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Abstract
The standard population protocol model assumes that when two agents interact, each observes the
entire state of the other. We initiate the study of message complexity for population protocols,
where an agent’s state is divided into an externally-visible message and externally-hidden local state.

We consider the case of O(1) message complexity. When time is unrestricted, we obtain an
exact characterization of the stably computable predicates based on the number of internal states
s(n): If s(n) = o(n) then the protocol computes semilinear predicates (unlike the original model,
which can compute non-semilinear predicates with s(n) = O(logn)), and otherwise it computes a
predicate decidable by a nondeterministic O(n log s(n))-space-bounded Turing machine. We then
introduce novel O(polylog(n)) expected time protocols for junta/leader election and general purpose
broadcast correct with high probability, and approximate and exact population size counting correct
with probability 1. Finally, we show that the main constraint on the power of bounded-message-size
protocols is the size of the internal states: with unbounded internal states, any computable function
can be computed with probability 1 in the limit by a protocol that uses only 1-bit messages.
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6:2 Message Complexity of Population Protocols

1 Introduction

Population protocols, introduced by Angluin, Aspnes, Diamadi, Fischer, and Peralta [6],
are a class of algorithms that model ad hoc networks of finite-state mobile agents. At each
step, a pair of agents is picked uniformly at random to interact, each observing the other’s
state and updating its own state in response. The original model [6] limited agents to O(1)
states, independent of the population size n. This limited the computational power (to only
semilinear predicates [7]) and the time efficiency in performing fundamental tasks (e.g. the
linear-time lower bound for leader election [28]). Recent work uses ω(1) states, yielding more
time-efficient algorithms for fundamental tasks (e.g. [1–4, 15, 30–32, 41]). Is the improved
performance a result of higher communication throughput or greater storage capacity?

Whereas the original model supposes that agents can view the entirety of the other’s
local state upon interacting, we introduce a new variant of this model which distinguishes a
segment of the agent’s state that is externally visible to its interacting partner, called the
message. This variant generalizes previous work in the context of consensus that examines
the particular case of binary signaling [5, 36], where the message is limited to a single
bit. We study the computational power of population protocols that have O(1) message
complexity and varying local state complexity, ranging from O(1) to unbounded.

1.1 Motivation

The population protocol framework was conceived to model passively mobile ad hoc sensor
networks. In this setting the amount of communication bandwidth can be a tighter constraint
than the local computation performed by a sensor. These two constraints – bandwidth
efficiency and energy efficiency – are viewed as distinct in the networking literature. In some
scenarios it makes more sense to optimize for one or the other, or to strike a balance [23,33,42].
The restriction to O(1) messages but ω(1) internal states is germane when the communication
in an interaction is more costly than the accompanying local computation.

Synthetic chemistry is another domain in which population protocols are an appropriate
abstract model of computation. This is a subclass of chemical reaction networks, which
are known to have similar computational power [21,38]. Using a physical primitive known
as DNA strand displacement [44], every chemical reaction network with O(1) species
(states in the language of population protocols) can be theoretically implemented by a
set of DNA complexes [39], justifying the use of chemical reactions as an implementable
programming language. This approach has been used to synthesize nontrivial chemical
systems in the wet lab, resulting in pure DNA implementations of a chemical oscillator [40]
and the “approximate majority” population protocol [9, 22]. Some theoretical [37] and
experimental [43] systems are able to assemble unbounded-length heteropolymers, best
modeled using arbitrarily many states (exponential in the polymer length) but only O(1)
messages rendering the smaller “locally visible region” near one or both ends of the polymer.

Finally, our model of ω(1) internal states and O(1) external messages is a natural
mathematical intermediate between the original O(1)-state model and the more recent ω(1)-
state model. Population protocols with superconstant states are provably more powerful [20],
so it is intrinsically interesting to determine how powerful this new intermediate model is.
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1.2 Our Contribution

Table 1 Summary of positive results: Above, the event of “not error” means that the answer is
correct and the stated time and state bounds hold, unless the error probability is 0, in which case it
refers only to the output being correct. In that case, the time and state bounds are in expectation,
but still hold with high probability: in all cases, the probability of error is O(1/n). (It should be
straightforward to extend to O(1/nk) for any k, but for simplicity in proof statements we fix k = 1.
We rely on [14, Theorem 1] that, as stated, holds only for a fixed exponent k, though it seems a
more detailed analysis could achieve arbitrary k.) Note that when the probability of computing the
correct output is 1 (i.e. the protocol stabilizes), the Time column denotes time to convergence. State
complexities are accurate with high probability. |M | is the number of messages, either a constant
larger than 1, or exactly 2 (1-bit). Compute logn means computing either blognc or dlogne. In the
first row tP is the expected convergence time for P .

Problem solved Pr[error] Time States |M | Leader
Simulate s(n)-state open
protocol (Corollary 3.4) 0 O(tPn2 log s(n)) O(s(n)2) O(1) Yes

Junta election
(Theorem 4.1) > 0 O(log2 n) O(log2 n) 1-bit No
Compute n

(Theorem 4.2) > 0 O(log2 n) O(n log2 n) O(1) Yes
Compute logn
(Corollary 4.3) > 0 O(log2 n) O(logn) O(1) Yes

Stably compute n
(Corollary 4.4) 0 O(log2 n) O(n4 log4 n) O(1) Yes

Leaderlessly compute
n (Corollary 4.5) > 0 O(log2 n) O(n polylog(n)) O(1) No

Leaderlessly compute
logn (Corollary 4.5) > 0 O(log2 n) O(polylog(n)) O(1) No
Compute d-input

predicate (Corollary 4.6) > 0 O(d log2 n) O(nd log2 n) O(1) Yes
TM simulation
(Theorem 5.2) 0 unbounded unbounded 1-bit No

We introduce this new variant of population protocols and show three main results:
We first (Section 3) completely resolve the question of the computational power of O(1)

messages, with Theorem 3.2. In the positive direction, with poly(n) states (O(logn) bits),
we give a simulation of Ω(1)-bit messages (Theorems 3.3 and 3.5). Corollary 3.9 is an
asymptotically sharp negative result: O(1)-message, o(n)-state (logn− ω(1) bits) protocols
compute only semilinear predicates.

Secondly (Section 4), we focus on time-efficient computation. We develop novel O(log2 n)-
time algorithms for junta election (the key primitive to leader election) and exact population
size counting (naturally suited to this model, where O(n) local states and O(1) messages
are the minimal power to make this problem solvable). The counting protocol can specialize
with fewer states to estimate the size (count logn), and also generalize with more states to
count the entire input configuration (so any predicate can be locally computed).

Thirdly (Section 5), we explore the extreme limits of the model where message complexity
is limited to 1 bit. We construct a 1-bit broadcast primitive, showing it is powerful enough
to simulate a Turing Machine with probability 1 correctness using unbounded local memory.

1.3 Comparison to existing work and new techniques required
Most protocols using ω(1) states [1–3,12,13,16–19,25,30,31,34,35,41] crucially use ω(1)-size
messages. Key transitions in such protocols involve comparing two integers/ids of size ω(1)
in a single step, which is not possible with O(1)-size messages. Sending a superconstant-
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6:4 Message Complexity of Population Protocols

size message over multiple interactions is not efficient (though it is a trick we employ for
unbounded time results such as Theorem 3.3), since there is not enough time for the two
agents to wait for another interaction (which takes Θ(n) expected time), nor is there any
way to distinguish each other in future interactions. We introduce new techniques that rely
on timing of internal counters to get around this limitation.

Our JuntaElection protocol (see paper’s extended version) is our primary fast leaderless
protocol, used to make other leader-driven protocols leaderless. It elects a junta, a group of
O(
√
n) agents, in O(log2 n) time. As with many other existing protocols [15,30,31,41], this

is used for a junta-driven phase clock [8] allowing agents to synchronize in a downstream
computation. The cited protocols have agents choose an integer “level” `, propagating by
epidemic the maximum level (Θ(log logn) [15,30,31] as in our case, or Θ(logn) [41]). Agents
who chose the maximum level are in the junta. Lacking the ability to communicate the
levels in 1-bit messages, we rely on timing of agents’ internal counters to detect whether a
higher level exists: Agents with level ` count up to ≈ 4`, (roughly) telling all other agents to
continue counting and stop at ≈ 4`, unless another agent (with high probability with a higher
level) tells them to continue counting. The actual details require intricate choice of timing
and analysis to conclude that all agents stop at the same counter value with high probability.
We push the technique of communication via timing further, showing that 1-bit messages
suffice to elect a leader, broadcast arbitrary messages, and simulate a Turing Machine.

The majority problem is that of deciding which of two opinions in a population is more
numerous. One population protocol [5] distinguishes between external messages and internal
state, using 1-bit messages (binary signaling) to achieve consensus in expected O(nr lognr)
interactions; however, this protocol uses O(r) internal states, where r is a tunable parameter
independent of n and can thus be considered constant, making this a O(1)-state solution
to the majority problem. Other existing protocols [2, 4, 12, 13, 18] use an O(1)-message
“doubling/cancelling” technique, which works on top of a synchronization primitive, but these
protocols use ω(1) messages to achieve synchronization. Our O(1)-message junta-election
protocol can be composed with the doubling/cancelling technique to give a high-probability,
O(1)-message majority protocol, which, unlike [2,4,13,18], is uniform, requiring no estimate
of n.

Indeed, all of our protocols are uniform in this sense, in contrast to several existing
ω(1)-state protocols [1–4,13,16,18,19,31,34,35,41]. Many of our protocols could be simplified
greatly by allowing nonuniformity. Briefly, an estimate of logn within a constant factor
would allow agents to synchronize themselves using a leaderless phase clock based on
counting to c ˙logn for some large constant c. the lack of such synchronization is a major
challenge in devising correct, efficient O(1)-message protocols.

2 Model

We write logn to denote log2 n, and lnn to denote loge n. The original population protocol
model [6] involves a population of n agents, each of which holds a state in a state space
Q. Interactions between agents update the states of both agents according to a transition
function δ : Q×Q→ Q×Q, where interactions are asymmetric: in each interaction, one of
the agents is the initiator of the interaction, and one the responder.

We consider a refinement of the model in which the state of an agent is explicitly divided
into an internal component that is not visible to other agents, and an external component
that is. The internal component of the state is drawn from the state space I and the external
component, or message, is drawn from a message space M . The set of states Q is the
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Cartesian product I ×M . The transition function δ is modified to enforce the restriction
that an agent in an interaction cannot observe the internal state of the other agent: δ is now
a function from Q×M × {initiator, responder} to Q. When an agent in state q1 = 〈i1,m1〉
initiates an interaction with an agent in state q2 = 〈i2,m2〉, the new states of the agents are
given by q′1 = 〈i′1,m′1〉 = δ(q1,m2, initiator) and q′2 = 〈i′2,m′2〉 = δ(q2,m1, responder).

The set of producible states Q(n) and the set of producible messages M(n) can both
depend on n. The function s : N→ N defined as s(n) = |Q(n)| is the state complexity of
a population protocol. The function n 7→ |M(n)| is the message complexity. If |I| = 1
and each agent’s state is merely defined by its message (the original model [6] and its
superconstant state generalization), we say the protocol is open, so |Q(n)| = |M(n)| for all
n. We will mostly be interested in population protocols with modest state complexity (at
most polynomial in n, and often only polylogarithmic in n) and constant message complexity.
Given two functions s,m : N→ N, a s(n)-state, m(n)-message population protocol is
one with state complexity s and message complexity m. Note that the complexity bounds
we discuss are worst-case: s(n) is the most number of states that can be produced in any
population of size n under any execution. We place high probability bounds on the state
complexity (e.g. JuntaElection where agents generate a geometric random variable which
may take on any positive integer value). These do not consider the set of producible states,
so our impossibility results (Theorem 3.8) on state and message complexity do not apply.

Problems solved by population protocols. A configuration gives the state of all agents.
Population protocols have some problem-dependent notion of “correct” configurations. For
example, for leader election a configuration with a single leader is correct. For computation
of a predicate φ : Nd → {yes, no} (a.k.a., decision problem), the initial state of each agent
is from a d-element subset Σ of states, states are partitioned into two subsets representing
“yes” and “no”, and a configuration is correct if all agents give the answer φ(~i), where ~i ∈ Nd
represents the initial counts of agents in each state in Σ. A population protocol is leader-
driven if its states have a Boolean field leader ∈ {L,F} (i.e. the state set Q = {L,F} ×Q′),
such that in every valid initial configuration, exactly one agent has leader = L.

Time complexity. For measuring time complexity, we assume random scheduling,
where at each interaction two agents are chosen uniformly at random from all n(n − 1)
possible ordered pairs of agents. Time complexity is defined by parallel time, the number
of interactions divided by n/2 which we henceforth simply refer to as time. This definition
reflects the average number of interactions in which an agent participates, and reflects an
assumption that agents effectively interact in parallel, even though for simplicity of analysis
this parallelism is modeled by interleaving interactions sequentially.

Convergence/stabilization. A configuration ~c is stably correct if every configuration
reachable from ~c is correct. An execution E = (~c0,~c1, . . .) is picked at random according to
the scheduler explained above. We say E converges (respectively, stabilizes) at interaction
i ∈ N if ~ci−1 is not correct (resp., stably correct) and for all j ≥ i, ~cj is correct (resp., stably
correct). The (parallel) convergence/stabilization time of a protocol is the number of
interactions to converge/stabilize, divided by n/2. Convergence can happen strictly before
stabilization, although a protocol with finite reachability (i.e. for each ~c, finitely many
configurations are reachable from ~c) converges from ~c with probability p ∈ [0, 1] if and only
if it stabilizes from ~c with probability p. For a computational task T equipped with some
definition of “correct”, we say that a protocol stably computes T with probability p if,
with probability p, it stabilizes (equivalently, converges).1

1 Let C and S respectively be the set of stabilizing and converging executions. Then Pr[C \ S] = 0.
Suppose a protocol converges in an execution (~c0, ~c1, ...) at interaction i. If it did not stabilize, then for

DISC 2020



6:6 Message Complexity of Population Protocols

3 Computability with unrestricted time

In this section we study s(n)-state, O(1)-message protocols where time is not restricted.
Theorem 3.2 is our main result in this section, which completely characterizes the power of
such protocols in terms of the number of bits required to store the states.

Let CMPP(f(n)) be the set of all predicates stably computed by an s(n)-state, O(1)-
message population protocol, where s(n) = 2O(f(n)) (using O(f(n)) bits of memory). Let
SNSPACE(g(n)) be the set of all predicates φ : Nd → {0, 1} decidable by a nondeterministic
O(g(n))-space-bounded Turing machine, when inputs are given in unary.2 The results of [20]
considered a similar complexity class PMSPACE(f(n)) of stably computable predicates using
O(f(n)) bits of memory and O(f(n)) bit messages.3 Let SL be the set of all semilinear
predicates [7]. Their main result is the following characterization:

I Theorem 3.1 ( [20]). Let f : N→ N. If f(n) = o(log logn), then PMSPACE(f(n)) = SL.
If f(n) = Ω(logn), then PMSPACE(f(n)) = SNSPACE(n · f(n)).

Since the memory is expressed in Theorem 3.1 as number of bits (exponentially smaller
than number of states), the multiplicative constants hidden in the Big-O notation become
polynomial-factor terms in number of states. Theorem 3.2 is a similar dichotomy theorem for
O(1)-message population protocols, which is sharper in that it holds for all values of f(n).
The proof is in the full paper version, and follows from Theorems 3.3, 3.5, 3.8, and 3.1.

I Theorem 3.2. Let f : N → N. If f(n) = o(logn), then CMPP(f(n)) = SL, otherwise
CMPP(f(n)) = SNSPACE(n · f(n)).

3.1 Leader-driven O(s(n)2)-state, O(1)-message protocols can
simulate open s(n)-state protocols

In this section we show that O(s(n)2)-state, O(1)-message, leader-driven protocols can
simulate s(n)-state open protocols (whether leader-driven or not). Thus, allowing a leader
and ignoring quadratic differences in state complexity, there is no difference whatsoever
between the computational power of O(1)-message protocols and open protocols. Theorem 3.3
proves the general case of m(n)-message protocols. Corollary 3.4 is the special case of open
protocols, where s(n) = m(n). The simulation incurs a time slowdown of factor n2 logm(n),
where n is the population size and m(n) ≤ s(n) is the message complexity of the simulated
protocol, so it ports (non-sublinear) computability results from the open protocol model.

Intuitively, the construction of Theorem 3.3 chooses two agents to “mark” as initiator
and responder, which then successively pass a bit string as they interact, until they have
transmitted the full message of size logm(n) bits. Crucially, starting with a leader allows
only one simulated transition to be taking place at a time.

all j > i, some incorrect configuration ~dj would be reachable from ~cj . Let pj > 0 denote the probability
of reaching ~dj from ~cj . The set of reachable configurations is bounded with probability 1, so minj>i pj

is well-defined and positive. The probability of never reaching any ~dj is then 0.
2 In [20] these are called symmetric predicates on the assumption that the d counts in ~i ∈ Nd are

presented to the Turing machine as a ‖~i‖-length string of symbols from an input alphabet Σ with
|Σ| = d, with the same answer on all permutations of the string.

3 In fact, to obtain their positive result for large space bounds, they do not need fully open protocols.
Their simulation of nondeterministic nf(n)-space-bounded Turing machines just requires O(logn) bit
messages to exchange unique IDs, even if f(n) = ω(logn).
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I Theorem 3.3. For every s(n)-state, m(n)-message protocol P , there is a leader-driven,
O(s(n) ·m(n))-state, O(1)-message protocol S that simulates P , and each interaction of P
takes expected O(n2 logm(n)) interactions of S to simulate.

The next corollary applies to open protocols, where each agent’s message is its full state.

I Corollary 3.4. For every s(n)-state, open population protocol P , there is a leader-driven,
O(s(n)2)-state, O(1)-message population protocol S that simulates P , and each interaction
of P takes expected O(n2 log s(n)) interactions of S to simulate.

It is known that Ω(logn)-state open protocols have computational power beyond that of
O(1)-state protocols (limited to semilinear predicates [7] and functions [21]), and Corollary 3.4
grants this same computational power to leader-driven O(1)-message protocols. Theorem 3.8
in subsection 3.4 shows that Corollary 3.4 crucially depends on the assumption of an initial
leader in the simulating protocol, by demonstrating that leaderless O(1)-message, o(n)-state
protocols are no more powerful than O(1)-state open protocols.

3.2 Leader election can be composed with leader-driven, s(n)-state,
O(1)-message protocols using O(n3 log n) state overhead

Leader election is possible in linear time with 1-bit messages by “fratricide”: `, `→ `, f . A
downstream leader-driven protocol P will not work unaltered if composed with this leader
election, because the presence of multiple leaders prior to convergence causes incorrect
transitions of P . A straightforward fix using O(n) messages involves exact size counting via
transitions `i, `j → `i+j , fi+j (requiring Ω(n) messages) and each transition between agents
with respective values n and i < n resets the latter agent to its initial state in P . As soon as
the last agent is reset with value n, the protocol faithfully executes a tail of an execution of
P from~i, i.e. an execution starting at a configuration ~c reachable from~i. Thus if P is correct
with probability 1, the composed protocol is also correct with probability 1. Theorem 3.5
demonstrates a similar “composition by resetting” strategy using O(1) messages.

I Theorem 3.5. For any leader-driven, s(n)-state, O(1)-message protocol P , there is a
leaderless, O(s(n)n3 logn)-state, O(1)-message protocol S that, after O(n logn) expected
time, executes a tail of an execution of P .

Theorem 3.5 depends crucially on using ≥ n states, since Theorem 3.8 shows leaderless,
O(1)-message, o(n)-state protocols are no more powerful than O(1)-state open protocols.

3.3 Deterministic Broadcast
The construction used in our composable leader election protocol (see extended paper) can
be modified to also give the leader the ability to stably broadcast a message to the entire
population. After the last restart, the leader agent a counts the entire population by moving
them between phases. We can view these phases as deterministically synchronized rounds
(each expected time O(n logn) [10]). Add a field bit ∈ {0, 1} to the message. The leader a can
then communicate a bit string to the population by sending one bit during each round. This
lets the population stably compute the population size n, by having the leader send n as a
bit string in O(logn) rounds (stabilizing in expected O(n log2 n) time). It uses O(logn) state
overhead to store the bits it has broadcast, so O(n3 log2 n) states total. Thus we conclude:

I Corollary 3.6. There is an O(n3 log2 n)-state, O(1)-message protocol that stably computes
the population size n (storing in every agents state), in expected O(n log2 n) time.

DISC 2020



6:8 Message Complexity of Population Protocols

3.4 Leaderless o(n)-state, O(1)-message protocols compute only
semilinear predicates

Theorem 3.8 is broad and does not apply to a particular “mode of computation” (e.g.,
deciding predicates [6, 7], computing functions [11,21,27], leader election [15,29]). It does,
however, assume a problem-specific notion of valid initial configurations.4 We say a protocol
is additive if the set of valid initial configurations is closed under addition. This rules out,
for instance, protocols with an initial leader. Indeed, Corollary 3.9 is false if an initial leader
is allowed, by applying Theorem 3.3 to let a leader-driven O(1)-message protocol simulate
any o(n)-state open protocol that stably computes a non-semilinear predicate/function.5

A lower bound result in [20] shows that with an absolute space bound of o(logn) states,
their model is limited to only stably computing the semilinear predicates.6 The core of their
argument bounds the number of reachable memory states.

I Theorem 3.7 ( [20]). Let s : N→ N and consider an additive, s(n)-state, open population
protocol. Then either s(n) = O(1) or s(n) = Ω(logn).

As a corollary, if s(n) = o(logn), then s(n) is in fact constant, reducing to the original
O(1)-state model, which can only stably compute semilinear predicates [7]. We use a similar
proof technique to show an exponentially stronger result in the model of O(1) messages.

I Theorem 3.8. Let s : N→ N and consider an additive, s(n)-state, O(1)-message population
protocol. Then either s(n) = O(1) or s(n) = Ω(n).

Proof sketch. A fixed population ~ic suffices to produce any of the O(1) messages. Consider
a population ~in of size n. If s(n) 6= O(1), then for some state b not producible from ~in, b is
producible by sending some message m to a state a producible from ~in (though a and m
cannot appear simultaneously in a configuration reachable from ~in). By combining ~in with
~ic, we have a population of size n+O(1) that can produce b. Thus the number of producible
states grows at least linearly with n. J

Population protocols using O(1) states compute only semilinear predicates [7], resulting
in the following corollary. Since we require additivity of valid initial configurations, the
corollary applies only to leaderless protocols.

I Corollary 3.9. If a leaderless, o(n)-state, O(1)-message protocol stably computes a predicate
φ, then φ is semilinear.

4 Computability with polylogarithmic time complexity

In this section we study O(1)-message protocols with “fast” computation (polylog(n) time).

4 For example, for leader election, all agents have the same initial state. For computation of predicates [6]
or functions [11,21], all agents represent “input” from a constant alphabet, with possibly an extra leader.

5 For example, transitions (i; `), (i; `)→ (i+ 1; `), (i+ 1; f) and (j; `), (i; f)→ (j; `), (j; f), which starting
from all agents in state (1, `), give each agent the value blognc.

6 Theorem 14 of [20] states “o(log logn)” bits, which implies o(logn) states, though the converse does not
hold. However, inspecting their proof reveals that the result holds up to log(n)− 1 states.
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4.1 High-probability junta election using 1-bit messages
In this section, we describe a uniform protocol using 1-bit messages that, with high probability,
elects a “junta” of O(

√
n) agents in polylogarithmic time. The protocol also lets each agent

compute an integer k ∈ N+ that is the same for all agents and is one of blog lognc, dlog logne,
or dlog logne+ 1. Thus 2k is an estimate of logn within a multiplicative factor 2.

Furthermore, JuntaElection is composable, in that we can use the protocol as a black box
to initialize other protocols that require either a junta for a phase clock, or an approximation
of logn (e.g. for a leaderless phase clock). Thus any nonuniform protocol that requires
k-bit messages can be composed with JuntaElection to achieve a uniform protocol using
(k + 1)-bit messages with an additive time overhead of O(log2 n). For example, we can
compose JuntaElection with the the leader election protocol of [30] using 1

2 -coin flips to
convert the O(

√
n)-size junta to size 1, i.e. elect a leader, in expected O(log2 n) time and O(1)

messages, or with majority protocols that use O(1) messages for doubling/cancelling phases,
synchronized by the junta-driven phase clock [12]. Our protocol has a positive probability of
failure. It is yet unknown whether there is an O(1)-message protocol that stably approximates
logn or elects a junta of size nε for some ε ∈ (0, 1) in sublinear stabilization time.

High-level description of protocol. The protocol is described formally in the extended
paper. Intuitively, it works as follows. Most leader/junta election protocols generate an id,
where the agents generating the maximum id are the junta. In our protocol, we generate an
id called level, but O(1) messages prevent direct communication of levels, so we employ a
timing-based strategy to communicate the maximum level using only messages Go and Stop.

Each agent initially generates a local geometric random variable G (number of fair coin
flips until the first heads, i.e., an immediate heads results in G = 1) and computes its level
as dlogGe. (We can also use synthetic coin techniques [1] to simulate fair coin flips and
increment their level from i to i+ 1 as they flip 2i consecutive tails.)

We define consecutive disjoint intervals G0, R0, G1, R1, . . . ⊂ N (green and red) parti-
tioning the natural number line. We call Ri’s last element di = maxRi a door. (See Figure 1,
formal definition below.) Each agent keeps a local counter, initially 0, that is incremented on
some interactions. An agent is in round i if its counter is in Gi ∪ Ri. The goal is to get
every agent to count up until the round equal to the maximum level k generated by any agent
and stop its counter at dk. An agent with level l in round i is eager if i < l and cautious
otherwise. Intuitively, eager agents race through doors until their own level, telling all other
agents to keep going, but become cautious at and beyond their own level, advancing past a
door into the next round only if another agent tells them to do so (via a message m = Go).
More formally, an eager agent always sends a message of Go and increments its counter on
every interaction. A cautious agent sends message Go if and only if its counter is in Gi for
some i, increments its counter on every interaction in Gi ∪ Ri \ {di} unconditionally, and
increments its counter beyond di if and only if the other agent’s message is Go. Agents drop
out of the junta when they leave their own level, so (assuming no agent leaves the maximum
level) those who generated the maximum level are the eventual junta.

To formally define the intervals, let c ∈ N+. Each Gi, with |Gi| = c4i, is called a
green interval, Ri, with |Ri| = 3c

2 4i, a red interval. Note that di =
∑i−1
j=0(|Gj |+ |Rj |) =

c
(
1 + 3

2
) 4i−1

4−1 < 5c
6 4i = 5

6 |Gi|, so |Gi| is larger than the union of all the previous intervals by
a constant multiplicative factor. The max level k is Θ(log logn) with high probability, so
its corresponding interval |Gk| = Θ(4log logn) = Θ(log2 n). Thus, with high probability, the
agents use O(log2 n) states for their counters and stop at the door dk after O(log2 n) time.
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6:10 Message Complexity of Population Protocols

To compose JuntaElection with a downstream protocol P , agents can simply restart P
whenever they move beyond a di, and then wait to start simulating P until they reach the
next di+1 (Restarting is a common technique in distributed computing for composition and
is not original to this paper, e.g., [30].) In the early stages of JuntaElection, the downstream
protocol gets restarted many times, but eventually, all agents will move past dk−1, after
which they will restart the downstream protocol for the last time. The agents will all
simultaneously be in the last interval Gk ∪ Rk before stopping at dk. Thus all simulated
downstream interactions of P will be between agents that agree on k.

G0R0 G1 R1 G2 R2

d0 d1 d2

L = 0 L = 2L = 1

u2 τ2

Figure 1 Agents, represented as dots, increment their counters through the G0, R0, G1, R1, G2, R2

intervals. Agents in green intervals or any interval before their own level have message Go. Agents
in red intervals at their own level or later have message Stop. At the end of a red interval (the door
di, shown with black horizontal line) at their own level or later, the agents (black dots) wait to
increment their counter until they see a message Go. The special times marked ui, τi are used in
proving correctness.

I Theorem 4.1. With probability 1−O(1/n), JuntaElectionuses O(log2 n) states and elects
a junta of size O(

√
n) in O(log2 n) time, after which v.count = dk for all agents v, where

k ∈ {blog lognc, dlog logne, dlog logne+ 1}.

Proof sketch. We must show the agents are synchronized. When the interval lengths are
Ω(logn), we argue that the agents’ local counters are bounded within the same interval. The
main challenge is reasoning about agents that may be stuck at a door.

Our argument shows that a constant fraction n/4 of agents stay synchronized in each
green interval, up until near the max level. Then, we argue that during the later green
intervals, straggler agents are able to catch up, because they have a constant probability of
passing through each door and the length of the green interval is more than the sum of all
previous intervals. We then show the entire population in synchronized within the last few
intervals. Thus all agents will have a Stop message when the population reaches the final
door dk, and the agents will stop their counters at dk. See extended paper for full proof. J

Our proof techniques require setting |Gi| = 700 · 4i. However, simulation results show
successful convergence when |Gi| = 16 · 2i (see extended paper). Scaling the intervals this
way lets |GM | = Θ(logn), so the protocol takes O(logn) time and O(logn) internal states.

4.2 Leader-driven, O(log2 n)-convergence-time exact size counting
In this section we give a O(log2 n) time, high-probability protocol for a problem that is natural
for agents with superconstant memory: exact population size counting. The probability of
error can be reduced to 0 with standard techniques; see Corollary 4.4. This problem has been
studied in the context of open protocols in both the exact [17,26] and approximate [17,25]
settings, where it is known that open protocols can approximate n within multiplicative
factor 2, by computing either blognc or dlogne, using O(logn log logn) states and O(log2 n)
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time [17]. Open protocols can compute the exact value of n, using O(n logn log logn)
states and O(logn) time [17]. Both protocols can be made probability-1, with a O(logn)
factor increase in states, i.e. O(log2 n log logn) states for calculating blognc or dlogne, and
O(n log2 n log logn) states for exactly computing n. However, note that our results below
are leader-driven, so direct comparison with the leaderless results of [17] is not appropriate.

0
2/4

1
1/4 3/4

0

0 1 2 3 4

2/8

2/16

1/8 3/8
4/8

4/16 6/16
5/163/16

8/32
10/32

12/32
11/329/32

remaining weights 
at end of round:

{0,1,2}

{1,2,3}

{2,3,4}

{1,2,3}

a=0 b=1

a=0 b=1/2

a=1/8 b=3/8

a=1/4 b=3/8

Figure 2 Update rule for fast exact counting protocol. All agents start with a mass of 0 and
weight w = 0, except the leader, who starts with mass = 1 and w = 4. They conduct averaging on
weight w for one round, at which point (with high probability) three consecutive weights remain.
The figure shows how the remaining masses map to the next subinterval, with the weight w updating
to 2(w −wmin) where wmin is the minimum value of w at the end of the Averaging phase. The right
side shows the subintervals to scale. Each agent updates its internal state to represent the interval
[a, b]. Once [a, b] contains only a single number of the form 1

n
, the protocol terminates, and each

agent knows the value n. The first logn rounds would always have 0 as the minimum remaining
weights, but we allow other values to show concretely how the updating rule works.

I Theorem 4.2. There is an O(1)-message leader-driven population protocol that, with
probability 1−O(1/n), exactly counts the population size n (storing it in each agent’s internal
state), in O(log2 n) time and using O(n log2 n) states.

Proof sketch. The full proof and pseudocode for ExactCounting are in the extended paper.
The proof uses the “fast averaging” technique employed by other population protocols [4, 17,
26,34,35], where each agent holds an integer and computes the transition i, j →

⌊
i+j

2
⌋
,
⌈
i+j

2
⌉
.

In the O(1)-message setting this will not work exactly as described.
Intuitively, the leader will distribute 1 unit of what we can imagine is a continuous mass

into the population. Rational-valued averaging of this mass would result in each agent
converging to 1/n, from which n can be computed, O(1) messages cannot represent arbitrary
rationals. Instead, we allow agents to communicate a few bits of their number at a time,
while ensuring that before moving on, they agree on an interval containing the true average,
which shrinks by half each round, synchronized by a leader-driven phase clock [8]).

Figure 2 shows the updating rule. Each agent’s state represents an interval [a, b] ⊆ [0, 1],
where b− a = 2−r during round r ∈ N (initialized to r = 0). a is a dyadic rational, initialized
to a = 0.0, containing r + 2 bits after the binary point. One message field W = {0, 1, 2, 3, 4}
describes varying amounts of extra weight. The value w ∈W counts for w

4·2r units of mass
in round r. An agent is interpreted as having mass = a+ w

4·2r ∈ [a, b] (note representing w
4·2r

is what requires r + 2 bits after the binary point). The leader is initialized with w = 4 (and
mass = 0 + 4

4·1 = 1), and the followers are initialized with w = 0 (and mass = 0).
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6:12 Message Complexity of Population Protocols

The full proof shows that, with high probability, every agent will always have the same
value of a. This implies, via the averaging rule for weights, that mass is conserved and the
sum of mass in the population is 1. Thus for all agents at all times, it holds that the true
average 1

n stays within the interval [a, b]. Once the interval contains only a single integer
reciprocal 1

n , the protocol terminates with all agents knowing n. J

Terminating ExactCounting early gives a space efficient protocol for estimating logn:

I Corollary 4.3. A leader-driven, O(1)-message protocol, with probability 1−O(1/n), com-
putes r ∈ {blognc, dlogne}, in O(log2 n) time using O(logn) states.

Proof sketch. We run ExactCounting until the interval [a, b] contains exactly one power of
two 2−k, and then output k, unless it contains no powers of two, in which case we output
arbitrarily either of the powers of 2 contained in the interval of the previous round. If
n = 2k, then k = logn exactly. Otherwise, since the interval contains no other power of 2,
but it contains 1/n, then k ∈ {blognc, dlogne}. J

By the standard technique of running in parallel with a slower deterministic counting
protocol, we can convert our exact counting protocol to have probability 0 of error while
retaining fast convergence time (see extended paper for proof).

I Corollary 4.4. There are O(1)-message, leader-driven population protocols that, with
probability 1, respectively count the exact population size n and estimate it by computing
blognc or dlogne, both with expected O(log2 n) convergence time and O(n log2 n) stabilization
time. With probability 1−O(1/n), they use O(n4 log4 n) and O(log2 n) states, respectively.

The next corollary shows that ExactCountingcan be made leaderless by composing with
the leader election protocol derived from JuntaElection. Proofs are in the extended paper.

I Corollary 4.5. There is a leaderless, O(1)-message population protocol that exactly counts
the population size n in O(log2 n) time and O(npolylogn) states, succeeding with probability
1−O(1/n). There is also a leaderless, O(1)-message population protocol that computes blognc
or dlogne in O(log2 n) time and O(polylogn) states, succeeding with probability 1−O(1/n).

4.3 Leader-driven, O(log2 n)-time predicate computation
We can use techniques from Theorem 4.2 to show how to compute, using a leader and with
high probability, any predicate on a constant alphabet Σ, up to the space bounds allowed by
the agents. We assume that there is one leader agent, and that every other agent has a state
from a fixed alphabet Σ. Exactly the semilinear predicates are computable with probability
1 by O(1)-state open protocols [7] (with > logn states, more predicates are possible [20]).

I Corollary 4.6. Let d ∈ N+ and let Σ be a d-symbol input alphabet. Then there is an O(1)
message leader-driven population protocol that, with probability 1−O(1/n), exactly counts
the input vector ~i ∈ Nd (storing it in each agent’s internal state), in O(d log2 n) time and
using O(nd log2 n) states.

Proof sketch. Agents first run the exact counting protocol of Theorem 4.2 to store locally
the value n. Agents then use a similar strategy to this protocol to count how many agents
have input x for each symbol x ∈ Σ. Having now stored the entire initial population’s input
in their internal state, they can simply compute any computable predicate φ locally. J
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If an agent can locally store the entire initial configuration, it can compute any predicate
computable by the transition function δ. We required that δ be computable by a Turing
Machine with O(log s(n)) bits of memory, to make our model comparable with [20]. Thus
we can compute all predicates computable by O(logn) bit space-bounded Turing Machines.

5 Computability with 1-bit messages

We will show that with 1-bit messages, it is possible to simulate a synchronous system that
provides a 1-bit broadcast channel. This will be used to simulate more complex systems. We
sacrifice stabilization for convergence and rely on unbounded counters to ensure convergence
in the limit with probability 1. Let us begin by defining the simulated system.

A synchronous broadcast system consists of n synchronous agents that carry out a
sequence of rounds. In a broadcast round, each agent generates a 1-bit outgoing message.
These messages are combined using the OR function to produce the outcome for this round.

Broadcast operations can be used to detect conditions such as the presence of a leader, or
ordinary message transmission if a unique agent is allowed to broadcast in a particular round.
However, because broadcast operations are symmetric, they cannot be used for symmetry
breaking. For the purpose of electing a leader, we assume that agents have the ability to
flip coins; once we have a leader, further agents may be recruited for particular roles using
an auxiliary protocol that allows the leader to select a single agent from the population in
some round. The broadcast and selection protocols are mutually exclusive: either all agents
participate in a broadcast in some round or all agents participate in selection. This is possible
by showing that all agents eventually agree on the round number forever with probability 1.

Simulating this model in a population protocol requires (a) enforcing synchrony across
agents, so that each agent updates its state consistently with the round structure; (b)
implementing the broadcast channel that computes the OR of the agents’ outputs; and (c)
implementing the selection protocol. We show how to do this in the following section.

5.1 Implementing the core primitives
Broadcasts are implemented by epidemics that propagate 1 messages, separated by barrier
phases in which all agents display 0. Selection is implemented by having the leader display a
1 to the first agent it meets. Both protocols depend on the number of steps at each agent
being approximately synchronized with high probability; after t(n/2) steps, all agents’ step
counts should be within the range t±O(

√
t logn) with high probability; the time to carry

out a broadcast is also O(logn) with high probability (see proofs in extended paper). By
increasing the length of each round over time, the total probability across all rounds of an
error occurring in either the broadcast or selection protocol due to out-of-sync agents or slow
broadcasts converges to a finite value. Applying the Borel-Cantelli lemma then shows that
there is a round after which no further failures occur with probability 1.

5.1.1 Details
Observe that the probability that a particular agent i participates in an interaction is exactly
2/n, and that the events that i participates in distinct interactions are independent. If
we let Xt

i be the indicator variable that agent i participates in the t-th interaction, then
Sti =

∑t
j=1 X

t
i is a sum of independent Bernoulli random variables, and obeys the Chernoff

bound Pr [|Sti − µ| > µδ] < 2e−µδ2/3, where µ = E [Sti ] = 2t/n and 0 ≤ δ ≤ 1.
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6:14 Message Complexity of Population Protocols

The execution of each agent is organized as a sequence of rounds, where each round r
for r = 1, 2, . . . consists of exactly 5r2 steps. The first 2r2 steps will be a barrier phase
during which the agent displays message 0 and updates its state during an interaction
only by incrementing its step counter. The remaining 3r2 steps will be an interaction
phase in which the agents may execute one of two protocols. In a broadcast phase, each
agent will propagate an epidemic represented by message 1, recording if it observed such an
epidemic and possibly initiating the epidemic itself if instructed to do so by the protocol. In
a selection phase, a leader agent displays 1 for its first encounter, and the agent interacting
with the leader receives a special mark. The choice of broadcast/selection phase is determined
by the controlling protocol and is the same for all agents. As in a barrier phase, an agent in
an interaction phase continues to update its step counter with each interaction.

The controlling protocol updates the state of the agent at the end of each round. Each
agent v has a state v.state that is one of broadcasting (agent is initiating a broadcast of value
1) receiving (agent is waiting to detect a 1), received (agent has detected a 1), selecting (agent
is attempting to select another agent), candidate (agent is a candidate for selection), selected
(agent has been selected), or idle (agent has selected another agent and is now waiting for the
end of the round). We assume the controlling protocol assigns consistent values to the agents
in each phase: if one or more agents start in state broadcasting, the rest should start in state
receiving; while if some agent starts in state selecting, the rest should start in state candidate.
Pseudocode for this protocol and its proof of correctness are in the extended paper.

5.2 Convergent computation of arbitrary symmetric functions
Early rounds produce incorrect results, so we need an error-recovery mechanism. We describe
a basic protocol for electing a leader and having it gather inputs from the other agents. This
allows the leader to compute the output of an arbitrary symmetric function and broadcast
it to the other agents. The protocol guarantees termination with probability 1 even in
executions where some of the rounds exhibit errors in the underlying broadcast mechanism.
By restarting the protocol when it terminates, we guarantee that the protocol eventually
runs without errors, thus converging to the correct output.

Each agent v has a Boolean field v.leader that marks it as a leader (or candidate leader)
and a field v.processed that marks whether it has reported its input v.input to the leader.
Agents cycle through 7 rounds, where the round number is r mod 7, organized as follows:
Round 0 Any leader broadcasts 1. A non-leader that receives 0 sets its leader bit. This

round allows recovery from states with no leaders.
Round 1 Any leader broadcasts 1 with probability 1/2. A leader that does not broadcast

but receives a 1 clears its leader bit.
Round 2 Any agent that cleared its leader bit in the previous round broadcasts 1. This

causes any remaining leaders that receive a 1 to restart the information-gathering protocol
and causes any non-leaders that receive a 1 to clear their processed bits. Broadcasting a
1 in this round is also used by the leader to restart the protocol after completion.

Round 3 Any agent v with v.processed = 1 broadcasts 1. This is used by the leader and
other agents to detect unprocessed inputs.

Round 4 If a leader received a 1 in the previous round, and there is no transmission in
progress from a non-leader agent, the leader executes a selection operation. The selected
agent sets its processed bit and transmits its input if its processed bit is not already set.
If the processed bit is set, the agent transmits nothing in the following two rounds.

Rounds 5 and 6 These are used to transmit either (a) one bit of a selected agent’s input, or
(b) one bit of the protocol output. In either case the bit is encoded as two bits using the
convention 01 = 0, 10 = 1, 00 =stop. Note that the absence of a broadcast in both rounds
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is interpreted as stop, which both allows a selected agent to signal it has already been
processed and guarantees eventual termination after an agent finishes transmitting its
input even if some of the broadcasts are garbled. Two agents may transmit simultaneously
(e.g. if there are multiple surviving leaders), thus agents must be prepared to handle
receiving 11. Either we can decide to have agents interpret it as a fixed value: 11 = 1, or
interpret it as a signal to restart the protocol by broadcasting a 1 in the next Round 2.

The protocol terminates when the leader has collected all inputs (detected by the absence
of a signal in Round 3) and transmits the computed output to all agents (using Rounds
5 and 6 over however many iterations are needed). We assume that the computed output
has finite length for any combination of inputs. After transmitting the output, the leader
broadcasts a 1 in Round 2 to restart the information-gathering component of the protocol.

I Lemma 5.1. In any execution with finite errors in the underlying broadcast protocol, with
probability 1, the above protocol converges to a single leader and then restarts infinitely often.

Lemma 5.1 is proven correct by demonstrating that, as defined, this protocol elects exactly
one leader by Round 2 which correctly processes all non-leader agents with probability 1 by
the end of Round 6. The full proof can be found in the paper’s extended version.

Once the protocol restarts with a single leader, any subsequent error-free execution
produces correct output. This follows from the fact that the leader collects the input from
every agent exactly once. Since each agent records as its output the last output broadcast by
the leader, this causes all agents to converge to holding the correct output with probability 1.

Because the leader has unbounded states, it can simulate an arbitrary Turing machine.
This allows the output to converge to the value of any computable symmetric function.
The restriction to symmetric functions follows from uniformity of the agents in the initial
configuration, but can be overcome, assuming inputs include indexes. We have thus shown:

I Theorem 5.2. For any computable symmetric function f , there is a population protocol
using 1-bit messages and unbounded internal states that starts in an initial configuration
where each agent i is distinguished only by its input xi, that converges to having each agent
holding output f(x1, . . . , xn).

Our construction exploits the unbounded state at each agent to allow the leader to
simulate the entire computation. While probability-1 convergence requires unbounded state
in the limit (otherwise there is a nonzero probability that any round fails), it may be desirable
to put off expanding the state as long as possible. In the extended paper, we argue that with
some small tweaks, the construction can be adapted to distribute the contents of a Turing
machine tape of s bits across all agents of the population as in [20], reducing the storage
overhead at each agent for the Turing machine computation to O(s/n+ log s) bits.

6 Open problems

Probability-1 computation. Many of our protocols have a positive probability of error.
Common techniques for achieving zero error probability in ω(1)-state protocols require
ω(1) messages. Based on this, we conjecture that probability-1 leader election using O(1)
messages requires Ω(n) time to stabilize. This is known to hold for O(1) states [28], though
sublinear-time convergence is possible with O(1) states [32].

Time lower bounds. A tool for time lower bounds (e.g. probability-1 leader election [1,28])
is a “density lemma” [1,24] showing that when the state complexity is ≤ 1

2 log logn, all states
appear in “large” count. This is false for s(n) > log logn, which is the key to the fastest
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space-optimal leader election protocols [15,30,31]. A density lemma applies to the messages
of O(1)-message protocols, no matter the state complexity (derivable from [25, Lemma 4.2]).
Does this imply that O(1)-message leader election requires linear stabilization time?

Power of 1-bit messages with O(1)-states. O(1)-state open protocols can stably compute
exactly the semilinear predicates [7]. Can all semilinear predicates be stably computed with
1-bit messages? A related question is whether there is a direct simulation of O(1)-message
protocols by 1-bit message protocols (similar to Theorem 3.3).

Efficient predicate computation. Corollary 4.6 can be used to efficiently compute any
computable predicate φ : Nd → {0, 1} but requires storing the entire initial configuration
locally in each agent (Θ(nd) states). Corollary 3.6 can be used to compute any computable
predicate storing unique IDs in each agent (O(n) states), but it is slow since communication
is routed through a leader. What predicates can be computed time- and space-efficiently?
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