Population Protocols

James Aspnes Yale University

June 10th, 2009

June 10th, 2009 DNA15: Population Protocols

・ロト ・回ト ・ヨト ・ヨト

2

Acknowledgments

Joint work with:

- Dana Angluin (Yale)
- Melody Chan (Princeton)
- Zoë Diamadi (McKinsey & Company)
- David Eisenstat (Brown)
- Michael J. Fischer (Yale)
- Hong Jiang (Google)
- René Peralta (NIST)
- Eric Ruppert (York)

< 🗇 🕨

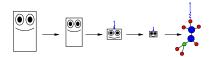
4 B K 4 B K

Population protocols Stable computations Stably computable predicates

The past and future of computing

Economics of mass production push computer systems toward large numbers of very limited standardized components:

- Centralized systems
- Distributed systems
- Wireless distributed systems
- Sensor networks/RFID chips
- Smart molecules?



Our goal: take the limit of this process.

イロト イヨト イヨト イヨト

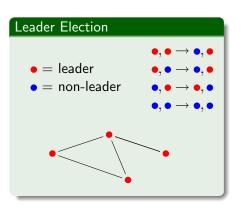
Randomized population protocols Fast robust approximate majority Conclusions Population protocols Stable computations Stably computable predicates

Population protocols

• A population protocol

(Angluin, Aspnes, Diamadi, Fischer, and Peralta, PODC 2004) consists of a collection of finite-state agents organized in an interaction graph.

- An interaction between two neighbors updates the state of *both agents* according to a joint transition function.
- Interactions are asymmetric: one agent is the initiator and one the responder.



イロト イヨト イヨト イヨト

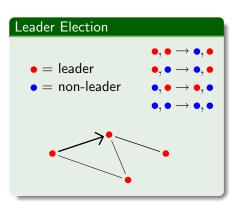
Randomized population protocols Fast robust approximate majority Conclusions Population protocols Stable computations Stably computable predicates

Population protocols

• A population protocol

(Angluin, Aspnes, Diamadi, Fischer, and Peralta, PODC 2004) consists of a collection of finite-state agents organized in an interaction graph.

- An interaction between two neighbors updates the state of *both agents* according to a joint transition function.
- Interactions are asymmetric: one agent is the initiator and one the responder.



イロト イヨト イヨト イヨト

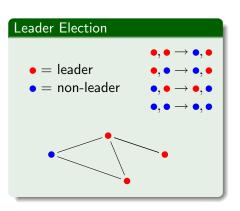
Randomized population protocols Fast robust approximate majority Conclusions Population protocols Stable computations Stably computable predicates

Population protocols

• A population protocol

(Angluin, Aspnes, Diamadi, Fischer, and Peralta, PODC 2004) consists of a collection of finite-state agents organized in an interaction graph.

- An interaction between two neighbors updates the state of *both agents* according to a joint transition function.
- Interactions are asymmetric: one agent is the initiator and one the responder.



イロト イヨト イヨト イヨト

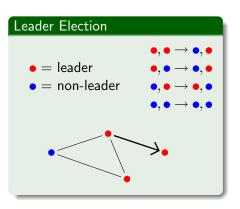
Randomized population protocols Fast robust approximate majority Conclusions Population protocols Stable computations Stably computable predicates

Population protocols

• A population protocol

(Angluin, Aspnes, Diamadi, Fischer, and Peralta, PODC 2004) consists of a collection of finite-state agents organized in an interaction graph.

- An interaction between two neighbors updates the state of *both agents* according to a joint transition function.
- Interactions are asymmetric: one agent is the initiator and one the responder.



イロト イヨト イヨト イヨト

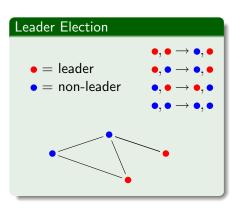
Randomized population protocols Fast robust approximate majority Conclusions Population protocols Stable computations Stably computable predicates

Population protocols

• A population protocol

(Angluin, Aspnes, Diamadi, Fischer, and Peralta, PODC 2004) consists of a collection of finite-state agents organized in an interaction graph.

- An interaction between two neighbors updates the state of *both agents* according to a joint transition function.
- Interactions are asymmetric: one agent is the initiator and one the responder.



イロト イヨト イヨト イヨト

Randomized population protocols Fast robust approximate majority Conclusions Population protocols Stable computations Stably computable predicates

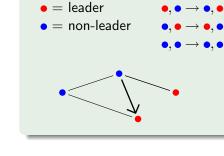
Leader Election

Population protocols

• A population protocol

(Angluin, Aspnes, Diamadi, Fischer, and Peralta, PODC 2004) consists of a collection of finite-state agents organized in an interaction graph.

- An interaction between two neighbors updates the state of *both agents* according to a joint transition function.
- Interactions are asymmetric: one agent is the initiator and one the responder.



イロト イヨト イヨト イヨト

 $\bullet, \bullet \rightarrow \bullet, \bullet$

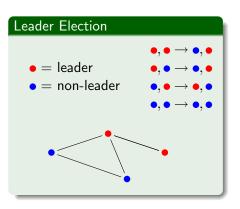
Randomized population protocols Fast robust approximate majority Conclusions Population protocols Stable computations Stably computable predicates

Population protocols

• A population protocol

(Angluin, Aspnes, Diamadi, Fischer, and Peralta, PODC 2004) consists of a collection of finite-state agents organized in an interaction graph.

- An interaction between two neighbors updates the state of *both agents* according to a joint transition function.
- Interactions are asymmetric: one agent is the initiator and one the responder.



イロト イヨト イヨト イヨト

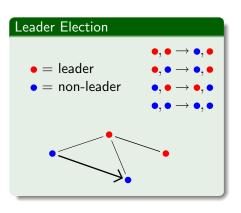
Randomized population protocols Fast robust approximate majority Conclusions Population protocols Stable computations Stably computable predicates

Population protocols

• A population protocol

(Angluin, Aspnes, Diamadi, Fischer, and Peralta, PODC 2004) consists of a collection of finite-state agents organized in an interaction graph.

- An interaction between two neighbors updates the state of *both agents* according to a joint transition function.
- Interactions are asymmetric: one agent is the initiator and one the responder.



イロト イヨト イヨト イヨト

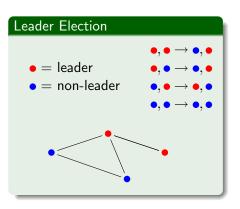
Randomized population protocols Fast robust approximate majority Conclusions Population protocols Stable computations Stably computable predicates

Population protocols

• A population protocol

(Angluin, Aspnes, Diamadi, Fischer, and Peralta, PODC 2004) consists of a collection of finite-state agents organized in an interaction graph.

- An interaction between two neighbors updates the state of *both agents* according to a joint transition function.
- Interactions are asymmetric: one agent is the initiator and one the responder.



イロト イヨト イヨト イヨト

Randomized population protocols Fast robust approximate majority Conclusions Population protocols Stable computations Stably computable predicates

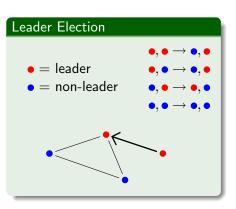
Population protocols

• A population protocol

(Angluin, Aspnes, Diamadi, Fischer, and Peralta, PODC 2004) consists of a collection of finite-state agents organized in an interaction graph.

- An interaction between two neighbors updates the state of *both agents* according to a joint transition function.
- Interactions are asymmetric: one agent is the initiator and one the responder.

June 10th. 2009



<ロ> (四) (四) (日) (日) (日)

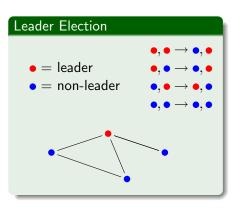
Randomized population protocols Fast robust approximate majority Conclusions Population protocols Stable computations Stably computable predicates

Population protocols

• A population protocol

(Angluin, Aspnes, Diamadi, Fischer, and Peralta, PODC 2004) consists of a collection of finite-state agents organized in an interaction graph.

- An interaction between two neighbors updates the state of *both agents* according to a joint transition function.
- Interactions are asymmetric: one agent is the initiator and one the responder.



イロト イヨト イヨト イヨト

Randomized population protocols Fast robust approximate majority Conclusions Population protocols Stable computations Stably computable predicates

- Input map converts inputs (at each agent) to initial states.
- Output map extracts outputs from states.
- A stable computation converges to the same output at all agents.
- Fairness condition enforces that any reachable state is eventually reached.

Parity	
In:	$0*, 0* \rightarrow 0, 0*$
$x \to x*$	$0*, 1* \rightarrow 1, 1*$
	$1*, 0* \rightarrow 1, 1*$
Out:	$1*, 1* \rightarrow 0, 0*$
$x \to x$	$x, y* \rightarrow y*, y$
$x* \rightarrow x$	$x*, y \rightarrow x, x*$
0*	1*

Randomized population protocols Fast robust approximate majority Conclusions Population protocols Stable computations Stably computable predicates

- Input map converts inputs (at each agent) to initial states.
- Output map extracts outputs from states.
- A stable computation converges to the same output at all agents.
- Fairness condition enforces that any reachable state is eventually reached.

Parity	
In:	$0*, 0* \rightarrow 0, 0*$
$x \rightarrow x*$	$0*, 1* \rightarrow 1, 1*$
	$1*, 0* \rightarrow 1, 1*$
Out:	$1*, 1* \rightarrow 0, 0*$
$x \to x$	$x, y* \rightarrow y*, y$
$x* \rightarrow x$	$x*, y \rightarrow x, x*$
0*	>1* 0* 1*

Randomized population protocols Fast robust approximate majority Conclusions Population protocols Stable computations Stably computable predicates

Stable computations

- Input map converts inputs (at each agent) to initial states.
- Output map extracts outputs from states.
- A stable computation converges to the same output at all agents.
- Fairness condition enforces that any reachable state is eventually reached.

Parity	
In:	$0*, 0* \rightarrow 0, 0*$
$x \rightarrow x*$	$0*, 1* \rightarrow 1, 1*$
	$1*, 0* \rightarrow 1, 1*$
Out:	$1*, 1* \rightarrow 0, 0*$
$x \to x$	$x, y* \rightarrow y*, y$
$x* \rightarrow x$	$x*, y \rightarrow x, x*$
1	

< (T) >

Randomized population protocols Fast robust approximate majority Conclusions Population protocols Stable computations Stably computable predicates

- Input map converts inputs (at each agent) to initial states.
- Output map extracts outputs from states.
- A stable computation converges to the same output at all agents.
- Fairness condition enforces that any reachable state is eventually reached.

Parity	
In:	$0*, 0* \rightarrow 0, 0*$
$x \rightarrow x*$	$0*, 1* \rightarrow 1, 1*$
	$1*, 0* \rightarrow 1, 1*$
Out:	$1*, 1* \rightarrow 0, 0*$
$x \to x$	$x, y* \rightarrow y*, y$
$x* \rightarrow x$	$x*, y \rightarrow x, x*$
1	

Randomized population protocols Fast robust approximate majority Conclusions Population protocols Stable computations Stably computable predicates

- Input map converts inputs (at each agent) to initial states.
- Output map extracts outputs from states.
- A stable computation converges to the same output at all agents.
- Fairness condition enforces that any reachable state is eventually reached.

Parity	
In:	$0*, 0* \rightarrow 0, 0*$
$x \to x*$	$0*, 1* \rightarrow 1, 1*$
	$1*, 0* \rightarrow 1, 1*$
Out:	$1*, 1* \rightarrow 0, 0*$
$x \to x$	$x, y* \rightarrow y*, y$
$x* \to x$	$x*, y \rightarrow x, x*$
1	1*

Randomized population protocols Fast robust approximate majority Conclusions Population protocols Stable computations Stably computable predicates

- Input map converts inputs (at each agent) to initial states.
- Output map extracts outputs from states.
- A stable computation converges to the same output at all agents.
- Fairness condition enforces that any reachable state is eventually reached.

Parity	
In:	$0*, 0* \rightarrow 0, 0*$
$x \rightarrow x*$	0*, 1* ightarrow 1, 1*
	$1*, 0* \rightarrow 1, 1*$
Out:	$1*, 1* \rightarrow 0, 0*$
$x \to x$	$x, y* \rightarrow y*, y$
$x* \rightarrow x$	$x*, y \rightarrow x, x*$
1	

Randomized population protocols Fast robust approximate majority Conclusions Population protocols Stable computations Stably computable predicates

- Input map converts inputs (at each agent) to initial states.
- Output map extracts outputs from states.
- A stable computation converges to the same output at all agents.
- Fairness condition enforces that any reachable state is eventually reached.

Parity	
In:	$0*, 0* \rightarrow 0, 0*$
$x \rightarrow x*$	$0*, 1* \rightarrow 1, 1*$
	$1*, 0* \rightarrow 1, 1*$
Out:	$1*, 1* \rightarrow 0, 0*$
$x \to x$	$x, y* \rightarrow y*, y$
$x* \rightarrow x$	$x*, y \rightarrow x, x*$
1	

Randomized population protocols Fast robust approximate majority Conclusions Population protocols Stable computations Stably computable predicates

- Input map converts inputs (at each agent) to initial states.
- Output map extracts outputs from states.
- A stable computation converges to the same output at all agents.
- Fairness condition enforces that any reachable state is eventually reached.

Parity	
In:	$0*, 0* \rightarrow 0, 0*$
$x \rightarrow x*$	$0*, 1* \rightarrow 1, 1*$
	$1*, 0* \rightarrow 1, 1*$
Out:	$1*, 1* \rightarrow 0, 0*$
$x \to x$	$x, y* \rightarrow y*, y$
$x* \rightarrow x$	$x*, y \rightarrow x, x*$
1	

Randomized population protocols Fast robust approximate majority Conclusions Population protocols Stable computations Stably computable predicates

- Input map converts inputs (at each agent) to initial states.
- Output map extracts outputs from states.
- A stable computation converges to the same output at all agents.
- Fairness condition enforces that any reachable state is eventually reached.

Parity	
In:	$0*, 0* \rightarrow 0, 0*$
$x \rightarrow x*$	$0*, 1* \rightarrow 1, 1*$
	$1*, 0* \rightarrow 1, 1*$
Out:	$1*, 1* \rightarrow 0, 0*$
$x \to x$	$x, y* \rightarrow y*, y$
$x* \rightarrow x$	$x*, y \rightarrow x, x*$
1	

Randomized population protocols Fast robust approximate majority Conclusions Population protocols Stable computations Stably computable predicates

- Input map converts inputs (at each agent) to initial states.
- Output map extracts outputs from states.
- A stable computation converges to the same output at all agents.
- Fairness condition enforces that any reachable state is eventually reached.

Parity	
In:	$0*, 0* \rightarrow 0, 0*$
$x \rightarrow x*$	$0*, 1* \rightarrow 1, 1*$
	$1*, 0* \rightarrow 1, 1*$
Out:	$1*, 1* \rightarrow 0, 0*$
$x \to x$	$x, y* \rightarrow y*, y$
$x* \rightarrow x$	$x*, y \rightarrow x, x*$
1	

Randomized population protocols Fast robust approximate majority Conclusions Population protocols Stable computations Stably computable predicates

- Input map converts inputs (at each agent) to initial states.
- Output map extracts outputs from states.
- A stable computation converges to the same output at all agents.
- Fairness condition enforces that any reachable state is eventually reached.

Parity	
In:	$0*, 0* \rightarrow 0, 0*$
$x \rightarrow x*$	$0*, 1* \rightarrow 1, 1*$
	$1*, 0* \rightarrow 1, 1*$
Out:	$1*, 1* \rightarrow 0, 0*$
$x \to x$	$x, y* \rightarrow y*, y$
$x* \rightarrow x$	$x*, y \rightarrow x, x*$
1	0*0

Randomized population protocols Fast robust approximate majority Conclusions Population protocols Stable computations Stably computable predicates

- Input map converts inputs (at each agent) to initial states.
- Output map extracts outputs from states.
- A stable computation converges to the same output at all agents.
- Fairness condition enforces that any reachable state is eventually reached.

Parity	
ln:	$0*, 0* \rightarrow 0, 0*$
$x \to x*$	$0*, 1* \rightarrow 1, 1*$
	$1*, 0* \rightarrow 1, 1*$
Out:	$1*, 1* \rightarrow 0, 0*$
$x \to x$	$x, y* \rightarrow y*, y$
$x* \rightarrow x$	$x*, y \rightarrow x, x*$
1	

Randomized population protocols Fast robust approximate majority Conclusions Population protocols Stable computations Stably computable predicates

- Input map converts inputs (at each agent) to initial states.
- Output map extracts outputs from states.
- A stable computation converges to the same output at all agents.
- Fairness condition enforces that any reachable state is eventually reached.

Parity	
In:	$0*, 0* \rightarrow 0, 0*$
$x \to x*$	$0*, 1* \rightarrow 1, 1*$
	$1*, 0* \rightarrow 1, 1*$
Out:	$1*, 1* \rightarrow 0, 0*$
$x \to x$	$x, y* \rightarrow y*, y$
$x* \to x$	$x*, y \rightarrow x, x*$
	0
1	0
	0*

Randomized population protocols Fast robust approximate majority Conclusions Population protocols Stable computations Stably computable predicates

- Input map converts inputs (at each agent) to initial states.
- Output map extracts outputs from states.
- A stable computation converges to the same output at all agents.
- Fairness condition enforces that any reachable state is eventually reached.

Parity	
In:	$0*, 0* \rightarrow 0, 0*$
$x \to x*$	$0*, 1* \rightarrow 1, 1*$
	$1*, 0* \rightarrow 1, 1*$
Out:	$1*, 1* \rightarrow 0, 0*$
$x \to x$	$x, y* \rightarrow y*, y$
$x* \rightarrow x$	$x*, y \rightarrow x, x*$
1	0_0*

Randomized population protocols Fast robust approximate majority Conclusions Population protocols Stable computations Stably computable predicates

- Input map converts inputs (at each agent) to initial states.
- Output map extracts outputs from states.
- A stable computation converges to the same output at all agents.
- Fairness condition enforces that any reachable state is eventually reached.

Parity	
In:	$0*, 0* \rightarrow 0, 0*$
$x \to x*$	$0*, 1* \rightarrow 1, 1*$
	$1*, 0* \rightarrow 1, 1*$
Out:	$1*, 1* \rightarrow 0, 0*$
$x \to x$	$x, y* \rightarrow y*, y$
$x* \rightarrow x$	$x*, y \rightarrow x, x*$
	0
0*	0
	v

Randomized population protocols Fast robust approximate majority Conclusions Population protocols Stable computations Stably computable predicates

What we can compute

- Trick: represent numbers by tokens scattered across the population.
- Population protocols on connected graphs can stably compute all of first-order Presburger arithmetic on counts of input tokens, including
 - Addition.
 - Subtraction.
 - Multiplication by a constant k.
 - Remainder mod k.
 - \bullet >, <, and =.
 - \land , \lor , \neg , $\forall x$, and $\exists x$, applied to above.
- Example: "Are there at least twice as many 0 bits as 1 bits?"

イロト イヨト イヨト イヨト

Population protocols Stable computations Stably computable predicates

Presburger predicates in disguise

Other ways to define a Presburger predicate:

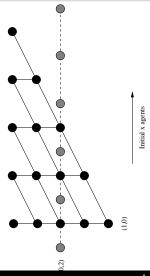
- Take a regular language *L* and forget about the order of symbols in each word.
 - Resulting **Parikh map of a regular set** is Presburger-definable.
 - All Presburger-definable sets can be constructed this way.
 - Cute fact: going to context-free languages doesn't change anything.
- Take a finite union of linear sets of the form

$$\{\vec{b}+k_1\vec{x}_1+k_2\vec{x}_2+\cdots+k_m\vec{x}_m\}.$$

- Resulting semilinear set is Presburger-definable.
- All Presburger-definable sets can be constructed this way.

Randomized population protocols Fast robust approximate majority Conclusions

Example



Population protocols Stable computations Stably computable predicates

・ロン ・四と ・ヨン ・ヨン

4

Population protocols Stable computations Stably computable predicates

Computability of Presburger predicates

- Computable for fixed inputs (Angluin et al., PODC 2004)
- Computable if inputs converge after some finite time (Angluin, Aspnes, Chan, Fischer, Jiang, and Peralta, DCOSS 2005).
- Computable with one-way communication (Angluin, Aspnes, Eisenstat, Ruppert, OPODIS 2005).
- Computable if a small number of agents fail (Delporte-Gallet, Fauconnier, Guerraoui, Ruppert, DCOSS 2006).
- Nothing else is computable on a **complete interaction** graph, i.e. if any agent can interact with any other (Angluin, Aspnes, Eisenstat, PODC 2006).
 - Example: can't compute "Is the number of 0 bits the square of the number of 1 bits?"

イロト イヨト イヨト イヨト

Randomized population protocols Fast robust approximate majority Conclusions Population protocols Stable computations Stably computable predicates

Hooray! We're done!

- Question: If we have an exact characterization of what population protocols can do, aren't we done?
- Answer: No.

イロト イヨト イヨト イヨト

-2

Randomized population protocols Fast robust approximate majority Conclusions Population protocols Stable computations Stably computable predicates

Hooray! We're done!

- Question: If we have an exact characterization of what population protocols can do, aren't we done?
- Answer: No.
 - Bounded-degree interaction graph gives all of LINSPACE (Angluin *et al.*, DCOSS 2005).
 - Random scheduling in a complete graph gives all of LOGSPACE with exponential slowdown using simple techniques (Angluin et al., PODC 2004), or *polylogarithmic* slowdown using more sophisticated techniques (Angluin *et al.*, DISC 2006).
- Random scheduling + complete graph = test-tube full of molecules.

イロト イヨト イヨト イヨト

Register machine simulation Phase clock More advanced operations Results

Randomized population protocols

- Assume next pair of agents to interact is chosen uniformly (i.e. with probability $\frac{1}{N(N-1)}$).
- This gives the **randomized population protocol** model from (Angluin *et al.*, PODC 2004).
- It also is equivalent to the uniform-rate case of the standard model for well-mixed chemical systems (e.g. (Gillespie, 1977)), population processes from the stochastic processes literature ((Kurtz, 1981)), and corresponds closely to the stochastic chemical reaction networks of (Soloveichik *et al.*, 2008).
- Expected **time** is obtained by dividing expected interactions by *N*—each agent interacts at a fixed rate regardless of size of the population.

・ロン ・回 と ・ ヨ と ・ ヨ と

Register machine simulation Phase clock More advanced operations Results

What does this have to do with DNA computing?

Agents	=	Molecules
Agent states	=	Species
Interactions	=	Reactions
Complete interaction graph	=	Well-mixed test tube
Uniform interaction rates	\neq	Varying reaction rates
Conservation of agents	\neq	Synthesis and decomposition

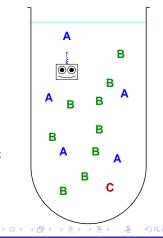
- Disclaimer: I just write transition tables, I don't know if they can be realized in a lab.
- For more chemically realistic models see (Soloveichik, Cook, Winfree, and Bruck, Computing with finite stochastic chemical reaction networks, Natural Computing 7(4):615–633, December 2008).

イロト イヨト イヨト イヨト

Register machine simulation Phase clock More advanced operations Results

A test-tube computer

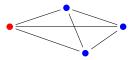
- **Register values** (up to O(N)) are stored as tokens distributed across the population.
- A unique **leader agent** acts as the (finite-state) CPU.
- We want to support the usual operations of addition, subtraction, comparison, multiplication, division, etc.
- We want to do them all in polylogarithmic time (O(N log^{O(1)} N) interactions).
- We'll accept a small $(O(N^{-\Theta(1)}))$ probability of error.



Register machine simulation Phase clock More advanced operations Results

Epidemics

 Key fact: An epidemic starting from one infected agent spreads to all agents in Θ(log N) time with high probability.

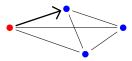


• This gives us a broadcast primitive.

Register machine simulation Phase clock More advanced operations Results

Epidemics

 Key fact: An epidemic starting from one infected agent spreads to all agents in Θ(log N) time with high probability.

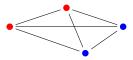


• This gives us a broadcast primitive.

Register machine simulation Phase clock More advanced operations Results

Epidemics

 Key fact: An epidemic starting from one infected agent spreads to all agents in Θ(log N) time with high probability.

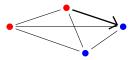


• This gives us a broadcast primitive.

Register machine simulation Phase clock More advanced operations Results

Epidemics

 Key fact: An epidemic starting from one infected agent spreads to all agents in Θ(log N) time with high probability.

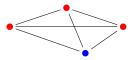


• This gives us a broadcast primitive.

Register machine simulation Phase clock More advanced operations Results

Epidemics

 Key fact: An epidemic starting from one infected agent spreads to all agents in Θ(log N) time with high probability.

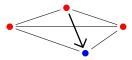


• This gives us a broadcast primitive.

Register machine simulation Phase clock More advanced operations Results

Epidemics

 Key fact: An epidemic starting from one infected agent spreads to all agents in Θ(log N) time with high probability.

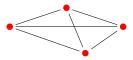


• This gives us a broadcast primitive.

Register machine simulation Phase clock More advanced operations Results

Epidemics

 Key fact: An epidemic starting from one infected agent spreads to all agents in Θ(log N) time with high probability.

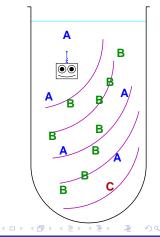


• This gives us a broadcast primitive.

Register machine simulation Phase clock More advanced operations Results

Instruction cycle

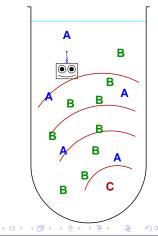
- Leader propagates a new opcode via epidemic.
- Followers carry out chosen operation:
 - *A* ← 0: Erase your *A* token upon receipt of opcode.
 - A ← A + B: Make a new A token for each B token.
 - $A \stackrel{?}{=} 0$: Start a counter-epidemic if you have an A.
 - A > B, A ← A − B, etc.: more complicated.
- Leader collects response (if any) from counter-epidemic, updates its state, and starts a new cycle.



Register machine simulation Phase clock More advanced operations Results

Instruction cycle

- Leader propagates a new opcode via epidemic.
- Followers carry out chosen operation:
 - *A* ← 0: Erase your *A* token upon receipt of opcode.
 - A ← A + B: Make a new A token for each B token.
 - $A \stackrel{?}{=} 0$: Start a counter-epidemic if you have an A.
 - A > B, A ← A − B, etc.: more complicated.
- Leader collects response (if any) from counter-epidemic, updates its state, and starts a new cycle.



Register machine simulation Phase clock More advanced operations Results

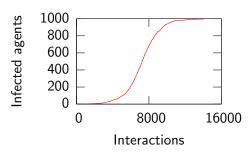
What's missing?

Problem: How does the leader know when to start the next instruction cycle?

イロン イヨン イヨン イヨン

Register machine simulation Phase clock More advanced operations Results

Bounding the time for epidemics

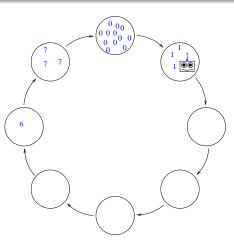


- Average interactions to infect next victim is ^{N(N-1)}/_{i(N-i)}.
- For i > N/2, this is Θ(N/i), the waiting time for coupon collector.
- ⇒ Known coupon collector concentration results (Kamath *et al.*, 1995) bound *i* > N/2 case: Θ(N log N) w.h.p.
- Symmetry bounds *i* > *N*/2 case.

Register machine simulation Phase clock More advanced operations Results

Phase clock

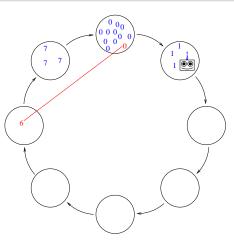
- Each agent is in a phase in the range 0 to *m* − 1.
- An initiator in a later phase mod *m* recruits agents in earlier phases.
- The leader advances if it sees an initiator in its own phase.
- Result: Leader goes all the way around every Θ(log N) time units.



Register machine simulation Phase clock More advanced operations Results

Phase clock

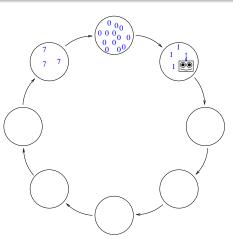
- Each agent is in a phase in the range 0 to *m* − 1.
- An initiator in a later phase mod *m* recruits agents in earlier phases.
- The leader advances if it sees an initiator in its own phase.
- Result: Leader goes all the way around every Θ(log N) time units.



Register machine simulation Phase clock More advanced operations Results

Phase clock

- Each agent is in a phase in the range 0 to *m* − 1.
- An initiator in a later phase mod *m* recruits agents in earlier phases.
- The leader advances if it sees an initiator in its own phase.
- Result: Leader goes all the way around every Θ(log N) time units.

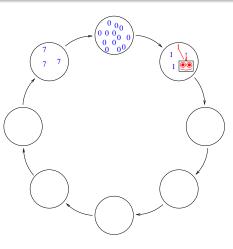


<ロ> (四) (四) (日) (日) (日)

Register machine simulation Phase clock More advanced operations Results

Phase clock

- Each agent is in a phase in the range 0 to *m* − 1.
- An initiator in a later phase mod *m* recruits agents in earlier phases.
- The leader advances if it sees an initiator in its own phase.
- Result: Leader goes all the way around every Θ(log N) time units.

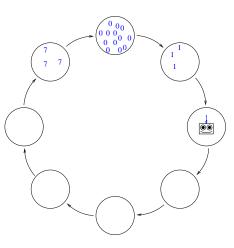


<ロ> (四) (四) (日) (日) (日)

Register machine simulation Phase clock More advanced operations Results

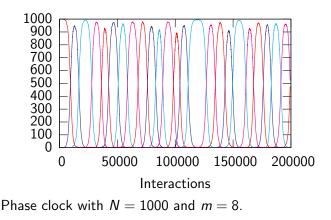
Phase clock

- Each agent is in a phase in the range 0 to *m* − 1.
- An initiator in a later phase mod *m* recruits agents in earlier phases.
- The leader advances if it sees an initiator in its own phase.
- Result: Leader goes all the way around every Θ(log N) time units.



Register machine simulation Phase clock More advanced operations Results

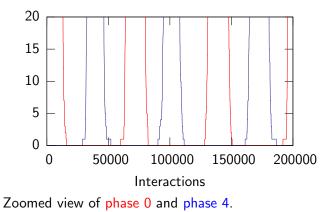
Phase clock: simulation results



・ロン ・回 と ・ ヨ と ・ ヨ と

Register machine simulation Phase clock More advanced operations Results

Phase clock: simulation results



イロン イヨン イヨン イヨン

-2

Register machine simulation Phase clock More advanced operations Results

Why it works

- Phases *i* and higher act as an epidemic wiping out phases *i* - 1 and lower.
- This epidemic finishes in $a \log N$ time (with high probability).
- When the leader advances, it takes at least $b \log N$ time (w.h.p.) to generate at least N^{ϵ} agents in the same phase \Rightarrow leader advances before $b \log N$ time (a short phase) with probability $N^{O(\epsilon)-1}$.
- For a sufficiently large number of phases m, the chance of too many short phases in a row is $O(N^{-c})$.
- Amazing fact: *m* depends on *c* but not *N*.

・ロン ・回 と ・ ヨ と ・ ヨ と

Register machine simulation Phase clock More advanced operations Results

Other operations

- Operations like assignment and addition that don't require tokens to interact can be done in one instruction cycle (O(log N) time).
- Operations that do require interaction may take longer.
 - Naive A [?] > B algorithm: Have A and B tokens cancel until only one kind is left.
 - This takes $\Omega(N^2)$ interactions if there are few A's and B's.
- How can we do cancellation faster?

イロト イポト イヨト イヨト

Register machine simulation Phase clock More advanced operations Results

Cancellation by amplification

- Cancellation is fast if there are many tokens to cancel.
- Solution: Alternate between canceling and doubling.
- Invariant $A_k B_k = 2^k (A_0 B_0)$ after k rounds.
- If no winner in $2 \log N$ rounds, $A_0 = B_0$.
- This gives $A \stackrel{?}{<} B$ in $O(\log^2 N)$ time.

・ロン ・回 と ・ ヨ と ・ ヨ と

Register machine simulation Phase clock More advanced operations Results

Subtraction and division by binary search

- To compute $C \leftarrow A B$, do binary search for C such that A = B + C.
- This takes $O(\log N)$ rounds of binary search at $O(\log^2 N)$ time each $\Rightarrow O(\log^3 N)$ time.
- Similar approach for division gives $O(\log^5 N)$ time. (This is our most expensive operation.)

・ロン ・回 と ・ ヨ と ・ ヨ と

Register machine simulation Phase clock More advanced operations Results

Results

For a randomized population protocol with a unique initial leader, we have:

- Register machine simulation:
 - $\Theta(\log N)$ -bit registers.
 - O(log⁵ N) expected time per operation. (O(log N) in later work.)
 - $O(N^{-c})$ probability of failure.
- Presburger predicate computation:
 - $O(\log^5 N)$ expected time. (Cf. O(N) for previous protocols.)
 - Zero probability of failure.
 - Trick: Combine fast fallible protocol with slow robust one.

Register machine simulation Phase clock More advanced operations Results

- Main problem: Comparisons take too long.
- Solution: See next slide.

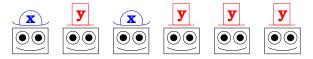
イロン イヨン イヨン イヨン

Goal Mechanism Convergence Robustness Application

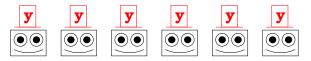
Fast robust approximate majority

(Angluin, Aspnes, and Eisenstat, DISC 2007).

• Start with mixed population of x and y agents:



- **2** Run for $O(\log N)$ time.
- **③** Obtain (with high probability) majority value everywhere:



イロト イポト イヨト イヨ

Goal Mechanism Convergence Robustness Application

Confusion creates blank agents

- Three states: x, y, and b (blank).
- If I see disagreement, I go blank:

- Equally likely to remove an x or a y.
- Never removes last non-blank token.

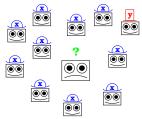
・ロト ・回ト ・ヨト

Goal Mechanism Convergence Robustness Application

Fashion favors the majority

• Blank agents adopt whatever value they see:

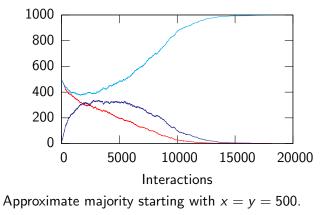
 $\bullet\,$ Favors more common value \Rightarrow pushes towards unanimity.



イロト イヨト イヨト イヨト

Goal Mechanism Convergence Robustness Application

Simulation results

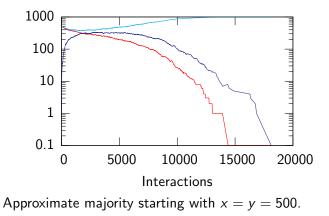


イロン イヨン イヨン イヨン

-2

Goal Mechanism Convergence Robustness Application

Simulation results (log scale)

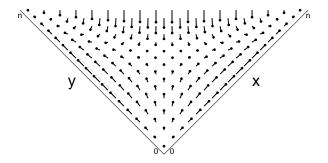


・ロト ・回ト ・ヨト

-

Goal Mechanism Convergence Robustness Application

Configuration space



- Transitions push to y = N and x = N corners.
- Unstable equilibrium at y = x = b.
- Want to show $O(N \log N)$ bound on steps to convergence.

Goal Mechanism Convergence Robustness Application

The proof I wish we had

One thing to try:

- Use standard results on limits of population processes (Kurtz, Wormald) to get system of differential equations.
- Solve them to find convergence bounds in the limit as $N \to \infty$.

But it doesn't work:

- Known limit results only work up to O(N) interactions.
- Small (o(1)) concentrations of agents go to 0 in the limit.
- Resulting differential equations don't have nice solutions anyway.

・ロン ・回 と ・ ヨ と ・ ヨ と

Goal Mechanism Convergence Robustness Application

What we did instead

- Use a potential function to bound number of *xb* and *yb* interactions.
- Basic idea: track u = x y.
 - When |u| is small, acts like random walk: u^2 rises on average.
 - When |u| is big, acts like exponential growth: $\log |u|$ rises on average.
 - Compromise: $f = \log(\frac{3}{2}N + u^2)$ acts like u^2 for small |u| and $\log |u|$ for large |u|.
- Bound *xy* and *yx* interactions by conservation of agents.
- This leaves xx, yy, and bb interactions, but these are rare except in the corners.
- Separate potential functions cover corner cases.
- Final result: $O(N \log N)$ steps with high probability.

・ 回 と ・ ヨ と ・ ヨ と

-2

Goal Mechanism Convergence Robustness Application

Correctness

Majority value is correct if the initial margin is $\omega(\sqrt{N \log N})$

- Couple (u_i) with an unbiased random walk (t_i) so that $|t_i| \le |u_i|$
 - $\Pr[u \text{ increases}] \ge 1/2 \text{ for } u \ge 0$
 - $\Pr[u \text{ decreases}] \ge 1/2 \text{ for } u \le 0$
- Suppose $t_0 = u_0 = x_0 y_0 = \omega(\sqrt{N \log N})$
- With high probability, random walk t_i is positive for $\Theta(N \log N)$ steps $\Rightarrow x$ wins.
- Argue symmetrically for y.

This even works if $o(\sqrt{N})$ agents are **Byzantine**, meaning they can pretend to have any value in any interaction.

イロト イヨト イヨト イヨト

Goal Mechanism Convergence Robustness Application

Application

- Previous register machine simulation
- + fast comparison operation
- + some other tricks
- = $O(\log N)$ -time register machine operations.
- This is optimal.

イロン イヨン イヨン イヨン

-1

Can we build it?

- I can't, but maybe somebody here can.
- Fast robust approximate majority is both simple and fault-resistant.
- Other protocols are more elaborate and more brittle.

イロト イヨト イヨト イヨト

Can we analyze it?

- Brute force analysis works, but isn't pretty.
- Can't even analyze majority with 3 non-blank token types.
- Better tools are needed.
- But ability to do computation limits what we can do.

More information:

http://www.cs.yale.edu/homes/aspnes/introduction-to-population-protocols-abstract.html.

イロト イポト イヨト イヨト