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The past and future of computing

Economics of mass production push computer systems toward
large numbers of very limited standardized components:

Centralized systems

Distributed systems

Wireless distributed systems

Sensor networks/RFID chips

Smart molecules?

Our goal: take the limit of this process.
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Population protocols

A population protocol
(Angluin, Aspnes, Diamadi,
Fischer, and Peralta, PODC
2004) consists of a
collection of finite-state
agents organized in an
interaction graph.

An interaction between two
neighbors updates the state
of both agents according to
a joint transition function.

Interactions are asymmetric:
one agent is the initiator
and one the responder.

Leader Election

= leader
= non-leader

, → ,
, → ,
, → ,
, → ,
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Stable computations

Input map converts inputs
(at each agent) to initial
states.

Output map extracts
outputs from states.

A stable computation
converges to the same
output at all agents.

Fairness condition enforces
that any reachable state is
eventually reached.

Parity

In:
x → x∗

Out:
x → x

x∗ → x

0∗, 0∗ → 0, 0∗
0∗, 1∗ → 1, 1∗
1∗, 0∗ → 1, 1∗
1∗, 1∗ → 0, 0∗
x , y∗ → y∗, y
x∗, y → x , x∗

0*

1*

0*

1*
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What we can compute

Trick: represent numbers by tokens scattered across the
population.

Population protocols on connected graphs can stably
compute all of first-order Presburger arithmetic on counts
of input tokens, including

Addition.
Subtraction.
Multiplication by a constant k.
Remainder mod k.
>, <, and =.
∧, ∨, ¬, ∀x , and ∃x , applied to above.

Example: “Are there at least twice as many 0 bits as 1 bits?”
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Presburger predicates in disguise

Other ways to define a Presburger predicate:

Take a regular language L and forget about the order of
symbols in each word.

Resulting Parikh map of a regular set is
Presburger-definable.
All Presburger-definable sets can be constructed this way.
Cute fact: going to context-free languages doesn’t change
anything.

Take a finite union of linear sets of the form

{~b + k1~x1 + k2~x2 + · · ·+ km~xm}.

Resulting semilinear set is Presburger-definable.
All Presburger-definable sets can be constructed this way.
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Example
In

iti
al

y 
ag

en
ts

(1
,0

)

(0
,2

)
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 x

 a
ge

nt
s

A semilinear set S , equal to the union of

{(1, 0) + k1(1, 0) + k2(2, 1)} (dark circles), and
{(0, 2) + k3(2, 0)} (shaded circles).

Formula:

((x mod 2 = 1) ∧ (2y + 1 ≥ x)) ∨ ((x = 2) ∧ (y mod 2 = 0)).
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Computability of Presburger predicates

Computable for fixed inputs (Angluin et al., PODC 2004)

Computable if inputs converge after some finite time (Angluin,
Aspnes, Chan, Fischer, Jiang, and Peralta, DCOSS 2005).

Computable with one-way communication (Angluin, Aspnes,
Eisenstat, Ruppert, OPODIS 2005).

Computable if a small number of agents fail (Delporte-Gallet,
Fauconnier, Guerraoui, Ruppert, DCOSS 2006).

Nothing else is computable on a complete interaction
graph, i.e. if any agent can interact with any other (Angluin,
Aspnes, Eisenstat, PODC 2006).

Example: can’t compute “Is the number of 0 bits the square of
the number of 1 bits?”
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Hooray! We’re done!

Question: If we have an exact characterization of what
population protocols can do, aren’t we done?

Answer: No.

Bounded-degree interaction graph gives all of LINSPACE
(Angluin et al., DCOSS 2005).
Random scheduling in a complete graph gives all of
LOGSPACE with exponential slowdown using simple
techniques (Angluin et al., PODC 2004), or polylogarithmic
slowdown using more sophisticated techniques (Angluin et al.,
DISC 2006).

Random scheduling + complete graph = test-tube full of
molecules.
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Randomized population protocols

Assume next pair of agents to interact is chosen uniformly
(i.e. with probability 1

N(N−1)).

This gives the randomized population protocol model from
(Angluin et al., PODC 2004).

It also is equivalent to the uniform-rate case of the standard
model for well-mixed chemical systems (e.g. (Gillespie, 1977)),
population processes from the stochastic processes literature
((Kurtz, 1981)), and corresponds closely to the stochastic
chemical reaction networks of (Soloveichik et al., 2008).

Expected time is obtained by dividing expected interactions
by N—each agent interacts at a fixed rate regardless of size of
the population.
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What does this have to do with DNA computing?

Agents = Molecules
Agent states = Species
Interactions = Reactions

Complete interaction graph = Well-mixed test tube
Uniform interaction rates 6= Varying reaction rates
Conservation of agents 6= Synthesis and decomposition

Disclaimer: I just write transition tables, I don’t know if they
can be realized in a lab.

For more chemically realistic models see (Soloveichik, Cook,
Winfree, and Bruck, Computing with finite stochastic
chemical reaction networks, Natural Computing 7(4):615–633,
December 2008).
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A test-tube computer

Register values (up to O(N)) are stored
as tokens distributed across the
population.

A unique leader agent acts as the
(finite-state) CPU.

We want to support the usual operations
of addition, subtraction, comparison,
multiplication, division, etc.

We want to do them all in polylogarithmic
time (O(N logO(1) N) interactions).

We’ll accept a small (O(N−Θ(1)))
probability of error.

A

A

A
A

A

B

B

B

B

B

B

B

B

B

C
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Epidemics

Key fact: An epidemic starting from one infected agent
spreads to all agents in Θ(log N) time with high probability.

This gives us a broadcast primitive.
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Instruction cycle

Leader propagates a new opcode via
epidemic.

Followers carry out chosen operation:

A← 0: Erase your A token upon receipt
of opcode.
A← A + B: Make a new A token for
each B token.
A

?
= 0: Start a counter-epidemic if you

have an A.
A > B, A← A− B, etc.: more
complicated.

Leader collects response (if any) from
counter-epidemic, updates its state, and
starts a new cycle.

A

A

A
A

A

B

B

B

B

B

B

B

B

B

C

June 10th, 2009 DNA15: Population Protocols



Population protocols
Randomized population protocols
Fast robust approximate majority

Conclusions

Register machine simulation
Phase clock
More advanced operations
Results

Instruction cycle

Leader propagates a new opcode via
epidemic.

Followers carry out chosen operation:

A← 0: Erase your A token upon receipt
of opcode.
A← A + B: Make a new A token for
each B token.
A

?
= 0: Start a counter-epidemic if you

have an A.
A > B, A← A− B, etc.: more
complicated.

Leader collects response (if any) from
counter-epidemic, updates its state, and
starts a new cycle.

A

A

A
A

A

B

B

B

B

B

B

B

B

B

C

June 10th, 2009 DNA15: Population Protocols



Population protocols
Randomized population protocols
Fast robust approximate majority

Conclusions

Register machine simulation
Phase clock
More advanced operations
Results

What’s missing?

Problem: How does the leader know when to start the next
instruction cycle?
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Bounding the time for epidemics
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Interactions

Average interactions to
infect next victim is N(N−1)

i(N−i) .

For i > N/2, this is Θ(N/i),
the waiting time for coupon
collector.

⇒ Known coupon collector
concentration results
(Kamath et al., 1995)
bound i > N/2 case:
Θ(N log N) w.h.p.

Symmetry bounds i > N/2
case.
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Phase clock

Each agent is in a phase in
the range 0 to m − 1.

An initiator in a later phase
modm recruits agents in
earlier phases.

The leader advances if it
sees an initiator in its own
phase.

Result: Leader goes all the
way around every Θ(log N)
time units.
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Phase clock: simulation results
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Phase clock with N = 1000 and m = 8.

June 10th, 2009 DNA15: Population Protocols



Population protocols
Randomized population protocols
Fast robust approximate majority

Conclusions

Register machine simulation
Phase clock
More advanced operations
Results

Phase clock: simulation results
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Why it works

Phases i and higher act as an epidemic wiping out phases
i − 1 and lower.

This epidemic finishes in a log N time (with high probability).

When the leader advances, it takes at least b log N time
(w.h.p.) to generate at least Nε agents in the same phase ⇒
leader advances before b log N time (a short phase) with
probability NO(ε)−1.

For a sufficiently large number of phases m, the chance of too
many short phases in a row is O(N−c).

Amazing fact: m depends on c but not N.
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Other operations

Operations like assignment and addition that don’t require
tokens to interact can be done in one instruction cycle
(O(log N) time).

Operations that do require interaction may take longer.

Naive A
?
> B algorithm: Have A and B tokens cancel until

only one kind is left.
This takes Ω(N2) interactions if there are few A’s and B’s.

How can we do cancellation faster?

June 10th, 2009 DNA15: Population Protocols



Population protocols
Randomized population protocols
Fast robust approximate majority

Conclusions

Register machine simulation
Phase clock
More advanced operations
Results

Cancellation by amplification

Cancellation is fast if there are many tokens to cancel.

Solution: Alternate between canceling and doubling.

Invariant Ak − Bk = 2k(A0 − B0) after k rounds.

If no winner in 2 log N rounds, A0 = B0.

This gives A
?
< B in O(log2 N) time.
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Subtraction and division by binary search

To compute C ← A− B, do binary search for C such that
A = B + C .

This takes O(log N) rounds of binary search at O(log2 N)
time each ⇒ O(log3 N) time.

Similar approach for division gives O(log5 N) time. (This is
our most expensive operation.)
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Results

For a randomized population protocol with a unique initial leader,
we have:

Register machine simulation:

Θ(log N)-bit registers.
O(log5 N) expected time per operation. (O(log N) in later
work.)
O(N−c) probability of failure.

Presburger predicate computation:

O(log5 N) expected time. (Cf. O(N) for previous protocols.)
Zero probability of failure.
Trick: Combine fast fallible protocol with slow robust one.
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Why O(log5 N)?

Main problem: Comparisons take too long.

Solution: See next slide.
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Fast robust approximate majority

(Angluin, Aspnes, and Eisenstat, DISC 2007).

1 Start with mixed population of x and y agents:

yx x y y y

2 Run for O(log N) time.

3 Obtain (with high probability) majority value everywhere:

y y y yy y
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Confusion creates blank agents

Three states: x , y , and b (blank).

If I see disagreement, I go blank:
x ?xy ?yy x

Equally likely to remove an x or a y .

Never removes last non-blank token.
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Fashion favors the majority

Blank agents adopt whatever value they see:
x x? x

yy y?

Favors more common value ⇒ pushes towards unanimity.
x

x

x

x

x

?

x

x

x

x
y

x
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Simulation results
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Approximate majority starting with x = y = 500.
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Simulation results (log scale)
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Configuration space

xy

00

nn

Transitions push to y = N and x = N corners.

Unstable equilibrium at y = x = b.

Want to show O(N log N) bound on steps to convergence.

June 10th, 2009 DNA15: Population Protocols



Population protocols
Randomized population protocols
Fast robust approximate majority

Conclusions

Goal
Mechanism
Convergence
Robustness
Application

The proof I wish we had

One thing to try:

Use standard results on limits of population processes (Kurtz,
Wormald) to get system of differential equations.

Solve them to find convergence bounds in the limit as
N →∞.

But it doesn’t work:

Known limit results only work up to O(N) interactions.

Small (o(1)) concentrations of agents go to 0 in the limit.

Resulting differential equations don’t have nice solutions
anyway.
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What we did instead

Use a potential function to bound number of xb and yb
interactions.

Basic idea: track u = x − y .

When |u| is small, acts like random walk: u2 rises on average.
When |u| is big, acts like exponential growth: log |u| rises on
average.
Compromise: f = log

(
3
2N + u2

)
acts like u2 for small |u| and

log |u| for large |u|.
Bound xy and yx interactions by conservation of agents.

This leaves xx , yy , and bb interactions, but these are rare
except in the corners.

Separate potential functions cover corner cases.

Final result: O(N log N) steps with high probability.
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Correctness

Majority value is correct if the initial margin is ω(
√

N log N)

Couple (ui ) with an unbiased random walk (ti ) so that
|ti | ≤ |ui |

Pr[u increases] ≥ 1/2 for u ≥ 0
Pr[u decreases] ≥ 1/2 for u ≤ 0

Suppose t0 = u0 = x0 − y0 = ω(
√

N log N)

With high probability, random walk ti is positive for
Θ(N log N) steps ⇒ x wins.

Argue symmetrically for y .

This even works if o(
√

N) agents are Byzantine, meaning they
can pretend to have any value in any interaction.
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Application

Previous register machine simulation

+ fast comparison operation

+ some other tricks

= O(log N)-time register machine operations.

This is optimal.
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Can we build it?

I can’t, but maybe somebody here can.

Fast robust approximate majority is both simple and
fault-resistant.

Other protocols are more elaborate and more brittle.
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Can we analyze it?

Brute force analysis works, but isn’t pretty.

Can’t even analyze majority with 3 non-blank token types.

Better tools are needed.

But ability to do computation limits what we can do.

More information:
http://www.cs.yale.edu/homes/aspnes/introduction-to-population-protocols-abstract.html.
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