Consensus with max registers

James Aspnes and He Yang Er

DISC 2019

Main result

We will solve randomized, wait-free

- consensus for an
- oblivious adversary using
- max registers in
- $O\left(\log ^{*} n\right)$ expected steps per process.

Consensus

- Termination: All non-faulty processes terminate (with probability 1).
- Validity: Every output value is somebody's input.
- Agreement: All output values are equal.

No deterministic solutions in message passing (Fischer, Lynch, and Paterson 1985) or shared memory (Loui and Abu-Amara 1987).

Model

Wait-free shared memory:

- Processes communicate by applying operations to shared objects.
- Each operation is one step.
- No fairness: adversary can choose any process to take the next step.
- Cost measure: Worst-case expected steps taken by a single process.

Randomization and the adversary

- Each process can flip local coins.
- Adversary chooses which process takes the next step.
- Adaptive adversary: Sees coins and process actions.
- Oblivious adversary: Doesn't see anything.

Adaptive adversary make consensus much harder (Attiya and Censor 2010), so we will assume oblivious.

Randomization and the adversary

- Each process can flip local coins.
- Adversary chooses which process takes the next step.
- Adaptive adversary: Sees coins and process actions.
- Oblivious adversary: Doesn't see anything.

Adaptive adversary make consensus much harder (Attiya and Censor 2010), so we will assume oblivious.

Max registers

- Atomic registers: return last value written.
- Multi-writer atomic registers allow anybody to write.
- Single-writer atomic registers only allow owner to write.
- Max registers: return largest value written.
- (Always multi-writer.)

Like atomic registers, max registers have consensus number 1 : can't solve consensus without randomization.

Previous bounds

- $O(\log \log n)$ expected steps for multi-writer registers (Aspnes 2015).
- $O\left(n \log ^{2} n\right)$ expected steps for single-writer registers (Aspnes and Waarts 1996).

We will get:

- $O\left(\log ^{*} n\right)$ expected steps for multi-writer max registers.
- $O(n \log n)$ expected steps for single-writer atomic registers.

Note: No known non-trivial bounds on expected steps with oblivious adversary.

How to build a consensus protocol

- Conciliator produces agreement (Aspnes 2012)
- Inputs equal \Rightarrow all outputs equal common input.
- Inputs not equal \Rightarrow outputs equal with probability $>\delta$.
- Adopt-commit detects agreement (Gafni 1998)
- adopt $(v) \Rightarrow$ choose v as your new value.
- commit $(v) \Rightarrow$ everybody else will choose v.
- Inputs equal \Rightarrow everybody commits to common input.
- Together, solve consensus after $O(1 / \delta)$ expected phases.

How to build a consensus protocol

- Conciliator produces agreement (Aspnes 2012)
- Inputs equal \Rightarrow all outputs equal common input.
- Inputs not equal \Rightarrow outputs equal with probability $>\delta$.
- Adopt-commit detects agreement (Gafni 1998)
- adopt $(v) \Rightarrow$ choose v as your new value.
- commit $(v) \Rightarrow$ everybody else will choose v.
- Inputs equal \Rightarrow everybody commits to common input.
- Together, solve consensus after $O(1 / \delta)$ expected phases.

How to build a consensus protocol

- Conciliator produces agreement (Aspnes 2012)
- Inputs equal \Rightarrow all outputs equal common input.
- Inputs not equal \Rightarrow outputs equal with probability $>\delta$.
- Adopt-commit detects agreement (Gafni 1998)
- adopt $(v) \Rightarrow$ choose v as your new value.
- commit $(v) \Rightarrow$ everybody else will choose v.
- Inputs equal \Rightarrow everybody commits to common input.
- Together, solve consensus after $O(1 / \delta)$ expected phases.

Conciliators with max registers

Do for $O\left(\log ^{*} n\right)$ rounds:

- Assign a random priority to each value.
- Write (priority, value) to max register.
- Read new value from max register.

The idea:

- Only left-to-right maxima survive.
- So i-th value survives with probability $1 / i$.
- Expected total survivors $=\sum \frac{1}{i}=H_{n}=O(\log n)$.

What happens after the first round?

Problem:

- Same value appears in multiple processes.
- \Rightarrow multiple chances to survive!

Use personae (Aspnes 2015):

- Generate priorities for all rounds in advance.
- Propagate priorities with values.
- v survives only if first copy of v survives.
- This gives $n \rightarrow O(\log n) \rightarrow O(\log \log n) \rightarrow \ldots$ expected survivors.
- One survivor with constant probability δ after $O\left(\log ^{*} n\right)$ rounds.

Constant-time adopt-commit with max registers

- Rules:
- I get commit $(v) \Rightarrow$ you get commit(v) or adopt (v^{\prime})
- All inputs $v \Rightarrow$ I get commit(v)
- Algorithm:
- Write v to min and max
- If proposal is not empty, $v \leftarrow$ proposal; else proposal $\leftarrow v$
- If $\min =v$ and $\max =v, \operatorname{commit}(v)$; else adopt (v)

Commit \Rightarrow I wrote proposal before conflicting processes read it.

Constant-time adopt-commit with max registers

- Rules:
- I get commit $(v) \Rightarrow$ you get commit(v) or adopt (v^{\prime})
- All inputs $v \Rightarrow$ I get commit (v)
- Algorithm:
- Write v to min and max
- If proposal is not empty, $v \leftarrow$ proposal; else proposal $\leftarrow v$
- If $\min =v$ and $\max =v, \operatorname{commit}(v)$; else adopt (v)

Commit \Rightarrow I wrote proposal before conflicting processes read it.

Full result

- $1 / \delta$ phases on average until conciliator succeeds.
- Conciliator takes $O\left(\log ^{*} n\right)$ steps.
- Adopt-commit takes $O(1)$ steps.

So $O\left(\log ^{*} n\right)$ expected steps until agreement.

Max registers from single-writer registers

- For conciliator, use double collect snapshot.
- Collect reads all n registers.
- Repeat until max value doesn't change.
- Repeated max value $=$ max value between collects.
- Each new max value \Rightarrow one extra collect.
- New max values $=O(\log n+\log \log n+\ldots)=O(\log n)$.
- Total cost $=O(n \log n)$ register operations.
- Beats previous $O\left(n \log ^{2} n\right)$ bound for (adaptive adversary) single-writer consensus.

Open problems

- Max registers give randomized consensus in $O\left(\log ^{*} n\right)$ expected steps against an oblivious adversary.
- But still no lower bounds other than $\Omega(1)$.
- Can we do better with max registers?
- Can we do as well or better with ordinary registers?
- Translating to single-writer registers gives $O(n \log n)$ expected steps.
- Also no lower bounds other than $\Omega(n)$.
- Can we reduce overhead of the translation?

