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Abstract

We introduce a theory of competitive analysis for
distributed algorithms. The first steps in this direc-
tion were made in the seminal papers of Bartal, Fiat,
and Rabani [17], and of Awerbuch, Kutlen, and Pe-
leg [15], in the context of data management and job
scheduling. In these papers, as well as in other sub-
sequent work [14, 4, 18], the cost of a distribuled al-
gorithm s compared to the cost of an optimal global-
control algorithm. Here we ntroduce a more refined
notion of competitiveness for distributed algorithms,
one that reflects the performance of distributed algo-
rithms more accurately. In particular, our theory al-
lows one to compare the cost of a distributed on-line
algorithm to the cost of an optimal distributed algo-
rithm. We demonstrate our method by studying the
cooperative collect primitive, first abstracted by Saks,
Shavit, and Woll [50]. We provide the first algorithms
that allow processes to cooperate to finish their work
wn fewer steps. Specifically, we present two algorithms
(with different strengths), and provide a competitive
analysis for each one.

1 Introduction

Introducing a Notion of Competitive Anal-
ysis for Distributed Algorithms The technique
of competitive analysis was proposed by Sleator and
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Tarjan [51] to study problems that arise in an on-line
setting, where an algorithm is given an unpredictable
sequence of requests to perform operations, and must
make decisions about how to satisfy its current request
that may affect how efficiently it can satisfy future re-
quests. Since the worst-case performance of an algo-
rithm might depend only on very unusual or artificial
sequences of requests, or might even be unbounded if
one allows arbitrary request sequences, one would like
to look instead at how well the algorithm performs
relative to some measure of difficulty for the request
sequence. The key innovation of Sleator and Tarjan
was to use as a measure of difficulty the performance
of an optimal off-line algorithm, one allowed to see
the entire request sequence before making any deci-
sions about how to satisfy it. They defined the com-
petitive ratio, which is the supremum, over all possi-
ble input sequences ¢, of the ratio of the performance
achieved by the on-line algorithm on o, to the perfor-
mance achieved by the optimal off-line algorithm on
o, where the measure of performance depends on the
particular problem.

In a distributed setting there are additional sources
of nondeterminism, other than the request sequence.
These include process step times, request arrival
times, message delivery times (in a message-passing
system) and failures. Moreover, a distributed algo-
rithm has to deal not only with the problems of lack
of knowledge of future requests and future system be-
havior, but also with incomplete information about
the current system state. Due to the additional type
of nondeterminism in the distributed setting, it 1s not
obvious how to extend the notion of competitive anal-
ysis to this environment.

Bartal, Fiat, and Rabani [17], and Awerbuch, Kut-
ten, and Peleg [15], took the first steps in this direc-
tion. Their work was in the context of job scheduling
and data management. In these papers, and in subse-
quent work [4, 14, 18], the cost of a distributed on-line
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algorithm is compared to the cost of an optimal global-
control algorithm®. (This is also done implicitly in the
earlier work of Awerbuch and Peleg [16].) As has been
observed elsewhere (see, e.g. [14], paraphrased here),
this imposes an additional handicap on the distributed
on-line algorithm in comparison to the optimal algo-
rithm: In the distributed algorithm the decisions are
made based solely on local information. It is thus
up to the algorithm to learn (at a price) the relevant
part of the global state necessary to make a decision.
The additional handicap imposed on the on-line dis-
tributed algorithm 1s that it 1s evaluated against the
off-line algorithm that does not pay for overhead of
control needed to make an intelligent decision. It 1s to
the credit of the works cited above the algorithms en-
joy small competitive ratios even against so powerful
a competitor.

We claim that in some cases a more refined mea-
sure is necessary, and that to achieve this the handicap
of incomplete system information should be imposed
not only on the distributed on-line algorithm but also
on the optimal algorithm with which the on-line algo-
rithm is compared. Otherwise, two distributed on-line
algorithms may seem to have the same competitive
ratio, while in fact one of them totally outperforms
the other. Our approach is ultimately based on the
observation that the purpose of competitive analysis
for on-line algorithms is to allow comparison between
on-line algorithms; the fictitious off-line algorithm is
merely a means to this end. Therefore, the natural
extension of competitiveness to distributed algorithms
is to define a distributed algorithm as k-competitive if
for each sequence of requests, and each scheduling of
events, it performs at most k& times worse than another
distributed algorithm.

This 1s the approach introduced in this paper. An
algorithm that is k-competitive according to the com-
petitive notion of all current distributed competitive
literature [14, 15, 4, 17, 18], is at most k competitive
according to our notion, but may be much better. (A
concrete example appears below.) Thus, the compet-
itive notion in this paper captures the performance of
distributed algorithms more accurately than does the
definition used in the literature.

Under both the definition of Sleator and Tarjan
and the one introduced by [15, 17], one only has to
show that the competitive algorithm performs well in
comparison with any other algorithm that deals with
one type of nondeterminism: the nondeterminism of

1Because most distributed algorithms have an on-line flavor,
we use the terms distributed algorithm and distributed on-line
algorithm interchangeably.

not knowing the future requests and system behavior.
In contrast, using the new definition one must show
that the competitive algorithm performs well in com-
parison with any other algorithm that deals with two
types of nondeterminism, i.e. the nondeterminism of
not knowing the future requests and system behavior,
and the nondeterminism of having only partial infor-
mation about the current system state. Our measure
is defined formally in Section 4 and is one of the cen-
tral contributions of the paper.

Cooperative Collect To demonstrate our tech-
nique we study the problem of having processes re-
peatedly collect values, by the cooperative collect prim-
itive, first abstracted by Saks, Shavit, and Woll [50].
In many shared-memory applications processes re-
peatedly read all values stored in a set of registers. If
each process reads every register itself, then the com-
munication costs increase dramatically with the degree
of concurrency, due to bus congestion and contention.
Interestingly, this is the (trivial) solution that is used
in current literature on wait-free shared-memory ap-
plications, including nearly all algorithms known to
us for consensus, snapshots, coin flipping, timestamps,
and multi-writer registers [1,2,5,7,8,9, 10, 11, 13, 19,
22, 23, 24, 26, 28, 30, 35, 32, 36, 37, 42, 52)%. Indeed,
the cost of this naive implementation is easily shown
to be a lower bound on the worst-case cost of any im-
plementation. Here, the worst case is taken over the
set of adversarially chosen schedules of events (we give
more details below). In this paper we show that in the
interesting cases — those in which concurrency is high
— it 1s possible to do much better than in the naive
solution. This suggests that a competitive analysis of
the problem may be fruitful.

We assume the standard model for asynchronous
shared-memory computation, in which n processes
communicate by reading and writing to a set of single-
writer-multi-reader registers. (We confine ourselves to
single-writer registers because the construction of reg-
isters that can be written to by more than one process
is one of the principal uses for the cooperative collect
primitive.) As usual, a step is a read or a write to
a shared variable. We require our algorithms to be
wait-free: there is an a priori bound on the number of
steps a process must take in order to satisfy a request,
independent of the behavior of the other processes.

In the cooperative collect primitive, processes per-
form the collect operation — an operation in which
the process learns the values of a set of n registers,
with the guarantee that each value learned is fresh:

2An exception is the consensus algorithm of Saks, Shavit,
and Woll [50]. We discuss their results in Section 2.
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it was present in the register at some point during
the collect.® If each process reads every register, then
this condition is trivially satisfied. However, more so-
phisticated protocols may allow one process say, p, to
learn values indirectly from another process, ¢q. The
difficulty is that these values may be stale, in that
q obtained them before p started its current collect,
and the contents of the registers have changed in the
interim. Thus, additional work must be done to as-
certain that the values are fresh, and if not, to obtain
fresh values.

Competitive Analysis of Cooperative Collect
Algorithms We assume that the schedule — which
processes take steps at which times, when requests for
collects arrive, and when the registers are updated —
is under the control of an adversary. Intuitively, if the
adversary schedules all n processes to perform collect
operations concurrently, the work can be partitioned
so that each process performs significantly fewer than
n reads. However, suppose instead that the adversary
first schedules p; to perform a collect in isolation. If
po 1s later scheduled to perform a collect, it cannot
use the values obtained by pi, since they might not be
fresh. For this reason ps must read all the registers
itself. Continuing this way, we can construct a sched-
ule in which every algorithm must have each process
read all n registers. Thus, the worst-case cost for any
distributed algorithm is always as high as the cost of
the naive algorithm.

Moreover, since a global control algorithm knows
when registers are updated, if in the above example
no register was updated since the time that p; com-
pleted its collect, then in the global control algorithm
p2 will need to perform at most one read (of the in-
formation collected by p1) to make its collect. Thus
no distributed algorithm can be competitive against
such an algorithm. Hence also the competitive mea-
sure of [15, 17] does not allow us to distinguish be-
tween the naive algorithm and algorithms that totally
dominate it.

The competitive measure presented here allows us
such a distinction. To characterize the behavior of an
algorithm over a range of possible schedules we define
the competitive latency of an algorithm. Intuitively,
the competitive latency measures the ratio between
the amount of work that an algorithm needs to per-
form in order to carry out a particular set of collects, to
the work done by the best possible algorithm for car-
rying out those collects given the same schedule. As

3This is analogous to the regularity property for registers
[43]: if a read operation R returns a value that was written in
an update operation U7, there must be no update operation Us
to the same register such that U; — Uy — R.

discussed above, we refine previous notions by requir-
ing that this best possible algorithm be a distributed
algorithm. Though the choice of this champion algo-
rithm can depend on the schedule, and thus 1t can im-
plicitly use its knowledge of the schedule to optimize
performance (say, by having a process read a register
that contains many needed values), it cannot cut cor-
ners that would compromise safety guarantees if the
schedule were different (as it would if it allowed a pro-
cess not to read a register because it “knows” from the
schedule that the register has never been written to).

Our Algorithms Using the trivial solution, even if
n processes perform collects concurrently, there are a
total of n? reads. We present the first algorithms that
cross this barrier. The basic technique is a mechanism
that allows processes to read registers cooperatively,
by having each process read registers in an order de-
termined by a fixed permutation of the registers. The
proof of competitiveness for our algorithms has two
parts, each of which introduces a different technique.
In the first part, we partition the execution into inter-
vals, each of which can be identified with a different
set of collect operations, and in each of which any
distributed algorithm must perform at least n steps.
This technique demonstrates how an algorithm can be
compared with an optimal distributed algorithm, i.e.,
with an algorithm that does not have global control.
In the second part we show how to construct a set of
permutations so that a set of concurrent collect op-
erations will take at most kn steps to be completed,
for some k, independent of the scheduling of the pro-
cesses’ steps. A first step in this direction was made
by Anderson and Woll in their elegant work on the
certified write-all problem [6] (see Section 2). Due to
the requirement of freshness, our adversary is less con-
strained than the adversary in [6], where freshness is
not an issue. Thus, we need additional insight into
the combinatorial structure of the schedule. In par-
ticular, for this part of the proof we prove that if the
adversary has a short description, then there exists a
good set of permutations. We then show that the ad-
versary 1s sufficiently constrained in its choices by our
algorithm, that it has a short description.

We present two algorithms; the differences between
them come from using different sets of permutations.
The first algorithm uses a set of permutations with
strong properties that allows a very simple and elegant
algorithm; however, the construction of the permuta-
tions is probabilistic, although suitable permutations
can be found with high probability. The second algo-
rithm uses a constructible but weaker set of permuta-
tions, and requires some additional machinery.
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In the non-constructive algorithm, the number
of reads for n overlapping collects is at most
O(n®/?log® n). We show this yields a competitive la-
tency of 0(711/210g2 n). In the explicit construction,
the number of reads for n overlapping collects is at
most n7/4 log2 n. This will yield a competitive latency
of O(n**log®n). These bounds are in contrast to
the Q(n)-competitiveness of the trivial solution. In
addition, we have an absolute worst-case bound on
the work done for each collect: both algorithms are
structured so that no collect ever takes more than 2n
operations, no matter what the schedule.

For lack of space, this abstract describes only the
non-constructive result, and most proofs are omitted
or only sketched.

2 Other Related Work

Saks, Shavit, and Woll were the first to recognize
the opportunity for improving the efficiency of shared-
memory algorithms by finding a way for processes to
cooperate during their collects [50]. They devised an
elegant randomized solution, which they analyzed in
the so-called big-step model. In this model, a time
unit is the minimal interval in the execution of the al-
gorithm during which each non-faulty process executes
at least one step. In particular, if in one time interval
one process takes a single step, while another takes 100
steps, only one time unit is charged. Thus, the big-
step model gives no information about the number of
accesses to shared memory (“small” steps) performed
by the processes during an execution of the algorithm.
This stands in contrast to our work, which focuses on
shared-memory accesses.

The cooperative collect resembles the problem of
arranging for processes to collaborate in order to per-
form a set of tasks. The closest problem in the litera-
ture is the certified write-all problem (CWA). In this
problem, the first variant of which was introduced by
Kanellakis and Shvartsman [38], a group of processes
must together write to every register in some set, and
every process must learn that every register has been
written into. This paper was followed by a number of
others that consider variants of the basic problem (see,
for example, [6, 21, 38, 39, 40, 41, 44, 45]). All of the
work on the CWA assumes some sort of multi-writer
registers. In a model that provides multi-writer reg-
isters, the cooperative collect would be equivalent to
the certified write-all (CWA) problem, were it not for
the issue of freshness. The reason for the equivalence
is that if a process learns that some register has been
written to, it must be because of information passed

to 1t from some process that wrote to that particular
register. Thus, given a certified write-all algorithm,
one can replace each of the writes to the registers by a
read, and pass the value read along with the certifica-
tion that that particular register was touched. Thus
when each process finishes, because it possesses a cer-
tification that each register was touched, it must also
possess each register’s value.

The CWA is useful in simulating a synchronous
PRAM on an asynchronous one. Specifically, the
CWA can be used as a synchronization primitive to
determine that a set of tasks — those performed at a
given step in the simulated algorithm — have been com-
pleted, and it is therefore safe to proceed to the sim-
ulation of the next step. If each instance of the CWA
is carried out on a different set of registers (a solution
not relevant to our problem), then issues of freshness
do not arise. If registers are re-used the problem be-
comes more complicated, particularly in a determin-
istic setting. We know of no work on deterministic
algorithms for the CWA problem that addresses these
issues in our model of computation. (For example, [6]
assumes ComparelsSwap and a tagged architecture, in
which associated with each register is a tag indicating
the last time that it was written.) In contrast, our
algorithms are deterministic.

In the asynchronous message-passing model,
Bridgeland and Watro studied the problem of per-
forming a number ¢ of tasks in a system of n proces-
sors [20]. In their work, processors may fail by crash-
ing and each processor can perform at most one unit
of work. They provide tight bounds on the number
of crash failures that can be tolerated by any solution
to the problem. In the synchronous message-passing
model, Dwork, Halpern, and Waarts studied essen-
tially the same problem [27]. Their goal was to de-
sign algorithms that minimized the total amount of
effort, defined as the sum of the work performed and
messages sent, in order for each non-faulty process to
ensure that all tasks have been performed.  Their
results were recently extended by Prisco, Mayer and

Yung [49].

There is a long history of interest in optimality of
a distributed algorithm given certain conditions, such
as a particular pattern of failures [25, 29, 34, 46], or
a particular pattern of message delivery [12, 31, 48].
These and related works are in the spirit of our paper,
but differ substantially in the details and applicability
to distinct situations.
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3 Model of Computation

We assume a system of n processes p1, ..., p,, that
communicate through shared memory. Each location
in memory is called a register. Registers can be read
or written in a single atomic step. We assume a com-
pletely asynchronous system. Each process can receive
stimuli (requests) from the outside world. A process’
local state can change only when it takes a step (per-
forms a read or a write of a register) or in response to
an external stimulus. Fach process has a set of halting
states. A process in a halting state takes no steps and
cannot change state except in response to an outside
stimulus. A process in a non-halting state is, intu-
itively, ready to take a step. On being activated by the
scheduler, such a process accesses a register and enters
a new state. The new state is a function of the previ-
ous state and any information read, if the step was a
read of a register. This formalizes the usual assump-
tion in an asynchronous algorithm, that a process
cannot change state solely in response to being given,
by the scheduler, the opportunity to take a step. We
assume that the schedule of events, that 1s, the inter-
leaving of step times and outside stimuli, is under the
control of an adversary.

4 Competitive Analysis

Traditionally, the competitiveness of an algorithm
has been measured by comparing its performance to
the performance of an omniscient being (the off-line al-
gorithm). The intuition is that if the on-line algorithm
“does well” when measured against an omniscient be-
ing, then it certainly “does well” when compared to
any other algorithm that solves the problem. This no-
tion of competitiveness can be extended naturally by
restricting the class of things (omniscient beings, or
algorithms) against which the given algorithm is to
be compared, provided the resulting comparison says
something interesting about the algorithm studied.

As discussed in the Introduction, in order to get
a more refined measure of the performance of a dis-
tributed algorithm, we compare its performance to
that of other distributed algorithms: algorithms in
which processes get no “free” knowledge about the
current state of the system. To measure the compet-
itiveness of an algorithm for a certain problem P, we
compare its cost on each schedule o, to the cost of
the best distributed algorithm on . We refer to the
algorithm being measured as the candidate, and we
compare it, on each schedule o to the champion for
o. Thus, we can imagine that the champion guesses o

and optimizes accordingly, but even if the schedule is
not o the champion operates correctly. Note that we
have restricted our comparison class by requiring that
the champion actually be a distributed algorithm for
P — that is, that it solve problem P correctly on all
schedules. On the other hand, we permit a different
champion for each ¢. This is a departure from the
usual model, in which there is a single off-line algo-
rithm.

In this paper we focus on a particular cost measure
based on the work done by an algorithm. The result is
a competitive ratio which we call competitive latency.

4.1 Competitive Latency

In this paper we are interested in algorithms for car-
rying out a sequence of tasks. Each request from the
scheduler is a request to carry out a particular task.
To complete a task a process must enter into one of its
halting state. (Naturally, to be correct, the algorithm
must in fact have successfully carried out the specified
task when it enters into this halting state.)

We consider only schedules in which each process
in the candidate algorithm completes its current task
before being asked to start a new one. (This is consis-
tent with the use of the cooperative collect in all the
algorithms mentioned above.) Similarly, for each such
schedule, we will only consider as possible champions
algorithms in which each process happens to finish its
task before the next task arrives. Algorithms that
have this property will be said to be compatible with
the given schedule. We will charge both the candidate
and the champion for every read or write operation
that they carry out as part of the tasks.

The total work done by an algorithm A under an
adversary schedule s is just the number of reads and
writes in s.* Writing this quantity as work(4, s), the
competitive ratio with respect to latency of an algo-
rithm is defined to be:

work(A, s)
Slip infp work(B, s)

where B ranges over all correct distributed algorithms
that are compatible with s. This definition is sufficient
for our purposes as we consider only deterministic al-
gorithms; for a randomized algorithm it would be nec-
essary to take expectations over both the algorithm’s
choices and the adversary’s responses to them.

4This quantity is not simply the length of the schedule since
a process does no work while in its halting state.
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5 The Speedy Collect Algorithm

In this section we present a non-constructive algo-
rithm that is O(y/nlog? n)-competitive with respect
to latency.

Our starting point is the Certified Write-All algo-
rithm of Anderson and Woll [6]. In their algorithm
every process p; has a fixed permutation m; of the in-
tegers {1,...,n}. When p; takes a step it writes to
the first location in 7; that has not yet been written.
Intuitively, it is to the adversary’s advantage if many
processes write to the same location at the same time,
since this causes wasted work. For each adversary
scheduler Anderson and Woll showed that the num-
ber of cells that are written can be bounded above as
follows.

A longest greedy monotonic increasing subsequence
(LaMIs) of a permutation 7= with respect to an ordering
o 1s constructed by starting with the empty sequence,
then running through the elements of 7 in order and
adding each to the subsequence if and only if it is
larger (according to o) than all elements already in
the subsequence. Let o be the order in which the
cells are first written, under this adversary schedule.
The total number of writes performed by each p; in
this schedule is bounded above by the length of the
longest greedy monotonic increasing subsequence of m;
with respect to ¢. It was shown probabilistically in
[6] that there exists a set of n permutations on the
numbers {1,... n} such that the sum of the lengths of
all longest greedy monotonic increasing subsequences
on the set with respect to any ordering ¢ is O(nlogn).
Later, J. Naor and R. Roth [47] obtained an explicit
construction in which this quantity is O(n(logn)*<).

This, then, is our starting point. We observe that
the adversary scheduler in [6] can be described in
nlogn bits. Due to freshness considerations, our prob-
lem is harder, and our adversary has more flexibility,
and therefore may require significantly more bits to de-
scribe. This is important in light of the following com-
binatorial lemma, which ties the existence of a good
set of permutations to the length of the description
of the adversary. Specifically, if the adversary can be
described in O(nlogn) bits, then there is a “good” set
of permutations:

Lemma 5.1 Assume that n is a positive integer and
A 1s a set so that each element of a € A is a se-
quence a = RY, ..., R where RY is an ordering of the
set {1,...,n}. For all ¢c;,es > 0, there exisls c3, so
that if n is sufficiently large, |A] < 2017187 qnd the
permutations wy, ..., T, are taken at random indepen-
dently and with uniform distribution on the set of all

permutations of {1,...,n}, then with a probability of
at least 1 — e=°271987 we have that for all a € A,
Yo ARE m) < esnlogn.

Intuitively, R{ captures the behavior of adversary
a that is relevant to process p;, in the sense that, as
we show, the reads performed by each process are
bounded above by the longest greedy monotonic in-
creasing subsequence of m; with respect to RY. The
relation between the R;’s and the adversary scheduler
is as follows. In the algorithm of [6], R? describes
the order in which the cells 1...n are first written,
thus R} = R} for all 7, j,a. In our scenario, for each
process p; we are concerned with the ordering of the
writes of blocks of registers which can be {trusted by
p; to be fresh. Thus in our scenario R describes the
order of the first trustworthy writes of each block (val-
ues that p; trusts to be fresh). Therefore, for each
a it 1s not necessarily the case that R = R7, and
thus a naive representation of our adversary requires
more than nlogn bits. Nonetheless, as we show in
Section 5.2, 1t 1s actually possible to describe the ad-
versary in O(nlogn) bits. This is because the rela-
tionship between R and R is not completely un-
constrained. For example, intuitively, if p; begins its
collect before p; does, then values fresh for p; will be
considered fresh by p;.

We now describe the algorithm, which we call the
Speedy Collect algorithm.

We partition the processes into groups of size \/n.
The processes in each group will collaborate to read
/n blocks of \/n registers; there is no collaboration
between groups. Each process p has a shared variable
COLLECT-NUM,, initially zero and incremented each
time p begins a new collect. Throughout the algo-
rithm, p repeatedly computes timestamps. A times-
tamp is an array of collect numbers, one for each
process. Intuitively, p will trust any value tagged
with a timestamp whose component for p equals
COLLECT-NUM, because these values are necessarily
read after p’s collect began.

The views of processes in a group are read and
updated using the atomic snapshot algorithm of At-
tiya and Rachman [13]. The basic operation
of the Attiya-Rachman algorithm on an array A is
SCcAN-UPDATE(v), where v can be null. When a pro-
cess p performs SCAN-UPDATE(v) for a non-null v, it
has the effect of updating p’s current value to v and re-
turning a copy of the entire contents of A (a snapshot),
with A[p] = v. When it performs SCAN-UPDATE(v)
for a null v, it simply returns the snapshot of A. In
the following, all SCAN-UPDATE() operations are ap-
plied to the array vieEw. Since the Attiya-Rachman
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algorithm is an atomic snapshot algorithm, there is a
total serialization order on the SCAN-UPDATE( )oper-
ations that preserves the real time order of the oper-
ations and that corresponds to the apparent ordering
determined by which ScaN-UPDATE() operations re-
turn which values. The SCAN-UPDATE(v) operation
has a cost of O(mlogm), where m is the number of
processes (and also the size of the array); in this pa-
per we will generally be using snapshots only within a
group of v/n processes, in which case the cost will be
O(y/nlogn).

Fach process p is given a fixed permutation m,
of the blocks. On first waking (beginning a col-
lect), p performs SCAN-UPDATE(NEWVIEW,), where
NEWVIEW, contains only p’s newly incremented col-
lect number. From then on, p repeatedly performs
the following operations.

1. READ-GROUP: Obtain an atomic snapshot of
the current view of all processes in the group
by invoking SCAN-UpPDATE() (O(\/nlogn) opera-
tions). Extract from this a snapshot of the vector
of collect numbers, but do not write this snap-
shot to shared memory, at this point. Call this
snapshot a ttmestamp.

2. READ-BLOCK: Read the registers in the first block
in m, that, in the union of the views obtained in
the snapshot, are not tagged with a timestamp
whose pth component is COLLECT-NUM,, (\/n op-
erations).

3. WRITE-VIEW: Tag the block just read with the
current timestamp. Let NEWVIEW, be the union
of this and, for each block b seen in the snap-
shot, the most recent value of b, tagged with
its timestamp; and in addition COLLECT-NUM,
(which is unchanged). Update VIEW[p] by invok-
ing SCAN-UPDATE(NEWVIEW, ) (O(y/nlogn) op-
erations).

This loop repeats until all y/n blocks appear in VIEW [p]
tagged with a timestamp whose pth component is
COLLECT-NUM,,. However, to ensure that in the worst
case process p performs at most O(n) operations, ev-
ery time it performs a single atomic step it also per-
forms a simple read of a register for which it does not
vet have a value tagged with a timestamp whose pth
component is COLLECT-NUM,,. It completes its cur-
rent collect as soon as it knows a fresh value for every
register.

The key to the performance of the algorithm is the
choice of good permutations. In order to be able to
choose the permutations well we need to formulate a

more precise description of the effect of the adversary
scheduler. In the next section we show how to do this.

5.1 Representing the Scheduling Adver-
sary as a Combinatorial Object

Given a set II of m permutations on {1,...,m},
the adversary, denoted by o, consists of three parts,
as described below. We remark that the definition be-
low is purely combinatorial; the interpretations given
below of each of the parts in terms of what values are
“trusted” by processes is intended solely to give an
intuitive explanation of why this representation was
chosen.

1. The first part of the adversary attaches to each
process a number between 1 and m, which will
be called the process’ trusting threshold. At least
one process will have trusting threshold m. In-
tuitively, the trusting thresholds reflect the seri-
alization order of updates to the vector of col-
lect numbers. A process p will trust only val-
ues attached with a snapshot that contains p’s
current collect number. Thus, p only trusts val-
ues tagged with timestamps that are serialized af-
ter p’s most recent update of COLLECT-NUM,. A
lower trusting threshold corresponds to an earlier
timestamp and represents a process that is more
likely to trust other processes’ values. Specifying
the trusting thresholds takes mlog m bits.

2. The second part of the adversary, denoted by o,
is an ordered list of at most 2m elements. Each
element in ¢’ is an ordered pair of numbers, each
of which is an integer between 1 and m. The first
number appearing in a pair is referred to as the
value of the pair, and the second is referred to
as the trustworthiness of the pair. The value of
the pair represents the index of a block of reg-
isters, while the trustworthiness reflects a times-
tamp with which the block was tagged.

The sequence ¢’ is constructed by mixing two se-
quences of length m. The first sequence contains
one element for each block between 1 and m; this
element has as its value the number of the block,
and has trustworthiness m. These pairs are or-
dered according to the order in which universally
trusted versions of these blocks are written. The
second sequence consists of a pair for each pro-
cess p recording p’s last write of a block that is
not universally trusted (if there is such a block).
The elements of the two sequences are interleaved
together according to the serialization order of the

Page 7



corresponding write operations. Since each of the
at most 2m elements of ¢’ can be specified in
2logm bits, the number of bits needed for this
part of the adversary is again O(logm).

3. The third and last part of the adversary provides
for each trusting threshold (i.e. each number be-
tween 1 and m) asubset of the integers {1,...,m}
that will correspond to 1t. This subset is called an
old subset corresponding to the trusting thresh-
old. OIld subsets are required to be totally or-
dered under inclusion; that is, the old subset for
a particular threshold must be contained in the
old subset for any lower threshold (the contain-
ment need not be proper). Intuitively, values in
an old subset of trusting threshold ¢ are trusted
to be fresh only by processes of trusting thresh-
old less than or equal to ¢. Intuitively, the union
of the old subsets will contain all values that are
trusted only by some of the processes.

Because the old subsets are ordered by inclusion,
they too can be represented in only O(mlogm)
bits.

Observe that the adversary is fully defined using
O(mlogm) bits.

Now we show how the above adversary imposes an
order R; on m;. First, erase from ; all elements that
are contained in the old set corresponding to #’s trust-
ing threshold. Call the remaining permutation ;. We
first define the sequences S; as follows:

e S; contains exactly the elements that appear in

/
ﬂ-i'

e An element p precedes ¢ in S; iff the first occur-
rence of a pair with value p that is trusted by i
(according to ¢’s trusting threshold) appears in o’
before the first occurrence of a pair with value ¢
that is trusted by i. Said differently, consider only
the pairs in ¢’ with second component (trustwor-
thiness) at least as large as the trusting threshold
assigned to ¢. Then p precedes ¢ in S; if in this
restricted list of pairs the first pair of the form
(p, -) precedes the first pair of the form (g, -).

Note that the sequences S; are together completely
determined by the adversary o and can therefore be
described using only O(mlogm) bits.

We denote by {(7}, o) the greedy monotonic increas-
ing subsequence in #} according to S;, where w}, S; are
constructed using o as described above. Define

0(11) = max 3 i o).
i=1

Padding the S; with a prefix containing the elements
in m; but not in #}, we can then use Lemma 5.1 to
prove the following theorem:

Theorem 5.2 There is a constant ¢ such that for
each m there s a set Il of m permutations w1,..., &m
of m values each such that T(IT) < emlog m.

In the next section we show that the effect of an
adversary scheduler on the Speedy Collect algorithm
can be completely captured by a 3-part adversary o
of the type described above. Thus, choosing the set
of permutations I whose existence is guaranteed by
Theorem 5.2 yields an algorithm with good latency.

5.2 Collective Latency of the Speedy Col-
lect Algorithm

Define the collective latency of a set of processes
G at a point ¢ in time as the sum over all p € G of
the number of operations done by process p between ¢
and the time that it completes the last collect that it
started at or before t. (Recall that a process is consid-
ered as having completed its collect only when it enters
into a halting state.) We show that for a suitable set
of permutations our algorithm gives a small collective
latency for each of the \/n-sized groups of processes;
in Section 5.3 we use this fact to show that our al-
gorithm i1s competitive with respect to latency when
all of the processes are taken together. The following
theorem is at the core of our proof of competitiveness:

Theorem 5.3 Let 1T be a set of m = +/n permuta-
tions on {1,...,m}. Suppose thatl the set of permu-
tations I for each group satisfies T(II) = O(T(m)).
Then the collective latency for each group using our

algorithm is O (T(m)y/nlogn).

Sketch of Proof: Fix an arbitrary time ¢ and let
G be the set of processes performing collects at time
t. The proof separately analyzes READ-BLOCKs after
time ¢ whose values are trusted by every process in G
(“globally trusted” READ-BLOCKS), and other (“par-
tially trusted”) READ-BLOCKs. It is easily shown that
each process performs at most one partially trusted
READ-BLOCK after time .

The first half of the analysis of globally trusted
READ-BLOCKS is the construction of a three-part ad-
versary ¢ consistent with the representation described
in Section 5.1. Intuitively, the three parts are as
follows. The first part of ¢ is determined by the
serialization order on the processes’ initial calls to
ScAN-UPDATE(), in which they write their new collect
numbers for the collects that are in process at . The
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ordering o’ is determined by the serialization order on
the globally and partially trusted blocks performed in
the WRITE-VIEW phases. Finally, the serialization or-
der on the timestamps orders the sets trusted by the
individual members of G by inclusion.

The remainder of the analysis of globally trusted
READ-BLOCKs shows that the globally trusted READ-
BLOCKs done by process ¢ correspond to a greedy
monotonic increasing subsequence according to the se-
quence S; described in Section 5.1. Applying Theo-
rem 5.2 yields a bound of T'(IT) = O(T(m)) on the
number of globally trusted READ-BLOCKs. The cost
of each of these READ-BLOCKs and their associated
WRITE-VIEW and READ-GROUP phases is O(y/nlogn).
|

5.3 Using Collective Latency to Bound
the Latency Competitiveness

The following theorem is the key to the relationship
between collective latency and the competitive latency
measure. To make this connection, it 1s useful to have
the following definition: given a particular schedule,
the work ratio for a group of processes G 1s the ratio
between the total number of operations performed by
processes in G in the candidate algorithm to the total
number of operations performed by all processes in the
champion algorithm.

Theorem 5.4 For any cooperative collect algorithm
A, any group G of processes, and any schedule that is
compatible with A, if there exists a bound L such that
for all times t the collective latency for G at t s at
most L, then the work ratio for G is at most L/n+ 1,
where n 1s the number of values to be collected.

Sketch of Proof: The key to the proof is that
whenever some process starts a collect in algorithm
A, the same process starts a collect in the champion
algorithm. So we can define a partition of the sched-
ule into intervals Iy, I, etc., which have the property
that: (a) the champion performs at least n operations
during each interval; and (b) algorithm A requires at
most L + n operations to complete the collects per-
formed by processes in (G that start during each inter-
val. Fact (a) is proved by demonstrating that during
each interval every register must be read at least once
to obtain fresh values. Fact (b) is proved by applying
the definition of collective latency to the endpoint of
each interval. The result follows. ]

Corollary 5.5 For any collect algorithm, if the pro-
cesses can be divided into m groups such that for all

times t each group has a mazimum collective latency
of L att, then the competitive latency ts mL/n + m.

Lemma 5.6 Suppose that the set of permutations
I for each group satisfies T(II) = O(T (v/n)).
Then our algorithm has a competitive latency of

O(T(/m)logn).

Proof: By Theorem 5.3, the collective latency for
each group is L = O(T (v/n)+/nlogn). There are
m = +/n groups, so the result follows from Corol-
lary 5.5 ]

The set of permutations Il from Theorem 5.2 have

T(y/n) = O(y/nlogn), and thus:

Theorem 5.7 The competitive latency of the Speedy
Collect algorithm is O(n*/?log® n).
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