
Depth of a Random Binary Search Tree

with Concurrent Insertions

James Aspnes1 and Eric Ruppert2

1 Yale University, USA
2 York University, Canada

Abstract. Shu�e a deck of n cards numbered 1 through n. Deal out
the �rst c cards into a hand. A player then repeatedly chooses one of the
cards from the hand, inserts it into a binary search tree, and then adds
the next card from deck to the hand (if the deck is empty). When the
player �nally runs out of cards, how deep can the search tree be?
This problem is motivated by concurrent insertions by c processes of
random keys into a binary search tree, where the order of insertions is
controlled by an adversary that can delay individual processes. We show
that an adversary that uses any strategy based on comparing keys cannot
obtain an expected average depth greater than O(c + log n). However,
the adversary can obtain an expected tree height of Ω(c log(n/c)), using
a simple strategy of always playing the largest available card.

1 Introduction

In the worst case, the height of a binary search tree (BST) can be linear in the
number of keys that it stores. However, if the tree is constructed by inserting the
keys one by one in a random order, then the average node depth, and even the
height of the tree, will be logarithmic [9]. Here, we consider how much worse these
measures become if insertions are performed concurrently by multiple processes.
Consider the tree shown in Fig. 1. Suppose three processes wish to insert keys 12,
13 and 16 simultaneously. The processes will compete to insert their keys into the
slot at the right child of the node containing key 11. The shape of the resulting
tree depends upon which process succeeds �rst, and this can be determined by
a number of system-dependent factors. For example, the scheduling of steps by
di�erent processes is a�ected by cache misses, timesharing and other events that
are di�cult to predict or analyze. This scheduling will, in turn, determine which
process acquires a lock �rst (in a lock-based BST implementation) or performs a
CAS �rst (in a CAS-based non-blocking BST implementation), and hence which
insertion takes e�ect �rst. Similarly, in a transactional memory system, the order
of insertions may depend on many details of the implementation of transactional
memory that are outside the direct control of the BST insertion algorithm. Since
the insertion algorithm has no control over these factors, if we wish to provide a
worst-case analysis of the BST being constructed, we can imagine an adversary
choosing which of the concurrent insertions occurs �rst. This will make our anal-
ysis su�ciently general to cover any kind of synchronization used to coordinate
the insertions by di�erent processes.

11 40

29

17

Fig. 1. An example binary search tree.

Thus, we consider the following experiment, in which c processes simultane-
ously insert n random keys into an initially empty BST. Fix an ordered universe
U and a probability distribution on that universe. The c processes �rst choose
c keys from U independently at random using this distribution. The c processes
attempt to insert these c keys concurrently. The adversary chooses any one of
the c values to become the root of the BST (by scheduling the corresponding
process p so that it succeeds in installing that value at the root). Process p
completes its insertion and draws the next key, again independently at random
from the �xed probability distribution, and attempts to insert it. Once again,
the adversary can choose any one of the c pending insertions to take e�ect next,
and this procedure is repeated until all n keys have been inserted. We assume
that the BST does not permit duplicate keys.

The adversarial scheduler is intended to model di�cult-to-predict factors
like cache misses or processes being interrupted by higher priority processes.
These factors may depend on the memory addresses accessed by the processes,
which may in turn depend on the relative order of the random keys chosen by
the processes. Beyond this ordering information, the precise values of the keys
chosen are unlikely to have any e�ect on the scheduling of processes. Thus, we
assume the adversary is comparison-based: it decides which key to insert next
based only on the relative order among the c keys of pending operations and the
keys that have already been inserted.

As discussed in Mahmoud's monograph [9], if all keys are chosen indepen-
dently at random from the same distribution, the resulting ranks of the keys
form a random permutation of {1, . . . , n}, where each permutation is equally
likely. Since we consider only comparison-based adversaries, we can envision the
concurrent construction of our random BST as follows. We start with an empty
BST. We shu�e a deck of n cards labelled with keys 1 to n. The �rst c cards
make up the adversary's initial hand. At each step, the adversary chooses one
card to play from its hand, inserts that card's key into the BST and, if the deck
is not yet empty, replaces the card by drawing the top card from the deck and
adding it to the hand. We are interested in two measures of the resulting random
BST. The depth of a node is the number of edges along the path from the root
to that node. The average depth is the sum of all the node depths divided

by n. The height is the maximum of all node depths. Our goal is to establish
bounds on the expected values of these measures, where the expected value is
taken over all random permutations.

We show that the expected average depth is O(c + log n). This bound is
tight within a constant factor: if the adversary always chooses the largest key
among the pending insertions, the expected average depth will be Ω(c+ log n).
Unlike the case of sequential insertions, we show that the expected height can
be signi�cantly larger than the average depth: we prove that the adversary that
always chooses the largest key causes the expected height to be Ω(c log(n/c)).

2 Related Work

The height and average depth of randomly constructed BST has been extensively
studied and is a classic problem in average-case complexity. Even the earliest pa-
pers [1, 15] on BSTs included a discussion of the expected average depth of nodes
in a tree built from random keys, showing that it is O(log n). Robson [13] showed
that the expected height of a BST built by inserting a random permutation of
{1, . . . , n} is at most (4.311...) log n + o(log n). The constant factor was shown
to be exact by Devroye [5]. Reed [12] proved an even tighter result, showing
that the expected height is (4.311...) log n− (1.953...) log log n+O(1). The vari-
ance of the height is also known to be O(1) [6, 12]. More detailed information is
known about the exact distribution of node depths in random trees. Mahmoud's
monograph [9] provides an overview of many results of this area. The analysis
of random trees constructed using deletions as well as insertions has had very
limited success. There have been some empirical studies of this scenario, however
(see [4]).

In our paper, we start with a random permutation and allow an adversary
to reorder the permutation in a constrained way. A complementary scenario was
considered by Manthey and Reischuk [10]: they instead begin with a permutation
chosen by the adversary and then randomly perturb it (in a limited way) and
analyze the expected height of the resulting BST.

Since BSTs play a central role in computer science, concurrent implementa-
tions of them are of great practical importance. If only insertions are supported,
it is fairly trivial to implement a BST. For example, a non-blocking implementa-
tion can be designed using the compare-and-swap primitive as follows. To insert
a key k, �rst search for the key k. We assume that duplicate keys are not per-
mitted in the BST, so if the key k is found during this search, the insertion
terminates without altering the tree. Otherwise, the search reaches a nil child
pointer. The process then attempts to install a leaf containing k in place of that
nil pointer. If CAS is available, a single CAS can e�ect this change. Alterna-
tively, for a lock-based implementation, the process can acquire a lock for the
child pointer, check that it is still nil, replace the nil pointer, and release the
lock. If either of these ways of updating the tree fail (because another process
has already replaced the nil pointer with a di�erent non-nil value), then the
insertion can simply continue searching down the tree from its current location

and try again to insert the new key k. The standard algorithm to search for keys
in a BST will work even if insertions are being done concurrently.

In the case of the CAS-based implementation described above, it is easy to
see that the number of steps performed by an insertion is proportional to the
depth of the node it eventually adds to the tree, since it does a constant amount
of work at each step along the path to that node. Thus, the total number of
steps to construct a random tree of n nodes is proportional to the sum of the
node depths, which has expected value O(n(c+ log n)), according to our result.
(The total number of CAS steps is O(nc): each of the n successful CAS steps can
cause at most one failed CAS step at each other process, for a total of O(nc).)

Coordinating updates to the tree becomes considerably more di�cult if dele-
tions can also occur. Ensuring the BST is balanced, so that the height of the
tree is logarithmic, adds signi�cant additional complications to concurrent im-
plementations of BSTs. Lock-based balanced BSTs have long been studied. As
early as 1978, Guibas and Sedgewick [8] sketched a lock-based implementation
when they introduced their balanced red-black trees. For a more up-to-date ex-
ample, see Bronson et al.'s lock-based implementation of an AVL tree [2]. Ellen
et al. [7] gave a non-blocking implementation of an unbalanced BST from CAS
instructions. There have been several subsequent non-blocking BST implemen-
tations, including one that extends the scheme of [7] to yield a balanced BST [3],
ensuring that the height is O(c+log n) whenever there are n keys in the tree and
c pending operations on it. However, concurrent balanced trees are considerably
more complex than unbalanced ones, and the tree rotation operations that are
required to maintain balance incur a signi�cant overhead. In applications where
keys will be inserted in random order, our work suggests that this overhead
and additional complexity can be avoided by using unbalanced trees without
sacri�cing good search times in the resulting BST.

3 Problem Statement

We are given a deck of n cards with unique keys from some ordered universe U ,
which are shu�ed according to a uniform random permutation π. We start with
an empty BST. At each step, a player (representing the adversary) chooses to
insert into a BST one card from a hand consisting of the �rst c cards in the
permutation that have not yet been inserted, or, if fewer than c cards remain,
all remaining cards.

In making this decision, the player can only observe the cards in the hand
and the tree; it cannot predict the order of the remaining cards in the deck.
Cards already inserted in the tree or present in the hand at some step are called
dealt; the remaining cards are called undealt.

A play consists of taking one card from the hand and inserting it into the
tree. The game continues for n plays. We formalize the notion of a comparison-
based adversary as follows. When deciding which card to play, the player can only
observe the relative order of the dealt cards. In particular, if two permutations π
and π′ produce the same relative order of their �rst t cards, then the play after t

cards have been dealt will be from the same position in both π and π′. Note that
the dealt cards at this time will always be the �rst t cards in the permutation π.

We have two measures of performance for an adversary strategy:

1. The expected height is the expected maximum depth of any node in the
binary search tree after all n plays, where the expectation is taken over all
choices of the permutation π.

2. The expected average depth of all nodes in the tree under the same
conditions.

4 An Upper Bound on Expected Average Depth

In this section, we prove the following upper bound on the expected average
depth of a random BST.

Theorem 1. For every comparison-based adversary, the expected average depth

of a random BST is O(c+ log n).

Proof. To simplify the argument, we assume that the player is deterministic.
This means that when conditioning on various events we do not need to take
into account any random choices made by the player. However, the argument
applies equally well to a randomized player, as such a player can be described
as a random mixture of deterministic players, and hence the expected average
depth for a randomized player will be a weighted average of the expected average
depths for various deterministic players.

Number the cards from 1 to n in the order they are dealt. Let Aij be the
indicator variable for the event that, in the �nal tree, card i is a proper ancestor
of card j. Then the depth of j is exactly

∑
iAij , and the total depth of the

tree is
∑
j

∑
iAij . Interchanging the summations gives

∑
i

∑
j Aij , which shows

that the total depth is equal to the sum of the number of proper descendants
of each node. In the argument below, we will bound this sum instead, booking
the expected number of proper descendants of a card i, conditioned on the
information available to the player, as soon as it is inserted into the tree.

Let R be the order relation on the shu�ed cards, so that i <R j means that
the i-th card in the deck is less than the j-th card in the deck. Recall that we
assume all n! permutations of the deck are equally likely.

De�ne time t, for c ≤ t ≤ n, as the �rst time at which t ≥ c cards have
been dealt, of which c are held in the player's hand and t− c have already been
inserted in the tree. We will de�ne a supermartingale process that bounds the
expected return to the player up to time n, and use a separate argument to
handle the insertion of the last c cards. (See the appendix for background on
supermartingales.)

Let Rt be the subrelation of R that includes only cards 1 through t. Since the
player is comparison-based, Rt includes all information available to the player
at time t. No new information is revealed to the player after time n, because the
last of the n cards is dealt at time n. For any undealt card j > t, we have that all

v2

v4

v7

played cards

intervals

cards in hand

binary search

tree

v2 v4 v7 v8

c19 = 1
pile 2

c29 = 1 c39 = 2
pile 3 pile 4 pile 5

c59 = 1

v3 v5 v6 v9

(v9, n](v8, v9)(v7, v8)(v6, v7)(v5, v6)(v4, v5)(v3, v4)(v2, v3)

v1

(v1, v2)[1, v1)

c49 = 0
pile 1

v8

Fig. 2. An example when t = 9 and c = 5. The values on the cards are v1 < v2 < · · · <
v9. 4 cards have been inserted into the tree and 5 cards are in the player's hand. The
small squares in the tree represent nil pointers.

(t + 1)! permutations of {1, . . . , t, j} are equally likely, and conditioning on Rt,
we get that all t+ 1 possible positions of j relative to cards 1, . . . , t are equally
likely. So the probability that j appears in each of these positions is 1

t+1 , and

summing over all n− t undealt cards gives an expected number of n−tt+1 undealt
cards in each of these positions.

We now look at the expected return to the player, in terms of the number
of proper descendants, of playing a particular card at time t < n. Because the
tree contains t − c nodes, it has t − c + 1 null leaf pointers at which we might
insert a new card. Let ckt, the multiplicity of leaf k, be de�ned as the number of
cards in the hand that would be inserted at k. We will refer to the set of these
ckt cards as the k-th pile at time t. See Fig. 2 for an example.

Suppose now that we insert one of these ckt cards it at leaf k. Each of the
remaining ckt − 1 cards will eventually become a descendant of it. When t ≤ n,
so will an average of (ckt + 1)n−tt+1 undealt cards. So for t ≤ n, we have

E

∑
j

Aitj

∣∣∣∣∣∣ Rt
 = ckt − 1 + (ckt + 1)

n− t
t+ 1

= (ckt + 1)

(
1 +

n− t
t+ 1

)
− 2

= (ckt + 1)
n+ 1

t+ 1
− 2. (1)

One way to interpret (1) is that (ckt + 1)n+1
t+1 is the expected number of leaf

pointers in the �nal subtree rooted at it. Subtracting one gets the number of

nodes in this subtree, and subtracting one again removes the subtree's root it to
get the number of proper descendants.

The values of ckt may evolve over time in a complex way as new cards are
dealt and as the player chooses which cards to play based on the current state.
We will track the e�ect of these choices using a shape function proportional to∑
k c

2
kt that will re�ect the player's future ability to accrue expected descendants

by playing cards from large piles.

Let c′kt be the number of cards that can be inserted under the k-th leaf after
it is inserted but before any new card is dealt. Playing a card splits ckt into two
new piles of size c′k1t and c

′
k2t

, where c′k1t + c′k2t = ckt − 1; the remaining piles
are una�ected, so that each c`t for a pile that does not contain it becomes c′`′t
for some distinct `′. After playing a card, replacing that card in the hand by

dealing a new card adds one to each c′`t with probability
c′`t+1
t+1 , since the new

card is equally likely to fall into any of the t+ 1 intervals shown at the bottom
of Fig. 2.

Splitting ckt into c
′
k1t

and c′k2t reduces the sum of the squares by at least
2ckt − 1, since (c′k1t)

2 + (c′k2t)
2 − c2kt = (c′k1t)

2 + (c′k2t)
2 − (c′k1t + c′k2t + 1)2 =

−2c′k1tc
′
k2t
− 2(c′k1t + c′k2t + 1) + 1 ≤ −(2ckt − 1). Dealing a new card to pile `

increases the sum by 2c′`t + 1. So for t < n,

E

[∑
`

c2`,t+1 −
∑
`

c2`t

∣∣∣∣∣ Rt
]

≤ −(2ckt − 1) +
∑
`

(2c′`t + 1)
c′`t + 1

t+ 1

= 1− 2ckt +
2

t+ 1

(∑
`

(c′`t)
2 +

∑
`

c′`t

)
+
∑
`

c′`t + 1

t+ 1

≤ 1− 2ckt +
2

t+ 1

(∑
`

c′`t

)2

+
∑
`

c′`t

+
∑
`

c′`t + 1

t+ 1

= 1− 2ckt +
2

t+ 1

(
(c− 1)2 + (c− 1)

)
+ 1

= 2− 2ckt +
2c(c− 1)

t+ 1
. (2)

We will now de�ne a supermartingale process Xc, Xc+1 . . . , Xn to bound the
expected increase in

∑
i

∑
j Aij up to time n. In this context, the supermartin-

gale property means that Xt ≥ E [Xt+1 | Rt] for all t, from which it can be shown
by induction that Xc ≥ E [Xn | Rc]. We will structure this process so that Xc is
a �xed bound and Xn always exceeds

∑
i

∑
j Aij .

Let χit be the indicator variable for the event that the i-th card dealt from
the deck is in the tree at time t. This decision is made based on values observable
in Rt−1.

De�ne

Xt = Ut + Vt +Wt,

where

Ut =

n∑
i=1

χit E

 n∑
j=1

Aij

∣∣∣∣∣∣ Rt

is the expected total descendants of all nodes already inserted,

Vt =
n+ 1

2(t+ 1)

t−c+1∑
`=1

c2`t

is a scaled version of the shape factor discussed above, that will o�set changes
to Ut that depend on which card is played at time t, and

Wt =

n−1∑
s=t

(
2
n+ 1

s+ 1
− 2 + (n+ 1)

c(c− 1)

(s+ 1)2

)
.

pays for the total expected changes to Ut and Vt that do not depend on which
card is played at time t.

Let us now demonstrate that Xc, . . . , Xn is in fact a supermartingale with re-
spect to Rc, . . . , Rn. We will start by considering Ut+1. Since χi,t+1 is completely
determined by Rt, we have

E [Ut+1 | Rt] =
n∑
i=1

E

χi,t+1 E

 n∑
j=1

Aij

∣∣∣∣∣∣ Rt+1

 ∣∣∣∣∣∣ Rt

=

n∑
i=1

χi,t+1 E

E
 n∑
j=1

Aij

∣∣∣∣∣∣ Rt+1

 ∣∣∣∣∣∣ Rt

=

n∑
i=1

χi,t+1 E

 n∑
j=1

Aij

∣∣∣∣∣∣ Rt

= Ut + E

 n∑
j=1

Aitj

∣∣∣∣∣∣ Rt

= Ut + (ckt + 1)
n+ 1

t+ 1
− 2, (3)

where k is the number of the pile that contains it. In the second-to-last step, we
use the fact that only χit changes between t and t+1. The last step applies (1).

Now we turn to Vt. For t < n, use (2) to get

E [Vt+1 | Rt] =
n+ 1

2(t+ 2)
E

[
t−c+2∑
`=1

c2`,t+1

∣∣∣∣∣ Rt
]

<
n+ 1

2(t+ 1)
E

[
t−c+2∑
`=1

c2`,t+1

∣∣∣∣∣ Rt
]

≤ n+ 1

2(t+ 1)

(
t−c+1∑
`=1

c2`t + 2− 2ckt +
2c(c− 1)

t+ 1

)

= Vt +
n+ 1

t+ 1
− ckt

n+ 1

t+ 1
+ (n+ 1)

c(c− 1)

(t+ 1)2
. (4)

When we add Ut+1 and Vt+1 together, the ckt
n+1
t+1 terms on the right-hand

sides of (3) and (4) cancel out, so we are left with

E [Ut+1 + Vt+1 | Rt] < Ut + Vt + 2
n+ 1

t+ 1
− 2 + (n+ 1)

c(c− 1)

(t+ 1)2
. (5)

Since the extra terms on the right-hand side of (5) are precisely the value
of Wt −Wt+1, we have E [Xt+1 | Rt] = E [Ut+1 + Vt+1 +Wt+1 | Rt] < Ut + Vt +
Wt = Xt, and the supermartingale property holds. It follows that E [Xn] =
E [Un + Vn +Wn] ≤ Uc + Vc +Wc = Xc.

Let us look now at Un, Vn, and Wn. We have

Un =

n∑
i=1

χin E

 n∑
j=1

Aij

∣∣∣∣∣∣ Rn

=

n∑
i=1

χin

n∑
j=1

Aij .

This misses all pairs ij where i is among the c cards left in the hand at time n.
However, at this point the remaining play of the game is purely deterministic, and
it is straightforward to see that the player's optimal strategy is to play the cards
under each leaf in increasing order, adding

∑n−c+1
k=1

(
ckn

2

)
≤
∑n−c+1
k=1

1
2c

2
kn = Vn

to the total. So we have Un + Vn ≥
∑
ij Aij . But Wn = 0, so this means Xn ≥∑

ij Aij .

Now let us return to the start of the process. At time c, we have χic = 0 for

all i, so Uc = 0. We have only one c`c, which equals c, so Vc =
(n+1)c2

2(c+1) = O(cn).

Using H(n) to denote the nth harmonic number,

Wc =

n−1∑
s=c

(
2
n+ 1

s+ 1
− 2 + (n+ 1)

c(c− 1)

(s+ 1)2

)
< 2(n+ 1) (H(n)−H(c)) + (n+ 1) · c(c− 1) ·

∫ ∞
x=c

1

x2
dx

= O(n log(n/c)) + (n+ 1) · c(c− 1) · 1
c

= O(cn+ n log n).

It follows that E
[∑

ij Aij

]
≤ E [Xn] ≤ Xc = O(cn+ n log n). Dividing by n

to convert the total to an average then gives the claimed bound. ut

4.1 A Matching Lower Bound

A simple strategy for the comparison-based adversary gets expected Ω(c+log n)
average depth, matching the bound in Theorem 1.

Theorem 2. There is a comparison-based adversary that yields an expected av-

erage depth of Ω(c+ log n).

Proof. Consider the comparison-based adversary that always inserts the largest
card in its hand. Let m be the upper median in the initial hand of c cards (i.e.,
the d c+1

2 eth smallest card in the hand). With probability at least 1/2, there are
at least bn/2c cards in the deck that are smaller than m. When this occurs, m is
placed at depth at least dc/2e − 1 and at least bn/2c keys are placed in the left
subtree of m. Even if that subtree is perfectly balanced, the leaf nodes of that
subtree alone have a total path length of at least (n/4)(dc/2e+blogbn/2cc−1) =
Ω(n(c+log n)). So, with probability 1/2, the average depth of all nodes will be at
least Ω(c+log n), and hence the expected average depth will also be Ω(c+log n).

ut

5 A Lower Bound on Expected Height

In this section, we show a lower bound on the expected height of a BST obtained
by the particular adversary strategy that always plays the largest available card.

We �rst introduce some notation from the calculus of �nite di�erences that
will be useful in the proof. The forward di�erence operator ∆f is de�ned by

∆f(k) = f(k + 1)− f(k).

This operator satis�es the summation by parts formula,

n∑
k=m

a(k)∆b(k)

=

n∑
k=m

a(k)b(k + 1)−
n−1∑

k=m−1

a(k + 1)b(k + 1)

= a(n+ 1)b(n+ 1)− a(m)b(m)−
n∑

k=m

b(k + 1)∆a(k). (6)

The falling factorial (x)c is de�ned by

(x)c = x(x− 1)(x− 2) . . . (x− c+ 1).

Then, we have

∆(k − 1)c = (k)c − (k − 1)c

= (k)(k − 1)c−1 − (k − c)(k − 1)c−1

= c(k − 1)c−1. (7)

Theorem 3. There is a comparison-based adversary strategy that yields a BST

with expected height Ω(c log(n/c)).

Proof. We consider the leftmost path in the BST, assuming the adversary always
plays the largest available card. Let Li be the value on the i-th card that appears
in the leftmost path (starting from the root of the BST), and let Xi be the total
number of cards whose values are strictly less than Li (i.e., Xi = Li − 1). Let
X0 = n. When the leftmost path has length i, then no card less than Li has yet
been played, and as long as the hand contains any card greater than Li, playing
this card does not increase the length of the leftmost path. It follows that the
leftmost path increases only when the hand consists entirely of cards less than
Li, and that Li+1 is the largest of the min(c,Xi) cards present in the hand at
this time.

This can be used to show that H(Xi) does not drop too quickly on average,
giving a lower bound on the expected length of the leftmost path. Here, H(n)
denotes the nth harmonic number, H(n) =

∑n
i=1

1
i .

We now consider the e�ect of playing a card less than Li. Suppose the value
of the random variable Xi is x. For any k ≤ x, the probability that c cards
chosen uniformly without replacement from the x smallest cards are all at most
k is exactly (k)c/(x)c, and the probability that the largest of these c cards is
exactly k is (k)c/(x)c− (k− 1)c/(x)c = ∆(k− 1)c/(x)c. Now let us compute, for
x ≥ c,

Pr [Xi+1 = k − 1 |Xi = x] = ∆(k − 1)c/(x)c, for c ≤ k ≤ x,

and

E[H(Xi+1) |Xi = x]

=

x∑
k=c

H(k − 1)∆(k − 1)c/(x)c

=
1

(x)c

(
H(x)(x)c −H(c− 1)(c− 1)c −

x∑
k=c

(k)c∆H(k − 1)

)
by (6)

= H(x)− 1

(x)c
·
x∑
k=c

(k)c
k

= H(x)− 1

(x)c
·
x∑
k=c

(k − 1)c−1

= H(x)− 1

(x)c
·
x∑
k=c

∆(k − 1)c
c

by (7)

= H(x)− 1

c · (x)c
((x)c − (c− 1)c)

= H(x)− 1

c
.

Let Yi = H(Xi) + i/c. Then

E[Yi+1 |X0, . . . , Xi] = E[H(Xi+1) |X0, . . . , Xi] +
i+ 1

c

= H(Xi)−
1

c
+
i+ 1

c

= H(Xi) +
i

c
= Yi

The remainder of the proof uses martingales, which are described in the ap-
pendix. The sequence {Yi} is a martingale with respect to {Xi}. Let τ be the
�rst index at which Xτ ≤ c − 1. Then τ is not only a lower bound on the
depth of the tree, but is also a stopping time with respect to {Xi}. It fol-
lows from Doob's Optional Stopping Theorem that E [Yτ] = E [Y0] = H(n).
So, we have H(n) = E[Yτ] = E[H(Xτ) + τ/c] = E[H(Xτ)] + E[τ]/c. Solving
for E[τ] gives E[τ] = c (H(n)− E[H(Xτ)]) ≥ c (H(n)−H(c− 1)) = c

∑n
k=c

1
k =

Ω (c log(n/c)). ut

6 Conclusion

We considered a node-oriented (or internal) BST, where keys are stored both in
internal nodes and leaves. Some concurrent implementations of BSTs are based
on leaf-oriented (or external) BSTs, where the keys are stored only in the leaves,

and internal nodes are used only to direct searches to the appropriate leaf. Our
height lower bound extends to leaf-oriented trees. It would be interesting to see
whether our average depth upper bound does too.

Although the comparison-based adversaries discussed here are intended to
model schedulers accurately (and pessimistically), it might be interesting to see
whether even stronger malicious adversaries could force the height or average
depth of random trees to grow higher by using the actual values of the keys.
For example, if keys are drawn uniformly at random from the interval [0, 1], and
the initial hand consisted of c = 3 cards labelled with 0.03, 0.45 and 0.54, the
adversary would be better o� choosing 0.03 as the root to ensure a more lopsided
tree, whereas if the initial hand contained 0.46, 0.55 and 0.97 the adversary
should choose 0.97 as the root.

Acknowledgements Funding for the second author was provided by the Natural
Sciences and Engineering Research Council of Canada.

References

1. A.D. Booth and A.J.T. Colin. On the e�ciency of a new method of dictionary
construction. Information and Control, 3(4):327�334, December 1960.

2. Nathan G. Bronson, Jared Casper, Hassan Cha�, and Kunle Olukotun. A practical
concurrent binary search tree. In Proc. 15th ACM Symposium on Principles and

Practice of Parallel Programming, pages 257�268, 2010.
3. Trevor Brown, Faith Ellen, and Eric Ruppert. A general technique for non-blocking

trees. In Proc. 19th ACM Symposium on Principles and Practice of Parallel Pro-

gramming, pages 329�342, 2014.
4. J. Culberson and J.I. Munro. Explaining the behaviour of binary search trees under

prolonged updates: A model and simulations. The Computer Journal, 32(1):68�75,
1989.

5. Luc Devroye. A note on the height of binary search trees. Journal of the ACM,
33(3):489�498, 1986.

6. Michael Drmota. An analytic approach to the height of binary search trees II.
Journal of the ACM, 50(3):333�374, May 2003.

7. Faith Ellen, Panagiota Fatourou, Eric Ruppert, and Franck van Breugel. Non-
blocking binary search trees. In Proc. 29th ACM Symposium on Principles of

Distributed Computing, pages 131�140, 2010.
8. Leo J. Guibas and Robert Sedgewick. A dichromatic framework for balanced trees.

In Proc. 19th IEEE Symposium on Foundations of Computer Science, pages 8�21,
1978.

9. Hosam M. Mahmoud. Evolution of Random Search Trees. John Wiley & Sons,
1992.

10. Bodo Manthey and Rüdiger Reischuk. Smoothed analysis of binary search trees.
Theoretical Computer Science, 378(3):292�315, June 2007.

11. Michael Mitzenmacher and Eli Upfal. Probability and Computing: Randomized

Algorithms and Probabilistic Analysis, chapter 12. Cambridge University Press,
2005.

12. Bruce Reed. The height of a random binary search tree. Journal of the ACM,
50(3):306�332, May 2003.

13. J.M. Robson. The height of binary search trees. Australian Computer Journal,
11(4):151�153, November 1979.

14. David Williams. Probability with Martingales. Cambridge University Press, 1991.
15. P.F. Windley. Trees, forests and rearranging. The Computer Journal, 3(2):84�88,

1960.

A Background on Martingales

Here, for the sake of completeness, we present background information about
martingales that is used in our paper, following the presentation of Mitzenmacher
and Upfal's textbook [11].

We say that a sequence Y0, Y1, . . . of random variables is a martingale with
respect to another sequence X0, X1, . . . of random variables if for all n ≥ 0

� Yn is a function of X0, X1, . . . , Xn,
� E [|Yn|] <∞, and
� E [Yn+1 | X0, X1, . . . , Xn] = Yn.

The last property is called themartingale property. When Xn contains all the
information in theXi for i < n, we can write it more succinctly as E [Yn+1 | Xn] =
Yn.

A random variable τ that takes values from N is a stopping time with
respect to X0, X1, . . . if, for all n ≥ 0, the event τ = n depends only on
X0, X1, . . . , Xn.

See [14, Sect. 10.10] for a proof of Doob's Optional Stopping Theorem, of
which the following is a special case.

Theorem 4. If Y0, Y1, . . . is a martingale and τ is a stopping time, both with

respect to X0, X1, . . ., and τ is bounded, then E [Yτ] = E [Y0].

For some applications, it makes sense to replace the martingale property
with an inequality. A supermartingale is a process de�ned as above except
that Yn ≥ E [Yn+1 | X0, . . . , Xn]; where a martingale stays the same on average, a
supermartingale is non-increasing on average. A straightforward induction shows
that supermartingales satisfy Yk ≥ E [Yn | X0, . . . , Xk] whenever k ≤ n.

