Toward the First SDN Programming Capacity Theorem on Realizing High-Level Programs on Low-Level Datapaths

Christopher Leet*, Xin Wang†‡, Y. Richard Yang*†, James Aspnes*

* Department of Computer Science, Yale University
† Department of Computer Science, Tongji University
‡ Key Laboratory of Embedded System and Service Computing, Ministry of Education, China

Abstract—High-level programming and programmable datapaths are two key capabilities of software-defined networking (SDN). A fundamental problem linking these two capabilities is whether a given high-level SDN program can be realized on a given low-level SDN datapath structure. Considering all high-level programs that can be realized onto a given datapath as the programming capacity of the datapath, we refer to this problem as the SDN datapath programming capacity problem. In this paper, we conduct the first study on the SDN datapath programming capacity problem, in the general setting of high-level, datapath oblivious, algorithmic SDN programs and state-of-art multi-table SDN datapath pipelines. In particular, considering datapath-oblivious SDN programs as computations and datapath pipelines as computation capabilities, we introduce a novel framework called SDN characterization functions, to map both SDN programs and datapaths into a unifying space, deriving the first rigorous result on SDN datapath programming capacity. We not only prove our results but also conduct realistic evaluations to demonstrate the tightness of our analysis.

I. INTRODUCTION

A major research direction of SDN is programmable, efficient datapaths (e.g., OF1.3 [1], OF-DPA [2], P4 [3]). Only by being programmable can a given SDN datapath support diverse, ever evolving application scenarios. At the same time, it is crucial that datapaths be efficient, to be able to satisfy demanding requirements such as achieving high throughput and being cost effective. In the last few years, multi-table pipelines have emerged as a key structure of SDN datapaths (e.g., Domino [4], Forwarding Metamorphosis [5]).

One problem of efficient datapaths, however, is that they must often be programmed at an inefficiently low level. For example, TCAM, which is essential to achieve high-throughput, does not support logical negation. Hence, a second major research direction of SDN is high-level, datapath path-oblivious programming, to provide abstractions to hide low-level datapath programming. To this end, in the last few years multiple high-level SDN programming models have emerged (e.g., Frenetic [6], Maple [7]).

As both directions progress, a basic problem emerges: whether a given high-level program can be realized on a given low-level datapath. A good understanding of this problem can benefit both the design of high-level SDN programming and the design of datapaths. Given a fixed datapath (e.g., a fixed pipeline architecture such as OF-DPA), the vendor of the datapath can provide guidelines on the high-level programs that can be realized. Given a set of high-level programs to be supported, one could use this understanding to design the most compact datapath supporting these programs. Even for reconfigurable datapaths (e.g., P4), as reconfiguration can be expensive and time consuming, one can use this understanding to guide the design of a more robust datapath. Considering all high-level programs that can be realized onto a given programmable datapath as the capacity of the datapath, we define the basic problem as the SDN datapath programming capacity problem.

Solving the datapath capacity problem, however, is not trivial. Consider a simple datapath, named Simple-DP, shown in Fig. 1. It is among the simplest datapaths, consisting of three tables forming a pipeline, where the first table (t1) matches on source IP and may jump to one of the two following tables, which both match on destination IP.

As both directions progress, a basic problem emerges: whether a given high-level program can be realized on a given low-level datapath. A good understanding of this problem can benefit both the design of high-level SDN programming and the design of datapaths. Given a fixed datapath (e.g., a fixed pipeline architecture such as OF-DPA), the vendor of the datapath can provide guidelines on the high-level programs that can be realized. Given a set of high-level programs to be supported, one could use this understanding to design the most compact datapath supporting these programs. Even for reconfigurable datapaths (e.g., P4), as reconfiguration can be expensive and time consuming, one can use this understanding to guide the design of a more robust datapath. Considering all high-level programs that can be realized onto a given programmable datapath as the capacity of the datapath, we define the basic problem as the SDN datapath programming capacity problem.

Solving the datapath capacity problem, however, is not trivial. Consider a simple datapath, named Simple-DP, shown in Fig. 1. It is among the simplest datapaths, consisting of three tables forming a pipeline, where the first table (t1) matches on source IP and may jump to one of the two following tables, which both match on destination IP.

As both directions progress, a basic problem emerges: whether a given high-level program can be realized on a given low-level datapath. A good understanding of this problem can benefit both the design of high-level SDN programming and the design of datapaths. Given a fixed datapath (e.g., a fixed pipeline architecture such as OF-DPA), the vendor of the datapath can provide guidelines on the high-level programs that can be realized. Given a set of high-level programs to be supported, one could use this understanding to design the most compact datapath supporting these programs. Even for reconfigurable datapaths (e.g., P4), as reconfiguration can be expensive and time consuming, one can use this understanding to guide the design of a more robust datapath. Considering all high-level programs that can be realized onto a given programmable datapath as the capacity of the datapath, we define the basic problem as the SDN datapath programming capacity problem.

Solving the datapath capacity problem, however, is not trivial. Consider a simple datapath, named Simple-DP, shown in Fig. 1. It is among the simplest datapaths, consisting of three tables forming a pipeline, where the first table (t1) matches on source IP and may jump to one of the two following tables, which both match on destination IP.

consider two simple high-level SDN programs below, both specified in the algorithmic, event-driven programming style to handle packet misses; see Sec. II for more details on the programming model. An interested reader can try to verify that the first program can be realized by Simple-DP, but the second cannot.

// Routing Function: secureL3Route
L0: secureL3Route(Addr srcIP, Addr dstIP):
L1: if srcIP == 10.0.0.1:
 return Forward(port=shortestPath(dstIP))
Although the preceding datapath and high-level programs are among the simplest, they may already appear to be non-trivial for a reader to analyze. General datapath and high-level programs can be much more complex as multiple services need to be implemented and hence they can pose severe challenges in analysis. The goal of this paper is to develop the first systematic methodology to solve the SDN datapath programming capacity problem.

The contributions of this paper can be summarized as follows. First, we propose a unifying characteristic functional space to unify and extract the essence of programs and pipelines, removing complexities such as program structures and pipeline layouts. Second, we define a comparator in this functional space, which can be used to check whether a high-level program can be realized on a given pipeline.

The rest of the paper is organized as follows. We define our model precisely in Sec. II. The main results are given in Sec. III. Sec. IV shows our evaluation results. Finally, related work is provided in Sec. V.

II. MODELS

We start by specifying the high-level SDN programs and low-level datapath models. Since the main focus of SDN is routing, we refer to a high-level SDN program as a routing function. Since multi-table pipelines are the state-of-art for SDN controllers on every packet [7] entering that controller’s domain of a set of match fields M to a routing action in $R = \{\text{Drop()}, \text{Forward}(\text{port}=\text{outPort})\}$. While we write onPkt as an imperative function, we emphasize that our model is fully generic and does not specify a programming paradigm.

Elaborating, onPkt’s first three lines declare key-value tables. Specifically, hostTable and condTable associate each IP address with an attachment switch and host condition (e.g., authentication status) respectively, while routeTable maps a switch, condition pair to its forwarding port. Moving on to onPkt’s body, L1 and L2 detect and drop non-IPv4 traffic, while L7 drops traffic from unverified endpoints. For verified packets, L4 to L6 further set dstCond and dstSw variables, and then return a routing action from routeTable based on the two variables.

Routing function DFG: Since a generic routing function can have arbitrary, complex control structure, we transform a routing function into a dataflow graph (DFG) to better represent its structure. We denote an f’s DFG as G_f.

Specifically, to compute G_f for f, we must remove all of f’s control flow dependencies. These dependencies are removed by the following transformations:

- We remove assignment statement order dependencies by converting f to single static assignment form (SSA).
- We remove branches by assigning their conditionals’ values to guards, and appending dependencies on these guards to all statements in their if and else blocks.
- We remove program loops by converting them to black box functions which read all variables read by the loop and write all variables written by them.

For example, our example routing function onPkt is transformed as follows:

```
// Routing function: onPkt
Map hostTbl [key: dstIP, value: switch]
Map condTbl [key: (dstIP, port), value: cond]
Map routeTbl [key: (switch, cond), value: outPort]
L0: onPkt (Type ethType, Addr srcIP, Port srcPort, 
   Addr dstIP, Port dstPort):
L1: if (ethType != IPv4):
L2: return Drop()
L3: if (verify(srcPort, srcIP)):
L4: dstCond = condTbl[dstIP, dstPort]
L5: dstSw = hostTbl[dstIP]
L6: return Forward(port = routeTbl[dstCond, dstSw])
L7: return Drop()
```

Note that onPkt’s if statement at L1’s has been replaced by an assignment from its conditional to the guard g0. This
guard is appended to L2, which was formally in the \(\text{if} \) statement’s \(\text{if} \) block.

Given this transformation, we define \(G_f \) for \(f \):

Definition 1. A routing function \(f \)'s dataflow graph DFG \(G_f = (V_f, E_f) \) is a vertex weighted dag generated from a transformed \(f \) such that:

- Each vertex \(v_f \) in \(V_f \) is a variable in \(f \).
- A \(v_f \)'s weight is its domain size.
- There is a directed edge in \(E_f \) between two variables if the source variable appears in the target variable’s assignment.

As an example, we give \(\text{onPkt} \)'s DFG below:

![DFG](image.png)

Fig. 2. The routing function \(\text{onPkt} \)'s DFG \(G_{\text{onPkt}} \).

Observe that the vertex \(\text{dstSw} \) is descended from the two variables in its assignment, \(g1 \) and \(\text{dstIP} \). The vertex’s weight, 10, indicates \(\text{dstSw} \)'s domain.

B. Pipeline Model

We focus on state-of-the-art datapaths: multi-table pipelines. We first model a table \(t \) in a pipeline \(p \) and then we give a clear definition for the pipeline.

Pipeline table: Each pipeline table \(t \in p \) is an exact match match-action table. Each of \(t \)'s actions is a routing action output, or a write to \(t \)'s output register \(r(t) \) followed by a hop to a subsequent table in \(p \), or a simple jump action to a subsequent table in \(p \). Not all \(t \) output routing actions, and we denote the \(t \) that do as an egress table.

Each \(t \) matches on a set of inputs \(I(t) \) that contains packet match fields \(m_i \in \mathcal{M} \) and preceding tables’ output registers \(r(t) \). Key limitations on \(t \) are the maximum number of rules it can contain and \(r(t) \)'s bit length, which we denote \(\text{maxrules}(t) \) and \(\text{bits}(r(t)) \) respectively.

Pipeline: A pipeline \(p \) is a singly rooted dag (directed acyclic graph) of tables \(\{t_i\} \). An edge \((t_i, t_j) \) in \(p \) indicates a packet arriving at \(t_i \) can jump to \(t_j \).

Each packet passing through \(p \) starts at \(p \)'s root and proceeds through \(p \) to an egress table. Therefore, each packet passing through \(p \) can map to a path in the \(p \), along with a routing action for that packet from \(\mathcal{R} \).

A packet’s path through \(p \) and the action its egress table outputs are determined by the set of packet match fields \(\mathcal{M} \) each \(t_i \in p \) matches on. Given this, \(p \) may also be summarized as a mapping from \(\text{dom} \(\mathcal{M} \) \) to \(\mathcal{R} \), which depends on \(p \)'s contents.

We denote the space of all pipelines \(p \) as \(\mathcal{P} \).

Table I

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\mathcal{F})</td>
<td>Routing function</td>
</tr>
<tr>
<td>(m_i)</td>
<td>Packet match field</td>
</tr>
<tr>
<td>(\mathcal{M})</td>
<td>Set of (\forall m_i)</td>
</tr>
<tr>
<td>(\text{dom}(\mathcal{M}))</td>
<td>Domain of valid values of (\mathcal{M})</td>
</tr>
<tr>
<td>(\mathcal{R})</td>
<td>Set of (\forall) valid routing actions</td>
</tr>
<tr>
<td>(p)</td>
<td>Pipeline</td>
</tr>
<tr>
<td>(\mathcal{P})</td>
<td>Pipeline function space</td>
</tr>
<tr>
<td>(t_i)</td>
<td>Pipeline table</td>
</tr>
<tr>
<td>(r(t_i))</td>
<td>(t_i)'s output register</td>
</tr>
<tr>
<td>(\text{bits}(r(t_i)))</td>
<td>(t_i)'s output register bit length</td>
</tr>
<tr>
<td>(I(t_i))</td>
<td>(t_i)'s table inputs</td>
</tr>
<tr>
<td>(\text{maxrules}(t_i))</td>
<td>Maximum # of rules (t_i) can contain</td>
</tr>
</tbody>
</table>

Example: We now give an example pipeline \(\text{ExampleDP} \), shown in Fig 3, to illustrate our pipeline model. Note that in the example, a table matches on fields on its left-hand side, writes to a register on its right-hand side, and the field output of a table indicates the table contains output routing actions.

Narrowing our focus, consider \(t_2 \in \text{ExampleDP} \). \(t_2 \) is an exact match table whose inputs \(I(t_2) \) are \(\text{srcIP} \) and \(\text{srcPort} \), and whose output register is \(r(t_2) \).

Significant computation limits on \(t_2 \) are its maximum number of rules \(\text{maxrules}(t_2) \) and the size of its output register \(\text{bits}(r(t_2)) \).

III. Main Results

Given the function and pipeline models, we now present our main results, on whether a function \(f \) can be realized by a pipeline \(p \).

To simplify the reading of our results, we put only the definitions and main results in the main text. The proofs of the results are in the appendix. To make it easier to follow the symbols, we collect key symbols in Table I for reference.

A. Overview

A main challenge in developing a systemic method to verify whether a routing function \(f \) can be realized by a pipeline \(p \), which we denote as \(f \Rightarrow p \), is that routing functions and pipelines are represented differently and both types of representations can have substantial complexities and variations. Consider each routing function \(f \) as a point in a functional space \(\mathcal{F} \), and each pipeline \(p \) as a point in functional space \(\mathcal{P} \).

Our main contribution is the introduction of a novel, unifying, normalization functional space \(\mathcal{C} \) called the characteristic functions space. Each routing function \(f \) is mapped by the mapping \(\mathcal{C} \) to a characteristic function \(\mathcal{C}(f) \in \mathcal{C} \), characterizing the computational load of \(f \). Each pipeline \(p \), on the
other hand, is mapped to a set \(\kappa(p) \subset C \) of characteristic functions, representing the set of computational capabilities of the pipeline. Fig 4 illustrates the mapping structure.

![Diagram showing \(\mathcal{F}, \mathcal{C}, \mathcal{P} \) and the mappings between them.]

Since \(\tau(f) \) and \(\kappa(p) \) are defined in the the same space \(C \), as a point and as a set of points respectively, one can compare \(\tau(f) \) with each element in \(\kappa(p) \), to see if the load can be “covered” by a capability, resulting in our basic capacity theorem: that if \(\exists c \in \kappa(p) \geq \tau(f) \), \(f \rightarrow p \).

B. Characteristic Functions

We begin by defining a generic characteristic function \(c \).

Definition 2. A characteristic function \(c \) is a mapping from each subset \(M \) of a packet’s match fields to a vector consisting of two components:

\[
c(M) \triangleq \langle \text{scope}(M), \text{ec}(M) \rangle
\]

We refer to the two components of \(c(M) \)’s vector as \(c(M)[\text{scope}] \) and \(c(M)[\text{ec}] \) respectively.

Given two characteristic functions, one can compare them.

Definition 3. We define \(c_i \) dominates \(c_j \), denoted as \(c_i \geq c_j \) as follows:

\[
c_i \geq c_j \triangleq \forall n \in \{ \text{scope}, \text{ec} \}, \quad \forall M \in 2^M, \ c_i(M)[n] \geq c_j(M)[n].
\]

To verify our capacity theorem, we need to compare a set of characteristic functions with a single characteristic function.

Definition 4. A set of characteristic functions \(C_i \) dominates a characteristic function \(c_j \), denoted as \(C_i \triangleright c_j \), if a \(c_i \in C_i \) dominates \(c_j \):

\[
C_i \triangleright c_j \triangleq \exists c_i \in C_i : c_i \geq c_j.
\]

C. Characterization of a Routing Function

Given the concept of characteristic functions, we now derive the characteristic function, denoted as \(\tau(f) \), of a routing function \(f \).

Definition 5. The scope of the characteristic function of a routing function for a subset of packet match fields \(M \) is the size of the domain of valid values of \(M \):

\[
\tau(f)(M)[\text{scope}] \triangleq \text{dom}(M)
\]

\(\tau(f)(M)[\text{ec}] \) is a property that we build from the concept of f-equivalence:

Definition 6. We define f-equivalence, denoted as \(\sim_f \), as a relationship between two values of \(M \), which we write as \(v_i(M) \) and \(v_j(M) \), which denotes that these values cannot be distinguished by \(f \):

\[
v_i(M) \sim_f v_j(M) \triangleq \forall v_k(M - M) \in \text{dom}(M - M), \quad f(v_i(M), v_k(M - M)) = f(v_j(M), v_k(M - M)).
\]

Our definition of f-equivalence leads naturally to our definition of an f-equivalence class.

Definition 7. An f-equivalence class, denoted as \([v_i(M)]_f \), is the set of all values f-equivalent to a given \(M \)’s value \(v_i(M) \):

\[
[v_i(M)]_f \triangleq \{ v_j(M) \in \text{dom}(M) : v_i(M) \sim_f v_j(M) \}.
\]

Counting equivalence classes gives us the concept of f-equivalence class number.

Definition 8. The f-equivalence class number of \(M \), denoted as \(\lvert \text{dom}(M)/ \sim_f \rvert \), is the cardinality of \(M \)’s set of f-equivalence classes.

We now arrive at our definition of \(\tau(f)(M)[\text{ec}] \).

Definition 9. The ec of a routing function’s characteristic function for an \(M \) is the cardinality of \(M \)’s set of f-equivalence classes:

\[
\tau(f)(M)[\text{ec}] \triangleq \lvert \text{dom}(M)/ \sim_f \rvert
\]

Definition 10. The characteristic function \(\tau(f) \) of a routing function characterizes \(f \)’s computational load:

\[
\tau(f) \triangleq (\text{dom}(M), \lvert \text{dom}(M)/ \sim_f \rvert).
\]

While \(\tau(f) \) is powerful it is impractical because f-equivalence class number is costly to directly calculate. We therefore bound \(\tau(f) \) by defining the bounding characteristic function of a routing function \(\tau_G(f) \) which is easily derivable from \(f \)’s DFG. This function characterizes an upper bound on \(f \)’s computation load: \(\tau_G(f) \) dominates \(\tau(f) \).

We find \(\tau_G(f)(\text{scope}) \) as before. Instead of calculating \(\tau_G(f)(\text{ec}) \), however, we determine an upper bound for with
the value of specific vertex cut in G_f, f’s DFG. We now construct this cut.

Definition 11. Let $V_f(M)$ be the vertices of $m_i \in M$ in G_f, and $D_f(M)$ be the vertices in G_f descended from $V_f(M)$.

The vertex-min-cut of M, $G_f.\text{vertexMinCut}(M)$, is the product of the weights of the vertices in the minimum weight vertex cut severing $V_f(M)$ from $D_f(M - M)$.

Given this cut, we define $\tau_G(f)$ follows:

Definition 12. The characteristic function $\tau_G(f)$ of a routing function characterizes an upper bound on f’s computational load: $\tau_G(f)$ dominates $\tau(f)$:

$$\tau_G(f)(M) \triangleq (\text{dom}(M), G_f.\text{vertexMinCut}(M)).$$

Example: We illustrate these concepts with our example routing function onPkt.

Consider onPkt’s match fields srcIP and srcPort. Each are only read once: on L3, by the boolean function isVerified. Thus, while srcIP and srcPort may have many f-equivalence classes individually, (srcIP, srcPort) only has two: values that isVerified evaluates to 0, and values it evaluates as 1.

Suppose onPkt is a routing function for a small commercial network fronted by a NAT with 50 hosts each running a limited set of applications that only use 200 standard ports. Given this, $\text{dom}(\text{onPkt}, \text{srcIP}, \text{srcPort}) = 10000$, and thus $\tau(\text{onPkt})(\text{srcIP, srcPort}) = (10000, 2)$.

While the equivalence class number of (srcIP, srcPort) was straightforward, the equivalence class number of most other subsets of onPkt’s inputs is not so obvious. We therefore bound $\tau(\text{onPkt})$ with $\tau_G(\text{onPkt})$, which we calculate using onPkt’s DFG G_{onPkt}, shown in Fig. 5.

![Fig. 5. The routing function onPkt’s DFG G_{onPkt} and the cut (srcIP, srcPort, dstIP).](image)

To bound, for example, the equivalence class number of onPkt’s inputs (srcIP, srcPort, dstIP) we take the vertex-min-cut in G_{onPkt} between their vertices and every vertex descended from onPkt’s other inputs: (ethType, dstPort,g0, dstCond, return). This vertex-min-cut is indicated in Fig. 5 by a dotted line.

The vertices in this cut, (g1, dstIP) have weight 50 and 2, and thus $\tau_G(\text{onPkt, srcPort, dstIP}) = (50000, 100)$.

D. Characterization of a Pipeline

We now define $\kappa(p)$, the set of characteristic functions of a pipeline p. We start by defining a path p through a pipeline p.

Definition 13. A path, p, in a p is a path through p’s dag $\langle t_1,..., t_n \rangle$ such that t_1 is a root table and t_n an egress table in the p.

As an example, ExampleDP contains two paths: $\langle t_1, t_2, t_3, t_4, t_5 \rangle$, and $\langle t_1, t_6 \rangle$, which we denote as $\rho < t_2 >$ and $\rho < t_3 >$ respectively.

We define, $\forall \rho \in p$, $\kappa(p)$ as the characteristic function of the a path through a pipeline.

Definition 14. The characteristic function set $\kappa(p)$ of a p is the union of $\forall \rho \in p$’s characteristic functions:

$$\kappa(p)(M) \triangleq \{ c \in C : c = \kappa(p) \forall \rho \in p \}.$$

We now construct the characteristic function of a path p by introducing the following definitions:

Definition 15. The input closure $\tilde{M}_p(t_i)$ of a table $t_i \in p$ is the set of inputs that t_i can obtain information about:

$$\tilde{M}_p(t_i) \triangleq \{ m_i \in M : m_i \in I(t_i) \lor m_i \in \tilde{M}_p(t_j) \ t_j \in I(t_i) \}.$$

Definition 16. The closure set, $\tilde{M}_p(M)$ of a p’s M is the set of $t_i \in p$ with input closure M.

$$\tilde{M}_p(M) \triangleq \{ t_i \in p : \tilde{M}_p(t_i) = M \}.$$

Using these definitions, we define the characteristic function of a p as:

Definition 17. The characteristic function $\kappa_p(p)$ of a p characterizes the computational capacity of a p.

$\kappa_p(p)[\text{scope}]$ is the maximum number of values of M that p can read and $\kappa_p(p)[\text{cc}]$ is the maximum number of equivalence classes of M that p can distinguish.

$$\kappa(p)(M) \triangleq \begin{cases} \tilde{M}_p(M) & \text{if } \tilde{M}_p(M) \neq \emptyset, \text{min} \{ \text{max rules}(t_i) : t_i \in \tilde{M}_p(M) \}, \\ \text{min} \{ 2^{\text{bits}(r(t_i))} : t_i \in \tilde{M}_p(M) \} & \text{otherwise}. \end{cases}$$

Example: As before, we provide intuition into the characteristic functions of pipelines using our example pipeline ExampleDP.

Recall from our model that ExampleDP contains two $\rho < t_2 >$ and $\rho < t_3 >$. Consider the table t4, only contained by $\rho < t_3 >$. The input closure $\tilde{M}_{\rho < t_3 >}(t4)$ is (srcIP, srcPort, dstIP) since t4 reads dstIP and $r(t_2)$, and t2 in turn reads srcIP and srcPort. The closure set, $\tilde{M}_{\rho < t_3 >}(\text{srcIP, srcPort, dstIP})$, of t4’s inputs in $\rho < t_3 >$ t4’s input closure is unique.

Thus, $\kappa_{p_3}(\tilde{M}_{\rho < t_3 >}) = \kappa_{p_3}(\text{srcIP, srcPort, dstIP}) = \{ \text{max Rules}(t4), 2^{\text{bits}(r(t4))} \}$. In the case that t4 has 220 rules and a 16 bit output register, $\kappa_{p_3}(\tilde{M}_{\rho < t_3 >}) = (2^{20}, 2^{16})$.
Further, consider the subset of ExampleDP’s match fields \((\text{srcIP}, \text{dstMac})\). \(\rho_{L3}\) does not contain the inputs srcMac or dstMac and thus it can only realize functions that contain them in the unlikely event that all are constants. Constants have domain 1 and 1 equivalence class. Thus the value of \(\kappa_{\rho_{L3}}\) for any set of outputs containing srcMac is \((1,1)\).

Finally, consider the subset of ExampleDP’s match fields \((\text{srcIP}, \text{srcPort})\). srcIP and srcPort are both read by \(\rho_{L3}\), but \((\text{srcIP}, \text{srcPort})\) is not an input closure of any \(t_i \in \rho_{L3}\). In this case, it is not necessary to consider \((\text{srcIP}, \text{srcPort})\) to verify realizability, and thus \(\kappa_{\rho_{L3}}(\text{srcIP}, \text{srcPort}) = (\tau, \tau)\), indicating that we can skip this field during comparison with a routing function’s \(\tau\).

E. Datapath Programming Capacity Theorems

Combining the preceding definitions to characterize both routing functions and pipelines, we finally arrive at our central result: a sufficient condition for whether a given \(f\) can be realized in a given \(p\).

Theorem 1 (Pipeline Realization Theorem). A routing function \(f\) can be realized by a pipeline \(p\) if \(\kappa(p)\), the set of characteristic functions of \(p\) dominates \(\tau(f)\), the characteristic function of \(f\). Formally, we have:

\[
\kappa(p) \supseteq \tau(f) \Rightarrow f \Rightarrow p.
\]

As a corollary, because \(\tau_G(f) > \tau(f)\), the Pipeline Realization Theorem extends to \(\tau_G(f)\).

Example: We illustrate our Pipeline Realization Theorem using onPkt and ExampleDP. Specifically, our Pipeline Realization Theorem states that \(\kappa(\text{ExampleDP}) \supseteq \tau(\text{onPkt}) \Rightarrow \text{ExampleDP} \Rightarrow \text{onPkt} \).

Further, \(\kappa(\text{ExampleDP}) \supseteq \tau(\text{onPkt})\) is true if \(\kappa_{p}(\rho_{L2}) > \tau_G(\text{onPkt})\) or \(\kappa_{p}(\rho_{L3}) > \tau_G(\text{onPkt})\). We verify each conditional by comparing each component of each vector given by each pair of characteristic functions. For example, \(\tau(\text{onPkt})(\text{srcIP}, \text{srcPort}, \text{dstIP}) = (50000, 100)\), \(\kappa_{p}(\rho_{L3})(\text{srcIP}, \text{srcPort}, \text{dstIP}) = (2^{20}, 2^{16})\), and thus the input set \((\text{srcIP}, \text{srcPort}, \text{dstIP})\) does not prevent onPkt from being realized in \(\rho_{L3}\).

Tightness: Though the theorem provides only a sufficient condition, tighter results, in particular sufficient and necessary conditions, can be established in multiple settings. In particular, we have the following result:

Definition 18. A branchless pipeline \(p\) is a \(p\) whose dag is a path from its root to its output node.

Theorem 2. If \(p\) is a branchless pipeline, \(p\)’s table size is large, and each match field \(m_i \in \mathcal{M}\) appears in exactly one of \(p\)’s tables, \(\kappa(p) \supseteq \tau_G(f) \iff f \Rightarrow p\).

In Sec. IV-A, we evaluate our realization theorem’s tightness on more general pipelines through experiments.

IV. Evaluation

We now evaluate the tightness, time complexity and output size of routing function and pipeline characterization numerically. All experiments are conducted on a 1.6 GHz Intel Core i5 with 4 GB RAM.

A. Routing Function Characterization Tightness

We demonstrate the tightness of our characterization of a routing function by comparing the number of equivalence classes of a \(\tau\) and \(\tau_G\) for the following set of simple routing functions:

```c
// Routing function: simpleRoute
L0: def simpleRoute(Addr srcIP, Addr dstIP):
L1: srcSw = hostTbl[srcIP]
L2: dstSw = hostTbl[dstIP]
L3: route = routeTbl[srcSw, dstSw]
L4: return route
```

Our first function, simpleRoute maps a packet’s srcIP and dstIP to their host packet switches dstSw and srcSw and then looks up the route between them.

```c
// Routing Function: condRoute
L0: condRoute(srcIP, dstIP):
L1: srcSw = hostTbl[srcIP]
L2: dstSw = hostTbl[dstIP]
L3: routeCond = condTbl[srcIP, dstIP]
L4: route = routeTbl[srcSw, dstSw, routeCond]
L5: return route
```

Our second function condRoute extends simpleRoute by introducing a route condition variable which modulates the function’s route look up.

```c
// Routing Function: secureRoute
L0: secureRoute(Addr srcIP, Addr dstIP):
L1: if (isFiltered(srcIP)):
L2: return Drop()
L3: else:
L4: route = fwdTbl[dstIP]
L5: return route
```

Our final function secureRoute drops all traffic from srcIPs on a filter list and forwards remaining traffic.

Results: We present our results in Table II. Specifically, in Table II, column 2 defines the domain of srcIP, dstIP, columns 3-6 give the output ranges \(O(tbls)\) of each table, and columns 7-10 give the values of selected fields in each function’s \(\tau(f)\) and \(\tau_G(f)\).

Note that the row b1(scR) and b2(scR) represent the two branches of secureRoute. We record N/A when a value is not applicable to a given function, and null for values of \(\tau(f)\) where computation failed to halt.

In our evaluation of simpleRoute and condRoute, the results of \(\tau\) and \(\tau_G\) are almost identical in every case barring an extreme one where \(O(\text{condTbl}) = 1\). Notably, our values of \(\tau(f)\) and \(\tau_G(f)\) are not influenced by the range of routeTbl \(O(\text{routeTbl})\). This implies there is no pattern between the allocation of routes to \((\text{srcIP}, \text{dstIP})\) pairs \(\tau(f)\) can exploit to reduce its number of equivalence classes.
Further notice that our functions with control statements: `secureRoute` and `onPkt` have a large gap between \(\tau \) and \(\tau_G \), suggesting \(\tau_G \)'s bound is loose on heavily branching programs. However, as rows b1(scR) and b2(scR) show, we can ameliorate this problem by calculating each route through a program characteristic function separately.

B. Routing Function Characterization Time Complexity

We now examine the memory utilization and computation time of pipeline characterization. We evaluate the following pipelines:

1. **The OF-DPA Abstract Switch 2.0**: The OpenFlow Data Plane Abstraction Abstract Switch 2.0 (OF-DPA) is an abstract switch model based on the Open Flow 1.3.4 protocol designed to allow the programming of Broadcom-based switches under the OpenFlow protocol. We examine two OF-DPA flow table configurations: bridging and routing (BR), and data center overlay tunnel (OT), which contain 7, and 3 tables in 5, 3 stages respectively. [2]

2. **PícOs**: PícOs is a network operating system for white box switches that provides OF programmability across HP, Edgecore and Pica switches. We examine two fixed pipelines offered by PícOs as table type patterns: PícOs’s IP routing pipeline (IPR) and Policy routing pipeline (PR), which contain 4 and 5 tables in 4 and 5 stages respectively. [8]

Results:
Table III our characterization results for our evaluated pipelines. The results show that despite the theoretically large number of subsets of \(M \) across evaluated pipelines, memory utilization and computation time are small.

V. Related Work

High level SDN Program Compilers:
Multiple systems that allow programmers to write SDN programs in high level languages and then compile such programs to flow table pipelines have been proposed over the last several years. Such systems are related to our work in that they examine the transformation of policy programs into switch flow tables. We group these systems into two categories: **tier-less** and **split-level**.

- **Tier-less systems** (e.g. SNAP [9], FML [10], FlowLog [11], Maple [7]), require programmers to specify forwarding behaviors as packet handling functions which are then used by the SDN controller to configure and update network state. Such systems pioneer our pipeline capacity theorem’s notion of a **program function** and are able to compile such functions to single pipelines. These systems, however, are unable to verify that submitted functions can be written to a given pipeline without physically carrying out the time consuming process of compilation, and cannot write programs to multi-pipeline networks.

- **Split-level systems** such as the Frentic family (e.g. Frentic [6], Pyretic [12]) provide a two tiered programming model in which controller programs specify events of interest and then respond to these events when they occur by calculating new network policies. Again, such systems cannot verify that a given controller program’s output can be written to the controller’s switches’ pipelines, although this paradigm falls outside of our pipeline capacity theorem’s model as well.

Pipeline specification languages:
There are some superficial similarities between pipeline specification languages (e.g. P4 [3], PISCES [13], Concurrent NetCore [14]) and our pipeline capacity theorem, such as the analysis and guarantees that such languages provide about pipeline behavior. For example, Concurrent NetCore’s type system ensures that any program used to populate a pipeline has certain properties, such as determinism, whilst PISCES’s switch specification allows compilers to analyze pipelines and optimize their performance. We contend, however, that our capacity theorem attacks an entirely different space in pipeline analysis - guaranteeing pipeline properties or improving performance is qualitatively different to verifying whether compilation is possible.

Pipeline design:
Pipeline design schemes such as Jose et al.’s “Compiling Packet Programs to Reconfigurable Switches” [15], Sun et al.’s “Software-Defined Flow Table Pipeline” [16], FlowAdapter [17], and Domino [4] are clearly related to our pipeline capacity theorem in that they examine pipeline layout design under hardware constraints. Jose et al., Sun et al., and FlowAdapter however, focus on mapping logical lookup tables/flow table pipelines to physical tables whilst our pipeline capacity theorem focuses on generic programs, while Domino considers weaker hardware constraints (e.g. limits on stateful operations at line-rate) than our work does.
<table>
<thead>
<tr>
<th>f</th>
<th>hsts(IP)</th>
<th>O(hostTbl)</th>
<th>O(routeTbl)</th>
<th>O(condtbl)</th>
<th>O(fwdTbl)</th>
<th>τ(UtcsrcIP)</th>
<th>τ(WdstIP)</th>
<th>τ(UtcsrcIP)</th>
<th>τ(WdstIP)</th>
</tr>
</thead>
<tbody>
<tr>
<td>smplR</td>
<td>10</td>
<td>100</td>
<td>2</td>
<td>N/A</td>
<td>N/A</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>smplR</td>
<td>10</td>
<td>100</td>
<td>30</td>
<td>N/A</td>
<td>N/A</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>smplR</td>
<td>10</td>
<td>100</td>
<td>5000</td>
<td>N/A</td>
<td>N/A</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>smplR</td>
<td>12</td>
<td>100</td>
<td>30</td>
<td>N/A</td>
<td>N/A</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>smplR</td>
<td>10</td>
<td>200</td>
<td>30</td>
<td>N/A</td>
<td>N/A</td>
<td>100</td>
<td>200</td>
<td>200</td>
<td>200</td>
</tr>
<tr>
<td>condR</td>
<td>10</td>
<td>100</td>
<td>30</td>
<td>50</td>
<td>N/A</td>
<td>1024</td>
<td>1024</td>
<td>1024</td>
<td>1024</td>
</tr>
<tr>
<td>condR</td>
<td>10</td>
<td>100</td>
<td>30</td>
<td>5</td>
<td>N/A</td>
<td>1024</td>
<td>1024</td>
<td>1024</td>
<td>1024</td>
</tr>
<tr>
<td>scR</td>
<td>10</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>100</td>
<td>2</td>
<td>100</td>
<td>2</td>
<td>1024</td>
</tr>
<tr>
<td>b1(scR)</td>
<td>10</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>1</td>
<td>N/A</td>
<td>1</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>b2(scR)</td>
<td>10</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>100</td>
<td>1</td>
<td>100</td>
<td>1</td>
<td>100</td>
</tr>
<tr>
<td>onPkt</td>
<td>32</td>
<td>100</td>
<td>30</td>
<td>50</td>
<td>N/A</td>
<td>null</td>
<td>null</td>
<td>1/2</td>
<td>1/2</td>
</tr>
</tbody>
</table>

TABLE II

CHARACTERIZATION RESULTS OF ROUTING FUNCTIONS WITH DIFFERENT STATISTICS.

TABLE III

CHARACTERIZATION RESULTS OF PIPELINES.

VI. ACKNOWLEDGMENT

The authors would like to thank the anonymous reviewers for their insightful comments. Shenshen Chen helped with initial discussions. The research was supported in part by NSFC grants NSFC #61672385, NSFC #61702373; Shanghai Key Project Grant #16511100900; NSF grants CC-IIE 1440745, CCF-1637385 and CCF-1650596; Google Research Award; and the U.S. Army Research Laboratory and the U.K. Ministry of Defence under Agreement Number W911NF-16-3-0001.

REFERENCES

APPENDIX

We now present proofs to verify our main results. The structure of these proofs will be as follows. First, we define a mechanism to encode sufficient information about a given
Given Lemma 3, we are now equipped to prove the realization theorem.

Proof. Given an \(f \) and \(p \), we will prove that if \(\kappa(p) \not\equiv \tau_G(f) \),

\[f \Rightarrow p. \]

Consider a \(\kappa(p) \in \kappa(p) \).

\[\forall M \in M : m_i \in M \rightarrow m_i \not\in \bigcup_{i \in \rho} \tilde{M}(t_i), \]

\[\kappa(p)(M) = (1, 1). \]

Therefore, if \(\kappa(p) > \tau_G(f) \Rightarrow \) all \(m_i \) not read by \(p \)

are treated as constants or not read at all by \(f \), and thus \(f \)

effectively a mapping from \(\bigcup_{i \in \rho} \tilde{M}(t_i) \rightarrow R \).

Further, given \(\kappa(p) > \tau_G(f) \forall i \in p, \) \maxRules(t_i) \>

\[\tau_G(f)(\tilde{M}(t_i))[\text{dom}], \] and \(2^{\text{max}}(t_i) \>

\[\tau_G(f)(\tilde{M}(t_i))[\text{ec}], \]

and thus by Lemma 3 \(t_n \) can calculate \(\chi_f(\tilde{M}(t_n)) \).

Finally, consider that if a \(t_i \) can calculate \(\chi_f(M_i) \), and \(f \)

is a mapping dom(M_i) \rightarrow R, \(t_i \) can compute \(f \)'s output

\[\forall v_i(M_i) \in \text{dom}(M_i) \]

by mapping each codeword in \(\chi_f(M_i) \) to the output of \(f \) it corresponds to.

Since \(t_n \) is \(\rho \)'s only output, \(\tilde{M}(t_n) = \bigcup_{i \in \rho} \tilde{M}(t_i) \). Thus, \(t_n \)

can compute \(f \)'s output. Further, since \(t_n \) is an egress table it can always pass this output back to the switch.

Therefore, if \(\kappa(p) > \tau_G(f) \), \(f \Rightarrow p \). Since \(\kappa(p) \in \kappa(p) \)

and \(p \in p \), we have proved that if \(\kappa(p) \not\equiv \tau_G(f) \), \(f \Rightarrow p \). □

The last step required to prove our realization theorem is to show that \(\tau_G(f) > \tau(f) \) and thus that \(\kappa(p) \not\equiv \tau(f) \Rightarrow f \Rightarrow p \).

The crux of this step is given in Lemma 4, below.

Lemma 4. The number of equivalence classes of \(M \) is bounded by \(\text{dom}(\mu_f(M)) \).

Proof. Suppose, by way of contradiction, \(\exists (f, M) : |\text{dom}(M)/ \sim_f | > \text{dom}(\mu_f(M)) \).

Each \(v_i(M) \) in one of \(M \)'s equivalence classes must generate a \(v_i(\mu_f(M)) \).

By the pigeonhole principle, if \(M \) has more equivalence classes than \(\mu_f(M) \), two values of \(M \) from different equivalence classes must generate the same value of \(\mu_f(M) \). However, by Lemma 1, \(\mu_f(M) \) contains sufficient information about \(M \) to fix \(f \)'s outputs value, and thus these two bindings of \(M \) must be in the same equivalence class, which is a contradiction. □

Corollary 1. The number of f-equivalence classes of any M is bounded by G_f.vertexMinCut(M).

Corollary 2. The characteristic function \(\tau_G(f) \) dominates the characteristic function \(\tau(f) \).

We have therefore proven our realization theorem: that \(\kappa(p) \not\equiv \tau_G(f) \Rightarrow f \Rightarrow p \).