
Towards a Theory of Data Entanglement ?,??

James Aspnes 1,

Department of Computer Science, Yale University

Joan Feigenbaum 2,

Department of Computer Science, Yale University

Aleksandr Yampolskiy 3,

Oracle Corporation

Sheng Zhong 4,

Department of Computer Science and Engineering, SUNY Buffalo

Abstract

We give a formal model for systems that store data in entangled form. We propose

a new notion of entanglement, called all-or-nothing integrity (AONI) that binds

the users’ data in a way that makes it hard to corrupt the data of any one user

without corrupting the data of all users. AONI can be a useful defense against

negligent or dishonest storage providers who might otherwise be tempted to discard

documents belonging to users without much clout. We show that, if all users use a

fixed standard recovery algorithm, we can implement AONI using a MAC, but, if

some of the users adopt instead a non-standard recovery algorithm provided by the

dishonest storage provider, AONI can no longer be achieved. However, even for the

Preprint submitted to TCS 15 June 2007

latter scenario, we describe a simple entangling mechanism that provides AONI for

a restricted class of destructive adversaries.

Key words: data entanglement, untrusted storage, all-or-nothing integrity,

upgrade attacks.

1 Introduction

Suppose that I provide you with remote storage for your most valuable in-

formation. I may advertise various desirable properties of my service: un-

derground disk farms protected from nuclear attack, daily backups to chis-

eled granite monuments, replication to thousands of sites scattered across the

globe. But what assurance do you have that I will not maliciously delete your

data as soon as your subscription check clears?

If I consider deleting the data of a rich or powerful customer, I may be de-

terred by economic, social, or legal repercussions. The small secret joy I might

? An extended abstract of this paper appeared in the proceedings of 9th European

Symposium on Research in Computer Security.
??This work was supported by the DoD University Research Initiative (URI) ad-

ministered by the Office of Naval Research under Grant N00014-01-1-0795.
Email addresses: aspnes@cs.yale.edu (James Aspnes), jf@cs.yale.edu (Joan

Feigenbaum), alex.yampolskiy@oracle.com (Aleksandr Yampolskiy),

szhong@cse.buffalo.edu (Sheng Zhong).
1 Supported in part by NSF grants CCR-0098078, CNS-0305258, and CNS-0435201.
2 Supported in part by ONR grant N00014-01-1-0795 and NSF grants ITR-0219018

and ITR-0331548.
3 Supported by NSF grants CCR-0098078 and ANI-0207399.
4 Supported by NSF grant CCR-0208972.

2

experience from the thought of the loss will not compensate me for losing a

posted bond, destroying my reputation, or being imprisoned. But if you are

an ordinary customer who does not have much clout, and I see a lucrative

opportunity in altering—or simply neglecting to keep—your data, then deter-

rence loses its effectiveness. Consequently, data of powerful customers end up

being more protected than data of average customers. To convince an average

customer that she will not lose her data at my random whim, I might offer

stronger technical guarantees that I cannot destroy her data without serious

costs. One way to do this would be to link the fate of her documents to the

documents of enough other users that I cannot hope to offend them all with

impunity. We shall call such documents entangled.

Data entanglement was initially suggested as a mechanism for increasing cen-

sorship resistance in document-storage systems, e.g., Dagster [20] and Tan-

gler [14]. These systems split data into blocks in such a way that a single

block becomes part of several documents. New documents are represented

using some number of existing blocks, chosen randomly from the pool, com-

bined with new blocks created using exclusive-or (Dagster) or 3-out-of-4 secret

sharing [18] (Tangler). Dagster and Tangler use entanglement as one of many

mechanisms to prevent a censor from tampering with unpopular data; others

involve disguising the ownership and contents of documents and (in Tangler)

storing documents redundantly.

It is not clear that data entanglement is actually useful for censorship resis-

tance. Instead of having to specifically attack a target document, a censor only

needs to damage any document entangled with the target to achieve his goal.

Instead, we consider data entanglement for a different purpose: protecting the

data from an untrusted storage provider that might be tempted to damage or

3

destroy the data through negligence or malice. Entanglement provides an in-

centive for the storage provider to take extra care in protecting average users’

documents by increasing the cost of errors.

We begin in Section 2 by analyzing the intuitive notion of entanglement pro-

vided by Dagster and Tangler. We show that entanglement as provided by

Dagster and Tangler is not by itself sufficiently strong to deter a dishonest

storage provider from tampering with data, because not enough documents

get deleted on average when destroying a block of a typical document. This

motivates our efforts to obtain a stronger form of an entanglement than the

ones provided by these systems.

In Section 3, we define our general model of entanglement in an untrusted

storage system. Our goal here is to model the entanglement operation itself,

and we do not address the question of where in the system entanglement

occurs. However, we do assume that the storage provider does not carry out

the entangling operation itself, as giving it the users’ raw data would allow it

to store copies that it could selectively return later, even if the entangled store

were lost or damaged. Instead, some trusted third party is assumed to carry

out the entangling operation, and a negligent or malicious storage provider

is modeled separately as a “tamperer” that has access only to the entangled

store.

Section 4 contains our definitions of document dependency, where a doc-

ument cannot be recovered if any document it depends on is lost, and all-or-

nothing integrity, where no document can be recovered if any document is

lost. These definitions allow a system-independent description of the binding

between entangled documents. We then consider how different levels of attacks

4

on the common data store do or do not prevent enforcement of document de-

pendency or all-or-nothing integrity.

In particular, we show that, if all clients use a standard algorithm to recover

their data, then all-or-nothing integrity requires only the ability to detect

tampering using a MAC (Section 5.1); in this model, the standard recovery

algorithm is too polite to return any user’s data if any other user’s data have

been lost. Relying on such fastidiousness provides only a weak guarantee; what

we really want is that all data become irretrievable even by non-standard al-

gorithms if any is lost. We show that this goal is impossible if an adversary

is allowed to both tamper with the common store arbitrarily and provide a

replacement recovery algorithm (Section 5.2). Despite such upgrade attacks,

it is still possible to provide a weaker guarantee that we call symmetric re-

covery, in which each document is equally likely to be destroyed (Section 5.3).

Furthermore, if we restrict the adversary to destructive tampering, which

reduces the amount of information in the common store, all-or-nothing guar-

antees are possible even with upgrade attacks (Section 5.4).

These results provide a first step toward understanding document dependency.

We discuss the strengths and limitations of our approach and offer suggestions

for future work in Section 6.

1.1 Related Work

Entanglement is motivated by the goal of deterring data tampering by un-

trusted servers, a more general problem that has been studied extensively.

Entanglement has been used specifically in Dagster [20] and Tangler [14], as

5

we describe in Section 2. Other approaches to preventing or deterring tamper-

ing include replication across global networks of tamper-resistant servers [1,

3, 4, 8, 16, 21] or tamper detection [5–7, 11–13, 19] using digital signatures and

Merkle hash trees [15]. Replication protects against data loss if a small number

of servers are compromised; tamper detection prevents data loss from going

unnoticed. Both techniques complement the entanglement approach consid-

ered here.

All-or-nothing integrity as defined in the present work is related to the guar-

antee provided by the all-or-nothing transform proposed by Rivest [17].

An all-or-nothing transform is an invertible transform that guarantees that

no bits of the preimage can be recovered if ` bits of the image are lost. All-

or-nothing transforms are not directly applicable to our problem, because we

consider the more general case in which the image may be corrupted in other

ways, such as by superencryption 5 or alteration of part or all of the common

store.

2 Dagster and Tangler

In Sections 2.1 and 2.2, we review how Dagster [20] and Tangler [14] work,

concentrating on their operations at a block level. For simplicity, we assume

that each user’s document is small enough to fit into a single server block

and needs not be split up into pieces. In Section 2.3, we analyze the resulting

entangling effects and show their shortcomings for protecting data from a

5 In a superencryption attack, the adversary encrypts the data store under some

key and then blackmails the users into paying him money in exchange for the key.

We discuss different kinds of adversarial attacks in Section 3.2.

6

negligent storage provider. This analysis motivates us to introduce stronger

notions of entanglement in Section 4.

2.1 Dagster

The Dagster storage system may run on a single server or on a P2P overlay

network. Each document in Dagster consists of c+1 server blocks: c blocks of

older documents and one new block, an exclusive-or of previous blocks with

the document. The c+1 blocks that must be XORed to recover the document

are listed in a Dagster Resource Locator (DRL). The storage protocol

proceeds as follows:

Initialization Upon startup, the server creates approximately 1, 000 random

server blocks. Each user i generates a private key ki.

Entanglement To publish document di, user i chooses c random server

blocks Ci1 , . . . , Cic and computes a new block

Ci = Eki
(di)⊕

⊕
j=1...c

Cij ,

where E is a secure encryption function and ⊕ is bitwise exclusive-or. Hashes

of blocks needed to reconstruct di are recorded in a DRL:

(
ki, π [H(Ci), H(Ci1), H(Ci2), . . . , H(Cic)]

)
.

Here H(·) is a cryptographic hash function, and π is a random permutation.

Recovery To recover di, the user asks the server for blocks in di’s DRL. If

hashes of the blocks returned by the server match the ones in the DRL, the

user computes:

Dki

Ci ⊕
⊕

j=1...c

Cij

 ,

7

where D is a decryption function. Otherwise, the user exits.

2.2 Tangler

The Tangler storage system uses (3, 4) Shamir secret sharing [18] to entan-

gle the data: Each document is represented by four server blocks, any three

of which are sufficient to reconstruct the original document. The blocks get

replicated across a subset of Tangler servers. Hashes of blocks are recorded in

a data structure, similar to Dagster Resource Locator, called an inode. Here

is the storage protocol:

Initialization As in Dagster, the server is jump-started with a bunch of ran-

dom blocks.

Entanglement Each server block in Tangler is a pair (x, y), where x ∈

GF (216), and y is the value of a polynomial at x. To publish di, user i

downloads two random server blocks, Ci1 and Ci2 , and interpolates them

with (0, di) to form a quadratic polynomial f(·). He evaluates f(·) at two

random (non-zero) integers to get new blocks, C ′
i1

and C ′
i2
, uploads the new

blocks, and records the hashes of blocks comprising di (viz., Ci1 , Ci2 , C
′
i1
, C ′

i2
)

in the inode.

Recovery To recover his document, user i sends a request for blocks in di’s

inode to a subset of Tangler servers. Upon receiving three of di’s blocks, the

user can reconstruct f(·) and compute di = f(0).

8

2.3 Analysis of Entanglement

At a given point in time, a Dagster or Tangler server contains a set of blocks

{C1, . . . , Cm} comprising documents {d1, . . . , dn} of a set of users. (Here m, n ∈

N and m ≥ n.) Data are partitioned in a way that each block becomes a part

of several documents. We can draw an entanglement graph (see Figure 1),

which has an edge (dj, Ck) if block Ck belongs to document dj. This connection

is rather tenuous—even if (dj, Ck) is in the graph, it may still be possible to

reconstruct dj from blocks excluding Ck. Document nodes in Dagster’s entan-

glement graph have out-degree c + 1, and those in Tangler’s have out-degree

4. Entangled documents share one or more server blocks. In Figure 1, docu-

ments d1 and dn are entangled because they share server block C1; meanwhile,

documents d1 and d2 are not entangled.

This shared-block notion of entanglement has several drawbacks. Even if doc-

ument dj is entangled with a specific document, it may still be possible to

delete dj from the server without affecting that particular document. For ex-

ample, knowing that dn is entangled with d1 (as in Figure 1) and that d1 is

owned by some Very Important Person may give solace to the owner of dn,

who might assume that no adversary would dare incur the wrath of the VIP

merely to destroy dn. But in the situation depicted in the figure, the adversary

can still delete server blocks C2 and Cm corrupt dn but not d1.

The resulting dependence between documents is thus very weak. We now

derive an upper bound on how many documents get destroyed if we delete a

random document from a Dagster or Tangler server. One might expect that

the earlier the document was uploaded to the server, the more documents

9

…

d1

dn

d2

C1

C2

Cn

Fig. 1. An entanglement graph is a bipartite graph from the set of documents to

the set of server blocks. Edge (dj , Ck) is in the graph if server block Ck can be used

to reconstruct document dj .

10

it will be entangled with and the more other documents will be destroyed.

This turns out to be the case, as we prove for any specific target document in

Lemmas 1 and 2.

2.3.1 Deleting a Targeted Document

We consider a restricted adversary, who randomly chooses several blocks of

an arbitrary document (one block in Dagster; two in Tangler) and overwrites

them with zeroes. How many other documents will it destroy?

Without loss of generality, we assume that documents are numbered in the

order in which they were uploaded; namely, for all 1 ≤ j < n, document dj

was uploaded to the server before dj+1. Then, we have:

Lemma 1 In a Dagster server with n0 = O(1) initial blocks and n documents,

where each document is linked with c pre-existing blocks, deleting a random

block of document dj (1 ≤ j ≤ n) destroys on average

O

(
c log

(
n

j

))

other documents.

PROOF. Altogether, there are n0 + n blocks stored on the server: n0 initial

blocks and n data blocks. We label the data blocks C1, . . . , Cn. The initial

blocks exist on the server before any data blocks have been added. We label

them C−n0+1, . . . , C0.

Every document dj consists of c pre-existing or “old” blocks 6 and a “new”

data block Cj that is computed during the entanglement stage. Consider an

6 These may be either initial blocks or data blocks of documents added earlier than

11

adversary who destroys a random block Ci of dj. This will destroy dj, but it

will also destroy any documents with outgoing edges to Ci in the entanglement

graph. We would like to compute the number of such documents, Ni.

If Ci is a data block (i.e., i ≥ 1), then

E[Ni] =
n∑

k=i

Pr[dk has an edge to Ci]

= 1 +
n∑

k=i+1

(
1−

(
k − 2 + n0

c

)
/

(
k − 1 + n0

c

))

= 1 + c
n+n0−1∑
j=i+n0

1

j

= 1 + c(Hn+n0−1 −Hi+n0−1)

= 1 + O
(
c log

(
n

i

))
under the assumption that n0 is a constant.

Meanwhile, if Ci is an initial block (i.e., i < 1), it can be linked by any of the

documents:

E[Ni] =
n∑

k=1

Pr[dk has an edge to Ci]

= O(c log n).

The number of documents deleted on average when the adversary destroys a

random block of dj is

Navg =
1

j + n0

 j∑
i=−n0

E[Ni]

<

1

j

O(c log n) +
j∑

i=1

O
(
c log

(
n

i

)) (1)

We use Stirling’s formula to bound the leading term in (1):

dj (i.e., dk with k < j).

12

j∑
i=1

O
(
c log

(
n

i

))
= O

c log

 j∏
i=1

n

i

= O

(
cj log

(
n

j/e

)
− 1

2
c log (2πj)

)

= O

(
cj log

(
n

j

))
.

The lemma follows. 2

We also have:

Lemma 2 In a Tangler server with n0 = O(1) initial blocks and n documents,

deleting two random blocks of document dj (1 ≤ j ≤ n) destroys on average

O

(
1

j

)

other documents.

PROOF. The server contains n0 + 2n blocks: n0 initial blocks and 2n data

blocks. We label the blocks as in the proof of Theorem 3. The initial blocks

are C−n0+1, . . . , C0, and the data blocks are C1, C2, . . . , C2n−1, C2n.

In Tangler, every document dj consists of two old blocks of pre-existing docu-

ments and two new blocks C2j−1 and C2j, computed during the entanglement

stage. Suppose an adversary deletes any two out of four blocks comprising dj;

call these blocks Ci, Ct. Then any document dk (k 6= j) that contains both Ci

and Ct (viz., has edges outgoing to Ci and Ct in the entanglement graph), will

also get destroyed. We would like to compute the number of such documents,

Navg.

13

In our analysis, we consider whether deleted blocks Ci, Ct are new or old to

dj and dk. We consider five cases:

Case 1: Ci, Ct are old to both dj and dk. For k < j, block k is lost if j chooses

from the 2j − 2 + n0 old blocks available precisely the two old blocks of k.

For k > j, the same occurs if k chooses precisely the two old blocks of j.

Summing over all k, the expected number of deleted documents is

j−1∑
k=1

1(
2j−2+n0

2

) +
n∑

k=j+1

1(
2k−2+n0

2

) .

Case 2: Ci, Ct are old to dj. However, only one of them is old to dk, while the

other is new to dk. In this case, we must have k < j. There are four ways j

can choose an old and a new block of k, giving

j−1∑
k=1

4(
2j−2+n0

2

) .

Case 3: Ci, Ct are old to dj, but new to dk. In this case, we must also have

k < j. The expected loss is

j−1∑
k=1

1(
2j−2+n0

2

) .

Case 4: One of Ci, Ct is old to dj, the other is new to dj. Then both Ci and

Ct must be old to dk (because otherwise we would have k < j, which implies

that the block in Ci, Ct that is new to dj is not linked to dk, which further

implies that dk will not get deleted). As in case 2, there are four ways to

choose one old and one new block for j, giving

n∑
k=j+1

4(
2k−2+n0

2

) .

Case 5: Ci, Ct are new to dj. In this case, both Ci and Ct must be old to dk

(for the same reason as in Case 4). The contribution of this case is

14

n∑
k=j+1

1(
2k−2+n0

2

) .

Summing up the five cases gives us the total number of documents destroyed:

Navg =
6(j − 1)(
2j−2+n0

2

) +
n∑

k=j+1

6(
2k−2+n0

2

)
<

6

2j − 3
+

n∑
k=j+1

3

(k − 3
2
)2

<
6

2j − 3
+
∫ n

j

3

(x− 3
2
)2

dx

=
12

2j − 3
− 6

2n− 3

= O

(
1

j

)
for large n.

2

2.3.2 Deleting a Random Document

The effects of deleting a document chosen uniformly at random, stated in

Theorems 3 and 4, are computed by averaging bounds (given in Lemmas 1

and 2) over all documents:

Theorem 3 In a Dagster server with n documents, where each document

is linked with c pre-existing blocks, deleting a block of a random document

destroys on average O(c) other documents.

PROOF. By Lemma 1, deleting document dj (1 ≤ j ≤ n), affects O (c log(n/j))

other documents. Averaging over all j, we get:

15

1

n

n∑
j=1

O

(
c log

(
n

j

))
= O

 c

n
log

 n∏
j=1

n

j

= O

(
c

n
log

(
nn

(n/e)n

))
= O(c)

as claimed. 2

One might expect the theorem to follow immediately from the fact that each

document depends on c blocks, which means (when n is large enough that

the number of blocks and documents are proportional) that the average block

is used by Θ(c) documents. While such an argument does tell us what hap-

pens if the adversary deletes a block chosen uniformly at random, choosing

a document uniformly at random and then choosing a block from that doc-

ument biases the choice of block toward earlier blocks that are used in more

documents; nonetheless, Theorem 3 shows that this bias provides at most a

constant increase in the destructive effect.

Meanwhile, Lemma 2 tells us that removing document dj from the Tangler

server affects O(1/j) other documents on average. It is immediate that

Theorem 4 In a Tangler server with n documents, deleting two blocks of a

random document destroys on average O
(

log n
n

)
other documents.

Even a small chance of destroying an important document will deter tampering

to some extent, but some tamperers might be willing to run that risk. Still

more troubling is the possibility that the tamperer might first flood the system

with junk documents so that almost all real documents were entangled only

with junk. Since our bounds show that destruction of a typical document

will on average affect only a handful of others in Dagster and almost none in

16

Tangler, we will need stronger entanglement mechanisms if entanglement is to

deter tampering by itself.

3 Our Model

In Section 3.1, we start by giving a basic framework for systems that entangle

data. Specializing the general framework gives specific system models, differ-

entiated by the choice of recovery algorithms and restrictions placed on the

adversary. We discuss them in Section 3.2.

Our model abstracts away many details of storage and recovery processes.

It concentrates on a single entanglement operation that takes documents of a

finite set of users and intertwines these documents to form a common store. In

practice, the server contents would be computed as an aggregation of common

stores from multiple entanglement operations. We defer analyzing this more

complex case to later work; see the discussion of possible extensions to the

model in Section 6.

3.1 Basic Framework

The model consists of an initialization phase, in which keys are generated

and distributed to the various participants in the system; an entanglement

phase, in which the individual users’ data are combined into a common store;

a tampering phase, in which the adversary corrupts the store; and a re-

covery phase, in which the users attempt to retrieve their data from the

corrupted store using one or more recovery algorithms. For simplicity of nota-

tion, we number the users {1, . . . , n}, where every user i possesses a document

17

di that he wants to publish.

Fig. 2. Initialization, entanglement, and tampering stages.

An encoding scheme consists of three probabilistic Turing machines (I, E,R)

that run in time polynomial in the size of their inputs and a security parameter

s. The first of these, the initialization algorithm I, hands out the keys used

in the encoding and recovery phases. The second, the encoding algorithm

E, combines the users’ data into a common store using the encoding key. The

third, the recovery algorithm R, attempts to recover each user’s data using

the appropriate recovery key. The initialization algorithm takes as input the

number of users n and a security parameter s. We assume that the number of

users and the total size of users’ data are polynomial in s.

Acting against the encoding scheme is an adversary (Ǐ , Ť , Ř), which also con-

sists of three probabilistic polynomial-time Turing machines. The first is an

adversary-initialization algorithm Ǐ; like the good initializer I, the evil Ǐ

is responsible for generating keys used by other parts of the adversary during

18

the protocol. The second is a tampering algorithm Ť that modifies the

common store. The third is a non-standard recovery algorithm Ř that

may be used by some or all of the users to recover their data from the modified

store.

We assume that Ǐ, Ť and Ř are chosen after I, E, and R are known but that

a fixed tripe (Ǐ, Ť , and Ř) is used for arbitrarily large values of s and n. This

is necessary for polynomial-time bounds on Ť and Ř to have any effect.

Given an encoding scheme (I, E,R) and an adversary (Ǐ , Ť , Ř), the storage

protocol proceeds as follows (see also Figure 2):

(1) Initialization. The initializer I generates a combining key kE used by

the encoding algorithm and recovery keys k1, k2, . . . kn, where each key ki

is used by the recovery algorithm to recover the data for user i. At the

same time, the adversary initializer Ǐ generates the shared key ǩ for Ť

and Ř.

kE, k1, k2, . . . kn ← I(1s, n),

ǩ ← Ǐ(1s, n).

(2) Entanglement. The encoding algorithm E computes the combined store

C from the combining key kE and the data di:

C ← E(kE, d1, d2, . . . dn).

(3) Tampering. The tamperer Ť transforms the combined store C into Č:

Č ← Ť (ǩ, C).

(4) Recovery. The users attempt to recover their data. User i applies his

19

recovery algorithm Ri to ki and the changed store Č. Each Ri could be

either the standard recovery algorithm R, supplied with the encoding

scheme, or the non-standard algorithm Ř, supplied by the adversary,

depending on the choice of the model.

d′i ← Ri(ki, Č)

We say that user i recovers his data if the output of Ri equals di.

3.2 Adversary Classes

In our model, the adversary corrupts the data store and distributes a new

recovery algorithm, which users may or may not use. It cannot otherwise affect

the operation of the storage server. The model is thus divided on two axes,

one bounding the users’ choices of reconstruction algorithms and the other

bounding the adversary’s power to modify the data store. With respect to

recovery algorithms, we consider three variants on the basic framework (listed

in order of increasing power given to the adversary):

• In the standard-recovery-algorithm model, the users are restricted to a

single standard recovery algorithm R, supplied by the system designer. For-

mally, this means Ri = R for all users i; the adversary’s recovery algorithm

Ř is not used. This is the model used to analyze Dagster and Tangler.

• In the public-recovery-algorithm model, the adversary not only mod-

ifies the combined store, but also supplies a single non-standard recovery

algorithm Ř to all of the users. Formally, we have Ri = Ř for each i. The

original recovery algorithm R is not used. 7

7 Though it may seem unreasonable to prevent users from choosing the original

20

We call this an upgrade attack by analogy to the real-life situation of a

company changing the data format of documents processed by its software

and distributing a new version of the software to read them. We believe

such an attack is a realistic possibility, because most self-interested users

will be happy to adopt a new recovery algorithm if it offers new features or

performance or if the alternative is losing their data.

• In the private-recovery-algorithm model, the adversary may choose to

supply the non-standard recovery algorithm Ř to only a subset of the users.

The rest continue to use the standard algorithm R. Formally, this model is

a mix of the previous two models: Ri = R for some i and Ri = Ř for others.

We also differentiate between two types of tamperers:

• An arbitrary tamperer can freely corrupt the data store and is not re-

stricted in any way. Most real-life systems fit into this category, because

they place no restrictions on the tamperer.

• A destructive tamperer can only apply to the store a transformation

whose range of possible outputs is substantially smaller than the set of in-

puts. The destructive tamperer can superimpose its own encryption on the

common store, transform the store in arbitrary ways, and even add addi-

tional data, provided that the cumulative effect of all these operations is to

decrease the entropy of the data store. Though a destructive tampering as-

sumption may look like an artificial restriction, it subsumes natural models

of block deletion or corruption, and either it or some similar assumption is

needed to achieve all-or-nothing integrity in the private-recovery-algorithm

recovery algorithm R, any R can be rendered useless in practice by superencrypting

the data store and distributing the decryption key only with the adversary’s Ř. We

discuss this issue further in Section 5.2.

21

model.

An adversary class specifies what kind of tamperer Ť is and which users,

if any, receive Ř as their recovery algorithm. Altogether, we consider six ad-

versary classes, each corresponding to a combination of constraints on the

tamperer and the recovery algorithms.

4 Dependency and All-Or-Nothing Integrity

We now give our definition of document dependency for a particular encod-

ing scheme and adversary class. We first discuss some basic definitions and

assumptions in Section 4.1. Our strong notions of entanglement, called depen-

dency and all-or-nothing integrity, are defined formally in Section 4.2.

4.1 Preliminaries

Because we consider protocols involving probabilistic Turing machines, we

must be careful in talking about probabilities. Fix an encoding (I, E,R), an

adversary A = (Ǐ , Ť , Ř), and the recovery algorithm Ri for each user i. An

execution of the resulting system specifies the inputs ki and di to E, the

output of E, the tamperer’s input ǩ and output Č, and the output of the

recovery algorithm Ri (R(ki, Č) or Ř(ǩ, ki, Č) as appropriate) for each user.

The set of possible executions of the storage system is assigned probabilities

in the obvious way: the probability of an execution is taken over the inputs

to the storage system and the coin tosses of the encoding scheme and the

adversary. It will be convenient to consider multiple adversaries with a fixed

encoding scheme. In this case, we use PrA(Q) to denote the probability that

22

an event Q occurs when A is the adversary.

During an execution of the storage system, the tamperer alters the combined

store from C into Č. As a result, some users end up recovering their documents

while others do not. We summarize which users recover their documents in a

recovery vector, which is a vector-valued random variable ~r in which ri = 1

if Ri(ki, Č) = di (i.e., if user i recovers his document) and 0 otherwise. For

example, if the server contains documents d1, d2, and d3 and in an execution

we recover only d1 and d2, then ~r = 110.

4.2 Our Notions of Entanglement

In Section 2, we observed that the block-sharing notion of entanglement pro-

vided by Dagster and Tangler is not adequate for our purposes. This motivates

us to propose the notion of document dependency, which formalizes the

idea that “if my data depends on yours, I can’t get my data back if you can’t.”

In this way, the fates of specific documents become linked together: specifi-

cally, if document di depends on document dj, then whenever dj cannot be

recovered neither can di.

Given just one execution, either users i and j each get their data back or they

don’t. So how can we say that the particular outcome for i depends on the

outcome for j? Essentially, we are saying that we are happy with executions

in which either j recovers its data (whether or not i does) or in which j does

not recover its data and i does not either. Executions in which j does not

recover its data but i does are bad executions in this sense. We will try to

exclude these bad executions by saying that they either never occur or occur

23

only with very low probability. Formally:

Definition 5 A document di depends on a document dj with respect to a

class of adversaries A, denoted di
A
↪→ dj, if, for all adversaries A ∈ A,

Pr
A

[(ri = 1)⇒ (rj = 1)] ≥ 1− ε.

Here and after, ε refers to a negligible function of the security parameter s. 8

The ultimate form of dependency is all-or-nothing integrity. Intuitively, a

storage system is all-or-nothing if either every user i recovers his data or no

user does:

Definition 6 A storage system is all-or-nothing with respect to a class of

adversaries A if, for all A ∈ A,

Pr
A

[~r = 0n ∨ ~r = 1n] ≥ 1− ε.

It is easy to show that

Theorem 7 A storage system is all-or-nothing with respect to a class of ad-

versaries A if and only if, for all users i, j, di
A
↪→ dj.

PROOF. Fix an adversary in A. Let E be the event that an execution of the

storage system is not all-or-nothing, and Fij the event that document di was

recovered in an execution and dj was not. Then E = {~r 6= 0n ∧ ~r 6= 1n} and

Fij = {ri = 1 ∧ rj = 0}.

8 A function ε : N 7→ (0, 1) is negligible if for every c > 0, for all sufficiently large

s, ε(s) < 1/sc. See any standard reference, such as [9], for details.

24

(⇒) : If the system is all-or-nothing, then Pr[E] < ε. Clearly, for all i, j, we

have Fij ⊆ E, which means Pr[Fij] ≤ Pr[E] < ε. This in turn implies

di
A
↪→ dj.

(⇐) : If for all i, j, di
A
↪→ dj, then Pr[Fij] < ε. We can choose ε < ε′/n2 for

a negligible ε′. Notice that E ⊆ ⋃
i,j Fij. Therefore, Pr[E] ≤ ∑

i,j Pr[Fij] <

n2ε < ε′. Hence, Pr[Ec] ≥ 1− ε′ and so the storage system is all-or-nothing.

2

All-or-nothing integrity is a very strong property. In some models, we may not

be able to achieve it, and we will accept a weaker property called symmetric

recovery. Symmetric recovery requires that all users recover their documents

with equal probability:

Definition 8 A storage system has symmetric recovery with respect to a

class of adversaries A if, for all A ∈ A and all users i and j,

Pr
A

[ri = 1] = Pr
A

[rj = 1].

Symmetric recovery says nothing about what happens in particular executions.

For example, it is consistent with the definition for exactly one of the data

items to be recovered in every execution, as long as the adversary cannot affect

which data item is recovered. This is not as strong a property as all-or-nothing

integrity, but it is the best that can be done in some cases.

5 Possibility and Impossibility Results

The possibility of achieving all-or-nothing integrity (abbreviated AONI)

depends on the class of adversaries we consider. In Sections 5.1 through 5.3,

25

we consider adversaries with an arbitrary tamperer. We show that AONI

cannot always be achieved in this case. Then in Section 5.4, we look at adver-

saries with a destructive tamperer. We give a simple interpolation scheme

that achieves all-or-nothing integrity for a destructive tamperer in all three

recovery models.

5.1 Possibility of AONI for Standard-Recovery-Algorithm Model

In the standard-recovery-algorithm model, all users use the standard recovery

algorithm R; that is Ri = R for all users i.

This model allows a very simple mechanism for all-or-nothing integrity based

on Message Authentication Codes (MACs). The intuition behind this mecha-

nism is that the encoding algorithm E simply tags the data store with a MAC

using a key known to all the users, and the recovery algorithm R returns an

individual user’s data only if the MAC on the entire database is valid.

We begin by recalling some standard definitions (see [10]). A MAC consists

of three algorithms (GEN, TAG, V ER):

(1) A key generator GEN on input 1s outputs an s-bit key kMAC .

(2) A tagging algorithm TAG on input kMAC and message m (|m| ≤ sc)

computes a signature σ.

(3) A verification algorithm V ER can be used to check if σ is a valid signature

on m. It has the property that V ER(kMAC , m, TAG(kMAC , m)) = accept

for all m.

We require a MAC to be existentially unforgeable under chosen message

26

attacks. This means there is no polynomial time forger F that generates a

new message-signature pair (m′, σ′) that is accepted by V ER with probability

exceeding O(s−c) for any c > 0, even if F is given a sample of valid message-

signature pairs (mi, σi), where mi is chosen by the adversary.

Our encoding scheme (I, E,R) is based on a MAC scheme (GEN, TAG, V ER)

as follows:

Initialization The initialization algorithm I computes kMAC = GEN(1s). It

then returns an encoding key kE = kMAC and recovery keys ki = (i, kMAC).

Entanglement The encoding algorithm E generates an n-tuple

m = (d1, d2, . . . , dn) and returns C = (m, σ) where σ = TAG(kMAC , m).

Recovery The standard recovery algorithm R takes as input a key ki =

(i, kMAC) and the (possibly modified) store Č = (m̌, σ̌). It returns m̌i if

V ER(kMAC , m̌, σ̌) = accept and returns a default value ⊥ otherwise.

The following theorem states that this encoding scheme achieves all-or-nothing

integrity with standard recovery algorithms:

Theorem 9 Let (GEN, TAG, V ER) be a MAC scheme that is existentially

unforgeable against chosen message attacks, and let (I, E,R) be an encoding

scheme based on this MAC scheme as above. Let A be the class of adversaries

that does not provide non-standard recovery algorithms Ř. Then there exists

some minimum s0 such that for any security parameter s ≥ s0 and any inputs

d1, . . . , dn with
∑ |di| ≤ s, (I, E,R) is all-or-nothing with respect to A.

PROOF. Fix some c > 0. Recall that the adversary changes the combined

store from C = (m, σ) to Č = (m̌, σ̌). We consider two cases, depending on

whether or not m̌ = m.

27

In the first case, m̌ = m. Suppose R(ki, Č) = di but R(kj, Č) 6= dj. Then

R(kj, Č) = ⊥, which implies that V (kMAC , m, σ̌) 6= accept when computed

by R(kj, Č) and thus that σ̌ 6= σ. But R(ki, Č) = di only if V (kMAC , m, σ̌) =

accept when computed by R(ki, Č). It follows that (m, σ̌) is a message-MAC

pair not equal to (m, σ) that V accepts in the execution of R(ki, Č); by the

security assumption this occurs for a particular execution of V only with

probability O(s−c′
) for any fixed c′. If we choose c′ and s0 so that the O(s−c′

)

term is smaller than 1
2n

s−c for s ≥ s0, then the probability that any of the

n executions of V in the recovery stage accepts (m, σ̌) in some case where

m = m̌, is bounded by 1
2
s−c.

In the second case, m 6= m̌. Now (m̌, σ̌) is a message-MAC pair not equal to

(m, σ). If every execution of V rejects (m̌, σ̌), then all R(di, Č) return ⊥ and

the execution has a recovery vector 0n. The only bad case is when at least one

execution of V erroneously accepts (m̌, σ̌). But using the security assumption

and choosing c′, s0 as in the previous case, we again have that the probability

that V accepts (m̌, σ̌) in any of the n executions of R is at most 1
2
s−c.

Summing the probabilities of the two bad cases gives us the desired bound:

PrA[~r = 0n ∨ ~r = 1n] > 1− s−c. 2

5.2 Impossibility of AONI for Public and Private-Recovery-Algorithm Models

In both these models, the adversary modifies the common store and distributes

a non-standard recovery algorithm Ř to the users (either to all users or only to

a few select accomplices). Let us begin by showing that all-or-nothing integrity

cannot be achieved consistently in either case:

28

Theorem 10 For any encoding scheme (I, E,R), if A is the class of ad-

versaries providing non-standard recovery algorithms Ř, then (I, E,R) is not

all-or-nothing with respect to A.

PROOF. Let the adversary initializer Ǐ be a no-op and let the tamperer

Ť be the identity transformation. We will rely entirely on the non-standard

recovery algorithm to destroy all-or-nothing integrity.

Let Ř flip a biased coin that comes up tails with probability 1/n, and return

the result of running R on its input if the coin comes up heads and ⊥ if the coin

comes up tails. Then exactly one document is not returned with probability

n · (1/n) · (1 − 1/n)n−1, which converges to 1/e in the limit. The outcome is

all-or-nothing only if all instances of Ř flip the same way, which occurs with

probability PrA[~r = 0n ∨ ~r = 1n] < 1− 1/e. 2

This proof is rather trivial, which suggests that letting the adversary sub-

stitute an error-prone recovery algorithm in place of the standard one gives

the adversary far too much power. But it is not at all clear how to restrict

the model to allow the adversary to provide an improved recovery algorithm

without allowing for this particular attack. Allowing users to apply the original

recovery algorithm R can be defeated by superencrypting the data store and

burying the decryption key in the error-prone Ř; defeating this attack would

require analyzing Ř to undo the superencryption and remove the errors, a task

that is likely to be difficult in practice. 9

9 Whether it is difficult from a theoretical perspective depends on how well Ř can

be obfuscated. Though obfuscation is impossible in general [2], recovering useful

information from Ř is likely to be difficult in practice, especially if the random choice

29

On the other hand, we do not know of any general mechanism to ensure that

no useful information can be gleaned from Ř, and it is not out of the question

that there is an encoding so transparent that no superencryption can disguise

it for sufficiently large inputs, given that both Ř and the adversary’s key ǩ

are public.

5.3 Possibility of Symmetric Recovery for Public-Recovery-Algorithm Model

As we have seen, if we place no restrictions on the tamperer, it becomes

impossible to achieve all-or-nothing integrity in the public-recovery-algorithm

model. We now show that we can still achieve symmetric recovery.

Because we cannot prevent mass destruction of data, we will settle for prevent-

ing targeted destruction. The basic intuition is that if the encoding process

is symmetric with respect to permutations of the data, then neither the ad-

versary nor its partner, the non-standard recovery algorithm, can distinguish

between different inputs. Symmetry in the encoding algorithm is not difficult

to achieve and basically requires not including any positional information in

the keys or the representation of data in the common store. One example of

a symmetric encoding is a trivial mechanism that tags each input di with a

random ki and then stores a sequence of (di, ki) pairs in random order.

Symmetry in the data is a stronger requirement. We assume that users’ docu-

ments di are independent and identically distributed (i.i.d.) random variables.

If documents are not i.i.d (in particular, if they are fixed), we can use a simple

to decrypt incorrectly is not a single if-then test but is the result of accumulating

error distributed throughout its computation.

30

trick to make them appear i.i.d.: Each user i picks a small number ri inde-

pendently and uniformly at random, remembers the number, and computes

d′i = di ⊕ G(ri), where G is a pseudorandom generator. The new d′i are also

uniform and independent (and thus computationally indistinguishable from

i.i.d.). The users can then store documents d′i (1 ≤ i ≤ n) instead of the

original documents di. To recover di, user i would retrieve d′i from the server

and compute di = d′i ⊕G(ri).

We shall need a formal definition of symmetric encodings:

Definition 11 An encoding scheme (I, E,R) is symmetric if, for any s and

n, any inputs d1, d2, . . . dn, and any permutation π of the indices 1 through n,

the joint distribution of k1, k2, . . . , kn and C in executions with user inputs

d1, d2, . . . dn is computationally indistinguishable from the joint distribution of

kπ1 , kπ2 , . . . , kπn and C in executions with user inputs dπ1 , dπ2 , . . . dπn.

Using this definition, we can show that any symmetric encoding gives sym-

metric recovery:

Theorem 12 Let (I, E,R) be a symmetric encoding scheme. Let A be a class

of adversaries as in Theorem 10. Fix s and n, and let d1, . . . , dn be random

variables that are independent and identically distributed. Then (I, E,R) has

symmetric recovery with respect to A.

PROOF. Fix i and j. From Definition 11 we have that the joint distribution

of the ki and C is symmetric with respect to permutation of the user indices;

in particular, for any fixed d, S and x,

Pr[C = S, ki = x | di = d] = Pr[C = S, kj = x | dj = d]. (2)

31

We also have, from the assumption that the di are i.i.d.,

Pr[di = d] = Pr[dj = d]. (3)

Using (2) and (3), we get

Pr[Ř(ǩ, ki, Ť (C)) = di]

=
∑
x,S,d

Pr[Ř(ǩ, x, Ť (S)) = d] Pr[C = S, ki = x, di = d]

=
∑
x,S,d

Pr[Ř(ǩ, x, Ť (S)) = d] Pr[C = S, ki = x | di = d] Pr[di = d]

=
∑
x,S,d

Pr[Ř(ǩ, x, Ť (S)) = d] Pr[C = S, kj = x | dj = d] Pr[dj = d]

= Pr[Ř(ǩ, kj, Č) = dj].

This is simply another way of writing PrA[ri = 1] = PrA[rj = 1]. 2

5.4 Possibility of AONI for Destructive Adversaries

Given the results of the previous sections, to achieve all-or-nothing integrity

we need to place some additional restrictions on the adversary.

A tampering algorithm Ť is destructive if the range of Ť when applied to

an input domain of m distinct possible data stores has size less than m. The

amount of destructiveness is measured in bits: if the range of Ť when applied

to a domain of size m has size r, then Ť destroys lg m − lg r bits of entropy.

Note that it is not necessarily the case that the outputs of Ť are smaller than

its inputs; it is enough that there be fewer of them.

Below, we describe a particular encoding, based on polynomial interpolation,

with the property that after a sufficiently destructive tampering, the prob-

32

ability that any recovery algorithm can reconstruct a particular di is small.

While this is trivially true for an unrestrained tamperer that destroys all lg m

bits of the common store, our scheme requires only that with n documents

the tamperer destroy slightly more than n lg(n/ε) bits before the probability

that any of the data can be recovered drops below ε (a formal statement of

this result is found in Corollary 14). Since n counts only the number of users

and not the size of the data, for a fixed population of users the number of bits

that can be destroyed before all users lose their data is effectively a constant

independent of the size of the store being tampered with.

The encoding scheme is as follows. It assumes that each data item can be

encoded as an element of Zp, where p is a prime of roughly s bits.

Initialization The initialization algorithm I chooses k1, k2, . . . kn indepen-

dently and uniformly at random without replacement from Zp. It sets kE =

(k1, k2, . . . , kn) and then returns kE, k1, . . . , kn.

Entanglement The encoding algorithm E computes, using Lagrange inter-

polation, the coefficients cn−1, cn−2, . . . , c0 of the unique (n−1)-degree poly-

nomial f over Zp with the property that f(ki) = di for each i = 1, . . . , n. It

returns C = (cn−1, cn−2, . . . , c0).

Recovery The standard recovery algorithm R returns f(ki), where f is the

polynomial whose coefficients are given by C.

Intuitively, the reason the tamperer cannot remove too much entropy without

destroying all data is that it cannot identify which points d = f(k) correspond

to actual user keys. When it maps two polynomials f1 and f2 to the same

corrupted store Č, the best that the non-standard recovery algorithm can do

is return one of f1(ki) or f2(ki) given a particular key ki. But if too many

33

polynomials are mapped to the same Č, the odds that Ř returns the value of

the correct polynomial will be small.

A complication is that a particularly clever adversary could look for polyno-

mials whose values overlap; if f1(k) = f2(k), it doesn’t matter which f the

recovery algorithm picks. But here we can use that fact that two degree (n−1)

polynomials cannot overlap in more than (n− 1) places without being equal.

This limits how much packing the adversary can do.

As in Theorem 12, we assume that the user inputs d1, . . . , dn are chosen in-

dependently and have identical distributions. We make a further assumption

that each di is chosen uniformly from Zp. This is necessary to ensure that the

resulting polynomials span the full pn possibilities. 10

Under these conditions, sufficiently destructive tampering prevents recovery

of any information with high probability. We will show an accurate but incon-

venient bound on this probability in Theorem 13 and give a cruder but more

useful statement of the bound in Corollary 14.

Theorem 13 Let (I, E,R) be defined as above. Let A = (Ǐ , Ť , Ř) be an ad-

versary where Ť is destructive: for a fixed input size and security parameter,

there is a constant M such that for each key ǩ,

|{Ť (ǩ, f)}| ≤M,

where f ranges over the possible store values, i.e. over all degree-(n− 1) poly-

nomials over Zp. If the di are drawn independently and uniformly from Zp,

10 The assumption that the documents are i.i.d. does not constrain the applicability

of our results much, because the technique to get rid of it described in Section 5.2

can also be used here.

34

then the probability that at least one user i recovers di using Ř is

Pr
A

[~r 6= 0n] <
n2 + nM1/n

p
, (4)

even if all users use Ř as their recovery algorithm.

PROOF. Condition on ǩ and the outcome of all coin-flips used by Ť and Ř.

Then, there are exactly pn
(

p
n

)
possible executions, each of equal probability,

determined by the pn choices for the di and the
(

p
n

)
choices for the ki. For each

i, we will show that the number of these executions in which Ř(ǩ, ki, Č) = di

is small.

For each degree-(n − 1) polynomial f , define f ∗ to be the function mapping

each k in Zp to Ř(ǩ, k, Ť (ǩ, f)). Note that f ∗ is deterministic given that we

are conditioning on ǩ and all coin-flips in Ť and Ř. Define Cf , the correct

inputs for f , to be the set of keys k for which f(k) = f ∗(k).

The adversary produces a correct output only if at least one of the n user keys

appears in Cf . For a given f , the probability that none of the keys appear in

Cf is

(
p−|Cf |

n

)
(

p
n

) >
(p− |Cf | − n)n

pn

=

(
1− |Cf |+ n

p

)n

> 1− n(|Cf |+ n)

p
,

and so the probability that at least one key appears in Cf is at most n
p
|Cf |+ n2

p
.

35

Averaging over all f then gives

Pr [f ∗(ki) = di for at least one i] <
n2

p
+

n

pn+1

∑
f

|Cf |. (5)

We will now use the bound on the number of distinct f ∗ to show that
∑

f |Cf |

is small.

Consider the set of all polynomials f1, f2, . . . fm that map to a single function

f ∗, and their corresponding sets of correct keys Cf1 , Cf2 , . . . Cfm . Because any

two degree (n− 1) polynomials are equal if they are equal on any n elements

of Zp, each n-element subset of Zp can be contained in at most one of the Cfi
.

On the other hand, each Cfi
contains exactly

(
|Cfi

|
n

)
subsets of size n. Since

there only
(

p
n

)
subsets of size n to partition between the Cfi

, we have

∑
i

(
|Cfi
|

n

)
≤
(

p

n

)
,

and summing over all M choices of f ∗ then gives

∑
f

(
|Cf |
n

)
≤M

(
p

n

)
.

We now wish to bound the maximum possible value of
∑

f |Cf | given this

constraint.

Observe that
(
|Cf |
n

)
>

(|Cf |−n)n

n!
when |Cf | ≥ n, from which it follows that

∑
f :|Cf |≥n

(|Cf | − n)n < n!
∑
f

(
|Cf |
n

)
< n!M

(
p

n

)
. (6)

Now, (|Cf |−n)n is a convex function of |Cf |, so the left-hand side is minimized

for fixed
∑

f |Cf | by setting all |Cf | equal. It follows that
∑

f |Cf | is maximized

for fixed
∑

f :|Cf |≥n(|Cf | − n)n when all |Cf | are equal.

36

Setting each |Cf | = c and summing over all pn values of f , we get

pn(c− n)n < n!M

(
p

n

)

from which it follows that

c <
1

p

(
n!M

(
p

n

))1/n

+ n,

and thus that

∑
f

|Cf | ≤ pnc < pn−1

(
n!M

(
p

n

))1/n

+ npn.

Plugging this bound back into (5) then gives

Pr
A

[~r 6= 0n] = Pr [f ∗(ki) = di for at least one i]

<
n2

p
+

n

p2

(
n!M

(
p

n

))1/n

<
n2

p
+

n

p2
(Mpn)1/n

=
n2 + nM1/n

p
.

2

We can use Theorem 13 to compute the limit on how much information the

tamperer can remove before recovering any of the data becomes impossible:

Corollary 14 Let (I, E,R) and (Ǐ , Ť , Ř) be as in Theorem 13. Let ε > 0 and

let p > 2n3/ε. If for any fixed ǩ, tamperer Ť destroys at least n lg(n/ε)+1 bits

of entropy, then

Pr
A

[~r = 0n] ≥ 1− ε.

37

PROOF. Let ε′ = ε /
(

1
2n

+ 2−1/n
)
. If Ť destroys at least n lg(n/ε′) + 1 bits

of entropy, then we have

M ≤ pn · 2−(n lg(n/ε′)+1)

=
1

2
pn(n/ε′)−n

=
1

2
(pε′/n)

n
.

Plugging this into (4) gives:

Pr[some di is recovered]≤ n2 + nM1/n

p

≤
n2 + n

(
1
2
(pε′/n)n

)1/n

p

=
n2

p
+ 2−1/nε′

<
n2

2n3/ε′
+ 2−1/nε′

= ε′
(

1

2n
+ 2−1/n

)
= ε.

We thus have:

Pr
A

[~r = 0n] = 1− Pr[some di is recovered] ≥ 1− ε.

2

According to the corollary, all users will lose their data if the adversary’s

tampering destroys even a small amount of information. Consequently, the

interpolation scheme we have described must be all-or-nothing.

38

6 Conclusion and Future Work

Our results are summarized below:

Destructive Tamperer Arbitrary Tamperer

Standard Recovery all-or-nothing all-or-nothing

Public Recovery all-or-nothing symmetric recovery

Private Recovery all-or-nothing no guarantees possible

They show that it is possible in principle to achieve all-or-nothing integrity

with only mild restrictions on the adversary. Whether it is possible in practice

is a different question. Our model abstracts away most of the details of the

storage and recovery processes, which hides undesirable features of our algo-

rithms such as the need to process all data being stored simultaneously and

the need to read every bit of the data store to recover any data item. Some of

these undesirable features could be removed with a more sophisticated model,

such as a round-based model that treated data as arriving over time, allowing

combining algorithms that would touch less of the data store for each storage

or retrieval operation at the cost of making fewer documents depend on each

other. The resulting system might look like a variant of Dagster or Tangler

with stronger mechanisms for entanglement. But such a model might permit

more dangerous attacks if the adversary is allowed to tamper with data dur-

ing storage, and finding the right balance between providing useful guarantees

and modeling realistic attacks will be necessary. We have made a first step

towards this goal in the present work, but much still remains to be done.

39

References

[1] R. J. Anderson. The Eternity Service. In Proceedings of PRAGOCRYPT 96,

pp. 242-252, 1996.

[2] B. Barak, O. Goldreich, R. Impagliazzo, S. Rudich, A. Sahai, S. Vadhan,

and K. Yang. On the (im)possibility of obfuscating programs. In Advances in

Cryptology - Proceedings of CRYPTO 2001, pp. 1-18, 2001.

[3] M. Castro and B. Liskov. Practical Byzantine fault tolerance. In Proceedings

of the 3rd Symposium on Operating Systems Design and Implementation, pp.

173-186, 1999.

[4] I. Clarke, O. Sandberg, B. Wiley, and T. Hong. Freenet: A distributed

information storage and retrieval system. In Designing Privacy Enhancing

Technologies: International Workshop on Design Issues in Anonymity and

Unobservability, volume 2009 of Lecture Notes in Computer Science, pp. 46-

66, 2000.

[5] K. Fu, F. Kaashoek, and D. Mazieres. Fast and secure distributed read-only file

system. In Proceedings of the 4th Symposium on Operating Systems Design and

Implementation, pp. 181-196, 2000.

[6] G. A. Gibson, D. F. Nagle, K. Amiri, J. Butler, F. W. Chang, H. Gobioff,

C. Hardin, E. Riedel, D. Rochberg, and J. Zelenka. A cost-effective, high-

bandwidth storage architecture. In Proceedings of the 8th International

Conference on Architectural Support for Programming Languages and Operating

Systems, pp. 92-103, 1998.

[7] E. Goh, H. Shacham, N. Mdadugu, and D. Boneh. SiRiUS: Securing remote

untrusted storage. In Proceedings of the Internet Society (ISOC) Network and

Distributed Systems Security (NDSS) Symposium, pp. 131-145, 2003.

40

[8] A. Goldberg and P. Yianilos. Towards an archival intermemory. In Proceedings

of the IEEE International Forum on Research and Technology, Advances in

Digital Libraries (ADL ’98), pp. 147-156. IEEE Computer Society, 1998.

[9] S. Goldwasser and M. Bellare. Lecture Notes on Cryptography. Summer Course

“Cryptography and Computer Security” at MIT, 1996-1999.

[10] S. Goldwasser, S. Micali, and R. Rivest. A digital signature scheme secure

against adaptive chosen message attack. SIAM Journal on Computing,

17(1988), pp. 281-308.

[11] U. Maheshwari and R. Vingralek. How to build a trusted database system on

untrusted storage. In Proceedings of the 4th Symposium on Operating Systems

Design and Implementation, pp. 135-150, 2000.

[12] D. Mazieres and D. Shasha. Don’t trust your file server. In Proceedings of the

8th IEEE Workshop on Hot Topics in Operating Systems, pp. 99-104, 2001.

[13] D. Mazieres and D. Shasha. Building secure file systems out of Byzantine

storage. In Proceedings of the 21st Annual ACM Symposium on Principles of

Distributed Computing, pp. 108-117, 2002.

[14] D. Mazieres and M. Waldman. Tangler: A censorship-resistant publishing

system based on document entanglements. In Proceedings of the 8th ACM

Conference on Computer and Communications Security, pp. 126-135, 2001.

[15] R. Merkle. Protocols for public key cryptosystems. In IEEE Symposium on

Security and Privacy, pp. 122-134, 1980.

[16] Mojo Nation. Technology overview. Online at http://www.mojonation.net/

docs/technical_overview.shtml, 2000.

[17] R. Rivest. All-or-Nothing Encryption and the Package Transform. In Fast

Software Encryption, volume 1267 of Lecture Notes in Computer Science,

pp.210-218, 1997.

41

[18] A. Shamir. How to share a secret. Communications of the ACM, 22(1979), pp.

612-613.

[19] J. Strunk, G. Goodson, M. Scheinholtz, C. Soules, and G. Ganger. Self-securing

storage: Protecting data in compromised systems. In Proceedings of the 4th

Symposium on Operating Systems Design and Implementation, pp. 165-180,

2000.

[20] A. Stubblefield and D. S. Wallach. Dagster: Censorship-resistant publishing

without replication. Technical Report TR01-380, Rice University, 2001.

[21] M. Waldman, A. D. Rubin, and L. F. Cranor. Publius: A robust, tamper-

evident, censorship-resistant, web publishing system. In Proceedings of the 9th

USENIX Security Symposium, pp. 59-72, August 2000.

42

