
SDN Programming Capacity Theorem on

Realizing High-Level Programs on Low-Level

Datapaths

Xin Wang:;, Christopher Leet˚, Y. Richard Yang˚:, James Aspnes˚, Changjun

Jiang:;§

: Department of Computer Science, Tongji University ˚ Department of

Computer Science, Yale University ; Key Laboratory of Embedded System and

Service Computing, Ministry of Education, China § Department of Computer

Science, Donghua University

Abstract

High-level programming and programmable data paths are two key capabilities of software-defined

networking (SDN). A fundamental problem linking these two capabilities is whether a given high-level

SDN program can be realized onto a given low-level SDN datapath structure. Considering all high-level

programs that can be realized onto a given datapath as the programming capacity of the datapath, we

refer to this problem as the SDN datapath programming capacity problem. In this paper, we conduct

the first study on the SDN datapath programming capacity problem, in the general setting of high-level,

datapath oblivious, algorithmic SDN programs and state-of-art multi-table SDN datapath pipelines. In

particular, considering datapath-oblivious SDN programs as computations and datapath pipelines as

computation capabilities, we introduce a novel framework called SDN characterization functions, to

map both SDN programs and datapaths into a unifying space, deriving the first rigorous result on SDN

datapath programming capacity. We not only prove our results but also conduct realistic evaluations to

demonstrate the tightness of our analysis.

A preliminary version of this work appeared in [1].

1

I. INTRODUCTION

A major research direction of SDN is programmable, efficient datapaths (e.g., OF1.3 [2],

OF-DPA [3], P4 [4]). Only by being programmable can a given SDN datapath support diverse,

ever evolving application scenarios. At the same time, it is crucial that datapaths be efficient,

to be able to satisfy demanding requirements such as achieving high throughput and being cost

effective. In the last few years, multi-table pipelines have emerged as a key structure of SDN

datapaths (e.g., Domino [5], Forwarding Metamorphosis [6]).

One problem of efficient datapaths, however, is that they must often be programmed at an

inefficiently low level. For example, TCAM, which is essential to achieve high-throughput,

does not support logical negation. Hence, a second major research direction of SDN is high-

level, datapath path-oblivious programming, to provide abstractions to hide low-level datapath

programming. To this end, in the last few years multiple high-level SDN programming models

have emerged (e.g., Frenetic [7], Maple [8]).

As both directions progress, a basic problem emerges: whether a given high-level program

can be realized on a given low-level datapath. A good understanding of this problem can benefit

both the design of high-level SDN programming and the design of datapaths. Given a fixed

datapath (e.g., a fixed pipeline architecture such as OF-DPA), the vendor of the datapath can

provide guidelines on the high-level programs that can be realized. Given a set of high-level

programs to be supported, one could use this understanding to design the most compact datapath

supporting these programs. Even for reconfigurable datapaths (e.g., P4), as reconfiguration can

be expensive and time consuming, one can use this understanding to guide the design of a

more robust datapath. Considering all high-level programs that can be realized onto a given

programmable datapath as the capacity of the datapath, we define the basic problem as the SDN

datapath programming capacity problem.

Solving the datapath capacity problem, however, is not trivial. Consider a simple datapath,

named Simple-DP, shown in Fig. 1. It is among the simplest datapaths, consisting of three tables

forming a pipeline, where the first table (t1) matches on source IP and may jump to one of the

two following tables, which both match on destination IP.
Consider two simple high-level SDN programs below, both specified in the algorithmic,

event-driven programming style to handle packet misses; see Sec. II for more details on the
programming model. An interested reader can try to verify that the first program can be realized
by Simple-DP, but the second cannot.

2

t1:
ethType jump

t2:
srcIP srcPort r(t2)

t3:
dstIP r(t2) r(t3)

t4:
dstPort r(t2) r(t4)

t5:
r(t3) r(t4) action

t6:
srcMac dstMac action

t1
srcIP jump

t2
dstIP action

t3
dstIP action

ethType srcPort srcIP dstPort dstIP

g1

dstCond dstSw

return

g0

10 10

200 50200 5010

50

2

2

ethType srcPort srcIP dstPort dstIP

g1

dstCond dstSw

return

g0

10 10

200 50200 5010

50

2

2Fig. 1. A simple example datapath: Simple-DP.

// Routing Function: secureL3Route

L0: secureL3Route(Addr srcIP, Addr dstIP):

L1: if srcIP == 10.0.0.1:

L2: return Forward(port=shortestPath(dstIP))

L3: else:

L4: return Drop();

// Program: twoHostL3Route

L0: def twoHostL3Route(Addr srcIP, Addr dstIP):

L1: if srcIP == 10.0.0.1:

L2: return Forward(port=shortestPath(dstIP))

L3: elif srcIP == 10.0.0.2:

L4: return Forward(port=securePath(dstIP))

L5: else:

L6: return Drop();

Although the preceding datapath and high-level programs are among the simplest, they may

already appear to be non-trivial for a reader to analyze. General datapath and high-level programs

can be much more complex as multiple services need to be implemented and hence they can

pose severe challenges in analysis. The goal of this paper is to develop the first systematic

methodology to solve the SDN datapath programming capacity problem.

The contributions of this paper can be summarized as follows. First, we propose a unifying

characteristic functional space to unify and extract the essence of programs and pipelines,

removing complexities such as program structures and pipeline layouts. Second, we define a

comparator in this functional space, which can be used to check whether a high-level program

can be realized on a given pipeline.

The rest of the paper is organized as follows. We define our model precisely in Sec. II.

The main results are given in Sec. III and the proofs are shown in Sec. IV. Sec. V shows our

evaluation results. Finally, related work is provided in Sec. VI.

3

II. MODELS

We start by specifying the high-level SDN programs and low-level datapath models. Since the

main focus of SDN is routing, we refer to a high-level SDN program as a routing function. Since

multi-table pipelines are the state-of-art for SDN datapaths, we focus on pipelines as datapaths.

A. Routing Function Model

Routing function: We denote a routing function as f , and assume that it is a logically centralized,

deterministic function written in a high level language logically executed by an SDN controller

on every packet [8] entering that controller’s network to determine network-wide routing for that

packet.

Each execution of f on a packet reads a set of the packet’s attributes (called match fields)

M “ xm1, ...,mny (e.g., <srcIP, dstIP, ...>). We use M to denote a subset of packet

match fields included in M. Moreover, we denote dompMq as the domain of a set of match

fields M . The execution of f returns a routing action from a set of valid actions R (e.g., Drop,

Forward(port=2)):

f : dompMq Ñ R.

The space of such functions is denoted F .

Example: We use the routing function onPkt below to illustrate key features of our routing

function model.

\\ Routing function: onPkt

Map hostTbl[key: dstIP, value: switch]

Map condTbl[key: (dstIP, port), value: cond]

Map routeTbl[key: (switch, cond), value: outPort]

L0: onPkt(Type ethType, Addr srcIP, Port srcPort, \

Addr dstIP, Port dstPort):

L1: if (ethType != IPv4):

L2: return Drop()

L3: if (verify(srcPort, srcIP)):

L4: dstCond = condTbl[dstIP, dstPort]

L5: dstSw = hostTbl[dstIP]

L6: return Forward(port = routeTbl[dstCond, dstSw])

L7: return Drop()

4

Specifically, onPkt reads the match fields M “ xethType,srcIP,srcPort,dstIP,dstPorty

and maps each value in the domain of M to a routing action in R “ tDrop(),Forward(port=x)u.

While we write onPkt as an imperative function, we emphasize that our model is fully generic

and does not specify a programming paradigm.

Elaborating, onPkt’s first three lines declare key-value tables. Specifically, hostTable and

condTable associate each IP address with an attachment switch and host condition (e.g.,

authentication status) respectively, while routeTable maps a switch, condition pair to its

forwarding port. Moving on to onPkt’s body, L1 and L2 detect and drop non-IPv4 traffic,

while L7 drops traffic from unverified endpoints. For verified packets, L4 to L6 further set

dstCond and dstSw variables, and then return a routing action from routeTbl based on

the two variables.

Routing function DFG: Since a generic routing function can have arbitrary, complex control

structure, we transform a routing function into a dataflow graph (DFG) to better represent its

structure. We denote an f ’s DFG as Gf .

Specifically, to compute Gf for f , we must remove all of f control follow dependencies.

These dependencies are removed by the following transformations:

‚ We remove assignment statement order dependencies by converting f to single static as-

signment form (SSA).

‚ We remove branches by assigning their conditionals’ values to guards, and appending

dependencies on these guards to all statements in their if and else blocks.

‚ We remove program loops by converting them to black box functions which read all variables

read by the loop and write all variables written by them.

For example, our example routing function onPkt is transformed as follows:

L0: onPkt(...):

L1: g0 = (ethType != IPv4)

L2: if g0: return Drop()

L3: g1 = verify(srcPort, srcIP)):

L4: if g1: dstCond = condTbl[dstIP, dstPort]

L5: if g1: dstSw = hostTbl[dstIP]

L6: if g1: return Forward(port = routeTbl[...])

L7: if !g1: return Drop()

Note that onPkt’s if statement at L1’s has been replaced by an assignment from its

conditional to the guard g0. This guard is appended to L2, which was formally in the if

5

statement’s if block.

Given this transformation, we define Gf for f :

Definition 1. A routing function f ’s’ dataflow graph DFG Gf “ pVf , Ef q is a vertex weighted

dag generated from a transformed f such that:

‚ Each vertex vf in Vf is a variable in f .

‚ A vf ’s weight is its domain size.

‚ There is a directed edge in Ef between two variables if the source variable appears in the

target variable’s assignment.

As an example, we give onPkt’s DFG below:

t1:
ethType jump

t2:
srcIP srcPort r(t2)

t3:
dstIP r(t2) r(t3)

t4:
dstPort r(t2) r(t4)

t5:
r(t3) r(t4) action

t6:
srcMac dstMac action

t1
srcIP jump

t2
dstIP action

t3
dstIP action

ethType srcPort srcIP dstPort dstIP

g1

dstCond dstSw

return

g0

10 10

200 50200 5010

50

2

2

ethType srcPort srcIP dstPort dstIP

g1

dstCond dstSw

return

g0

10 10

200 50200 5010

50

2

2

Fig. 2. The routing function onPkt’s DFG GonPkt.

Observe that the vertex dstSw is descended from the two variables in its assignment, g1 and

dstIP. The vertex’s weight, 10, indicates dstSw’s domain.

B. Pipeline Model

We focus on state-of-the-art datapaths: multi-table pipelines. We first model a table t in a

pipeline p and then we give a clear definition for the pipeline.

Pipeline table: Each pipeline table t P p is a exact match match-action table. Each of t’s actions

is a routing action output, or a write to t’s output register rptq followed by a hop to a subsequent

table in p, or a simple jump action to a subsequent table in p. Not all t output routing actions,

and we denote the t that do as an egress table.

Each t matches on a set of inputs Iptq that contains packet match fields mi PM and preceding

tables’ output registers rptq. Key limitations on a t are the maximum number of rules it can

contain and rptq’s bit length, which we denote maxrulesptq and bitsprptqq respectively.

Pipeline: A pipeline p is a singly rooted dag (directed acyclic graph) of tables ttiu. An edge

pti, tjq in a p indicates that a packet arriving at ti can jump to tj .

6

Each packet passing through p starts at p’s root and proceeds through p to an egress table.

Therefore, each packet passing through p can map to a path in the p, along with a routing action

for that packet from R.

A packet’s path through p and the action its egress table outputs are determined by the set

of packet match fields M each ti P p matches on. Given this, p may also be summarized as a

mapping from dompMq to R, which depends on p’s contents.

We denote the space of all pipelines p as P .

t1:
ethType jump

t2:
srcIP srcPort r(t2)

t3:
dstIP r(t2) r(t3)

t4:
dstPort r(t2) r(t4)

t5:
r(t3) r(t4) action

t6:
srcMac dstMac action

t1
srcIP jump

t2
dstIP action

t3
dstIP action

ethType srcPort srcIP dstPort dstIP

g1

dstCond dstSw

return

g0

10 10

200 50200 5010

50

2

2

ethType srcPort srcIP dstPort dstIP

g1

dstCond dstSw

return

g0

10 10

200 50200 5010

50

2

2

Fig. 3. Example datapath, ExampleDP

Example: We now give an example pipeline ExampleDP, shown in Fig 3, to illustrate our

pipeline model. Note that in the example, a table matches on fields on its left-hand side, writes

to a register on its right-hand side, and the field output of a table indicates the table contains

output routing actions.

Narrowing our focus, consider t2 P ExampleDP. t2 is an exact match table whose inputs

Ipt2q are srcIP and srcPort, and whose output register is r(t2).

Significant computation limits on t2 are its maximum number of rules maxrulespt2qq and

the size of its output register bitspr(t2)q.

III. MAIN RESULTS

Given the function and pipeline models, we now present our main results, on whether a

function f can be realized by a pipeline p.

To simplify the reading of our results, we put only the definitions and main results in the main

text. The proofs of the results are in the appendix. To make it easier to follow the symbols, we

collect key symbols in Table I for reference.

A. Overview

A main challenge in developing a systemic method to verify whether a routing function f can

be realized by a pipeline p, which we denote as f Ù p, is that routing functions and pipelines

7

Symbol Definition
Routing function symbols
f Routing function
F Routing function space
mi Packet match field
M Set of @ mi

dompMq Domain of valid values of M
R Set of @ valid routing actions
Pipeline symbols
p Pipeline
P Pipeline function space
ti Pipeline table
rptiq ti’s output register
bitsprptiqq ti’s output register bit length
Iptiq ti’s table inputs
maxrulesptiq Maximum # of rules ti can contain

TABLE I
SYMBOL TABLE LISTING NOTATION IN OUR MAIN RESULTS.

are represented differently and both types of representations can have substantial complexities

and variations. Consider each routing function f as a point in a functional space F , and each

pipeline p as a point in functional space P .

Our main contribution is the introduction of a novel, unifying, normalization functional space

C called the characteristic functions space. Each routing function f is mapped by the mapping τ

to a characteristic function τpfq P C, characterizing the computational load of f . Each pipeline

p, on the other hand, is mapped to a set κppq Ă C of characteristic functions, representing the

set of computational capabilities of the pipeline. Fig 4 illustrates the mapping structure.

C
fi

pi
κ

τ

τ(fi)

PF

κ(pi)

Fig. 4. The spaces F , P and C and the mappings between them.

Since τpfq and κppq are defined in the the same space C, as a point and as a set of points

respectively, one can compare τpfq with each element in κppq, to see if the load can be ”covered”

by a capability, resulting in our basic capacity theorem: that if D c P κppq ě τpfq, f Ù p.

8

B. Characteristic Functions

We begin by defining a generic characteristic function c.

Definition 2. A characteristic function c is a mapping from each subset M of a packet’s match

fields to a vector consisting of two components:

cpMq
∆
“ă scopepMq, ecpMq ą .

We refer to the two components of cpMq’s vector as cpMqrscopes and cpMqrecs respectively.

Given two characteristic functions, one can compare them.

Definition 3. We define ci dominates cj , denoted as ci ě cj as follows:

ci ě cj
∆
“ @ n P tscope, ecu,

@ M P 2M, cipMqrns ě cjpMqrns.

To verify our capacity theorem, we need to compare a set of characteristic functions with a

single characteristic function.

Definition 4. A set of characteristic functions Ci dominates a characteristic function cj , denoted

as Ci İ cj , if a ci P Ci dominates cj:

Ci İ cj
∆
“ D ci P Ci : ci ě cj.

C. Characterization of a Routing Function

Given the concept of characteristic functions, we now derive the characteristic function,

denoted as τpfq, of a routing function f .

Definition 5. The scope of the characteristic function of a routing function for a subset of packet

match fields M is the size of the domain of valid values of M :

τpfqpMqrscopes
∆
“ dompMq

τpfqpMqrecs is a property that we build from the concept of f-equivalence:

9

Definition 6. We define f-equivalence, denoted as „f , as a relationship between two values of

M , which we write as vipMq and vjpMq, which denotes that these values cannot be distinguished

by f :

vipMq „f vjpMq
∆
“ @ vkpM´Mq P dompM´Mq,

fpvipMq, vkpM´Mqq “ fpvjpMq, vkpM´Mqq.

Our definition of f-equivalence leads naturally to our definition of an f-equivalence class.

Definition 7. An f-equivalence class, denoted as rvipMqsf , is the set of all values f-equivalent

to a given M ’s value vipMq:

rvipMqsf
∆
“ tvjpMq P dompMq : vipMq „f vjpMqu.

Counting equivalence classes gives us the concept of f-equivalence class number.

Definition 8. The f-equivalence class number of M , denoted as |dompMq{ „f |, is the cardinality

of M ’s set of f-equivalence classes.

We now arrive at our definition of τpfqpMqrecs.

Definition 9. The ec of a routing function’s characteristic function for an M is the cardinality

of M ’s set of f-equivalence classes:

τpfqpMqrecs
∆
“ |dompMq{ „f |

Definition 10. The characteristic function τpfq of a routing function characterizes f ’s compu-

tational load:

τpfqpMq
∆
“ pdompMq, |dompMq{ „f |q.

While τpfq is powerful it is impractical because f-equivalence class number is costly to

directly calculate. Let us take the instruction, dstCond = condTbl[dstIP, dstPort],

in the onPkt as an example. The instruction takes two variables, dstIP,dstPort, as input,

and computes dstCond by matching the table, condTdl. The DFG of the instruction which

is a subgraph of onPkt’s DFG as shown in Fig. 5.

Using the definition of f-equivalence class, we can compute |dompMq{ „f | equals 10 where

M “ pdstIP,dstPortq from the DFG as shown in the Fig. 7. However, the computation of

10

dstPort dstIP

dstCond

condTbl

Fig. 5. A subgraph of onPkt’s DFG GonPkt.

both |dompdstIP q{ „f | and |dompdstPortq{ „f | is hard. Consider an extreme case where

the domain size of both dstIP and dstPort equals 100 and the domain size of dstCond

equals 2 (i.e., the output values of condTbl only include 0 and 1). Even for this simple case,

we can construct the content of condTbl as shown in Fig. 6 to make |dompdstIP q{ „f | =

|dompdstPortq{ „f | = 100 which is the domain size of dstIP and dstPort.

dstPort dstIP dstCond

10 10.0.0.0 1

10 10.0.0.1 0

… … …

10 10.0.0.99 0

11 10.0.0.0 0

11 10.0.0.1 1

… … …

11 10.0.0.99 0

… … …

199 10.0.0.0 0

199 10.0.0.1 0

… … …

199 10.0.0.99 1

Fig. 6. A table matching dstIP and dstPort outputs dstCond. For each group of table entries with the same dstPort
field, there is only one entry whose dstCond field is 1 and the entry has different dstIP values for each group.

We therefore bound a τpfq by defining the bounding characteristic function of a routing

function τGpfq which is easily derivable from f ’s DFG. This function characterizes an upper

bound on f ’s computation load: τGpfq dominates τpfq.

We find τGpfqrscopes as before. Instead of calculating τGpfqrecs, however, we determine an

upper bound for with the value of specific vertex cut in Gf , f ’s DFG. We now construct this

cut.

Definition 11. Let Vf pMq be the vertices of mi P M in Gf , and Df pMq be the vertices in Gf

descended from Vf pMq.

11

The vertex-min-cut of M , Gf .vertexMinCutpMq, is the product of the weights of the vertices

in the minimum weight vertex cut severing Vf pMq from Df pM´Mq.

Given this cut, we define τGpfq follows:

Definition 12. The characteristic function τGpfq of a routing function characterizes an upper

bound on f ’s computational load; τGpfq dominates τpfq:

τGpfqpMq
∆
“ pdompMq, Gf .vertexMinCutpMqq.

Example: We illustrate these concepts with our example routing function onPkt.

Consider onPkt’s match fields srcIP and srcPort. Each are only read once: on L3,

by the boolean function isVerified. Thus, while srcIP and srcPort may have many

f-equivalence classes individually, (srcIP, srcPort) only has two: values that isVerified

evaluates to 0, and values it evaluates as 1.

Suppose onPkt is a routing function for a small commercial network fronted by a NAT with

50 hosts each running a limited set of applications that only use 200 standard ports. Given this,

dompsrcIP,srcPortq “ 10000, and thus τponPktqpsrcIP,srcPortq “ p10000, 2q.

While the equivalence class number of (srcIP, srcPort) was straightforwards, the equiv-

alence class number of most other subsets of onPkt’s inputs is not so obvious. We therefore

bound τponPktq with τGponPktq, which we calculate using onPkt’s DFG GonPkt, shown in

Fig. 7.

t1:
ethType jump

t2:
srcIP srcPort r(t2)

t3:
dstIP r(t2) r(t3)

t4:
dstPort r(t2) r(t4)

t5:
r(t3) r(t4) action

t6:
srcMac dstMac action

t1
srcIP jump

t2
dstIP action

t3
dstIP action

ethType srcPort srcIP dstPort dstIP

g1

dstCond dstSw

return

g0

10 10

200 50200 5010

50

2

2

ethType srcPort srcIP dstPort dstIP

g1

dstCond dstSw

return

g0

10 10

200 50200 5010

50

2

2

Fig. 7. The routing function onPkt’s DFG GonPkt and the cut psrcIP,srcPort,dstPortq.

To bound, for example, the equivalence class number of onPkt’s inputs (srcIP, srcPort,

dstIP) we take the vertex-min-cut in GonPkt between their vertices and every vertex descended

from onPkt’s other inputs: (ethType, dstPort,g0, dstCond, return). This vertex-min-

cut is indicated in Fig. 7 by a dotted line.

12

The vertices in this cut, (g1, dstIP) have weight 50 and 2, and thus τGpsrcIP,srcPort,dstIPq “

p50000, 100q.

D. Characterization of a Pipeline

We now define κppq, the set of characteristic functions of a pipeline p. We start by defining

a path ρ through a pipeline p.

Definition 13. A path, ρ, in a p is a path through p’s dag xt1, ..., tny such that t1 is a root table

and tn an egress table in the p.

As an example, ExampleDP contains two paths: xt1,t2,t3,t4,t5y, and xt1,t6y, which

we denote as ρL2 and ρL3 respectively.

We define, @ ρ P p, κρppq as the characteristic function of the a path through a pipeline.

Definition 14. The characteristic function set κppq of a p is the union of @ ρ P p’s characteristic

functions:

κppqpMq
∆
“ tc P C : c “ κρpρq @ ρ P pu.

We now construct the characteristic function of a path ρ by introducing the following defini-

tions:

Definition 15. The input closure M̄ρptiq of a table ti P ρ is the set of inputs that ti can obtain

information about:

M̄ρptiq
∆
“ tmi PM : mi P Iptiq _

mi P M̄ρptjq s.t. rptjq P Iptiqu.

Definition 16. The closure set, ¯̄MρpMq of a ρ’s M is the set of ti P ρ with input closure M .

¯̄MρpMq
∆
“ tti P ρ : M̄ρptiq “Mu.

Using these definitions, we define the characteristic function of a ρ as:

Definition 17. The characteristic function κρpρq of a ρ characterizes the computational capacity

of a ρ.

κρpρqrscopes is the maximum number of values of M that ρ can read and κρpρqrecs is the

maximum number of equivalence classes of M that ρ can distinguish.

13

κρpρqpMq
∆
“

$

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

%

¯̄MρpMq ‰ H pminrmaxrulesptiq : ti P
¯̄MρpMqs,

minr2bitsprptiqq : ti P
¯̄MρpMqsq

¯̄MρpMq “ H^ D mi PM :

mi R
Ť

tiPρ
M̄pti, ρq p1, 1q

otherwise, pᵀ,ᵀq.

Example: As before, we provide intuition into the characteristic functions of pipelines using

our example pipeline ExampleDP.

Recall from our model that ExampleDP contains two ρ: ρL2 and ρL3. Consider the table

t4, only contained by ρL3. The input closure M̄ρL3pt4q is (srcIP, srcPort, dstIP) since

t4 reads dstIP and r(t2), and t2 in turn reads srcIP and srcPort. The closure set,
¯̄MρL3psrcIP,srcPort,dstIPq, of t4’s inputs in ρL3 is tt4u: t4’s input closure is unique.

Thus, κρL3pM̄ρL3q “ κρL3psrcIP,srcPort,dstIPq “ pmaxRulespt4q, 2bitsprpt4qqq. In the

case that t4 has 220 rules and a 16 bit output register, κρL3pM̄ρL3q “ p2
20, 216q.

Further, consider the subset of ExampleDP’s match fields psrcMac, dstMacq. ρL3 does

not contain the inputs srcMac or dstMac and thus it can only realize functions that contain

them in the unlikely event that all are constants. Constants have domain 1 and 1 equivalence

class. Thus the value of κρL3 for any set of outputs containing srcMac is p1, 1q.

Finally, consider the subset of ExampleDP’s match fields psrcIP, srcPortq. srcIP and

srcPort are both read by ρL3, but psrcIP, srcPortq is not an input closure of any ti P ρL3.

In this case, it is not necessary to consider psrcIP, srcPortq to verify realizability, and thus

κρL3psrcIP, srcPortq “ pᵀ, ᵀq, indicating that we can skip this field during comparison with

a routing funciton’s τ .

E. Datapath Programming Capacity Theorems

Combining the preceding definitions to characterize both routing functions and pipelines, we

finally arrive at our central result: a sufficient condition for whether a given f can be realized

in a given p.

14

Theorem 1 (Pipeline Realization Theorem). A routing function f can be realized by a pipeline

p if κppq, the set of characteristic functions of p dominates τpfq, the characteristic function of

f . Formally, we have:

κppq İ τpfq ñ f Ù p.

As a corollary, because τGpfq ą τpfq, the Pipeline Realization Theorem extends to τGpfq.

Example: We illustrate our Pipeline Realization Theorem using onPkt and ExampleDP.

Specifically, our Pipeline Realization Theorem states that κpExampleDPq İ τponPktq ñ

ExampleDP Ù onPkt.

Further, κpExampleDPq İ τponPktq is true if κρpρL2q ą τGponPktq or κρpρL3q ą τGponPktq

We verify each conditional by comparing each component of each vector given by each pair of

characteristic functions. For example, τponPktqpsrcIP, srcPort, dstIP) “ p50000, 100q,

κρpρL3qpsrcIP, srcPort, dstIP) “ p220, 216q, and thus the input set (srcIP, srcPort,

dstIP) does not prevent onPkt from being realized in ρL3.

Tightness: Though the theorem provides only a sufficient condition, tighter results, in particular

sufficient and necessary conditions, can be established in multiple settings. In particular, we have

the following result:

Definition 18. A branchless pipeline p is a p whose dag is a path from its root to its output

node.

Theorem 2 (Extension of Pipeline Realization Theorem). If p is a branchless pipeline, p’s table

size is large, and each match field mi PM appears in exactly one of p’s tables, κppq İ τGpfq ô

f Ù p.

In Sec. IV, we provide the proofs of our capacity theorems.

IV. PROOFS

A. Proof of Pipeline Realization Theorem

We now present proofs to verify our realization theorem. The structure of these proofs will

be as follows. First, we define a mechanism to encode sufficient information about a given

M P M to fully execute a given f . Second, we show that a pipeline transmitting information

internally using our encoding can realize an f in p given that κppq İ τGpfq. Finally, we show

15

that τGpfq ą τpfq, proving by extension that if κppq İ τpfq, f Ù p. We omit a proof of

Theorem 2 and the proofs of certain corollaries and lemmas due to space constraints. We will

give these proofs in an extended report in an upcoming technical journal.

We base our summary on the vertices in the Gf .vertexMinCutpMq of a f ’s Gf .

Definition 19. The min cut vertices µf pMq are the vertices in an f ’s Gf cut by Gf .vertexMinCutpMq.

Let a given value of µf pMq be vipµf pMqq and the domain of values of µf pMq be dompµf pMqq.

Lemma 1. Given a Gf .vertexMinCutpMq, we can calculate f without knowing vipMq given

vipµf pMqq.

Proof. We can calculate any DFG G’s output given the values of all of its roots because every

vertex in G must be descended from a subset of these roots.

Consider the subgraph of Gf , Gf,M , generated by removing every vertex in Gf that µf pMq

separates from Df pMq. By our definition of Gf , Gf ’s output node is descended from @ mi PM,

and thus it is always in Gf,M .

Each of Gf,M ’s roots is either a mj P M ´M or some vertex in µf pMq. Therefore, given

vipM ´ Mq and vjpµf pMqq, we can calculate Gf,M ’s output, and therefore Gf ’s output. By

the definition of a DFG, Gf ’s output is f ’s output, and therefore we have shown that we can

calculate f given vjpµf pMqq in lieu of vjpMq.

Further, we have the bound of the number of equivalence classes of M .

Lemma 2. The number of equivalence classes of M is bounded by dompµf pMqq.

Proof. Suppose, by way of contradiction, D pf, Mq : |dompMq{ „f | ą dompµf pMq. Each

vipMq in one of M ’s equivalence classes must generate a vipµf pMqq. By the pigeonhole principle,

if M has more equivalence classes than µf pMq, two values of M from different equivalence

classes must generate the same value of µf pMq. However, by Lemma 1, µf pMq contains

sufficient information about M to fix f ’s outputs value, and thus these two bindings of M

must be in the same equivalence class, which is a contradiction.

Then, we show that the µf pMq representation (i.e., min cut) is a bound on the number of

equivalence classes of M .

16

Proof. By Lemma 2, |dompMq{ „f | ď |dompµf pMqq{ „f |. Further, |dompµf pMqq „f

| ă |dompµf pMqq|. Finally, |dompµf pMqq| ă
ś

µfiPµf pMq
dompµfiq, which is the value of

Gf .vertexMinCutpMq.

While µf pMq acts as an effective representation of values of M vipMq, we can compress it by

introducing the concept of codewords, allowing us to maximize transmission through a pipeline.

Definition 20. The codewords χf pMq of inputs M of a f are a set of integers that correspond

to the f-equivalence classes of M .

Receiving a codeword P χf pMq is equivalent to receiving a value for M vipMq, since the

codeword can be deterministically mapped back into a value from vipMq’s equivalence class.

We now define the shorthand ‘compute the codewords of M ’ which we will use in our proofs:

Definition 21. If we can compute the codewords χf pMq of M , @ vipMq P dompMq we can

compute the codeword associated with the equivalence class of vipMq.

Our codewords give us a bound on the transmission requirements of an M , given in Lemma

2.

Lemma 3. A table ti only requires log2pr|dompµf pMqq| ´ 1sq bits of information about M to

execute f correctly.

Proof. We can encode the value of any vipMq P dompMq as a codeword in χf pMq and still

convey sufficient information to compute f . If µf pMq can take |dompµf pMqq| distinct values,

we can assign each value a unique codeword from the set [0, ..., |dompµf pMqq| ´ 1], which

take at most log2pr|dompµf pMqq| ´ 1sq bits to represent.

Proving the realization theorem: Given our characterization of function transmission require-

ments, we can now embark on our proof of our realization theorem. First, we will give our key

underlying lemma, lemma 3, from which our realization theorem follows naturally.

Lemma 4. If @ ti P ρ “ xt1, ..., tny have maxRulesptiq ą τGpfqpM̄ρptiqqrdoms, and 2rptiq ą

τGpfqpM̄ρptiqqrecs, then @ti P ρ “ xt1, ..., tny can output χf pM̄ρptiqq to rptiq.

Proof. We prove Lemma 4 by induction.

17

Base case: Assume ρ only includes one table tm. Then, we have mi P M̄ρptmq ô mi P Iptmq.

Now we construct a table by assigning each value in [0, ..., |dompµf pM̄ρptmqqq|´1] to each match

in M̄ρptmq. Then, the table has that the number of rules equals τGpfqpM̄ρptmqqrdoms and the

size of rptmq equals τGpfqpM̄ρptmqqrecs. Therefore, if maxRulesptmq ą τGpfqpM̄ρptmqqrdoms,

and 2rptmq ą τGpfqpM̄ρptmqqrecs, tm can output χf pM̄ρptmqq to rptiq.

Inductive step: Assume Lemma 4 is true for xt1, ..., tky. We show Lemma 4 is true for xt1, ..., tk`1y.

We prove the inductive case in two stages. First, we show that if maxRulespt1q ą τGpfqpM̄ρpt1qqrdoms,

t1 can compute χf pM̄ρpt1qq. Second, we show that given that t1 can compute χf pM̄ρpt1qq, if

2rpt1q ą τGpfqpM̄ρpt1qqrecs, χf pM̄ρpt1qq can be output by t1 to rpt1q.

We start by proving stage 1. mi P M̄ρptk`1q ô mi P Iptk`1q _mi P M̄ρptiq : rptiq P Iptk`1q.

rptiq P Iptk`1q ô rptiq P prpt1q, ..., rptk`1qq.

By the inductive hypothesis, rptiq P prpt1q, ..., rptk`1qq ñ rptiq will contain χf pM̄ρptiqq.

Therefore, tk`1 can read @ mi P M̄ρptk`1q from mi P Iptk`1q _ rptiq P Iptk`1q.

Now, as in the base case, if a table tm is given @ mi P M̄ρptk`1q, it can compute χf pM̄ρptk`1qq

by matching on all vipM̄ρptk`1qq P dompM̄ρptk`1qq if maxRulesptmq ą dompM̄ρptk`1qq.

We now show how to transform tm into tk`1 without increasing tm’s rule number. @ mi P

M̄ρptk`1q:

‚ If mi P Iptk`1q, we can leave mi’s column in tm alone.

‚ If mi R Iptk`1q ñ rptiq P Iptk`1q : rptiq contains χf pMjq : mi P Mj . Further, Mj Ď

M̄ρptk`1q. Thus, each rule in tm generates precisely one codeword in χf pMjq. We therefore

replace tm’s match field header mi with χf pMjq, and that each of that header’s values in

tm’s rules with that rule’s codeword in χf pMjq.

This transformation does not increase rule number and results in a table that only matches on

headers in Iptkq. Thus we have proved stage 1.

We now proceed to proving stage 2. χf pMq only requires rlog2p|M{ „f |qs bits to rep-

resent it. Therefore 2rptk`1q ą |M̄ρptk`1q{ „f | ñ χf pM̄ρptk`1qq can be placed in rptk`1q.

τGpfqpM̄ρptk`1qqrecs ď 2rptk`1q.

Given Lemma 4, we are now equipped to prove the realization theorem.

Proof. Given an f and p, we will prove that if κppq İ taupfq, f Ù p. Consider a κρpρq P κppq.

18

@ M P M : mi P M Ñ mi R
Ť

tiPρ
M̄ρptiq, κρpρqpMq “ p1, 1q. Therefore, if κρpρq ą

τGpfq ñ all mi not read by ρ are treated as constants or not read at all by f , and thus f is

effectively a mapping from
Ť

tiPρ
M̄ρptiq Ñ R.

Further, given κρpρq ą τGpfq @ ti P ρ, maxRulesptiq ą τGpfqpM̄ρptiqqrdoms, and 2rptiq ą

τGpfqpM̄ρptiqqrecs, and thus by Lemma 4 tn can calculate χf pM̄ρptnqq.

Finally, consider that if a ti can calculate χf pMiq, and an f is a mapping dompMiq Ñ R,

ti can compute f ’s output @ vjpMiq P dompMiq by mapping each codeword in χf pMiq to the

output of f it corresponds to.

Since tn is ρ’s only output, M̄ρptnq “
Ť

tiPρ
M̄ρptiq. Thus, tn can compute f ’s output. Further,

since tn is an egress table it can always pass this output back to the switch.

Therefore, if κρpρq ą τGpfq, f Ù ρ. Since κρpρq P kppq and ρ P p, we have proved that if

κppq İ τGpfq, f Ù p.

The last step required to prove our realization theorem is to show that τGpfq ą τpfq and thus

that κppq İ τpfq ñ f Ù p. The crux of this step is given in Lemma 2.

Corrollary 1. The number of f-equivalence classes of any M is bounded by Gf .vertexMinCutpMq.

Corrollary 2. The characteristic function τGpfq dominates the characteristic function τpfq.

We have therefore proven our realization theorem: that κppq İ τGpfq ñ f Ù p.

B. Proof of Extension of Pipeline Realization Theorem

As our realization theorem, κppq İ τGpfq ñ f Ù p, has been proved, now we give a proof

for that if p is a branchless pipeline, p’s table size is large, and each match field mi PM appears

in exactly one of p’s tables, f Ù pñ κppq İ τGpfq.

We consider the contradiction that f Ù p but there exists M that κppqpMqrecs ă τGpfqpMqrecs

(Note that here we omit the domain size of M as the p’s table size is large). As f Ù p

and p is a branchless pipeline and each match field mi P M appears in exactly one of

p’s tables, we can have κppqpMqrecs ě
ś

κppqpmiqrecs where mi P M . Then, we have

κppqpMqrecs ě τGpfqpMqrecs which has contradiction with κppqpMqrecs ă τGpfqpMqrecs.

Therefore, we have the proof.

19

V. EVALUATION

We now evaluate the tightness, time complexity and output size of routing function, pipeline

characterization, and the main factors of realization numerically. All experiments are conducted

on a 1.6 GHz Intel Core i5 with 4 GB RAM.

A. Routing Function Characterization Tightness

We demonstrate the tightness of characterization of a routing function by comparing the

ecpMq, the number of equivalent classes for a set of matches M , from two mappings (i.e., τ

and τG) for several routing functions. The computation of ecpMq for the mapping τ is based

on the definition of f-equivalence which will get the exact value of the number of equivalent

classes for a set of matches M for a particular routing function. The routing functions we use

are shown as follows :

// Routing function: simpleRoute

L0: def simpleRoute(Addr srcIP, Addr dstIP):

L1: srcSw = hostTbl[srcIP]

L2: dstSw = hostTbl[dstIP]

L3: route = routeTbl[srcSw, dstSw]

L4: return route

Our first function, simpleRoute maps a packet’s srcIP and dstIP to their host packet

switches dstSw and srcSw based on a key-value table hostTbl. After that, simpleRoute

gets the route from another table, routeTbl, where the key is two internal variables, srcSw

and dstSw.

// Routing Function: condRoute

L0: condRoute(srcIP, dstIP):

L1: srcSw = hostTbl[srcIP]

L2: dstSw = hostTbl[dstIP]

L3: routeCond = condTbl[srcIP, dstIP]

L4: route = routeTbl[srcSw, dstSw, routeCond]

L5: return route

Our second function condRoute extends simpleRoute by introducing a route condition

variable (i.e., routeCond) which is computed by a condition table, condTbl. After that,

condRoute computes the route from three internal variables, srcSw, dstSw, and routeCond.

// Routing Function: secureRoute

20

L0: secureRoute(Addr srcIP, Addr dstIP):

L1: if (isFiltered(srcIP)):

L2: return Drop()

L3: else:

L4: route = fwdTbl[dstIP]

L5: return route

Our third function secureRoute drops all traffic from srcIPs on a filter list (i.e., isFiltered)

and forwards remaining traffic based on the table fwdTbl by only matching dstIP.

As our final function, we consider the example function onPkt as shown in Sec. II

Results: We present our results in Table II. Specifically, in Table II, column 2 defines the domain

of srcIP, dstIP, columns 3-6 give the output ranges Optblsq of each table, and columns 7-10

give the values of selected fields in each function’s τpfq and τGpfq.

Note that the notation b1pscRq represents the branch 1 in scR, i.e., L1ÑL2, while b2pscRq

represents the branch 2 in f3, i.e., L1ÑL3ÑL4ÑL5. We record N/A when a value is not

applicable to a given function, and null for values of τpfq where computation failed to halt. And

we only evaluate the equivalent class value in the output vector of characterization of a function.

In our evaluation of smplR and condR, the results of τ and τG are almost identical in every

case barring an extreme one where OpcondTblq = 1. Notably, our values of τpfq and τGpfq

are not influenced by the range of routeTbl (i.e., OprouteTblq), which can be observed

from the first three rows in the table. This implies there is no pattern between the allocation of

routes to (srcIP, dstIP) pairs τpfq can exploit to reduce its number of equivalence classes.

Considering s1 and s2 as two values of srcIP, if hostTbl(s1) is not equal to hostTbl(s2),

then the chance of s1 „f s2 is very small.

Further notice that our functions with control statements: secureRoute and onPkt have

a large gap between τ and τG, suggesting τG’s bound is loose on heavily branching programs.

However, as rows b1(scR) and b2(scR) show, we can ameliorate this problem by calculating

each route through a program characteristic function separately. For each branch, the result of

τ and τG maintains the tightness, which is shown in the rows with b1pscRq and b2pscRq in

Table II. Also, we evaluate the example routing function onPkt, and the result is shown in the

last row in the table. Need to mention that, both τpfq(srcIP) and τpfq(dstIP) are null means

that the computation time is too long to compute the result.

21

f bitspIP q OphostTblq OprouteTblq OpcondTblq OpfwdTblq τ (f)(srcIP) τ (f)(dstIP) τG(f)(srcIP) τG(f)(dstIP)
smplR 10 100 2 N/A N/A 100 100 100 100
smplR 10 100 30 N/A N/A 100 100 100 100
smplR 10 100 5000 N/A N/A 100 100 100 100
smplR 12 100 30 N/A N/A 100 100 100 100
smplR 10 200 30 N/A N/A 200 200 200 200
condR 10 100 30 50 N/A 1024 1024 1024 1024
condR 10 100 30 5 N/A 1024 1024 1024 1024
condR 10 100 30 1 N/A 100 100 1024 1024
scR 10 N/A N/A N/A 100 2 100 2 1024
b1(scR) 10 N/A N/A N/A N/A 1 N/A 1 N/A
b2(scR) 10 N/A N/A N/A 100 1 100 1 100
onPkt 32 100 30 50 N/A null null 232 232

TABLE II
CHARACTERIZATION RESULTS OF ROUTING FUNCTIONS WITH DIFFERENT STATISTICS.

0

100

200

300

400

500

600

700

6 8 10

Co
m
pu

ta
tio

n3
tim

e3
(m

s)

#Bits3of3input

Tg T

(a) Input size

0

10

20

30

40

50

60

70

80

100 200 400

Co
m
pu

ta
tio

n3
tim

e3
(m

s)

Size3(#Entries)3of3routeTbl

Tg T

(b) Table size

Fig. 8. Computation time required to generate τpsimpleRouteq and τGpsimpleRouteq as input bit length varies and the
size of table varies.

B. Routing Function Characterization Time Complexity

We now examine the computing complexity of characterization of a routing function by

comparing the computation time of two mappings (i.e., τ and τG) for the same function. As the

same with the first evaluation, the computation of τ is based on the definition of f-equivalence.

We run our tests using simpleRoute where the size of hostTbl = 100 with different size

of domain of input (i.e., the bits of input) and different size of routeTbl.

Results: Fig. 8 shows the scalability of τG as input size and routeTbl size grows. Specifically,

Fig. 8(a) gives the result with fixed routeTbl size which equals 100, and Fig. 8(b) gives the

result with fixed input size which equals 6. As shown in Fig. 8(a), as the bit length of srcIP and

dstIP increases, τG’s computation time remains constant while τ ’s computation time grows in

exponential order. And as illustrated in Fig. 8(b), as routeTbl size grows, the τG’s computation

time still remains constant while τ ’s computation time grows in polynomial level. This is because

the computation of τG only requires the cuts of DFG which can be done in a very fast way but

the computation of τ requires the execution of function for every possible input.

22

Pipeline #Paths Time (ms) #Valid M #M
ExampleDP 3 8 6 22
PicOS BR 4 13 19 3 ˚ p224q ` 27

PicOS OT 2 7 5 224 ` 16
Broadcom IPR 1 7 4 27

Broadcom PR 3 9 14 2 ˚ p224q ` 27

TABLE III
CHARACTERIZATION RESULTS OF PIPELINES.

C. Characterization of a Pipeline

We now examine the characterization of a pipeline by evaluating the computation time and

compactness of characterization functions of several pipelines. The compactness of a character-

ization function of a pipeline represents the output memory utilization of the characterization

function compared with the size of all the possible M . We use the following pipelines in the

evaluation:

1) The OF-DPA Abstract Switch 2.0: The OpenFlow Data Plane Abstraction Abstract

Switch 2.0 (OF-DPA) is an abstract switch model based on the Open Flow 1.3.4 protocol

designed to allow the programming of Broadcom-based switches under the OpenFlow pro-

tocol. We examine two OF-DPA flow table configurations: bridging and routing (BR), and

data center overlay tunnel (OT), which contain 7, and 3 tables in 5, 3 stages respectively. [3]

2) PicOS: PicOS is a network operating system for white box switches that provides OF

programmability across HP, Edgecore and Pica switches. We examine two fixed pipelines

offered by PicOS as table type patterns: PicOS’s IP routing pipeline (IPR) and Policy

routing pipeline (PR), which contain 4 and 5 tables in 4 and 5 stages respectively. [9]

Results: Table III gives our characterization results for our evaluated pipelines. It shows the

characterization results of several pipelines including four real pipeline structures and the example

pipeline, ExampleDP. We say a set of packet match fields M is valid in a pipeline p means

the value of κρpρqpMq can be computed by the first formula in the definition of κρpρqpMq.

The results show that despite the theoretically large number of subsets of M across evaluated

pipelines, memory utilization and computation time are small.

D. Realization

We now evaluate the percentage of successful realization of a function in a pipeline to see

the factors of successful realization. We consider the example function onPkt with different

23

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

4 6 8 10

Re
al
iza

tio
n5
pe

rc
en

ta
ge

#Bits5of5output5register

(a) #Tables = 2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

4 6 8 10

Re
al
iza

tio
n5
pe

rc
en

ta
ge

#Bits5of5output5register

(b) #Tables = 3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

4 6 8 10

Re
al
iza

tio
n5
pe

rc
en

ta
ge

#Bits5of5output5register

(c) #Tables = 4

Fig. 9. The percentage of realization for different number of tables and different length of registers.

content of tables. Specifically, for tables condTbl and hostTbl, we set the number of output

values of tables ranging from 10 to 30 randomly, which means the domain size of dstCond and

dstSW is from 10 to 30 (i.e., the average domain size is 20). For the pipeline side, we randomly

decide the number of tables (from 2 to 4) of a pipeline and the length of bits of registers (from

4 to 10) for each table. Also, we set the match fields of the generated pipeline must contain the

five match fields required by onPkt and each match field can only appear in one table. Then,

we compute the successful realization percentage of onPkt and the generated pipeline by using

the realization theorem.

Results: The result is shown in Fig. 9. Specifically, Fig. 9(a) considers the pipeline with 2 tables;

Fig. 9(b) considers the pipeline with 3 tables; Fig. 9(c) considers the pipeline with 4 tables. For

each case, we compute the successful realization percentage with different length of bits of

registers for each table. From the result of Fig. 9(a), we can find that a pipeline with more bits

of registers can realize a function in a higher percentage. However, when the length is larger

than a threshold, the successful realization percentage does not increase much. The threshold is

determined by the size of domain of variables in the function. As shown in Fig. 9(a), the gap

24

of successful realization percentage between 4 bits and 6 bits of length of registers (i.e., the

available size of equivalent classes from 16 to 64) can be explained by the fact that the average

domain size of variables (i.e., 20) is in the range between 16 and 64.

Furthermore, we can find the structure of pipelines also determines the realization percentage.

A pipeline with 2 tables (i.e., there is no branch in the pipeline) has a relatively high successful

realization percentage, while a pipeline with 3 or 4 tables which may contain branches has a

low realization percentage as the structure of the pipeline is not well organized (i.e., the random

mapping between matches fields and tables).

VI. RELATED WORK

High level SDN Program Compilers: Multiple systems that allow programmers to write SDN

programs in high level languages and then compile such programs to flow table pipelines have

been proposed over the last several years. Such systems are related to our work in that they

examine the transformation of policy programs into switch flow tables. We group these systems

into two categories: tier-less and split-level.

Tier-less systems (e.g. SNAP [10], FML [11], FlowLog [12], Maple [8]), require programmers

to specify forwarding behaviors as packet handling functions which are then used by the SDN

controller to configure and update network state. Such systems pioneer our pipeline capacity

theorem’s notion of a program function and are able to compile such functions to single pipelines.

These systems, however, are unable to verify that submitted functions can be written to a given

pipeline without physically carrying out the time consuming process of compilation, and cannot

write programs to multi-pipeline networks.

Split-level systems such as the Frentic family (e.g. Frenetic [7], Pyretic [13]) provide a two

tiered programming model in which controller programs specify events of interest and then

respond to these events when they occur by calculating new network policies. Again, such

systems cannot verify that a given controller program’s output can be written to the controller’s

switches’ pipelines, although this paradigm falls outside of our pipeline capacity theorem’s model

as well.

Pipeline specification languages: There are some superficial similarities between pipeline spec-

ification languages (e.g. P4 [4] P5 [14], PISCES [15], Concurrent NetCore [16]) and our pipeline

capacity theorem, such as the analysis and guarantees that such languages provide about pipeline

behavior. For example, Concurrent NetCore’s type system ensures that any program used to

25

populate a pipeline has certain properties, such as determinism, whilst PISCES’s switch spec-

ification allows compilers to analyze pipelines and optimize their performance. We contend,

however, that our capacity theorem attacks an entirely different space in pipeline analysis -

guaranteeing pipeline properties or improving performance is qualitatively different to verifying

whether compilation is possible.

Pipeline design: Pipeline design schemes such as Jose et al.’s “Compiling Packet Programs

to Reconfigurable Switches” [17], Sun et al.’s “Software-Defined Flow Table Pipeline” [18],

FlowAdapter [19], and Domino [5] are clearly related to our pipeline capacity theorem in that

they examine pipeline layout design under hardware constraints. Jose et al., Sun et al., and

FlowAdapter however, focus on mapping logical lookup tables/flow table pipelines to physical

tables whilst our pipeline capacity theorem focuses on generic programs, while Domino considers

weaker hardware constraints (e.g. limits on stateful operations at line-rate) than our work does.

Some other pipeline datapath design work (e.g. [20], [21], [22], [23], [24], [25]) focus more on

the datapath configuration rather than the connection between high-level language and low-level

datapath.

VII. ACKNOWLEDGEMENT

The authors would like to thank Shenshen Chen who helped with initial discussions. The

research was supported in part by NSFC grants NSFC #61672385, NSFC #61702373; Shang-

hai Key Project Grant #16511100900; NSF grants CC-IIE 1440745, CCF-1637385 and CCF-

1650596; Google Research Award; and the U.S. Army Research Laboratory and the U.K.

Ministry of Defence under Agreement Number W911NF-16-3-0001.

REFERENCES

[1] C. Leet, X. Wang, Y. R. Yang, and J. Aspnes, “Toward the first sdn programming capacity theorem on realizing high-level

program on low-level datapaths,” in INFOCOM 2018 - IEEE Conference on Computer Communications, IEEE, 2018.

[2] “OpenFlow Switch Specification Version 1.3.0,” https://www.opennetworking.org/images/stories/downloads/sdn-resources/

onf-specifications/openflow/openflow-spec-v1.3.0.pdf, ONF.

[3] (2014) OpenFlow Data Plane Abstraction (OF-DPA): Abstract Switch Specification Version 2.0. Broadcom. [Online].

Available: www.broadcom.com

[4] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford, C. Schlesinger, D. Talayco, A. Vahdat, G. Varghese,

and D. Walker, “P4: Programming protocol-independent packet processors,” SIGCOMM Comput. Commun. Rev., vol. 44,

no. 3, pp. 87–95, Jul. 2014. [Online]. Available: http://doi.acm.org/10.1145/2656877.2656890

26

[5] A. Sivaraman, A. Cheung, M. Budiu, C. Kim, M. Alizadeh, H. Balakrishnan, G. Varghese, N. McKeown, and S. Licking,

“Packet transactions: High-level programming for line-rate switches,” in Proceedings of the 2016 conference on ACM

SIGCOMM 2016 Conference. ACM, 2016, pp. 15–28.

[6] P. Bosshart, G. Gibb, H.-S. Kim, G. Varghese, N. McKeown, M. Izzard, F. Mujica, and M. Horowitz, “Forwarding

metamorphosis: Fast programmable match-action processing in hardware for SDN,” in ACM SIGCOMM Computer

Communication Review, vol. 43, no. 4. ACM, 2013, pp. 99–110.

[7] N. Foster, R. Harrison, M. J. Freedman, C. Monsanto, J. Rexford, A. Story, and D. Walker, “Frenetic:

A network programming language,” in Proceedings of the 16th ACM SIGPLAN International Conference on

Functional Programming, ser. ICFP ’11. New York, NY, USA: ACM, 2011, pp. 279–291. [Online]. Available:

http://doi.acm.org/10.1145/2034773.2034812

[8] A. Voellmy, J. Wang, Y. R. Yang, B. Ford, and P. Hudak, “Maple: Simplifying SDN programming using algorithmic

policies,” in Proceedings of the ACM SIGCOMM 2013 Conference on SIGCOMM, ser. SIGCOMM ’13. ACM, 2013,

pp. 87–98. [Online]. Available: http://doi.acm.org/10.1145/2486001.2486030

[9] (2015) Scaling up SDNs using TTPs (Table Type Patterns). Pica 8. [Online]. Available: www.pica8.com

[10] M. T. Arashloo, Y. Koral, M. Greenberg, J. Rexford, and D. Walker, “SNAP: Stateful network-wide abstractions for

packet processing,” in Proceedings of the 2016 Conference on ACM SIGCOMM 2016 Conference, ser. SIGCOMM ’16.

New York, NY, USA: ACM, 2016, pp. 29–43. [Online]. Available: http://doi.acm.org/10.1145/2934872.2934892

[11] T. Hinrichs, J. Mitchell, N. Gude, S. Shenker, and M. Casado, “Practical declarative network management,” in in ACM

Workshop: Research on Enterprise Networking, 2009.

[12] T. Nelson, A. D. Ferguson, M. J. G. Scheer, and S. Krishnamurthi, “Tierless programming and reasoning for

software-defined networks,” in Proceedings of the 11th USENIX Conference on Networked Systems Design and

Implementation, ser. NSDI’14. Berkeley, CA, USA: USENIX Association, 2014, pp. 519–531. [Online]. Available:

http://dl.acm.org/citation.cfm?id=2616448.2616496

[13] C. Monsanto, J. Reich, N. Foster, J. Rexford, and D. Walker, “Composing software-defined networks,” in Proceedings

of the 10th USENIX Conference on Networked Systems Design and Implementation, ser. nsdi’13. Berkeley, CA, USA:

USENIX Association, 2013, pp. 1–14. [Online]. Available: http://dl.acm.org/citation.cfm?id=2482626.2482629

[14] J. Lee, J. Lee, S. Banerjee, S. Banerjee, W. Wu, J. M. Kang, and A. Akella, “P5: Policy-driven optimization of p4 pipeline,”

in Symposium on Sdn Research, 2017, pp. 136–142.

[15] M. Shahbaz, S. Choi, B. Pfaff, C. Kim, N. Feamster, N. McKeown, and J. Rexford, “Pisces: A programmable, protocol-

independent software switch,” in Proceedings of the 2016 conference on ACM SIGCOMM 2016 Conference. ACM, 2016,

pp. 525–538.

[16] C. Schlesinger, M. Greenberg, and D. Walker, “Concurrent netcore: From policies to pipelines,” in Proceedings of the

19th ACM SIGPLAN International Conference on Functional Programming, ser. ICFP ’14. New York, NY, USA: ACM,

2014, pp. 11–24. [Online]. Available: http://doi.acm.org/10.1145/2628136.2628157

[17] L. Jose, L. Yan, G. Varghese, and N. McKeown, “Compiling packet programs to reconfigurable switches,” in 12th USENIX

Symposium on Networked Systems Design and Implementation (NSDI 15). Oakland, CA: USENIX Association, May

2015, pp. 103–115. [Online]. Available: https://www.usenix.org/conference/nsdi15/technical-sessions/presentation/jose

[18] X. Sun, T. E. Ng, and G. Wang, “Software-Defined Flow Table Pipeline,” in Cloud Engineering (IC2E), 2015 IEEE

International Conference on. IEEE, 2015, pp. 335–340.

[19] H. Pan, H. Guan, J. Liu, W. Ding, C. Lin, and G. Xie, “The FlowAdapter: Enable flexible multi-table processing on legacy

hardware,” in Proceedings of the second ACM SIGCOMM workshop on Hot topics in software defined networking. ACM,

2013, pp. 85–90.

27

[20] H. Pan, G. Xie, Z. Li, P. He, and L. Mathy, “Flowconvertor: Enabling portability of sdn applications,” in INFOCOM 2017

- IEEE Conference on Computer Communications, IEEE, 2017, pp. 1–9.

[21] H. Wang, H. T. Dang, K. S. Lee, V. Shrivastav, N. Foster, and H. Weatherspoon, “P4fpga: A rapid prototyping framework

for p4,” in Symposium on Sdn Research, 2017, pp. 122–135.

[22] P. G. K. Patra, F. E. R. Cesen, J. S. Mejia, and D. L. Feferman, “Towards a sweet spot of dataplane programmability,

portability and performance: On the scalability of multi-architecture p4 pipelines,” IEEE Journal on Selected Areas in

Communications, 2018.

[23] R. Shah, A. Shirke, A. Trehan, M. Vutukuru, and P. Kulkarni, “pcube: Primitives for network data plane programming.”

[24] W. L. da Costa Cordeiro, J. A. Marques, and L. P. Gaspary, “Data plane programmability beyond openflow: Opportunities

and challenges for network and service operations and management,” Journal of Network and Systems Management, vol. 25,

no. 4, pp. 784–818, 2017.

[25] S. Pontarelli, M. Bonola, and G. Bianchi, “Smashing sdn” built-in” actions: Programmable data plane packet manipulation

in hardware,” in Network Softwarization (NetSoft), 2017 IEEE Conference on. IEEE, 2017, pp. 1–9.

28

