
Allocate-On-Use Space Complexity of
Shared-Memory Algorithms

James Aspnes Bernhard Haeupler
Alexander Tong Philipp Woelfel

DISC 2018



Asynchronous shared memory model

p1

Processes:

p2 p3

· · ·

pn

O1Objects: O2 O3 O4 O5 · · · Om

Processes apply atomic operations to objects,
scheduled by an adversary.



Time complexity

· · ·

O1 O2 O3 O4 O5 · · · Om

I Many popular time measures:
I Total step complexity: how many operations did we do?
I Per-process step complexity: how many operations did I do?
I RMR complexity: how many times did I see a register change?

I All of these measures are per execution:
I Expected step complexity,
I High probability step complexity,
I Adaptive step complexity,
I etc.



Space complexity (traditional version)

· · ·

O1 O2 O3 O4 O5 · · · Om

I Space complexity = number of objects m.
I Does not change from one execution to the next.
I Linear lower bounds for mutex (Burns-Lynch),

perturbable objects (Jayanti-Tan-Toueg), consensus (Zhu).
I Trouble for both theory and practice:

I Theory: hides effect of randomness.
I Practice: hides effect of memory management.

I Real systems don’t charge you for pages you don’t touch.



Space complexity (improved version)

· · ·

O1 O2 O3 O4 O5 · · · Om

I Space complexity = number of objects used in some
execution.

I An object is used when an operation is applied to it.
I Represents an allocate-on-use policy.
I Gives a per-execution measure.



Example: RatRace (Alistarh et al., DISC 2010)

Adaptive test-and-set on a binary tree of depth 3 log2 n.
I Splitters allow descending processes to claim nodes.
I Three-process consensus objects allow ascending processes to

escape subtrees.
I Process that escapes the whole tree wins test-and-set.

Requires Θ(n3) objects but only Θ(k) are used w.h.p.



A hidden trade-off for randomized test-and-set?

Two algorithms for randomized test-and-set with an oblivious
adversary:

Time Space
(Alistarh-Aspnes, DISC 2011) Θ(log log n) Θ(log log n)
(Giakkoupis-Woelfel, PODC 2012) Θ(log∗n) Θ(log n)
I Both use sifter objects to get rid of losing processes quickly.
I Both use Θ(n3) worst-case space for backup RatRace.
I Not clear if space-time trade-off is necessary, but without

allocate-on-use space complexity it’s not even visible.



Mutual exclusion

Critical section

I Mutual exclusion: at most one process at a time in
critical section.

I Deadlock freedom: some process reaches critical section
eventually.

I (Burns-Lynch, 1993): n registers needed in worst case, by
constructing a single bad execution for any given algorithm.

We want to beat this bound for expected space complexity.



Monte Carlo mutual exclusion

1

1

1

0

CS

17

I Processes climb a slippery ladder
of one-bit register rungs to reach the
critical section (CS).

I Process flips a coin at each rung:
I Heads: Write 1 and climb.
I Tails: Read:

I 0⇒ stay at same rung.
I 1⇒ fall to holding pen.

I About half fall from each rung.
I O(log n) rungs leave one process in CS

with high probability.
I After finishing CS, winner resets rungs

and increments gate.



Monte Carlo mutual exclusion: Analysis

1

1

1

0

CS

17

I Deadlock freedom: some process is
first to write 1.

I Mutual exclusion:
I Potential function Φ sums

I 2height for processes.
I −wheight for 1 registers.
I Plus a few extra terms.

I Φ increases slowly on average.
I Φ is big when two processes in CS.
I whp have mutual exclusion in

polynomially-long executions.
I O(n) amortized RMRs per CS.



Mutual exclusion in O(log n) expected space

Splitter

Two-process mutex

Backup mutex

CS

I Splitter detects when Monte Carlo algorithm violates mutex.
I In this case, switch to O(n)-space backup mutex.
I Gives mutex always, O(log n) space whp,

O(n) amortized RMRs per critical section.



Allocate-on-update space complexity

· · ·

O1 O2 O3 O4 O5 · · · Om

I Many systems allocate pages only on write.
I Analogous notion is allocate-on-update.

I Reading an object is free!
I Changing an object is not.

I How does this compare to allocate-on-use?



Simulating allocate-on-update with allocate-on-use

O1 O2 O3 O4 O5 O6 O7 O8

0 1 0 0

1 0

1

I Idea: Use one-bit registers to mark which ranges have changed.
I Balanced binary tree gives O(logm) overhead.
I Unbalanced tree gives O(log(max address updated)).
I So models are equivalent up to log factor.



Conclusion and open problems

· · ·

O1 O2 O3 O4 O5 · · · Om

Allocate-on-use space complexity reveals differences in
algorithms that are hidden by worst-case space complexity.

I What other problems allow low allocate-on-use space?
I Space lower bounds for allocate-on-use?
I What happens with an adaptive adversary?
I Low-space mutex with better RMR complexity?
I Implement allocate-on-use in a model that doesn’t provide it?


