi} with
k-bounded increments, then {yi} has nk-bounded increments.

Proof. For y1, observe that it is among the first n elements of {xi}, and so
has value at most nk by Lemma 3.1.

6Such a sorting buffer or reordering buffer has been considered in the context of
scheduling [19, 13, 1]; a similar idea, without an explicit name, also appears in the analysis
of inserting random values into concurrent binary search trees [10, 14].

17

For later yj , Consider some value yj = xi0 . If xi0 ≥ k, then k-bounded
increments implies that there exists a position i1 < i0 such that xi0 ≤ xi1 +k,
which we can rearrange as xi1 ≥ xi0 − k. By iterating this argument we
obtain a sequence of positions i0, i1, i2, i3, . . . i` such that each xij+1 ≥ xij−k,
ending only when we reach xi` = x0. A simple induction argument shows
that xij ≥ xi0 − jk for each j ≤ `.

Now consider some xi0 that appears in the output sequence as yj , where
j > 0. At the time xi0 = yj leaves the buffer, there are at most n − 1
other values in the buffer. If ` ≥ n, this implies at least one of the n values
xi1 , xi2 , . . . xin must have previously left the buffer, appearing as yj′ for some
j′ < j. In this case, yj′ = xim for m ≤ n satisfies yj′ = xim ≥ xi0 −mk ≥
xi0 − nk = yj − nk, and so yj ≤ maxj′<j yj′ + nk. Alternatively, if ` < n,
then x1 = xi` ≥ xi0 − `k ≥ xi0 − (n− 1)k implies yj = xi0 ≤ x0 + (n− 1)k ≤
k + (n− 1)k = nk ≤ y1 + nk ≤ max j′ < jyj′ .

Finally, we prove the following technical lemma that shows that as long
as we retain all left-to-right maxima, removing other values from a sequence
with k-bounded increments yields a sequence that still has k-bounded in-
crements. This will turn out to be necessary for analyzing our max register
implementation in Algorithm 3.

Lemma 3.4. Let {xi} = x1, x2, . . . have k-bounded increments, and let
xi1 , xi2 , . . . be a subsequence of {xi} with the property that x1 appears as xij
for some j, and for each i > 1, if xi > maxi′<i xi′, then i = ij for some j.
Then

{
xij

}
has k-bounded increments.

Proof. Because a subsequence preserves ordering, the first element x1 can
only appear as xi1 . So xi1 = x1 ≤ k.

For later elements, consider some xij with j > 1. Then xij ≤ k +
maxi′<ij xi′ . Consider the set S of all indices ` such that ` < ij and x` is
maximal among all values x`′ for `′ < ij . Let i′ be the smallest index in S.
Then xi′ > maxi′′<i′ xi′′ , which means that xi′ = xij′ for some j′. But since
i′ < i, j′ must be less than j, and so xij ≤ k + maxij′<ij xij′ , proving the
claim.

3.2 Unbounded max register with sparse increments

We start by constructing an unbounded max register that is linearizable
and wait-free in all executions, and that requires only O(1) steps with high
probability for both read and write operations if increments are sparse
enough.

18

Pseudocode for this construction in given in Algorithm 2. The main data
structure is an unbounded array of bits, and the value v is represented by
setting all bits at positions less than v to 1. A read operation scans the array
across increasing indices until it hits the first zero. A write(v) operation
sets all bits at positions less than v to 1 starting at v− 1 and working down
to 0. For both operations, the process performing the operation uses both
its memory of previous operations and help provided by the randomized
helping mechanism in Algorithm 1 to reduce redundant steps. This is what
gives both read and write operations constant step complexity with high
probability if the values in the write operations do not rise too quickly.

1 Shared data:
2 A[0 . . .]: unbounded array of one-bit atomic registers, initially 0
3 Shared data for Algorithm 1
4 Local data per process: integer top, initially 0
5 procedure A.write(v)
6 r ← A.giveHelp();
7 for i← v − 1 down to r do
8 A[i]← 1;

9 procedure A.read()
10 A.incrementTS();
11 while A[top] = 1 do
12 〈current, v〉 ← A.takeHelp();
13 if current then
14 return v;
15 else
16 top← max(top + 1, v);

17 return top;
Algorithm 2: Unbounded max register

While an A.write operation is in progress, the set of one bits in A may
not be contiguous. However, we can prove the following invariant:

Lemma 3.5. Following any partial execution of Algorithm 2, if either

1. Some process’s top variable contains the value v, or

2. Some A.read operation has returned v,

then A[k] = 1 for all k < v.

19

Proof. The proof is by induction on the length of the execution. After an
empty execution, all top variables are 0 and no A.read operations have
returned, and the claim holds trivially. For the induction step, we consider
some partial execution Ξ, and imagine extending it by one step.

Note that no A[k] is ever reset to 0, so we need only consider the effect
of changes to top for some process, or values returned by A.read operations.

Write topi for the value of top held by process pi. If the step does not
change topi for any pi, then A[k] = 1 for all k < topi from the induction
hypothesis. If the step does change topi, then it must carry out Line 16. If it
sets topi to the value v previously returned by A.takeHelp, then v is a value
returned by some A.read operation, and A[k] = 1 for all k < v follows from
the induction hypothesis. If instead topi is equal to one plus the previous
value v′ of topi, then (a) for all k < v′, A[k] = 1 (induction hypothesis),
and (b) for k = v′ < topi, A[k] = 1, because to reach Line 16, pi must first
observe A[v′] = 1 in the while loop test in Line 11. So the first part of the
invariant holds.

The other case to consider is when the step causes an A.read operation
to return. But the return value v is just topi for some pi, so A[k] = 1 for
k < v is immediate from A[k] < v for k < topi.

Lemma 3.5 relates the array of bits to values returned by A.read. The
next lemma relates those same bits to values written by A.write:

Lemma 3.6. Following any partial execution of Algorithm 2:

1. Let k be a position in A such that A[k] = 1 and A[k+ 1] = 0. Then at
least one call to A.write(k + 1) appears in the execution.

2. If a call to A.write(v) finishes in the execution, A[k] = 1 for all k < v.

Proof. For the first part, observe that bits in A are set only in A.write
operations. If A[k] = 1 and A[k + 1] = 0 following some partial execution,
then there is an A.write operation that set A[k] = 1 but no A.write oper-
ation that set A[k + 1]. Because an A.write(v) operation sets positions in
descending order starting at v−1, A[k] must have been set by some A.write
operations with v − 1 ≥ k. But v − 1 cannot be strictly greater than k, or
else this operation would have set A[k+ 1] before setting A[k]. So v− 1 = k
exactly, giving v = k + 1.

For the second part, in order for A.write(v) to finish, it must set A[k]
for all k with r ≤ k ≤ v − 1, where r is the value returned by A.giveHelp.
But A.giveHelp returns the value returned by an A.read operation, so from
Lemma 3.5, A[k] = 1 for all k < r. So for any k < v, either k ≥ r and A[k]

20

is set directly by the A.write operation, or k < r and A[k] was previously
set by some other A.write operation. In either case, A[k] = 1.

Using these invariants, we can show that the algorithm is linearizable
without putting any restriction on the values in the write operations.

Lemma 3.7. Algorithm 2 is a linearizable implementation of a max register.

Proof. We use the approach of assigning a linearization point to each com-
plete operation (and some incomplete operations) at some step during its
execution interval, and linearize operations by the order of their lineariza-
tion points. In the case where two or more operations are assigned the same
linearization point (which only occurs with A.read operations that return
the same value), we order these operations arbitrarily with respect to each
other. Because each operation’s linearization point lies within its execution
interval, it is immediate that the linearization is consistent with the observed
ordering of operations in the concurrent execution.

For an A.read operation ρ, the linearization point depends on whether
the process observes A[top] = 0 in Line 11 and returns in Line 17 or obtains
an indirect value from the helping mechanism in Line 12 that it returns
in Line 14. In the first case, we assign ρ the step at which it reads 0
from A[top]. In the second, we assign ρ the linearization point of the read
operation ρ′ whose value is returned by A.takeHelp. In either case, we
assign linearization points only to A.read operations that finish during the
execution; incomplete A.read operations have no effect on the effects or
return values of other operations and thus do not need to be included in the
linearization.

It is easy to see that in the first case, the linearization point occurs within
the execution interval of ρ. In the second case, we have from Lemma 2.1 that
the execution interval of ρ′ is nested within that of ρ. If ρ′ returns a value
directly by reading A[top] = 0, then its linearization point (and thus that of
ρ as well) lies within its execution interval and thus also within the execution
interval of ρ. If not, then there is a third A.read operation ρ′′ whose execu-
tion interval is nested within that of ρ′ that supplies the linearization point.
Because ρ finishes at a finite time, the sequence ρ, ρ′, ρ′′, . . . can include only
finitely many operations, the lat of which will supply the linearization point
of a read operation of A[top], which will lie within the execution interval of
ρ.

For an A.write(v) operation ω, we define the linearization point as the
first step within the execution interval of A.write(v) such that A[k] = 1 for
all k < v. This step will either be the first step of ω (if the condition holds

21

before it starts), or will be a step of some A.write operation that sets the
last missing bit in this interval. In either case, the linearization point for ω
will never be the same as for an A.read operation, as the linearization point
for any A.read operation is assigned to a step of some A.read operation.

That a linearization point exists for any complete A.write(v) operations
follows from Lemma 3.6, as this condition holds when ω returns. For an
incomplete A.write operation ω, such a step might not exist; we include
such an operation in the linearization if and only if it does.

The linearization S is constructed by sorting all operations that have lin-
earization points by their linearization points, breaking ties arbitrarily. Be-
cause the execution interval of each such operation contains its linearization
point, whenever some operation σ precedes an operation τ in the concurrent
execution, σ will also precede τ in S. This makes S a total extension of the
observed partial order on operations.

We must also show that S satisfies the sequential specification of a max
register, which means that the value vρ returned by any A.read operation
ρ is equal to the maximum of the inputs to all A.write operations that
linearize before it. For any ρ, let ρ′ be the direct read that supplies both
the return value and linearization point for ρ. Because A.read and A.write
operations do not share linearization points, the sets of A.write operations
linearized before ρ and ρ′ are the same, regardless of tie-breaking. So it is
enough to show that any direct read ρ′ returns the maximum input of any
A.write operations that linearize before it, or the initial value 0 if there are
no such operations.

Let ρ′ be a direct read. Its linearization point is a step where the process
pi executing ρ′ reads A[top] = 0, where top equals the return value v. From
Lemma 3.5, at this step A[k] = 1 for all k < v. If v > 0, this in particular
gives A[v−1] = 1 and A[v] = 0, so Lemma 3.6 says that the partial execution
leading up to this step includes the start of an A.write(v) operation, and
because A[k] = 1 for all k < v, its linearization point must appear in this
partial execution and thus before the linearization point of ρ′.

On the other hand, for any A.write(v′) operation with v′ > v, at the
linearization point of ρ′ it is not yet the case that A[k] = 1 for all k < v′,
because A[v] = 0. It follows that in the case v > 0, at least one A.write(v)
operation is linearized before ρ′ and only A.write(v′) operations with v′ ≤ v
are linearized before ρ′, so ρ′ correctly returns v in the sequential execution.

This leaves the special case of v = 0. In this case, at the linearization
point of ρ′, A[k] = 0 for all k. There may or may not be any A.write
operation ω that linearizes before ρ′. If there is no such operation, then ρ′
correctly returns the initial value 0 of the max register. If there is some such

22

operation A.write(v′), then at its linearization point A[k] = 1 for all k < v′.
But as A[k] = 0 for all k at this point, v′ = 0, and again the return value 0
of ρ′ is correct.

In general, Algorithm 2 is not a particularly efficient implementation of
a max register. But it works well enough assuming sparse increments.

Lemma 3.8. In any execution of Algorithm 2 where the sequence {xi} of
input values to A.write operations has n4-sparse increments, with the first
such input at most 1, an A.write or A.read operation takes O(1) steps in
expectation and with high probability.

Proof. Because an A.write operation includes an A.read as a subroutine
(inside A.giveHelp), we start by bounding the cost of A.read.

Each A.read takes O(1) steps outside the loop in Lines 11–16, and the
body of the loop takes O(1) steps per iteration. So we need to demonstrate
that the loop performs a constant number of iterations with high probability.
Specifically, we need to show that the process pi executing A.read observes
A[top] = 0 after a constant number of passes through the loop with high
probability.

We will start by showing that even if top starts far behind the current
earlier position holding a zero, it usually catches up quickly.

Fix some A.read operation ρ and let Ξ be the partial execution leading
up to the start of ρ. Let x be the largest input to any A.write operation
that starts in Ξ. Because Ξ has n4-sparse increments, either (a) fewer than
2n4 A.write operations start in Ξ, or (b) the input to each of the last 2n4

A.write operations that start in Ξ is at least x− 2.
In the first case, k = O(1), and top starts at 0; so after O(1) iterations of

the loop, top = x. In the second case, we need to use the helping mechanism.
Split the 2n4 A.write operations into a prefix consisting of the first

n4−n−1 such operations to start and a suffix consisting of the last n4+n+1
such operations to start. Let s be the point at which the first write operation
in the suffix starts, and let t be the end of Ξ, which is also the start of ρ.

Observe that at most n operations that start within each of these in-
tervals might not have returned by the end of the interval; thus the prefix
includes at least n4 − 2n − 1 A.write operations that finish before s and
the suffix contains at least n4 + 1 A.write operations that finish before t.
For n sufficiently large, n4 − 2n− 1 > 0, so at least one A.write operation
with input at least x− 2 finishes before s. Linearizability (Lemma 3.7) then
implies that any A.read operation that starts after s returns at least x− 2.

23

The n4 + 1 completed A.write operations in the interval [s, t] embed
n4 + 1 calls to A.giveHelp. Suppose we extend this interval to an interval
[s, t′], where t′ is the point at which some call to A.takeHelp that starts
after t chooses its random location r; and similarly extend Ξ to an execu-
tion Ξ′ that ends at t′. Then [s, t′] also includes at least n4 + 1 calls to
A.giveHelp. From Lemma 2.1, this gives at most an n−2 chance that each
such call to A.takeHelp returns a value less than x − 2. Since this holds
even conditioning on the outcome of previous calls to A.takeHelp (which
appear in Ξ′), the probability that ` such calls all return values less than
x − 2 is at most n−2`. So for any fixed exponent c, choosing ` ≥ c/2 gives
a probability of at most n−c that all of these calls to A.takeHelp return
values less than x − 2. If this event does not occur, then by the end of at
most ` = O(1) such calls (and thus O(1) iterations of the loop), top is at
least x− 2, and after two more iterations, it is at least x.

We have thus established that top catches up to the value of the max
register at the start of ρ in O(1) steps with high probability. We now need
to show that this allows ρ to return in an additional O(1) steps with high
probability, either because there are few concurrent writes, or because there
are enough concurrent writes that ρ can obtain a current value from the
helping array.

Suppose that ρ completes at least three iterations of the loop after top =
x. Let Ξ′′ be the partial execution leading up to the end of the third iteration,
let s as before be the start of ρ, and let t′′ be the end of Ξ′′.

If [s, t′′] contains the start of at most 2n4 A.write operations, then the
largest input to any such operation is at most x+ 2. This follows from the
fact that the first A.write with input x+1 starts after s, and by n4-sparsity
the first A.write with input x+3 must appear at least 2n4 positions later in
the sequence. So for the duration of the third loop iteration, no A.write has
started with an input greater than x2, and in particular A[x+ 2] = 0. But
because the first two iterations increment top to x + 2, the third iteration
will observe A[top] = 0 and return.

If [s, t′′] contains the start of more than 2n4 A.write operations, then
for sufficiently large n it contains at least n4 + 1 A.write operations that
both start and finish in [s, t′′]. Each such operation will make a call to
A.giveHelp. Lemma 2.1 gives at least a 1 − 1/n chance that any call to
A.takeHelp following t′′ will return true, causing ρ to finish. Again we have
a geometric distribution on the number of additional calls to A.takeHelp,
so we execute at most O(1) additional iterations of the loop with high prob-
ability.

Iterating the high-probability bounds on both phases gives the same

24

bounds in expectation.
This concludes the proof that A.read takes O(1) steps in expectation and

with high probability. This also gives O(1) expected and high-probability
bounds on the step complexity of A.write, since each A.write operation
performs only O(1) steps beyond those in its embedded A.read.

Lemma 3.8 implies that Algorithm 2 is wait-free with probability 1.
With some tinkering, it can be made wait-free in all executions, by ad-
justing A.takeHelp to alternate between random sampling of A.active and
stepping through all locations deterministically. This approach embeds a
traditional, deterministic helping backstop in the randomized helping mech-
anism. Because the deterministic backstop is very slow and provides little
additional utility, we do not consider it in detail.

3.3 Unbounded max register with bounded increments

The unbounded max register of the preceding section has a serious defi-
ciency: it is only efficient for sparse increments, but in typical applications
we can hope only for bounded increments. In this section, we show how to
convert the latter to the former. The essential idea is that we split each
max register value into high-order and low-order components, and manage
the low-order components with an unbounded sequence of “inner” m-valued
max implementation as in [4]. These low-order max registers are multiplexed
by a single “outer” high-order max register. Assuming the full max register
inputs do not increase too quickly, their high-order bits will not change too
often (Lemma 3.2), and so we will be able to implement the high-order max
register at low cost using Algorithm 2.

Pseudocode for this construction is given in Algorithm 3.
One way to look at Algorithm 3 is that it generalizes the recursive max

register construction of [4]. In that construction, the role of the outer max
register is performed by the switch bit, which we can think of as a two-valued
max register. It turns out that replacing this two-valued max register with
an unbounded max register does not affect linearizability, as show in the
following lemma.

Lemma 3.9. Algorithm 3 is a linearizable implementation of a max register.

Proof. For the purposes of the proof, we treat operations on M.outer and
each M.inner[i] as atomic steps. We will use the ordering of these steps,
together with the values read from or written to M.outer to construct an
explicit linearization S of a given concurrent execution H. This linearization

25

1 Shared data:
2 unbounded array M.inner[0. . . .] of m-valued max registers, initially 0
3 unbounded max register M.outer, initially 0
4 procedure M.write(v)
5 if M.outer.read() ≤ bv/mc then
6 M.inner[bv/mc].write(v mod m);
7 M.outer.write(bv/mc);

8 procedure M.read()
9 h←M.outer.read();

10 `←M.inner[h].read();
11 return h ·m+ `;
Algorithm 3: Multiplexing bounded max registers with an unbounded
max register

will include all operations that finish in H, but may omit some operations
that do not finish in H.

The operations included in S will consist of:

1. All M.read operations that return in H. We will refer to such opera-
tions as completed reads.

2. All M.write(v) operations that perform M.inner[h].write for some h
in Line 6. We will refer to such operations as effective writes.

3. All M.write(v) operations that perform M.outer.read in Line 5 and
obtain a value h > bv/mc. We will refer to such operations as inef-
fective writes, because they do do not take any action other than
reading M.outer.

We now assign an epoch hπ to each operation π included in S:

1. If π is a completed read, its epoch hπ is the value h read from M.outer
in Line 9.

2. If π is an effective write of value vπ, its epoch hπ is bvπ/mc.

3. If π is an ineffective write, its epoch hπ is the value read from M.outer
in Line 5.

To order the operations in S, we first sort by epoch. For operations with
the same epoch, we order using linearization points, which are explicit steps
in each operation’s execution:

26

1. If π is a completed read, its linearization point is the step at which it
reads M.inner[h] in Line 10.

2. If π is an effective write of vπ, its linearization point is the step at
which it writes M.inner[bvπ/mc] in Line 6.

3. If π is an ineffective write, its linearization point is the step at which
it reads M.outer in Line 5.

To show consistency with the observed execution order in H, we need
to show that if some operation π finishes before another operation π′ starts,
and both appear in S, then π precedes π′ in S.

First let us show that if π finishes before π′ starts, then hπ ≤ hπ′ .
Observe that at some step during its execution interval, π either reads hπ
from M.outer or writes hπ to M.outer. (The former case occurs for reads
and ineffective writes; the latter, for effective writes.) In either case, there
is some step during the execution interval of π where M.outer holds hπ. For
π′, if π′ is a read or ineffective write, then hπ′ is a value read fromM.outer at
some step during the execution interval of π′, and in particular at some step
after the step of π where M.outer holds hπ. From the specification of a max
register it follows that hπ ≤ hπ′ . If instead π′ is an effective write of some
value vπ′ , then because π′ writesM.inner[bvπ′/mc], it must first read a value
h from M.outer such that h ≤ hπ′ = bv′π/mc. Again we have hπ ≤ h ≤ hπ′ .

This implies that ordering by epoch never contradicts the observed exe-
cution order inH. Within an epoch, because we are ordering by linearization
points that occur within the execution interval of each operation, if π pre-
cedes π′ in H then π must also precede π′ in S. So the order of operations
S is consistent with their partial order in H.

Next, we must show that S is in fact a correct sequential execution of
a max register. This requires demonstrating that the return value of each
M.read operation ρ is the maximum input of anyM.write operation ω that
is linearized before ρ, or 0 if there is no such operation.

Fix some M.read operation ρ. Let ρ return v = h ·m + `, where 0 ≤
` < m. From inspection of the code for M.read, we see that h = hρ and `
is a value read from M.inner[h]. Any M.write operation ω that linearizes
before ρ must have hω ≤ h.

We consider two cases, depending on whether or not some M.write
operation writes M.outer before ρ reads it.

If no M.write operation writes M.outer before ρ reads it, then h = 0. It
is easy to see in this case that no ineffective write ω can linearize before ρ,
because this can occur only if bvω/mc < hω ≤ 0, and vω cannot be negative.

27

The set of effective writes that linearize before ρ consists of thoseM.write
operations ω such that hω = 0 and ω writes M.inner[0] before ρ reads
M.inner[0]. If this set is empty, ρ reads 0 from M.inner[0] and correctly
returns v = 0 · m + 0 = 0. If not, ` is the maximum over all such ω of
vω mod m = vω, and v = 0 ·m+ ` is the maximum of vω over these writes.
Again ρ returns the correct value.

Now suppose instead that at least oneM.write operation writesM.outer
before ρ reads it. Among this set there must be some ω that supplies
the maximum value h = hω = bvω/mc. Before ω does so, it must must
write vω mod m to M.inner[h]. The linearization point of ω is this write
to M.inner[h], which precedes ρ’s read of M.outer and thus also ρ’s read of
M.inner[h]; it follows that there is at least one effective write ω with hω = h
that linearizes before ρ. The set of all effective writes with hω = h that
linearize before ρ consists of precisely those effective writes that write to
M.inner[h] before ρ reads M.inner[h]. So ` is the maximum of vω mod m
among all effective writes ω with hω = h that linearize before ρ, and
v = h ·m+ ` is the maximum of vω among all such effective writes.

We must now show that v is the maximum over all writes linearized
before ρ, including ineffective writes and effective writes ω with hω < h. The
latter class is easily dismissed, as any such effective write has vω = hω ·m+`ω,
where `ω < m, so vω < (hω + 1) ·m ≤ h ·m ≤ v. For an ineffective write ω,
to linearize before ρ, it must have bv/ωc < hω ≤ h. But then vω < h ·m ≤ v,
and again ω has no effect on v. This shows that the previous argument in
fact demonstrates that ρ returns the maximum input value of all writes,
effective or not, that linearize before ρ.

We have thus shown that every M.read operation returns the correct
value in S. This concludes the proof that S is a linearization of H, and that
any execution of Algorithm 3 is linearizable.

To implement Algorithm 3, we must supply implementations of the un-
bounded max register M.outer and the m-valued max registers M.inner[i].
For each M.inner[i], we can use the m-valued max register of [4]; this gives
a cost of O(logm) steps per operation. For M.outer, we use the implemen-
tation in Algorithm 2. Showing that this works efficiently requires showing
that the sequence of values bv/mc written toM.outer by operations reaching
Line 6 has n4-sparse increments, for a suitable choice of m.

Lemma 3.10. Consider an execution of Algorithm 3 in which the sequence
of inputs to all M.write operations, ordered by the invocation of these op-
erations, is given by v1, v2, Fix some k, and suppose that the sequence
v1, v2, . . . has k-bounded increments. Let m ≥ n2k.

28

Then the sequence of inputs to M.outer.write operations in Line 7,
ordered by invocations of M.outer.write, has t-sparse increments, where
t = m/(n2k)− 1.

Proof. Let ω1, ω2, . . . be the sequence of M.write operations with corre-
sponding inputs v1, v2, Let ω′1, ω′2, . . . be the sequence of M.write op-
erations that execute M.outer.read in Line 5, in the order that they exe-
cute this line, and let v′1, v′2, . . . be the inputs to these operations. Then
v′1, v

′
2, . . . is an n-buffered reordering of v1, v2, . . . , and thus has nk-bounded

increments by Lemma 3.3.
We now consider the subsequence {ω′′i } = ω′′1 , ω

′′
2 , . . . of {ω′i} containing

only those operations that reach the body of the if statement, and let v′′i be
the input to ω′′i . Suppose that v′i ≥ maxi′<i v′i′ . Then bv′i/mc ≥ maxi′<i v′i′ ,
and in particular bv′i/mc is greater than or equal to bv′i′/mc for any operation
ωi′ that writes bv′i′/mc to M.outer before ωi reads M.outer. It follows that
any such ω′i is included in {ω′′i }, and so its corresponding input v′i is included
in {v′′i }. So the subsequence v′′1 , v′′2 , . . . satisfies the conditions of Lemma 3.4,
and thus also has nk-bounded increments.

Next, consider the sequence {ω′′′i } of operations in {ω′′i } that reach Line 7,
in the order that they invoke the M.outer.write operation in this line. This
is an n-buffered reordering of {ω′′i }, so the sequence v′′′1 , v

′′′
2 , . . . is an n-

buffered reordering of v′′1 , v′′2 , Applying Lemma 3.3 a second time shows
that v′′′1 , v

′′′
2 , . . . has (n2k)-bounded increments.

Finally, observe that the sequence of inputs to M.outer.write in this
execution is given by bv′′′1 /mc , bv′′′2 /mc Since v′′′1 ≤ n2k + 0 = n2k, the
first input bv′′′1 /mc ≤

⌊
n2k/m

⌋
≤ 1. Since v′′′1 , v

′′′
2 , . . . has (n2k)-bounded

increments, the sequence of inputs has (m/(n2k)− 1)-sparse increments by
Lemma 3.2.

Using Lemmas 3.9 and 3.10, we can give a full characterization of the
behavior of Algorithm 3:

Theorem 3.11. Fix some k, and let m ≥ (n4 + 1)(n2k) be polynomial
in n and k. Consider an instance M of Algorithm 3 where M.outer is
implemented using Algorithm 2, and each M.inner[i] is implemented using
the m-valued max register of [4]. Let v1, v2, . . . enumerate the inputs to
M.write operations in some execution of M , and suppose that the sequence
v1, v2, . . . has k-bounded increments. Then M is a linearizable implementa-
tion of an unbounded max register, in which each operation has step com-
plexity O(logn+ log k) in expectation and with high probability.

29

Proof. Linearizability is established in Lemma 3.9.
For the step complexity, Lemma 3.10 shows that writes to M.outer have

t-sparse increments where t = m/(n2k)− 1 ≥ (n4 + 1)(n2k)/(n2k)− 1 = n4.
Lemma 3.8 then shows that each operation onM.outer runs in O(1) steps in
expectation and with high probability. We also have that each operation on
M.inner[i] runs in O(logm) = O(logn+log k) steps. Since each operation on
M involves O(1) operations onM.outer andM.inner, the bound follows.

4 Unbounded max array with bounded increments
Algorithm 4 gives a linearizable implementation of an unbounded 2-component
max array, which is efficient for an appropriate choice of m provided the se-
quences of input values to A.write operations to each of the two sides of
the max array have bounded increments.

The essential idea is similar to that of Algorithm 3: we combine a simple
implementation of a max array for the high-order parts 〈b`/mc , br/mc〉 of
the max array values 〈`, r〉 with an unbounded array of (m ×m)-bounded
max arrays for the low-order parts 〈` mod m, r mod m〉.

For the high-order parts, we use a double collect over two unbounded
max registers A.raw[left] and A.raw[right]. This double collect either succeeds
by obtaining two collects with the same high-order parts, or fails because
too many A.write operations caused the high-order parts to change. If m
is large enough, this second outcome can only occur O(1) times before the
randomized helping mechanism is likely to return a usable value.

For the low-order parts, we define an epoch h = b`/mc+ br/mc for each
tuple 〈`, r〉 of values, and argue that in any execution of Algorithm 4, this
epoch uniquely determines b`/mc and br/mc for any pair of values 〈`, r〉
returned by an A.read operation. Within each epoch h, we ensure consis-
tency of the remainders 〈` mod m, r mod m〉 using a bounded max register
A.low[h]. This has cost O(log2m) per operation if we use the bounded
2-component max array construction of [5].

We refer to an A.read operation that returns in Line 20 a value it con-
structs itself as a direct read. We refer to an A.read operation that returns
in Line 24 a value that it obtains from A.takeHelp as an indirect read.

We will show correctness by first linearizing all the direct reads and
A.write operations that finish or affect the return values of A.read op-
erations, and then including the indirect reads after the direct reads that
supply their values. We will then analyze the complexity of each operation
under the assumption of bounded increments. This will give us the following

30

1 Shared data:
2 A.raw[left], A.raw[right]: unbounded max registers, initially 0.
3 A.low[0..]: unbounded array of (m×m)-bounded max arrays, initially

all (0, 0)
4 Shared data for Algorithm 1
5 procedure A.write[side](v)
6 A.raw[side].write(v);
7 A.giveHelp();
8 procedure A.read()
9 A.incrementTS();

10 while true do
// Double collect

11 `1 ← A.raw[left];
12 r1 ← A.raw[right];
13 `2 ← A.raw[left];
14 r2 ← A.raw[right];
15 if b`1/mc = b`2/mc and br1/mc = br2/mc then

// High parts match
16 h← b`2/mc+ br1/mc;
17 A.low[h][left]← `2 mod m;
18 A.low[h][right]← r1 mod m;
19 〈`′, r′〉 ← A.low[h].read();
20 return 〈b`2/mc ·m+ `′, br1/mc ·m+ r′〉;
21 else

// Try help
22 〈current, v〉 ← A.takeHelp();
23 if current then
24 return v;

Algorithm 4: Unbounded max array

theorem.

Theorem 4.1. Algorithm 4 is a linearizable implementation of a max ar-
ray, such that, for an appropriate choice of m, in any execution where the
sequences of input values to calls to A.write[left] and A.write[right] both
have k-bounded increments, each A.write and A.read operation completes
in O(log2 n+ log2 k) steps in expectation and with high probability.

As the proof of Theorem 4.1 is somewhat involved, we break it up into

31

a sequence of lemmas in the following sections.

4.1 Constructing a linearization ordering

We assume that A.raw[left], A.raw[right] are linearizable max register im-
plementations and that each A.low[h] is a linearizable bounded max array
implementation. Because linearizable implementations are indistinguishable
from objects with atomic operations, we will treat operations on these ob-
jects as atomic, and will refer to the state of an object after a sequence of
such atomic operations as if it were the actual state of the object during the
execution.

This allows us to define an epoch hσ that holds after each step. The
epoch of a step σ is the epoch of the values 〈A.raw[left], A.raw[right]〉 follow-
ing σ, which is just the value of bA.raw[left]c + bA.raw[right]c following σ.
Some basic properties of the epoch are immediate from the fact that max
register values are non-decreasing over time:

Lemma 4.2. Let α and β be steps of an execution of Algorithm 4 such that
α precedes β, and let hα and hβ be the epochs of α and β. Then hα ≤ hβ,
and if hα = hβ then bA.raw[left]/mc and bA.raw[right]/mc do not change
between α and β.

Proof. The first claim follows from the fact that bx/mc and addition are both
monotone functions. The second claim follows from the fact that b`/mc +
br/mc can only equal b`′/mc+ br′/mc when b`/mc ≤ b`′/mc and br/mc ≤
br′/mc if neither inequality is strict.

Because it is not possible to read both max registers simultaneously, in
general we do not expect operations to be able to compute the epoch of
their steps. But when successful, the double collect in A.read acts like a
snapshot for the high parts that make up the epoch:

Lemma 4.3. Consider an execution of Algorithm 4 in which some A.read
operation ρ reaches Line 16. Let `2 and r1 be the values of these variables
in ρ when it reaches Line 16.

Then throughout the interval spanning the last execution by ρ of Line 12
and the last execution by ρ of Line 13, bA.raw[left]/mc = b`2/mc and
bA.raw[right]/mc = br1/mc

Proof. For ρ to reach Line 16, it must read values `1 and `2 from A.raw[left]
and r1 and r2 from A.raw[right] such that b`1/mc = b`2/mc and br1/mc =
br2/mc.

32

Because the values returned by a max register are non-decreasing over
time, this implies that bA.raw[left]/mc = b`2/mc throughout the interval
between when ρ last reads A.raw[left] in Line 11 and when ρ last reads
A.raw[left] again in Line 13. Similarly, bA.raw[left]/mc = br1/mc throughout
the interval between when ρ last reads A.raw[right] in Line 12 and when ρ last
reads A.raw[right] in Line 14. Both conditions hold during the intersection
of these two intervals, so throughout the interval spanned by reading r1 and
`2, bA.raw[left]/mc = b`2/mc and bA.raw[right]/mc = br1/mc.

In particular, at both the step at which ρ last sets r1 in Line 12 and the
step at which ρ last sets `2 in Line 13 it holds that bA.raw[left]/mc = b`2/mc
and bA.raw[right]/mc = br1/mc. This means that the epoch h = b`2/mc +
br1/mc calculated by A.read in Line 16 is in fact the epoch of both of these
steps.

The following lemma uses this result to show certain consistency con-
ditions follow from the use of the double collect, both between and within
epochs:

Lemma 4.4. Consider some execution of Algorithm 4, and let ρ and ρ′ be
A.read operations in this execution that both reach Line 16. Let h, `2 and
r1 be the values of h, `2, and r1 at Line 16 in ρ; and let h′, `′2, and r′1 be
the corresponding values of these variables in ρ′.

1. If h = h′, then b`2/mc = b`′2/mc and br1/mc = br′1/mc.

2. If h < h′, then `2 ≤ `′2 and r1 ≤ r′1, and at least one of these inequali-
ties is strict.

Proof. Let I and I ′ be the intervals of the executions of ρ and ρ′, respectively,
spanning the last execution of Lines 12 and 13, as in Lemma 4.3. Let `2, r1
and `′2, r′2 be the last values read into `2, r1 by ρ and ρ′, respectively.

From Lemma 4.3, throughout I, bA.raw[left]/mc = b`2/mc and bA.raw[right]/mc =
br1/mc. Similarly, throughout I ′, bA.raw[left]/mc = b`′2/mc and bA.raw[right]/mc =
br′1/mc.

If I overlaps with I ′, then b`2/mc = b`′2/mc and br1/mc = br′1/mc. This
implies h = h′.

If I precedes I ′, then `2 is read before `′2 and r1 is read before r′1. Because
max register values are non-decreasing over time, `2 ≤ `′2 and r1 ≤ r′1.
Because the floor function is also non-decreasing, b`2/mc ≤ b`′2/mc and
br1/mc ≤ br′1/mc.

If either of these inequalities is strict, we have h = b`2/mc + br1/mc <
h′ = b`′2/mc+ br′1/mc. If neither is strict, then h = h′.

33

If I ′ precedes I, a symmetric argument shows that either h = h′, b`2/mc =
b`′2/mc, and br1/mc = br′1/mc; or h′ < h.

Gathering up the cases, we find that whenever h = h′, b`2/mc = b`′2/mc
and br1/mc = br′1/mc. In the only case where h < h′, we have `2 ≤ `′2 and
r1 ≤ r′1, and at least one of these inequalities is strict, because otherwise
h = h′. This proves the claim.

For each A.write operation ω that executes Line 6, we assign an epoch
hω equal to the epoch following this step. For each direct A.read operation
ρ that finishes, we assign an epoch hρ equal to the value h that it calculates
in Line 16. Lemma 4.3 implies that hρ will be equal to the epoch at the
last steps at which ρ executes Lines 12 and 13. The calculation in Line 20
implies that hρ will also be equal to the epoch of the return value of ρ.

We use these assigned epochs to construct a linearization ordering for
each execution of Algorithm 4. This will be done first by constructing a par-
tial linearization of only some of the operations, then adjusting this partial
linearization to obtain the full linearization needed by the theorem.

4.1.1 The partial linearization Σ1

Given a concurrent execution Ξ, we will construct a sequence of operations
Σ1 from Ξ that includes all complete direct A.read operations (including
A.read operations called through A.giveHelp from A.write operations),
and all A.write operations that complete the A.raw[side].write operation
in Line 6. This will form the scaffolding for our full linearization, which will
be constructed by extending Σ1 to include indirect A.read operations and
then removing A.read operations embedded in A.giveHelp operations.

We sort direct A.read operations and A.write operations that complete
their write to A.raw[side] first by epoch h, then by the order of steps applied
to A.low[h].

1. First, group all operations by epoch, and sort these groups by increas-
ing epoch.

2. Within each epoch h, define a critical step for most operations that is
a step applied to A.low[h]. For an A.read operation ρ in epoch h, this
is the step at which ρ reads A.low[h] in Line 19. For an A.write[side]
operation in epoch h, if there exists an A.read operation ρ in epoch
h such that (a) ρ reads A.raw[side] for the last time after ω writes
A.raw[side], and (b) ρ writes A.low[h][side], then ω’s critical step is the

34

first step at which some such A.read writes A.low[h][side]. If there is
no such ρ, ω is not assigned a critical step.

3. For operations in an epoch that are assigned a critical step, order these
operations by the order of their critical steps. Any A.write operations
not assigned a critical step are ordered after all operations in the epoch
that do have critical steps.

4. Finally, for A.write operations that are still not ordered with respect
to each other, either because they have the same critical step or no
critical step, order them by the order in which they write to either side
of A.raw.

We claim that this ordering is both consistent with the observable exe-
cution order in Ξ and gives a correct sequential execution of a max array.

4.1.2 Consistency of Σ1 with observed execution order

We start by showing consistency. The first step is to give a characterization
of where an operation’s critical step can occur with respect to the opera-
tion’s execution interval in Ξ. Because A.write operations depend on direct
A.read operations to supply their critical steps, it will be helpful to start
by showing that the execution interval of a complete A.write operation in-
cludes the execution interval of a complete A.read operation; and that the
execution interval of any complete A.read operation always includes in turn
the execution interval of a complete direct A.read operation. These facts
are shown in the following two lemmas.

Lemma 4.5. Let Ξ be an execution of Algorithm 4, and let ω be an A.write[side]
operation that starts and finishes in Ξ. Then there exists an A.read opera-
tion ρ such that ρ starts after ω’s write to A.raw[side] and finishes before ω
finishes.

Proof. This follows from the fact that ω calls A.giveHelp after writing to
A.raw[side], and A.giveHelp calls A.read.

Lemma 4.6. Let Ξ be an execution of Algorithm 4, and let ρ be an indirect
A.read operation that starts and finishes in Ξ. Then there exists a direct
A.read operation ρ′ such that ρ′ starts after ρ, ρ′ finishes before ρ, and ρ
returns the same value as ρ′.

35

Proof. Since ρ is an indirect A.read operation, it returns a value v obtained
by a call to A.takeHelp that returns true. This call starts after ρ calls
A.incrementTS. So Lemma 2.1 (clause 2) says that v was obtained from
an A.read operation ρ1 that started and finished between these calls to
A.incrementTS and A.takeHelp, and thus during the execution interval of
ρ. If ρ1 is a direct read, we are done: ρ′ = ρ = 1. Otherwise, iterate the
same argument to obtain a sequence of nested A.read operations ρ1, ρ2, . . .
that must eventually end with a direct read.

The next lemma characterizes where the critical step of an operation in
Σ1 may occur relative to that operation’s execution interval:

Lemma 4.7. Let Ξ be an execution of Algorithm 4 and let α be an operation
in the corresponding sequence Σ1 as defined above, such that α is assigned
a critical step σα.

1. If α is an A.read operation or an A.write operation that finishes,
then σα occurs between the start and end of α in Ξ.

2. If α is an A.write[side] operation, then whether or not α finishes, σα
occurs after α writes A.raw[side] in Line 6.

Proof. If α is an A.read operation, it executes σα itself.
If α is an A.write[side] operation in epoch h that has a critical step,

then there is some A.read operation ρ that reads A.raw[side] for the last
time after α writes A.raw[side], and subsequently writes A.low[side][h]. The
first such write to A.low[side][h] is σα, and must occur after α’s write to
A.raw[side] and thus after α starts. This holds whether or not α finishes.

If α does finish, then by Lemmas 4.5 and 4.6, it includes an embedded
direct A.read operation ρ. Because ρ starts and finishes after α writes
A.raw[side], if ρ does not execute σα, it is only because some other A.read
operation executes σα first. In either case, σα occurs before α finishes.

Using Lemma 4.7, we prove that Σ1 does in fact respect the observable
execution order in Ξ:

Lemma 4.8. Let Ξ be an execution of Algorithm 4, and let Σ1 be the corre-
sponding sequence of operations as defined above. If α and β are operations
in Σ1, and α finished in Ξ before β starts, then α precedes β in Σ1.

Proof. Because α and β are included in Σ1, they are both assigned epochs
hα, hβ, equal to the epoch of particular steps carried out on A.raw by each
operation. Because α finishes before β starts, α’s epoch-determining step

36

occurs before β’s, and so by Lemma 4.2, hα ≤ hβ. If hα < hβ, α precedes β
in Σ1. So the interesting case is when hα = hβ.

We start by making some observations about the timing of critical steps.
If α has a critical step σα, then σα occurs within the execution interval of

α. This is because α is either an A.read operation or an A.write operation
that finishes in Ξ, so the first case of Lemma 4.7 applies.

Similarly, if β has a critical step σβ, then σβ occurs after β starts, by
one or the other cases of Lemma 4.7.

We now consider four cases, depending on which of α and β have critical
steps:

1. If α and β both have critical steps, then σα precedes σβ and α precedes
β in Σ1.

2. If α has a critical step and β does not, then β is ordered after α.

3. If α does not have a critical step but β does, then α is an A.write[side]
operation assigned an epoch h such that no A.read operation ρ in the
same epoch h reads A.raw[side] for the last time after α writes it.
In particular, the embedded A.read operation ρ whose existence is
implied by Lemmas 4.5 and 4.6 does not do so, which can only occur
if ρ has an epoch hρ > h. But in this case, because β starts after the
step that assigns ρ its epoch, β must also have an epoch hβ ≥ hρ > h.
This contradicts the assumption that α and β are operations in the
same epoch. We can thus exclude this case.

4. If neither α nor β have critical steps, then they are ordered by the
order in which they write A.raw, so α precedes β in Σ1.

4.1.3 Correctness of return values in Σ1

We now turn to showing that Σ1 is in fact a sequential execution of a max
array. This requires showing that for any A.read operation ρ, the values
it returns for the left and right sides of the max array are each equal to
the maximum value written to each side by A.write operations that are
linearized before ρ.

Lemma 4.9. Let Ξ be an execution of Algorithm 4, and let Σ1 be the corre-
sponding sequence of operations defined above. Then any A.read operation
ρ in Σ1 returns a pair v such that for each side ∈ {left, right}, v[side] is

37

equal to either the maximum input value to any A.write[side] operation that
precedes ρ in Σ1, or is equal to 0 if there is no such operation.

Proof. We show first that, for each side ∈ {left, right}, v[side] is either equal
to 0 or to the input of some A.write[side] operation that precedes ρ in Σ1.
We then show that for any A.write[side](x) operation that precedes ρ in
Σ1, x ≤ v[side]. Together these show the claim in the lemma.

To keep the argument simple, we concentrate on v[left]. We will note the
few places where the proof for v[right] differs.

For ρ to return 〈`, r〉, ` must equal b`2/mc ·m+ `′, where `2 is the last
value read by ρ in Line 13 and `′ is left-side value read by ρ from A.low[h]
in Line 19.

Because ρ itself writes to A.low[h].left, at least one A.read operation
writes to A.low[h][left] before ρ reads A.low, and thus `′ is equal to `′2 mod m
for some value `′2 read from A.raw[left] by a read operation ρ′ (which might
or might not be ρ). Because ρ′ writes to the same max array A.low[h]
as ρ, ρ′ and ρ have the same epoch h. Applying Lemma 4.4 thus gives
b`2/mc = b`′2/mc.

But then b`2/mc ·m+ `′ = b`′2/mc ·m+ (`′2 mod m) = `′2.
If `′2 is not zero, it must be the input to some A.write[left](`′2) operation

ω that writes to A.raw[left] before ρ′ reads it for the last time.
Since the epochs of ω and ρ′ are defined by the epochs of these steps,

we have hω ≤ hρ′ = hρ. If hω < hρ, then ω is ordered before ρ in Σ1. If
hω = hρ, then the critical step of ω occurs no later than when ρ′ writes
A.low[left]. But this occurs before ρ executes its own critical step, its read
of A[low]. So in this case ω is ordered before ρ in Σ1 as well.

We thus have that v[left], if nonzero, corresponds to the input value of
some A.write[left] operation ω that precedes ρ in Σ1. A similar argument
substituting r1 for `2 shows the same holds for v[right].

Let us now consider some A.write[left](vω) operation ω that precedes ρ
in Σ1. By the construction of Σ1, this implies that hω ≤ hρ.

If hω < hρ, then ω writes A.raw[left] before ρ last reads A.raw[left] into
`2 in Line 13. It follows that ρ reads a value `2 ≥ vω. It then writes this
value to A.low[h][left] before reading A.low, which by the properties of a max
array gives that v[left] ≥ `2 ≥ vω.

If hω = hρ, then ω precedes ρ in Σ1 only if there is some A.read oper-
ation ρ′ that reads A.raw[left] after ω writes A.raw[right], and then writes
A.low[left] (which is the critical step for ω) before ρ reads A.low (which is
the critical step for ρ). But then we again have ρ′ reading a value `′2 ≥ vω
that it writes to A.low[left], giving v[left] ≥ `′2 ≥ vω.

38

As before, essentially the same argument works for A.write[right] oper-
ations.

Now fix some side ∈ {left, right}, and let v1, . . . , vk enumerate the inputs
to the A.write[side] operations that precede ρ in Σ1. Let v be the value
returned by ρ. We have shown that v[side] = 0 or v[side] = vi for some
i. In either case, v[side] ≤ maxi vi (where we adopt the convention that
a maximum of an empty set is the minimum possible value 0). We also
have that for any i, v[side] ≥ vi, which implies that v[side] ≥ maxi vi. So
v[side] = maxi vi.

Together with Lemma 4.8, Lemma 4.9 shows that Σ1 is a linearization of
the operations it includes. It remains only to edit Σ1 to include all operations
visible to the user of the max array, and no others.

4.2 The full linearization Σ

To construct the full linearization Σ, we start with Σ1, and make two ad-
justments. First, for each direct read ρ, we gather up all indirect reads
ρ1, ρ2, . . . , ρk that return a value originally obtained by ρ, and insert them
into Σ1 in arbitrary order immediately following ρ. Second, we remove all
A.read operations that are called internally by A.giveHelp, as these are not
visible to the user. We show that the resulting sequence Σ is a linearization
of the original concurrent execution Ξ.

Lemma 4.10. Given a concurrent execution Ξ of Algorithm 4, the sequence
Σ constructed above is a linearization of Ξ.

Proof. First let us show that the indirect reads ρ1, . . . , ρk inserted after some
direct read ρ are (a) ordered consistently with the observable execution order
in Ξ, and (b) return a value consistent with their position in Σ. Let Σ2 be
the intermediate sequence obtained by inserting these operations.

From Lemma 4.6, each ρi starts before and finishes after ρ. Suppose
α is some operation that precedes ρi in Ξ. Then α also precedes ρ, so by
Lemma 4.8, α precedes ρ in Σ1. Thus α precedes ρi in Σ2. Alternatively,
suppose β is some operation that follows ρi in Ξ; then β follows ρ, and thus
β follows ρ in Σ1. Since Σ2 inserts ρi between ρ and any operation that
follows ρ in Σ1, β follows ρi in Σ2.

Each cluster of A.read operations ρ, ρ1, ρ2, . . . , ρk all return the same
value; since each component of the value returned by ρ is the max of values
previously written by A.write operations in Σ1 (Lemma 4.9), and Σ2 does
not change the A.write operations from Σ1, ρ continues to return the correct

39

value in Σ2. But this will also be the correct return value for any subsequent
A.read operations with no intervening A.write operations, meaning that
ρ1, . . . , ρk also return the correct value.

We now almost possess the linearization of Ξ. The only remaining com-
plication is that Σ2 (like Ξ itself), includes internal A.read operations that
are not visible to the user. By removing these operations we obtain the
sequence Σ. This is still a linearization of the externally-visible operations
in Ξ, because (a) removing an operation cannot create a pair of operations
α, β whose order differs between Ξ and Σ, (b) removing A.read operations
does not change the return value of any other operations in a sequential
execution, and (c) all operations that remain in Σ return the same values as
in Σ2, which we have already shown to be correct. This concludes the proof
of linearizability.

4.3 Complexity

Finally, we bound the step complexity of A.read and A.write operations.
Unlike linearizability, this requires the additional assumption that the se-
quences of inputs to A.write operations have bounded increments.

Lemma 4.11. Fix some k. Consider an execution of Algorithm 4 where
m ≥ nk(n4 + n + 1) is polynomial in n and k, and the sequences of inputs
to A.write[left] and A.write[right] operations have k-bounded increments
when ordered by the invocation order of the operations. Then for an appro-
priate implementation of A.raw, A.read and A.write operations have step
complexity O(log2 n+ log2 k) in expectation and with high probability.

Proof. The outline of the argument is that we can use k-boundedness of
the increments to show (a) that the inputs to each A.raw[side] max register
are nk-bounded, giving O(logn + log k) step complexity for operations on
A.raw; and (b) that the sequence of values of bA.raw[side]/mc have t-sparse
increments for t large enough that an execution of A.read that fails three
double collects will successfully obtain help with high probability on every
iteration of its main loop thereafter.

We start with the claim for A.raw.
Fix some side ∈ {left, right}. Let v1, v2, . . . be the sequence of inputs to

A.write[side] operations in some execution Ξ of Algorithm 4, and suppose
that this sequence has k-bounded increments. The sequence vi1 , vi2 , . . .
of inputs to A.raw[side].write operations in Ξ is an n-buffered reorder-
ing of {vi}, so by Lemma 3.3 it has nk-bounded increments. It follows

40

from Theorem 3.11 that each operation on A.raw[side] has step complex-
ity O(logn + log k) in expectation and with high probability, assuming
A.raw[side] is implemented using Algorithm 3 with a suitable choice for its
parameter m. Theorem 3.11 also tells us that the execution of A.raw[side]
is linearizable, so for the remainder of the proof, we will treat operations on
A.raw[side] as atomic.

We now show that an A.read operation does only O(1) loop iterations
in expectation and with high probability.

If the double collect in Lines 11 through 14 succeeds, the A.read op-
eration returns. So to maximize the number of iterations of the loop, the
adversary must arrange for the double collect to fail; that is, for the process
p performing an A.read operation ρ to observe a different epoch in the sec-
ond collect in Lines 13 and 14 than it observed in the first collect in Lines 11
and 12. This requires that the value of at least one of bA.raw[left]/mc or
bA.raw[right]/mc must increase between the first and second time p reads it.

Suppose now that the double collect fails three times. Then there are
three such increases spread across the two max registers. It follows that for
some side ∈ {left, right}, bA.raw[side]/mc increases twice during the initial
prefix of the execution of ρ starting with its first execution of Line 11 and
ending with its third execution of Line 14. Call this interval [s, t].

For this to occur, these larger values must appear in the sequence of
inputs to A.raw[side].write operations. We have already established that
this sequence of inputs vi1 , vi2 , . . . is nk-bounded. Applying Lemma 3.2,
the scaled sequence bvi1/mc , bvi2/mc , . . . is (m/nk − 1)-sparse. From the
stated bound on m, we have m/nk − 1 ≥ n4 + n; so at least n4 + n calls
to A.raw[side].write start during [s, t′]. Since there are at most n − 1 pro-
cesses other than p, at most n − 1 of these calls to A.raw[side].write are
executed by A.write operations that are still in progress at t′, so at least
n4 + 1 of these A.raw[side].write operations are carried out by an A.write
operation that finishes during [s, t′]. Every one of these A.write operations
calls A.giveHelp after ρ finishes A.incrementTS.

We can thus apply apply Lemma 2.1. For any call to A.takeHelp made
by ρ following t′, there is a probability of at least 1 − 1/n that this call
returns true (conditioning on the outcome of previous calls) and that the
corresponding help value can safely be returned by ρ. So after three failed
double collects, on average ρ calls A.takeHelp at most 1+1/(1−1/n) = O(1)
times before returning, and for any fixed c, the probability that it calls
A.takeHelp more than c times without returning is at most n−c. So any
A.read performs O(1) iterations of its main loop in expectation and with
high probability.

41

Counting up the cost of each iteration of the main loop, we have two
calls to operations on each of A.raw[left] and A.raw[right], which we have
already established take O(logn+ log k) steps in expectation and with high
probability. We also have at most three operations on A.low, for a total cost
of O(log2m) = O((logn + log k)2) = O(log2 n + log2 k) steps always, using
the bounded max array of [5].7 The call to A.takeHelp, if executed, has
step complexity O(1), as does the call to A.incrementTS outside the loop.
Adding everything up gives the claimed bound for A.read.

This leaves A.write[side] operations. Each such operation performs a
call to A.raw[side].write followed by a call to A.giveHelp, which embeds
a call to A.read plus O(1) register operations. Both calls take O(log2 n +
log2 k) steps in expectation and with high probability, so the same bound
applies to A.write.

5 Unlimited-use snapshots
Using our unbounded-value 2-component max array implementation, we can
now obtain an unlimited-use single-writer snapshot object.

We use the construction from [5], which for convenience we restate here.
The only difference is that we instantiate this algorithm with our new im-
plementations of unbounded-value max registers and unbounded-value max
arrays from the previous sections, instead of the bounded-value implemen-
tations used in [5].

The construction is based on a balanced binary tree with n leaves, one
for each process. Each intermediate node holds a 2-component max array
object for its two children, that counts the number of update operations
performed on each. It also stores the (unique) view corresponding to the
sum of these numbers. A process updates its location by updating the nodes
from its leaf to the root, and a process scans the object by reading the view
held by the root. Pseudocode appears in Algorithm 5.

The leaf node in the tree corresponding to each process pi is denoted by
leafi. Given a node u, u.parent, u.left, and u.right represent the parent, left
child, and right child of u, respectively. The root of the tree is denoted by
root.

Each node u holds an unbounded array u.view[0..] of views, each of
7The O(log2 m) bound holds even taking into account the correction to the original

algorithm that appears in a subsequent erratum by the authors [6]. Though this correction
increases the bound on the cost of max array write operations, these operations still take
at most O(log2 m) steps, as do max array read operations.

42

1 procedure Updatei(s, v)
2 counti ← counti + 1
3 u← leafi
4 ptr← counti
5 u.view[ptr]← v
6 while u 6= root do
7 if u = u.parent.left then
8 u.parent.ma.write[left](ptr)
9 if u = u.parent.right then

10 u.parent.ma.write[right](ptr)
11 u← u.parent
12 (lptr, rptr)← u.ma.read()
13 lview← u.left.view[lptr]
14 rview← u.right.view[rptr]
15 ptr← lptr + rptr
16 u.view[ptr]← lview · rview // lview and rview are concatenated
17 root.mr.write(ptr)
18 procedure Scan(s)
19 ptr← root.mr.read()
20 return root.view[ptr]
Algorithm 5: Unlimited-use single-writer snapshot object; code for pro-
cess pi.

which is either an uninitialized null value ⊥ or a partial snapshot. Ini-
tially, leafi.view[0] holds the initial value for the snapshot component for
process i, and u.view[0] for each internal node u holds the concatenation of
leafi[0] over all leaves leafi in the subtree rooted at u. This means that the
initial value of root.view[0] is the initial snapshot value, a vector of all initial
values for the individual components.

Each process pi maintains a local variable counti that is incremented
with each new Update operation. The input to the update is written to
leafi.view[counti] after incrementing counti. The process then takes respon-
sibility for propagating this value up through the internal nodes, with the
invariant that u.view[t] will always be a concatenation of some collection of
leafi.view[ti] values where t is the sum of the ti.

Consistency and uniqueness of these intermediate views is enforced using
a max array u.ma at each internal node u, where u.ma[left] holds the index

43

of the most recent view of u.left and u.ma[right] holds the index of the most
recent view of u.right; these views are combined by concatenation to produce
a new view with index equal to the sum of the two child views. Because the
root has no parent, it uses an extra max register root.mr to store the index
of its view; this is read by a Scan operation to obtain the most recent view
that has been fully propagated to the root.

In the original implementation of [5], each max array and max register
is limited to holding values up to some fixed bound b. Because the proof of
correctness of the algorithm does not use b, we can replace these bounded
max arrays and max registers with our new, unbounded variants, without
affecting the original proof of correctness. So we need only show that the
step complexity of each operation is likely to be low. This requires showing
that appropriate bounded-increments assumptions hold.

We start with some simple invariants, which will be used to show that
the sequences of values stored in each u.mr component and in root.mr have
bounded increments. In the following, we define for each node u in the
tree a location ru, which is u.mr if u is the root, u.parent.ma[left] if u =
u.parent.left, and u.parent.ma[right] if u = u.parent.right. Note that when u
is not the root, ru is only one of two components of a max array object. We
define the value of ru after a given partial execution in the obvious way, as
the largest value written to ru during that execution. For the purpose of
proving these invariants, we assume that operations on the u.ma and root.mr
objects are atomic; this is equivalent to assuming that we have fixed some
linearization of the operations on these objects and are observing properties
of that linearization.

Lemma 5.1. After any partial execution Ξ of Algorithm 5, the following
invariants hold:

1. If u is a leaf, then ru is equal to the number of write operations to ru
in Ξ.

2. If u is any node, then ru is greater than or equal to the number of
write operations to ru in Ξ.

3. If u is an internal node, then ru ≤ ru.left + ru.right.

Proof. 1. Let u = leafi. Then ru is written only by pi in Line 8 or 10. In
either case, pi writes the value of counti, which is equal to the number
of times pi writes ru up to and including this write.

2. Let u be any node. We prove the claim by induction on the height of
u. If u is a leaf, the claim follows from the previous invariant. If u is

44

an internal node at height h > 0, then by the induction hypothesis,
the invariant holds for its children u.left and u.right.
Because u is an internal node, it can be written only by some process
executing Line 8 or Line 10. Since u is not a leaf, the value written
is the value ptr computed in the previous iteration by summing (in
Line 15) the values of ru.left and ru.right previously obtained by taking
a snapshot of u.ma in Line 12.
Consider the last such execution of Line 12 by a process pj that sub-
sequently writes ru in Ξ; let Ξ′ be the prefix of Ξ ending with this
step.
Because every process pk that writes ru in Ξ must previously write
either ru.left or ru.right, and because any such write precedes pk’s snap-
shot of u.ma in Line 12, every process pk that writes ru in Ξ writes
one of ru.left or ru.right in Ξ′. So the number of writes to these locations
in Ξ′ is at least the number of writes to ru in Ξ. By the induction
hypothesis, the values read by pj for ru.left and ru.right will be at least
these quantities, and so the sum of these values will be at least the
number of writes to ru in Ξ.

3. Conversely, any value written to ru for an internal node u was com-
puted as the sum r′u.left + r′u.right, where r′u.left and r′u.right were the
values of ru.left and ru.right after some prefix Ξ′ of Ξ. Because the val-
ues of these locations are non-decreasing over time, at the end of Ξ,
ru = r′u.left + r′u.right ≤ ru.left + ru.right.

These invariants give:

Corollary 5.2. In any execution of Algorithm 5, the sequence of values
appearing in any location ru has n-bounded increments.

Proof. Applying Claim 3 of Lemma 5.1 inductively, any partial execution of
Algorithm 5, ru ≤

∑
` r`, where ` ranges over all leaves in the subtree rooted

at u. We will apply this to a sequence of partial executions of increasing
length.

Let rtu be the value of ru after t steps. Let mt
u be the number of times

processes in the subtree rooted at u call Update in the first t steps. Because
r` counts the number of times the process assigned to ` writes r`, rt` ≤ mt

`,
and thus rtu ≤

∑
` r
t
` ≤

∑
`m

t
` = mt

u, where as before ` in each sum ranges
over all leaves below u.

45

In the other direction, Claim 2 of Lemma 5.1 says that rtu is at least
equal to the number of times processes in the subtree write to ru in the
first t steps. This will be at least mt

u − nu, where nu ≤ n is the number
of processes assigned to the subtree, because each process can have at most
one Update operation in progress that has not yet written ru.

We now consider the effect of a step on ru. The only steps that change
ru are writes to ru; a process that takes such a step does not increase mt

u,
because it has already started its Update in some earlier step. So the maxi-
mum increase in ru is from mt

u−n to mt+1
u = mt

u, an increase of n. Because
ru is either a max register or a max array component, the previous value of
ru is the maximum of the sequence up to this point, so the sequence of ru
values has n-bounded increments.

We finish by showing how to translate bounded increments on the se-
quences of values stored in particular locations to bounded increments on
the sequences of values supplied as inputs to write operations on their par-
ents. This gives bounded increments on the inputs to write operations to
all internal nodes in the tree, leaving leaves as a special case.

For each internal node u, define su as the value of ru.left + ru.right, and
define sku as the value of ru.left + ru.right after k total writes to ru.left and
ru.right. Observe that su can only increase as the result of one of these writes,
and since a write affects only one of ru.left or ru.right, from Corollary 5.2, the
maximum increase in su is bounded by n. It follows that

{
sku

}
has n-bounded

increments.
Define vku as the value of su obtained by the k-th snapshot of ru.left and

ru.right by some process executing Line 12, where these snapshots are ordered
by their linearization points. Because each process takes a snapshot of ru.left
and ru.right after updating either, a total of at most n updates can occur on
these two locations between snapshots. We have already established that
each such update increases su by at most n; so n such updates increase su
by at most n2. This implies that for all k, vk+1

u ≤ vku + n2: the sequence{
vku

}
has n2-bounded increments.

Now apply Lemma 3.3. The sequence of input values to write operations
to ru is an n-buffered reordering of the sequence

{
vku

}
, because each process

that takes a snapshot in Line 12 writes vku as its next step in one of Lines 8,
10, or 17. The adversary can delay these writes, but can only delay up to n
of them at a time; hence Lemma 3.3 applies. We have just shown, at least
for internal nodes:

46

Lemma 5.3. For any node u, the sequence of inputs to write operations on
ru has n3-bounded increments.

Proof. If u is an internal node, use the proof above.
If u is a leaf, this follows from each write having an input 1 greater than

the previous write.

Lemma 5.3 is the last piece we need for the step complexity of Algo-
rithm 5. We state the full result for later use.

Theorem 5.4. For an appropriate parameterization of the internal max
registers and max arrays, Algorithm 5 is a linearizable implementation of
a snapshot, where each A.write operation takes O(log3 n) steps and each
A.read operation takes O(log2 n) steps, in expectation and with high proba-
bility.

Proof. Linearizability is immediate from the proof in [5].
For the probabilistic step complexity bound, observe that Algorithm 5

carries out O(logn) iterations of its main loop, which performs O(1) max ar-
ray operations per iteration, with n3-bounded increments on the sequences
of inputs to write operations. Thus each max array operation has cost
O(log2 n+ log2 n3) = O(log2 n) in expectation and with high probability, so
the total cost of the loop is O(log3 n) in expectation and with high probabil-
ity. This dominates the operations outside the loop, and gives the claimed
bound.

6 Extension to message passing
Our algorithm can be adapted to give an implementation of a snapshot ob-
ject in an asynchronous message-passing system with fewer than n/2 crash
failures. A direct adaptation using the ABD register simulation [11] would
require O(log3 n) time and O(n log3 n) messages on average for each opera-
tion, where one time unit is the maximum message delay in the execution.
This is because ABD implements a read/write register operation in O(1)
time and O(n) messages, and our snapshot implementation uses O(log3 n)
accesses to read/write registers.

By taking advantage of the message-passing model, we can improve this
to O(log2 n) time and O(n log2 n) messages, while eliminating the need for
randomization. The key idea is that the inherent parallelism of a message-
passing system and the ability to consolidate multiple concurrent messages

47

into one allows operations like collects or max-register reads to be imple-
mented at no greater cost than the O(1) time and O(n) messages needed to
simulate an ordinary atomic register.

We begin by describing our implementation of an unbounded-value max
register using message passing; this gives the log-factor reduction in complex-
ity. We then show how the randomized helping mechanism can be simplified
by eliminating random sampling over the active array in favor of performing
collects on the TS and helpTS arrays directly. This makes the guarantees for
the bounded-increments max array implementation deterministic. Making
these substitutions in Algorithm 5 gives the full result.

6.1 Message-passing max registers

An unbounded-value max register can be implemented directly in an asyn-
chronous message-passing system with f < n/2 crash failures using a straight-
forward adaptation of the classic ABD atomic register simulation of Attiya,
Bar-Noy, and Dolev [11].

Pseudocode is given in Algorithm 6. Each process stores a local value
maxValue for the max register. The write and read operations are both
implemented using a core Update subroutine. This obtains a maximum
value from a majority of processes (including itself), possibly replaces it
with the argument to write, and transmits the new value to a majority of
processes (including itself). As in the ABD register, this second round is
needed to ensure linearizability when the maximum value obtained in the
first round is not already stored in a majority of the processes. We denote
by ⊥ a value that is not larger than any integer value v.

Theorem 6.1. Algorithm 6 is a linearizable deterministic implementation
of a max register for a message-passing system with fewer than n/2 crash
failures, in which both read and write operations take O(1) time and O(n)
messages.

Proof. Both the complexity and the linearizability proofs resemble the cor-
responding proofs for ABD.

Since read and write are both wrappers for Update, their complexity
bounds follow immediately from the fact that Update uses two round-trips
(O(1) time) involving a linear number of messages each (O(n) messages).

To show linearizability, given an execution of Algorithm 6, we construct
an explicit linearization ordering as follows. We first order all operations by
the value v′ obtained in Line 8, then by observable execution order (order of
non-overlapping operations) within each group of operations with the same

48

Persistent Local Data: maxValue, initially ⊥; t, initially 0
1 upon receiving Update(t, v) from j do
2 maxValue← max(maxValue, v)
3 Send respond(t,maxValue) to j
4 procedure Update(v)
5 t← t+ 1
6 Send Update(t,⊥) to all processes.
7 Wait to receive respond(t, vi) from a set S containing a majority

of processes pi.
8 Let v′ = max(v,maxi∈S(vi)).
9 t← t+ 1

10 Send Update(t, v′) to all processes.
11 Wait to receive respond(t,−) from a majority of processes.
12 return v′.
13 procedure write(v)
14 Update(v)
15 procedure read()
16 return Update(⊥)

Algorithm 6: Max register in message passing using ABD.

value of v′. Finally, we put write operations before read operations and
break any remaining ties arbitrarily.

To show that this is consistent with the observed execution order, sup-
pose that some operation A finishes before B starts. Let v′A and v′B be the
values of v′ computed by A and B, respectively. Then A broadcasts v′A to
a majority of processes before it finishes, and at least one of these processes
is also in the majority that later respond to B’s Update(t,⊥) message. So
the calculation of v′B includes either v′A or a larger value, giving v′B ≥ v′A. If
v′B = v′A, then B is ordered after A by the execution ordering; if v′B > v′A,
then B is ordered after A by the v′ ordering.

Next we argue that the linearized execution is a sequential execution
of a max register. Since the only operations that return values are read
operations, it is enough to show that these values are equal to the largest
input to any previous write operation in the linearized execution.

Let us begin with a simple invariant: In any prefix of an execution
of the algorithm, any value other than ⊥ that appears as maxValuep in
some process p, or appears as the value in an Update or respond message,
appears as the input to some write operation that starts in this prefix. The

49

proof is a straightforward induction: examination of the code shows that
new values can appear only when a write broadcasts its second Update
message, and such values will either be the input to the write or a value that
previously appeared in a respond message to the process carrying out the
write operation. It follows that any value returned by a read corresponds
to some value written in a write.

The computation in Line 8 ensures that any write(v) operationW com-
putes v′W ≥ v; in the other direction, any read operation R returns v′R. So
for any given read operation R, only write operations with input less than
or equal to v′R can be linearized before R. From the invariant, there exists
at least one write operation W with input vW that is equal to v′R (for the
value v′R to be returned in Line 8). Out of all such write operations, there
is at least one that linearizes before R, because the linearization point of
operations depend on the value obtained in Line 8. If for all of the above
write operations that linearize before R it holds that the value v′W obtained
in Line 8 is larger than the input vW , then none of these operations use vW
in Line 10, preventing this value from being returned as v′R by the read op-
eration R in Line 8 (since any maxValue can only store a value that was the
input to some previous Update). It follows that v′R is in fact the largest input
to any write operation linearized before R, and the sequential specification
is satisfied.

6.2 Bounded message-passing 2-component max arrays

By using the message-passing max register of the previous section in the
bounded max array of [5], we get an immediate log-factor improvement in
the cost of a max array as well.

Corollary 6.2. For any k and `, there exists a linearizable implementation
of a (k× `)-bounded max array in a message-passing system with fewer than
n/2 crash failures, such that both read and write operations require O(log k)
time and O(n log k) messages.

Proof. An execution of a read or write operation in the (k × `)-bounded
max array construction of [5] requires O(log k) atomic register operations
and O(log k) operations on `-bounded max registers. By implementing the
atomic registers using the ABD simulation [11] and the max registers using
Algorithm 6, we obtain the claimed performance.

50

6.3 Deterministic helping

Helping can be simplified in a message-passing system, because we can im-
plement a collect operation that reads the values of arbitrarily many separate
registers by combining messages used to implement each read independently.

Formally, a collect object is a weak version of a snapshot that does
not guarantee that values read from distinct registers appear to be read
atomically. It is equivalent to an array of n single-writer registers, with a
write operation for each register and a collect operation that returns a value
for each register that was present in that register at some time between the
start and finish of the collect.

The straightforward implementation of a collect is to have the reader read
each register directly. This gives a cost of O(1) steps per write and O(n)
steps per collect. In a message-passing system, we can use the standard
ABD simulation for each register and combine the messages for the n read
operations used in the collect. This gives a cost of O(1) time and O(n)
messages for both write and collect, making a collect no more expensive
than reading a single simulated register. More generally, if we are only
concerned with time and message complexity, we can similarly perform a
collect on an unlimited number of registers with the same time and message
complexity bounds.

With cheap collects, we can avoid the need for using random sampling
to reduce the cost of obtaining help. This allows us to eliminate the A.active
array in Algorithm 1 completely, have each reader read all the available help
at once, and have each writer help all readers at once on every write. The
resulting implementation is given in Algorithm 7.

Because Algorithm 7 is deterministic, its properties are more straight-
forward to describe than those of the Algorithm 1. The following lemma is
analogous to Lemma 2.1. Note that unlike Algorithm 1, Algorithm 7 does
not return useful information in the second return value of A.takeHelp if
the first return value is false. Fortunately this feature is only used in our
shared-memory construction when implementing the max register. In our
message-passing construction, we use a different implementation that does
not require help.

Lemma 6.3. Consider an execution Ξ of Algorithm 7. Let t be the point
at which some process pi starts an A.takeHelp operation τ . Suppose there
is a point s in Ξ such that at least n + 1 calls to A.giveHelp start in the
interval [s, t]. Then:

1. If τ returns true following at least one call by pi to A.incrementTS,

51

1 Shared data:
2 A.TS[0 . . . n− 1], an array of ABD registers holding timestamps,

initially all 0
3 A.helpTS[0 . . . n− 1][0 . . . n− 1], an array of ABD registers holding

timestamps, initially all 0
4 A.helpVal[0 . . . n− 1], an array of ABD registers holding help values,

initially all ⊥
5 procedure A.incrementTS()
6 A.TS[i]← A.TS[i] + 1;
7 procedure A.giveHelp()

// collect all timestamps
8 t[0 . . . n− 1]← A.TS[0 . . . n− 1];
9 v ← A.read();

10 A.helpVal[i]← v;
11 A.helpTS[i][0 . . . n− 1]← t[0 . . . n− 1];

// Return value read, in case it is useful
12 return v;
13 procedure A.takeHelp()

// collect timestamps for pi from all helpers
14 t[0 . . . n− 1]← A.helpTS[0 . . . n− 1][i];

// find most recent help
15 if there exists j such that t[j] ≥ A.TS[i] then
16 return (true, A.helpVal[j]);
17 else
18 return (false,⊥);

Algorithm 7: Deterministic helping applied to object A. Code for process
pi.

then the value returned by τ was previously returned by a call to A.read
that started no earlier than the start of pi’s last call to A.incrementTS
and finished no later than τ .

2. If pi’s last call to A.incrementTS before t finished before s, then if τ
returns, τ returns true.

Proof. 1. Immediate from the code: For τ to return true, it must see
a timestamp t in A.helpTS[j] for some j that is equal to the current
value of A.TS[i]. Because the only place A.helpTS[j] is updated is
in Line 11 of A.giveHelp, this can occur only if pj makes a call to

52

A.giveHelp that reads t from A.TS[i] (implying that this call starts
after pi’s last call to A.incrementTS) and subsequently calls A.read to
obtain a value to write to A.helpVal[j] in Line 10 before writing the new
timestamp in Line 11. So the value returned by τ from A.helpVal[j]
will have been read at least as recently as this value.

2. If n+ 1 calls to A.giveHelp start in the interval [s, t], then there is at
least one process that starts two calls to A.giveHelp. Let pj be such
a process, and consider the first call γ by pj to A.giveHelp that starts
in [s, t]. Because pj starts at least one more call before t, γ starts
and finishes in [s, t]. This means that it starts after pi’s last call to
A.incrementTS before t, and finishes before τ starts. During this time,
γ copies A.TS[i] to A.helpTS[j][i]. Any subsequent call to A.giveHelp
by pj will only copy this value again, so when τ reads A.helpTS[j][i],
it obtains a value that is at least equal to A.TS[i], causing it to return
true.

Though the ability to read n registers in parallel allows for a minimum of
n+1 A.giveHelp operations in Lemma 6.3 instead of the n4+1 operations in
Lemma 2.1, this only improves the applicability of the result. In particular,
under the conditions of Lemma 2.1, Lemma 6.3 implies that the last two
claims of Lemma 2.1 apply to Algorithm 7 as well, with no probability of
error.

6.4 Unbounded message-passing 2-component max arrays

We can now reimplement Algorithm 4 by replacing every instance of a max
register operation with the O(1)-time O(n)-message implementation from
Algorithm 6, every instance of an (m × m)-bounded max array by the
O(logm)-time O(n logm)-message implementation from Section 6.2, and
replacing the help mechanism with Algorithm 7. Because these algorithms
are deterministic, this gives a deterministic implementation of an unbounded
max array for a message-passing system.

The correctness and efficiency of this implementation is described in the
following theorem.

Theorem 6.4. Algorithm 4, adapted to a message-passing system as de-
scribed above, is a lineariable implementation of a max array, such that, for
an appropriate choice of m, in any execution where the sequences of input

53

values to calls to A.write[left] and A.write[right] both have k-bounded in-
crements, each A.write and A.read operation completes in O(logn+ log k)
time and O(n(logn + log k)) messages, provided fewer than n/2 processes
crash.

Proof. The proof of linearizability for Algorithm 4 given in Sections 4.1
through 4.2 is not affected by replacing one linearizable implementation of
a max register by another, or by using return values obtained indirectly
from A.read operations called in A.giveHelp. Formally, this follows from
Theorem 6.1 (which shows that the max register implementation given in
Algorithm 6 is linearizable), and the first claim of Lemma 6.3 (which replaces
the second claim of Lemma 2.1).

For the complexity claims, we adapt the argument in the proof of Lemma 4.11.
Because the unbounded max register construction in Algorithm 6 does not
require sparse increments, we can skip the initial part of the argument. In-
stead, we proceed directly to the argument that any A.read argument that
fails three double collects will successfully obtain help. As in Lemma 4.11,
we assume that the parameter m is at least nk(n4 + 1) and is polynomial in
n and k.

Repeating the argument in the proof of Lemma 4.11, we have that if
some A.read operation ρ fails to finish after three double collects, then at
least n4+1 A.write operations call A.giveHelp after ρ calls A.incrementTS
and before ρ finishes its third double collect. Since n4+1 > n+1, Lemma 6.3
says that any subsequent call by ρ to A.takeHelp will return true. So ρ
executes at most O(1) iterations.

Each such iteration requires O(1) max register operations (O(1) time
and O(n) messages each, from Theorem 6.1), plus O(1) operations on an
(m×m)-bounded max array (O(logm) time and O(n logm) messages each,
from Corollary 6.2). So the total cost is O(logm) = O(logn + log k) time
and O(n logm) = O(n(logn+ log k)) messages.

6.5 The full snapshot algorithm

To complete the algorithm, implement Algorithm 5 using the max arrays
from Section 6.4. We then have:

Theorem 6.5. Using message-passing max arrays, Algorithm 5 gives a lin-
earizable implementation of an unlimited-use snapshot object, with a time
complexity of O(log2 n) and message complexity of O(n log2 n) for each op-
eration, provided fewer than n/2 processes crash.

54

7 Discussion
This paper gives the first sub-linear unlimited-use snapshot implementation
from atomic read/write registers. It is a randomized algorithm, with a step
complexity of O(log3 n) with high probability for each operation, where n
is the number of processes. The main component of the construction is a
new randomized implementation of an unbounded-value max register with
a complexity of O(logn) steps per operation with high probability when
the inputs to write operations have polynomially-bounded increments. The
novelty of the construction is a randomized helping technique, which allows
slow processes to obtain fresh information from other processes.

The use of randomization avoids in most cases the linear worst-case lower
bound based on covering arguments of Jayanti et al. [18], because the ad-
versary cannot predict what locations a process will read in the helping
mechanism’s pointer array and thus cannot be sure of covering those loca-
tions with old values. Conversely, the Jayanti et al. lower bound shows that
some use of randomization is necessary.

Curiously, randomization does not appear to be necessary in a message-
passing implementation. Here we exploit the fact that we can read multiple
ABD registers in parallel at no additional cost to allow the algorithm to
read all available help directly. Together with an O(1)-time deterministic
unbounded-value max register based on the ABD construction, this gives a
cost per operation of O(log2 n) time and O(n log2 n) messages using message-
passing. It would be interesting to see if a more sophisticated use of the
powers of a message-passing system could reduce this cost further.

Acknowledgements
The authors thank Faith Ellen for useful discussions. The authors are also in
debt to the anonymous reviewers of both the conference and journal versions
of this paper for careful comments and suggestions that greatly improved
the presentation and correctness of this work.

References
[1] Anna Adamaszek, Marc P. Renault, Adi Rosén, and Rob van Stee.

Reordering buffer management with advice. Journal of Scheduling,
20(5):423–442, Oct 2017.

55

[2] Yehuda Afek, Hagit Attiya, Danny Dolev, Eli Gafni, Michael Mer-
ritt, and Nir Shavit. Atomic snapshots of shared memory. J. ACM,
40(4):873–890, 1993.

[3] James H. Anderson. Multi-writer composite registers. Distributed Com-
puting, 7(4):175–195, 1994.

[4] James Aspnes, Hagit Attiya, and Keren Censor-Hillel. Polylogarithmic
concurrent data structures from monotone circuits. J. ACM, 59(1):2:1–
2:24, March 2012.

[5] James Aspnes, Hagit Attiya, Keren Censor-Hillel, and Faith Ellen.
Limited-use snapshots with polylogarithmic step complexity. Journal
of the ACM, 62(1):3, February 2015.

[6] James Aspnes, Hagit Attiya, Keren Censor-Hillel, and Faith
Ellen. Erratum: Limited-use snapshots with polyloga-
rithmic step complexity. To appear, JACM. Available at
http://www.cs.yale.edu/homes/aspnes/papers/limited-use-snapshots-abstract.html.,
April 2017.

[7] James Aspnes, Hagit Attiya, Keren Censor-Hillel, and Danny Hendler.
Lower bounds for restricted-use objects. In Twenty-Fourth ACM Sym-
posium on Parallel Algorithms and Architectures, pages 172–181, June
2012.

[8] James Aspnes and Keren Censor-Hillel. Atomic snapshots in O(log3 n)
steps using randomized helping. In Yehuda Afek, editor, Distributed
Computing: 27th International Symposium, DISC 2013, Jerusalem, Is-
rael, October 14–18, 2013. Proceedings, volume 8205 of Lecture Notes
in Computer Science, pages 254–268. Springer Berlin Heidelberg, 2013.

[9] James Aspnes and Maurice Herlihy. Wait-free data structures in the
asynchronous PRAM model. In Second Annual ACM Symposium on
Parallel Algorithms and Architectures, pages 340–349, July 1990.

[10] James Aspnes and Eric Ruppert. Depth of a random binary search
tree with concurrent insertions. In Cyril Gavoille and David Ilcinkas,
editors, Distributed Computing - 30th International Symposium, DISC
2016, Paris, France, September 27–29, 2016. Proceedings, volume 9888
of Lecture Notes in Computer Science, pages 371–384. Springer, 2016.

56

[11] Hagit Attiya, Amotz Bar-Noy, and Danny Dolev. Sharing memory
robustly in message-passing systems. Journal of the ACM, 42(1):124–
142, 1995.

[12] Hagit Attiya and Arie Fouren. Adaptive and efficient algorithms for
lattice agreement and renaming. SIAM J. Comput., 31(2):642–664,
2001.

[13] Ho-Leung Chan, Nicole Megow, René Sitters, and Rob van Stee. A
note on sorting buffers offline. Theoretical Computer Science, 423:11 –
18, 2012.

[14] George Giakkoupis and Philipp Woelfel. An Improved Bound for Ran-
dom Binary Search Trees with Concurrent Insertions. In Rolf Nieder-
meier and Brigitte Vallée, editors, 35th Symposium on Theoretical As-
pects of Computer Science (STACS 2018), volume 96 of Leibniz Interna-
tional Proceedings in Informatics (LIPIcs), pages 37:1–37:13, Dagstuhl,
Germany, 2018. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.

[15] Maurice Herlihy. Wait-free synchronization. ACM Trans. Program.
Lang. Syst., 13(1):124–149, January 1991.

[16] Maurice P. Herlihy and Jeannette M. Wing. Linearizability: a correct-
ness condition for concurrent objects. ACM Transactions on Program-
ming Languages and Systems, 12(3):463–492, July 1990.

[17] Michiko Inoue and Wei Chen. Linear-time snapshot using multi-writer
multi-reader registers. In WDAG ’94: Proceedings of the 8th Inter-
national Workshop on Distributed Algorithms, pages 130–140, London,
UK, 1994. Springer-Verlag.

[18] Prasad Jayanti, King Tan, and Sam Toueg. Time and space lower
bounds for nonblocking implementations. SIAM Journal on Computing,
30(2):438–456, 2000.

[19] Harald Räcke, Christian Sohler, and Matthias Westermann. Online
scheduling for sorting buffers. In Rolf H. Möhring and Rajeev Raman,
editors, Algorithms - ESA 2002, 10th Annual European Symposium,
Rome, Italy, September 17-21, 2002, Proceedings, volume 2461 of Lec-
ture Notes in Computer Science, pages 820–832. Springer, 2002.

57

