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Tarjan [51] to study problems that arise in an on-linesetting, where an algorithm is given an unpredictablesequence of requests to perform operations, and mustmake decisions about how to satisfy its current requestthat may a�ect how e�ciently it can satisfy future re-quests. Since the worst-case performance of an algo-rithm might depend only on very unusual or arti�cialsequences of requests, or might even be unbounded ifone allows arbitrary request sequences, one would liketo look instead at how well the algorithm performsrelative to some measure of di�culty for the requestsequence. The key innovation of Sleator and Tarjanwas to use as a measure of di�culty the performanceof an optimal o�-line algorithm, one allowed to seethe entire request sequence before making any deci-sions about how to satisfy it. They de�ned the com-petitive ratio, which is the supremum, over all possi-ble input sequences �, of the ratio of the performanceachieved by the on-line algorithm on �, to the perfor-mance achieved by the optimal o�-line algorithm on�, where the measure of performance depends on theparticular problem.In a distributed setting there are additional sourcesof nondeterminism, other than the request sequence.These include process step times, request arrivaltimes, message delivery times (in a message-passingsystem) and failures. Moreover, a distributed algo-rithm has to deal not only with the problems of lackof knowledge of future requests and future system be-havior, but also with incomplete information aboutthe current system state. Due to the additional typeof nondeterminism in the distributed setting, it is notobvious how to extend the notion of competitive anal-ysis to this environment.Bartal, Fiat, and Rabani [17], and Awerbuch, Kut-ten, and Peleg [15], took the �rst steps in this direc-tion. Their work was in the context of job schedulingand data management. In these papers, and in subse-quent work [4, 14, 18], the cost of a distributed on-linePage 1



algorithm is compared to the cost of an optimal global-control algorithm1. (This is also done implicitly in theearlier work of Awerbuch and Peleg [16].) As has beenobserved elsewhere (see, e.g. [14], paraphrased here),this imposes an additional handicap on the distributedon-line algorithm in comparison to the optimal algo-rithm: In the distributed algorithm the decisions aremade based solely on local information. It is thusup to the algorithm to learn (at a price) the relevantpart of the global state necessary to make a decision.The additional handicap imposed on the on-line dis-tributed algorithm is that it is evaluated against theo�-line algorithm that does not pay for overhead ofcontrol needed to make an intelligent decision. It is tothe credit of the works cited above the algorithms en-joy small competitive ratios even against so powerfula competitor.We claim that in some cases a more re�ned mea-sure is necessary, and that to achieve this the handicapof incomplete system information should be imposednot only on the distributed on-line algorithm but alsoon the optimal algorithm with which the on-line algo-rithm is compared. Otherwise, two distributed on-linealgorithms may seem to have the same competitiveratio, while in fact one of them totally outperformsthe other. Our approach is ultimately based on theobservation that the purpose of competitive analysisfor on-line algorithms is to allow comparison betweenon-line algorithms; the �ctitious o�-line algorithm ismerely a means to this end. Therefore, the naturalextension of competitiveness to distributed algorithmsis to de�ne a distributed algorithm as k-competitive iffor each sequence of requests, and each scheduling ofevents, it performs at most k times worse than anotherdistributed algorithm.This is the approach introduced in this paper. Analgorithm that is k-competitive according to the com-petitive notion of all current distributed competitiveliterature [14, 15, 4, 17, 18], is at most k competitiveaccording to our notion, but may be much better. (Aconcrete example appears below.) Thus, the compet-itive notion in this paper captures the performance ofdistributed algorithms more accurately than does thede�nition used in the literature.Under both the de�nition of Sleator and Tarjanand the one introduced by [15, 17], one only has toshow that the competitive algorithm performs well incomparison with any other algorithm that deals withone type of nondeterminism: the nondeterminism of1Because most distributed algorithms have an on-line 
avor,we use the terms distributed algorithm and distributed on-linealgorithm interchangeably.

not knowing the future requests and system behavior.In contrast, using the new de�nition one must showthat the competitive algorithm performs well in com-parison with any other algorithm that deals with twotypes of nondeterminism, i.e. the nondeterminism ofnot knowing the future requests and system behavior,and the nondeterminism of having only partial infor-mation about the current system state. Our measureis de�ned formally in Section 4 and is one of the cen-tral contributions of the paper.Cooperative Collect To demonstrate our tech-nique we study the problem of having processes re-peatedly collect values, by the cooperative collect prim-itive, �rst abstracted by Saks, Shavit, and Woll [50].In many shared-memory applications processes re-peatedly read all values stored in a set of registers. Ifeach process reads every register itself, then the com-munication costs increase dramaticallywith the degreeof concurrency, due to bus congestion and contention.Interestingly, this is the (trivial) solution that is usedin current literature on wait-free shared-memory ap-plications, including nearly all algorithms known tous for consensus, snapshots, coin 
ipping, timestamps,and multi-writer registers [1, 2, 5, 7, 8, 9, 10, 11, 13, 19,22, 23, 24, 26, 28, 30, 35, 32, 36, 37, 42, 52]2. Indeed,the cost of this na��ve implementation is easily shownto be a lower bound on the worst-case cost of any im-plementation. Here, the worst case is taken over theset of adversarially chosen schedules of events (we givemore details below). In this paper we show that in theinteresting cases { those in which concurrency is high{ it is possible to do much better than in the na��vesolution. This suggests that a competitive analysis ofthe problem may be fruitful.We assume the standard model for asynchronousshared-memory computation, in which n processescommunicate by reading and writing to a set of single-writer-multi-reader registers. (We con�ne ourselves tosingle-writer registers because the construction of reg-isters that can be written to by more than one processis one of the principal uses for the cooperative collectprimitive.) As usual, a step is a read or a write toa shared variable. We require our algorithms to bewait-free: there is an a priori bound on the number ofsteps a process must take in order to satisfy a request,independent of the behavior of the other processes.In the cooperative collect primitive, processes per-form the collect operation { an operation in whichthe process learns the values of a set of n registers,with the guarantee that each value learned is fresh:2An exception is the consensus algorithm of Saks, Shavit,and Woll [50]. We discuss their results in Section 2. Page 2



it was present in the register at some point duringthe collect.3 If each process reads every register, thenthis condition is trivially satis�ed. However, more so-phisticated protocols may allow one process say, p, tolearn values indirectly from another process, q. Thedi�culty is that these values may be stale, in thatq obtained them before p started its current collect,and the contents of the registers have changed in theinterim. Thus, additional work must be done to as-certain that the values are fresh, and if not, to obtainfresh values.Competitive Analysis of Cooperative CollectAlgorithms We assume that the schedule { whichprocesses take steps at which times, when requests forcollects arrive, and when the registers are updated {is under the control of an adversary. Intuitively, if theadversary schedules all n processes to perform collectoperations concurrently, the work can be partitionedso that each process performs signi�cantly fewer thann reads. However, suppose instead that the adversary�rst schedules p1 to perform a collect in isolation. Ifp2 is later scheduled to perform a collect, it cannotuse the values obtained by p1, since they might not befresh. For this reason p2 must read all the registersitself. Continuing this way, we can construct a sched-ule in which every algorithm must have each processread all n registers. Thus, the worst-case cost for anydistributed algorithm is always as high as the cost ofthe na��ve algorithm.Moreover, since a global control algorithm knowswhen registers are updated, if in the above exampleno register was updated since the time that p1 com-pleted its collect, then in the global control algorithmp2 will need to perform at most one read (of the in-formation collected by p1) to make its collect. Thusno distributed algorithm can be competitive againstsuch an algorithm. Hence also the competitive mea-sure of [15, 17] does not allow us to distinguish be-tween the na��ve algorithm and algorithms that totallydominate it.The competitive measure presented here allows ussuch a distinction. To characterize the behavior of analgorithm over a range of possible schedules we de�nethe competitive latency of an algorithm. Intuitively,the competitive latency measures the ratio betweenthe amount of work that an algorithm needs to per-form in order to carry out a particular set of collects, tothe work done by the best possible algorithm for car-rying out those collects given the same schedule. As3This is analogous to the regularity property for registers[43]: if a read operation R returns a value that was written inan update operationU1, there must be no update operation U2to the same register such that U1 ! U2 ! R.

discussed above, we re�ne previous notions by requir-ing that this best possible algorithm be a distributedalgorithm. Though the choice of this champion algo-rithm can depend on the schedule, and thus it can im-plicitly use its knowledge of the schedule to optimizeperformance (say, by having a process read a registerthat contains many needed values), it cannot cut cor-ners that would compromise safety guarantees if theschedule were di�erent (as it would if it allowed a pro-cess not to read a register because it \knows" from theschedule that the register has never been written to).Our Algorithms Using the trivial solution, even ifn processes perform collects concurrently, there are atotal of n2 reads. We present the �rst algorithms thatcross this barrier. The basic technique is a mechanismthat allows processes to read registers cooperatively,by having each process read registers in an order de-termined by a �xed permutation of the registers. Theproof of competitiveness for our algorithms has twoparts, each of which introduces a di�erent technique.In the �rst part, we partition the execution into inter-vals, each of which can be identi�ed with a di�erentset of collect operations, and in each of which anydistributed algorithm must perform at least n steps.This technique demonstrates how an algorithm can becompared with an optimal distributed algorithm, i.e.,with an algorithm that does not have global control.In the second part we show how to construct a set ofpermutations so that a set of concurrent collect op-erations will take at most kn steps to be completed,for some k, independent of the scheduling of the pro-cesses' steps. A �rst step in this direction was madeby Anderson and Woll in their elegant work on thecerti�ed write-all problem [6] (see Section 2). Due tothe requirement of freshness, our adversary is less con-strained than the adversary in [6], where freshness isnot an issue. Thus, we need additional insight intothe combinatorial structure of the schedule. In par-ticular, for this part of the proof we prove that if theadversary has a short description, then there exists agood set of permutations. We then show that the ad-versary is su�ciently constrained in its choices by ouralgorithm, that it has a short description.We present two algorithms; the di�erences betweenthem come from using di�erent sets of permutations.The �rst algorithm uses a set of permutations withstrong properties that allows a very simple and elegantalgorithm; however, the construction of the permuta-tions is probabilistic, although suitable permutationscan be found with high probability. The second algo-rithm uses a constructible but weaker set of permuta-tions, and requires some additional machinery.Page 3



In the non-constructive algorithm, the numberof reads for n overlapping collects is at mostO(n3=2 log2 n). We show this yields a competitive la-tency of O(n1=2 log2 n). In the explicit construction,the number of reads for n overlapping collects is atmost n7=4 log2 n. This will yield a competitive latencyof O(n3=4 log2 n). These bounds are in contrast tothe 
(n)-competitiveness of the trivial solution. Inaddition, we have an absolute worst-case bound onthe work done for each collect: both algorithms arestructured so that no collect ever takes more than 2noperations, no matter what the schedule.For lack of space, this abstract describes only thenon-constructive result, and most proofs are omittedor only sketched.2 Other Related WorkSaks, Shavit, and Woll were the �rst to recognizethe opportunity for improving the e�ciency of shared-memory algorithms by �nding a way for processes tocooperate during their collects [50]. They devised anelegant randomized solution, which they analyzed inthe so-called big-step model. In this model, a timeunit is the minimal interval in the execution of the al-gorithm during which each non-faulty process executesat least one step. In particular, if in one time intervalone process takes a single step, while another takes 100steps, only one time unit is charged. Thus, the big-step model gives no information about the number ofaccesses to shared memory (\small" steps) performedby the processes during an execution of the algorithm.This stands in contrast to our work, which focuses onshared-memory accesses.The cooperative collect resembles the problem ofarranging for processes to collaborate in order to per-form a set of tasks. The closest problem in the litera-ture is the certi�ed write-all problem (CWA). In thisproblem, the �rst variant of which was introduced byKanellakis and Shvartsman [38], a group of processesmust together write to every register in some set, andevery process must learn that every register has beenwritten into. This paper was followed by a number ofothers that consider variants of the basic problem (see,for example, [6, 21, 38, 39, 40, 41, 44, 45]). All of thework on the CWA assumes some sort of multi-writerregisters. In a model that provides multi-writer reg-isters, the cooperative collect would be equivalent tothe certi�ed write-all (CWA) problem, were it not forthe issue of freshness. The reason for the equivalenceis that if a process learns that some register has beenwritten to, it must be because of information passed

to it from some process that wrote to that particularregister. Thus, given a certi�ed write-all algorithm,one can replace each of the writes to the registers by aread, and pass the value read along with the certi�ca-tion that that particular register was touched. Thuswhen each process �nishes, because it possesses a cer-ti�cation that each register was touched, it must alsopossess each register's value.The CWA is useful in simulating a synchronousPRAM on an asynchronous one. Speci�cally, theCWA can be used as a synchronization primitive todetermine that a set of tasks { those performed at agiven step in the simulated algorithm{ have been com-pleted, and it is therefore safe to proceed to the sim-ulation of the next step. If each instance of the CWAis carried out on a di�erent set of registers (a solutionnot relevant to our problem), then issues of freshnessdo not arise. If registers are re-used the problem be-comes more complicated, particularly in a determin-istic setting. We know of no work on deterministicalgorithms for the CWA problem that addresses theseissues in our model of computation. (For example, [6]assumes Compare&Swap and a tagged architecture, inwhich associated with each register is a tag indicatingthe last time that it was written.) In contrast, ouralgorithms are deterministic.In the asynchronous message-passing model,Bridgeland and Watro studied the problem of per-forming a number t of tasks in a system of n proces-sors [20]. In their work, processors may fail by crash-ing and each processor can perform at most one unitof work. They provide tight bounds on the numberof crash failures that can be tolerated by any solutionto the problem. In the synchronous message-passingmodel, Dwork, Halpern, and Waarts studied essen-tially the same problem [27]. Their goal was to de-sign algorithms that minimized the total amount ofe�ort, de�ned as the sum of the work performed andmessages sent, in order for each non-faulty process toensure that all tasks have been performed. Theirresults were recently extended by Prisco, Mayer andYung [49].There is a long history of interest in optimality ofa distributed algorithm given certain conditions, suchas a particular pattern of failures [25, 29, 34, 46], ora particular pattern of message delivery [12, 31, 48].These and related works are in the spirit of our paper,but di�er substantially in the details and applicabilityto distinct situations. Page 4



3 Model of ComputationWe assume a system of n processes p1; : : : ; pn, thatcommunicate through shared memory. Each locationin memory is called a register. Registers can be reador written in a single atomic step. We assume a com-pletely asynchronous system. Each process can receivestimuli (requests) from the outside world. A process'local state can change only when it takes a step (per-forms a read or a write of a register) or in response toan external stimulus. Each process has a set of haltingstates. A process in a halting state takes no steps andcannot change state except in response to an outsidestimulus. A process in a non-halting state is, intu-itively, ready to take a step. On being activated by thescheduler, such a process accesses a register and entersa new state. The new state is a function of the previ-ous state and any information read, if the step was aread of a register. This formalizes the usual assump-tion in an asynchronous algorithm, that a processcannot change state solely in response to being given,by the scheduler, the opportunity to take a step. Weassume that the schedule of events, that is, the inter-leaving of step times and outside stimuli, is under thecontrol of an adversary.4 Competitive AnalysisTraditionally, the competitiveness of an algorithmhas been measured by comparing its performance tothe performance of an omniscient being (the o�-line al-gorithm). The intuition is that if the on-line algorithm\does well" when measured against an omniscient be-ing, then it certainly \does well" when compared toany other algorithm that solves the problem. This no-tion of competitiveness can be extended naturally byrestricting the class of things (omniscient beings, oralgorithms) against which the given algorithm is tobe compared, provided the resulting comparison sayssomething interesting about the algorithm studied.As discussed in the Introduction, in order to geta more re�ned measure of the performance of a dis-tributed algorithm, we compare its performance tothat of other distributed algorithms: algorithms inwhich processes get no \free" knowledge about thecurrent state of the system. To measure the compet-itiveness of an algorithm for a certain problem P, wecompare its cost on each schedule �, to the cost ofthe best distributed algorithm on �. We refer to thealgorithm being measured as the candidate, and wecompare it, on each schedule � to the champion for�. Thus, we can imagine that the champion guesses �

and optimizes accordingly, but even if the schedule isnot � the champion operates correctly. Note that wehave restricted our comparison class by requiring thatthe champion actually be a distributed algorithm forP { that is, that it solve problem P correctly on allschedules. On the other hand, we permit a di�erentchampion for each �. This is a departure from theusual model, in which there is a single o�-line algo-rithm.In this paper we focus on a particular cost measurebased on the work done by an algorithm. The result isa competitive ratio which we call competitive latency.4.1 Competitive LatencyIn this paper we are interested in algorithms for car-rying out a sequence of tasks. Each request from thescheduler is a request to carry out a particular task.To complete a task a process must enter into one of itshalting state. (Naturally, to be correct, the algorithmmust in fact have successfully carried out the speci�edtask when it enters into this halting state.)We consider only schedules in which each processin the candidate algorithm completes its current taskbefore being asked to start a new one. (This is consis-tent with the use of the cooperative collect in all thealgorithms mentioned above.) Similarly, for each suchschedule, we will only consider as possible championsalgorithms in which each process happens to �nish itstask before the next task arrives. Algorithms thathave this property will be said to be compatible withthe given schedule. We will charge both the candidateand the champion for every read or write operationthat they carry out as part of the tasks.The total work done by an algorithm A under anadversary schedule s is just the number of reads andwrites in s.4 Writing this quantity as work(A; s), thecompetitive ratio with respect to latency of an algo-rithm is de�ned to be:sups work(A; s)infB work(B; s)where B ranges over all correct distributed algorithmsthat are compatible with s. This de�nition is su�cientfor our purposes as we consider only deterministic al-gorithms; for a randomized algorithm it would be nec-essary to take expectations over both the algorithm'schoices and the adversary's responses to them.4This quantity is not simply the length of the schedule sincea process does no work while in its halting state. Page 5



5 The Speedy Collect AlgorithmIn this section we present a non-constructive algo-rithm that is O(pn log2 n)-competitive with respectto latency.Our starting point is the Certi�ed Write-All algo-rithm of Anderson and Woll [6]. In their algorithmevery process pi has a �xed permutation �i of the in-tegers f1; : : : ; ng. When pi takes a step it writes tothe �rst location in �i that has not yet been written.Intuitively, it is to the adversary's advantage if manyprocesses write to the same location at the same time,since this causes wasted work. For each adversaryscheduler Anderson and Woll showed that the num-ber of cells that are written can be bounded above asfollows.A longest greedy monotonic increasing subsequence(lgmis) of a permutation � with respect to an ordering� is constructed by starting with the empty sequence,then running through the elements of � in order andadding each to the subsequence if and only if it islarger (according to �) than all elements already inthe subsequence. Let � be the order in which thecells are �rst written, under this adversary schedule.The total number of writes performed by each pi inthis schedule is bounded above by the length of thelongest greedy monotonic increasing subsequence of �iwith respect to �. It was shown probabilistically in[6] that there exists a set of n permutations on thenumbers f1; : : : ; ng such that the sum of the lengths ofall longest greedy monotonic increasing subsequenceson the set with respect to any ordering � is O(n logn).Later, J. Naor and R. Roth [47] obtained an explicitconstruction in which this quantity is O(n(logn)1+").This, then, is our starting point. We observe thatthe adversary scheduler in [6] can be described inn logn bits. Due to freshness considerations, our prob-lem is harder, and our adversary has more 
exibility,and therefore may require signi�cantlymore bits to de-scribe. This is important in light of the following com-binatorial lemma, which ties the existence of a goodset of permutations to the length of the descriptionof the adversary. Speci�cally, if the adversary can bedescribed in O(n logn) bits, then there is a \good" setof permutations:Lemma 5.1 Assume that n is a positive integer andA is a set so that each element of a 2 A is a se-quence a = Ra1; :::; Ran where Rai is an ordering of theset f1; :::; ng. For all c1; c2 > 0, there exists c3, sothat if n is su�ciently large, jAj � 2c1n logn, and thepermutations �1; :::; �n are taken at random indepen-dently and with uniform distribution on the set of all

permutations of f1; :::; ng, then with a probability ofat least 1 � e�c2n logn we have that for all a 2 A,Pi l(Rai ; �i) � c3n logn.Intuitively, Rai captures the behavior of adversarya that is relevant to process pi, in the sense that, aswe show, the reads performed by each process arebounded above by the longest greedy monotonic in-creasing subsequence of �i with respect to Rai . Therelation between the Ri's and the adversary scheduleris as follows. In the algorithm of [6], Rai describesthe order in which the cells 1 : : :n are �rst written;thus Rai = Raj for all i; j; a. In our scenario, for eachprocess pi we are concerned with the ordering of thewrites of blocks of registers which can be trusted bypi to be fresh. Thus in our scenario Rai describes theorder of the �rst trustworthy writes of each block (val-ues that pi trusts to be fresh). Therefore, for eacha it is not necessarily the case that Rai = Raj , andthus a na��ve representation of our adversary requiresmore than n logn bits. Nonetheless, as we show inSection 5.2, it is actually possible to describe the ad-versary in O(n logn) bits. This is because the rela-tionship between Rai and Raj is not completely un-constrained. For example, intuitively, if pj begins itscollect before pi does, then values fresh for pi will beconsidered fresh by pj .We now describe the algorithm, which we call theSpeedy Collect algorithm.We partition the processes into groups of size pn.The processes in each group will collaborate to readpn blocks of pn registers; there is no collaborationbetween groups. Each process p has a shared variablecollect-nump, initially zero and incremented eachtime p begins a new collect. Throughout the algo-rithm, p repeatedly computes timestamps. A times-tamp is an array of collect numbers, one for eachprocess. Intuitively, p will trust any value taggedwith a timestamp whose component for p equalscollect-nump because these values are necessarilyread after p's collect began.The views of processes in a group are read andupdated using the atomic snapshot algorithm of At-tiya and Rachman [13]. The basic operationof the Attiya-Rachman algorithm on an array A isScan-Update(v), where v can be null. When a pro-cess p performs Scan-Update(v) for a non-null v, ithas the e�ect of updating p's current value to v and re-turning a copy of the entire contents of A (a snapshot),with A[p] = v. When it performs Scan-Update(v)for a null v, it simply returns the snapshot of A. Inthe following, all Scan-Update() operations are ap-plied to the array view. Since the Attiya-RachmanPage 6



algorithm is an atomic snapshot algorithm, there is atotal serialization order on the Scan-Update( )oper-ations that preserves the real time order of the oper-ations and that corresponds to the apparent orderingdetermined by which Scan-Update() operations re-turn which values. The Scan-Update(v) operationhas a cost of O(m logm), where m is the number ofprocesses (and also the size of the array); in this pa-per we will generally be using snapshots only within agroup of pn processes, in which case the cost will beO(pn logn).Each process p is given a �xed permutation �pof the blocks. On �rst waking (beginning a col-lect), p performs Scan-Update(newviewp), wherenewviewp contains only p's newly incremented col-lect number. From then on, p repeatedly performsthe following operations.1. read-group: Obtain an atomic snapshot ofthe current view of all processes in the groupby invoking Scan-Update() (O(pn logn) opera-tions). Extract from this a snapshot of the vectorof collect numbers, but do not write this snap-shot to shared memory, at this point. Call thissnapshot a timestamp.2. read-block: Read the registers in the �rst blockin �p that, in the union of the views obtained inthe snapshot, are not tagged with a timestampwhose pth component is collect-nump (pn op-erations).3. write-view: Tag the block just read with thecurrent timestamp. Let newviewp be the unionof this and, for each block b seen in the snap-shot, the most recent value of b, tagged withits timestamp; and in addition collect-nump(which is unchanged). Update view[p] by invok-ing Scan-Update(newviewp) (O(pn logn) op-erations).This loop repeats until allpn blocks appear in view[p]tagged with a timestamp whose pth component iscollect-nump. However, to ensure that in the worstcase process p performs at most O(n) operations, ev-ery time it performs a single atomic step it also per-forms a simple read of a register for which it does notyet have a value tagged with a timestamp whose pthcomponent is collect-nump. It completes its cur-rent collect as soon as it knows a fresh value for everyregister.The key to the performance of the algorithm is thechoice of good permutations. In order to be able tochoose the permutations well we need to formulate a

more precise description of the e�ect of the adversaryscheduler. In the next section we show how to do this.5.1 Representing the Scheduling Adver-sary as a Combinatorial ObjectGiven a set � of m permutations on f1; : : : ;mg,the adversary, denoted by �, consists of three parts,as described below. We remark that the de�nition be-low is purely combinatorial; the interpretations givenbelow of each of the parts in terms of what values are\trusted" by processes is intended solely to give anintuitive explanation of why this representation waschosen.1. The �rst part of the adversary attaches to eachprocess a number between 1 and m, which willbe called the process' trusting threshold. At leastone process will have trusting threshold m. In-tuitively, the trusting thresholds re
ect the seri-alization order of updates to the vector of col-lect numbers. A process p will trust only val-ues attached with a snapshot that contains p'scurrent collect number. Thus, p only trusts val-ues tagged with timestamps that are serialized af-ter p's most recent update of collect-nump. Alower trusting threshold corresponds to an earliertimestamp and represents a process that is morelikely to trust other processes' values. Specifyingthe trusting thresholds takes m logm bits.2. The second part of the adversary, denoted by �0,is an ordered list of at most 2m elements. Eachelement in �0 is an ordered pair of numbers, eachof which is an integer between 1 and m. The �rstnumber appearing in a pair is referred to as thevalue of the pair, and the second is referred toas the trustworthiness of the pair. The value ofthe pair represents the index of a block of reg-isters, while the trustworthiness re
ects a times-tamp with which the block was tagged.The sequence �0 is constructed by mixing two se-quences of length m. The �rst sequence containsone element for each block between 1 and m; thiselement has as its value the number of the block,and has trustworthiness m. These pairs are or-dered according to the order in which universallytrusted versions of these blocks are written. Thesecond sequence consists of a pair for each pro-cess p recording p's last write of a block that isnot universally trusted (if there is such a block).The elements of the two sequences are interleavedtogether according to the serialization order of thePage 7



corresponding write operations. Since each of theat most 2m elements of �0 can be speci�ed in2 logm bits, the number of bits needed for thispart of the adversary is again O(logm).3. The third and last part of the adversary providesfor each trusting threshold (i.e. each number be-tween 1 andm) a subset of the integers f1; : : : ;mgthat will correspond to it. This subset is called anold subset corresponding to the trusting thresh-old. Old subsets are required to be totally or-dered under inclusion; that is, the old subset fora particular threshold must be contained in theold subset for any lower threshold (the contain-ment need not be proper). Intuitively, values inan old subset of trusting threshold t are trustedto be fresh only by processes of trusting thresh-old less than or equal to t. Intuitively, the unionof the old subsets will contain all values that aretrusted only by some of the processes.Because the old subsets are ordered by inclusion,they too can be represented in only O(m logm)bits.Observe that the adversary is fully de�ned usingO(m logm) bits.Now we show how the above adversary imposes anorder Ri on �i. First, erase from �i all elements thatare contained in the old set corresponding to i's trust-ing threshold. Call the remaining permutation �0i. We�rst de�ne the sequences Si as follows:� Si contains exactly the elements that appear in�0i.� An element p precedes q in Si i� the �rst occur-rence of a pair with value p that is trusted by i(according to i's trusting threshold) appears in �0before the �rst occurrence of a pair with value qthat is trusted by i. Said di�erently, consider onlythe pairs in �0 with second component (trustwor-thiness) at least as large as the trusting thresholdassigned to i. Then p precedes q in Si if in thisrestricted list of pairs the �rst pair of the form(p; �) precedes the �rst pair of the form (q; �).Note that the sequences Si are together completelydetermined by the adversary � and can therefore bedescribed using only O(m logm) bits.We denote by l(�0i; �) the greedy monotonic increas-ing subsequence in �0i according to Si, where �0i; Si areconstructed using � as described above. De�ne�(�) = max� nXi=1 kl(�0i; �)k:

Padding the Si with a pre�x containing the elementsin �i but not in �0i, we can then use Lemma 5.1 toprove the following theorem:Theorem 5.2 There is a constant c such that foreach m there is a set � of m permutations �1; : : : ; �mof m values each such that �(�) � cm logm:In the next section we show that the e�ect of anadversary scheduler on the Speedy Collect algorithmcan be completely captured by a 3-part adversary �of the type described above. Thus, choosing the setof permutations � whose existence is guaranteed byTheorem 5.2 yields an algorithm with good latency.5.2 Collective Latency of the Speedy Col-lect AlgorithmDe�ne the collective latency of a set of processesG at a point t in time as the sum over all p 2 G ofthe number of operations done by process p between tand the time that it completes the last collect that itstarted at or before t. (Recall that a process is consid-ered as having completed its collect only when it entersinto a halting state.) We show that for a suitable setof permutations our algorithm gives a small collectivelatency for each of the pn-sized groups of processes;in Section 5.3 we use this fact to show that our al-gorithm is competitive with respect to latency whenall of the processes are taken together. The followingtheorem is at the core of our proof of competitiveness:Theorem 5.3 Let � be a set of m = pn permuta-tions on f1; : : : ;mg. Suppose that the set of permu-tations � for each group satis�es �(�) = O(T (m)).Then the collective latency for each group using ouralgorithm is O (T (m)pn logn).Sketch of Proof: Fix an arbitrary time t and letG be the set of processes performing collects at timet. The proof separately analyzes read-blocks aftertime t whose values are trusted by every process in G(\globally trusted" read-blocks), and other (\par-tially trusted") read-blocks. It is easily shown thateach process performs at most one partially trustedread-block after time t.The �rst half of the analysis of globally trustedread-blocks is the construction of a three-part ad-versary � consistent with the representation describedin Section 5.1. Intuitively, the three parts are asfollows. The �rst part of � is determined by theserialization order on the processes' initial calls toScan-Update(), in which they write their new collectnumbers for the collects that are in process at t. ThePage 8



ordering �0 is determined by the serialization order onthe globally and partially trusted blocks performed inthe write-view phases. Finally, the serialization or-der on the timestamps orders the sets trusted by theindividual members of G by inclusion.The remainder of the analysis of globally trustedread-blocks shows that the globally trusted read-blocks done by process i correspond to a greedymonotonic increasing subsequence according to the se-quence Si described in Section 5.1. Applying Theo-rem 5.2 yields a bound of �(�) = O(T (m)) on thenumber of globally trusted read-blocks. The costof each of these read-blocks and their associatedwrite-view and read-group phases is O(pn logn).5.3 Using Collective Latency to Boundthe Latency CompetitivenessThe following theorem is the key to the relationshipbetween collective latency and the competitive latencymeasure. To make this connection, it is useful to havethe following de�nition: given a particular schedule,the work ratio for a group of processes G is the ratiobetween the total number of operations performed byprocesses in G in the candidate algorithm to the totalnumber of operations performed by all processes in thechampion algorithm.Theorem 5.4 For any cooperative collect algorithmA, any group G of processes, and any schedule that iscompatible with A, if there exists a bound L such thatfor all times t the collective latency for G at t is atmost L, then the work ratio for G is at most L=n+ 1,where n is the number of values to be collected.Sketch of Proof: The key to the proof is thatwhenever some process starts a collect in algorithmA, the same process starts a collect in the championalgorithm. So we can de�ne a partition of the sched-ule into intervals I1, I2, etc., which have the propertythat: (a) the champion performs at least n operationsduring each interval; and (b) algorithm A requires atmost L + n operations to complete the collects per-formed by processes in G that start during each inter-val. Fact (a) is proved by demonstrating that duringeach interval every register must be read at least onceto obtain fresh values. Fact (b) is proved by applyingthe de�nition of collective latency to the endpoint ofeach interval. The result follows.Corollary 5.5 For any collect algorithm, if the pro-cesses can be divided into m groups such that for all
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