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Abstra
tWe propose a simple game for modeling 
ontainment of the spread of viruses in agraph of n nodes. Ea
h node must 
hoose to either install anti-virus software at someknown 
ost C, or risk infe
tion and a loss L if a virus that starts at a random initialpoint in the graph 
an rea
h it without being stopped by some intermediate node.We prove many game theoreti
 properties of the model, in
luding an easily applied
hara
terization of Nash equilibria, 
ulminating in our showing that a 
entralizedsolution 
an give a mu
h better total 
ost than an equilibrium solution. Though itis NP-hard to 
ompute su
h a so
ial optimum, we show that the problem 
an beredu
ed to a previously un
onsidered 
ombinatorial problem that we 
all the sum-of-squares partition problem. Using a greedy algorithm based on sparse 
uts,we show that this problem 
an be approximated to within a fa
tor of O(log1:5 n).Key words: 
omputer virus model, e
onomi
s of se
urity, se
urity externalities,pri
e of anar
hy, sum-of-squares partitionPreprint submitted to JCSS 9 February 2006



1 Introdu
tionConsider a system in whi
h n ma
hines, ea
h of whi
h may or may not beprote
ted against viruses, are 
onne
ted by a network in the form of a graph,and any virus that infe
ts some ma
hine eventually infe
ts all of its unpro-te
ted neighbors. If anti-virus software is available, a natural response wouldbe to prote
t all the ma
hines|but perhaps the anti-virus software itself 
re-ates 
osts, both in money and time to pur
hase and install the software and inredu
ed eÆ
ien
y or usability of the prote
ted ma
hine. Suppose that prote
t-ing a ma
hine by installing anti-virus software 
osts the owner of the ma
hineC, but that having the ma
hine be infe
ted 
osts L, whi
h may or may notbe greater than C. If the virus spreads from some initial ma
hine 
hosenuniformly at random, on whi
h ma
hines does it make sense to install theanti-virus software?The answer will depend on whether we adopt the perspe
tive of the owner of asingle ma
hine or of the so
iety as a whole. When the anti-virus software 
ostsmore than the loss from infe
tion, no e
onomi
ally rational ma
hine owner willinstall the anti-virus software, every ma
hine will be infe
ted, and the systemwill in
ur a so
ial 
ost of Ln. But for many graphs, sele
tive ino
ulation of? A preliminary version of this paper appeared in the pro
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a few 
entral ma
hines 
an limit the spread of infe
tion to a small subset ofthe graph, greatly redu
ing the total 
ost of infe
tion in return for a smallinvestment in anti-virus software. We 
an ask how mu
h of an improvement a
entralized solution 
an provide, and how easy it is to �nd a good 
entralizedsolution.After dis
ussing some previous work on related problems (in Se
tion 2), we givea 
omplete 
hara
terization of the Nash equilibria for an anti-virus softwareinstallation game in whi
h ea
h ma
hine's owner separately 
hooses whetheror not to install the software, without regard to the e�e
t on other ma
hines.(This game is de�ned in Se
tion 3.) We show (in Se
tion 4) that �nding eitherthe most or least expensive equilibrium is NP-hard, but that some Nashequilibrium 
an be 
omputed in O(n3) time and that any population of nodeswill qui
kly 
onverge to a Nash equilibrium by updating their strategies lo
allybased on the other nodes' strategies. Unfortunately, the 
ost of any su
h Nashequilibrium may be badly suboptimal; the pri
e of anar
hy for this gameis �(n) in the worst 
ase. This shows that for many graphs and values of Cand L, letting the users 
hoose individually whether or not to ino
ulate theirma
hines will give bad results.We then 
onsider (in Se
tion 5) the possibility of a 
entralized solution inwhi
h a di
tator 
omputes and enfor
es an optimal ino
ulation plan. We showthat essentially the same argument that shows that extreme Nash equilibriaare hard to �nd applies to the optimal solution as well. However, we showthat the problem of �nding an optimal ino
ulation plan redu
es to a graphpartition problem in whi
h we are asked to partition the graph by removingm nodes; the quality of the partition is measured by the sum of the squaresof the sizes of its 
omponents. We give (in Se
tion 6) a polynomial-time ap-3



proximation algorithm that removes O(log1:5 n)m nodes in order to a
hieve apartition with quality within O(1) of the optimum. We 
omplement our al-gorithm with results on the hardness of approximation of the sum-of-squarespartition problem.Con
lusions and open problems appear in Se
tion 7.2 Related workIn this se
tion, we des
ribe three 
lasses of work related to this paper: viruspropagation models, e
onomi
 models of investment in se
urity, and game-theoreti
 models of se
urity. We then dis
uss some work on graph partitioningalgorithms that are related to the sum-of-squares partition problem we 
on-sider in Se
tion 6.2.1 Virus propagation modelsTraditional epidemiologi
al models 
hara
terize the viral infe
tion in terms ofbirth rate and death rate of the virus [1,2℄. Usually, these models assume thatan infe
ted individual is equally likely to infe
t any other individual in the pop-ulation; in 
ontrast, 
omputer viruses usually spread via lo
alized intera
tions.Kephart and White extended the traditional model by transferring it onto adire
ted random graph [3℄. Later work (e.g., [4{6℄) studied virus propagationover other kinds of graphs, in
luding Internet-like power-law graphs [7{9℄. Wedo not restri
t the network topology in any way and 
onsider a general undi-re
ted graph. Our model is in some ways 
loser to models in per
olation theory(see [10℄): an infe
ted node infe
ts all of its unprote
ted neighbors, spreading4



infe
tion throughout the graph until it is blo
ked by an anti-virus software.
2.2 E
onomi
 models of se
urityOur work is motivated in part by an observation that se
urity te
hnologiesexhibit network externalities [11℄. Spe
i�
ally, the bene�t obtained by usingse
urity te
hnology (anti-virus software in our 
ase) does not a

rue only to theuser of the se
urity te
hnology but rather to all users of the network. Aspnes etal. [12℄ also 
onsider anti-virus immunization, and proposed studying how toen
ourage highly 
onne
ted nodes to use anti-viral te
hniques.We assume that 
osts of installation and infe
tion are known. Alternatively,one 
ould use risk analysis to estimate the 
osts and bene�ts from installinga se
urity te
hnology (see, for example, [13℄), or estimate values based onempiri
al studies of the 
osts of se
urity brea
hes [14, 15℄.
2.3 Game-theoreti
 models of se
urityAppli
ation of game theory to network se
urity has yielded interesting re-sults [16{18℄. For example, Bell uses a simple game to study network reliabil-ity. In the game, the router tries to �nd a least 
ost path and a network testertries to maximize this 
ost by failing links [19℄. Kunreuther and Heal re
entlyintrodu
ed the notion of interdependent se
urity (IDS) games, in whi
hde
isions to adopt se
urity te
hnology by one agent a�e
t other agents [20℄.Kearns and Ortiz subsequently extended their paper and gave an algorithmfor �nding approximate Nash equilibria in this model [21℄.5



Our work is similar to work on IDS games in 
ertain respe
ts: ea
h agent inboth our game and an IDS game makes a de
ision whether or not to investmoney in a se
urity te
hnology, and this de
ision a�e
ts other agents. Themain di�eren
es are that we assume that installing anti-virus software prote
tsagainst all bad e�e
ts of viruses, while the IDS work 
on
entrates on negativeside-e�e
ts of se
urity brea
hes even on prote
ted parties; and we assume arestri
ted network topology that 
ontains the spread of viruses, while the IDSwork assumes a 
omplete topology.

2.4 Graph partition problems
In Se
tion 6, we des
ribe and provide an approximate solution for a newgraph partitioning problem. Previous work on other forms of graph parti-tioning in
ludes the approximation algorithm of Leighton and Rao [22℄ forsparsest 
ut, from whi
h the same authors derive a pseudo-approximationalgorithm for b-balan
ed 
uts, where ea
h side of the 
ut must have sizebjV j or greater. Arora et al. [23℄ re
ently improved the approximation ratiosof these results. The 
ase of b = 1=2 is graph bise
tion, for whi
h Feigeand Krauthgamer [24℄ give a good approximation algorithm. Even et al. [25℄give O(logn)-ratio pseudo-approximation algorithms for several balan
ed par-titioning problems, in
luding the �-separator problem and the k-balan
edpartitioning problem. 6



3 Our modelWe represent network topology by an undire
ted graph G = (V;E), whereV = f0; 1; : : : ; n � 1g is a set of network hosts and E � V � V is a set of(bidire
tional) 
ommuni
ation links. Our basi
 model for installing anti-virussoftware is a one-round game with the following features:Players. Our game has n players 
orresponding to nodes of the graph. Ini-tially, all nodes are inse
ure and vulnerable to infe
tion.Strategies. We denote the strategy of i by ai. Ea
h node i has two pos-sible a
tions: do nothing and risk being infe
ted or ino
ulate itself byinstalling anti-virus software. Node i's strategy ai is the probability that itino
ulates itself.Nodes' 
hoi
es 
an be summarized in a strategy pro�le ~a 2 [0; 1℄n. If aiis 0 or 1, we say that node i adopts a pure strategy; otherwise, its strategyis mixed. We 
all nodes that install anti-virus software se
ure and denotethe set of su
h nodes by I~a. We asso
iate an atta
k graph G~a = G � I~awith ~a. It is essentially the network graph with se
ure nodes and their edgesremoved (see also Figure 1). Note that both I~a and G~a are random variablesunless all strategies are pure.Atta
k model. After the nodes made their 
hoi
es, the adversary pi
ks somenode uniformly at random as a starting point for infe
tion. Infe
tion thenpropagates through the network graph. Node i gets infe
ted if it has noanti-virus software installed and if any of its neighbors be
ome infe
ted.Individual 
osts. Suppose it 
osts C to install anti-virus software. If a nodeis infe
ted, it su�ers a loss equal to L. For simpli
ity, we assume that bothC and L are known and are the same for all nodes; we dis
uss possible7




onsequen
es of removing these assumptions in Se
tion 7.The 
ost of a mixed strategy ~a 2 [0; 1℄n to node i is
osti(~a) = aiC + (1� ai)L � pi(~a):Here pi(~a) is the probability of node i being infe
ted given the strategypro�le ~a, 
onditioned on the event that node i does not install the anti-virussoftware. It is equal to the probability that some vulnerable node rea
hablefrom i without passing through a se
ure node is the initial point of infe
tion.For pure strategies, this is just ki=n, where ki is the size of the 
onne
ted
omponent 
ontaining i in the atta
k graph G~a.
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GaFig. 1. Sample graph G and its atta
k graph G~a for ~a = 010100.
So
ial 
ost. The total so
ial 
ost of a strategy pro�le is the sum of the in-dividual 
osts. For pure strategies, there is a simple 
hara
terization of thetotal so
ial 
ost in terms of the atta
k graph G~a. Be
ause ea
h node in thesame 
omponent of G~a has the same 
han
e of infe
tion, the ki nodes in thei-th 
omponent between them fa
e a loss of ki � (Lki=n) = (L=n)k2i . So theso
ial 
ost is 8




ost(~a)= n�1Xj=0 
ostj(~a)= n�1Xj=0 ajC + (1� aj)L � pj(~a)=CjI~aj+ Ln lXi=1 k2i ;where k1; k2; : : : k` are the sizes of the 
omponents in G~a.4 Nash equilibriaWe 
onsider �rst the 
hoi
es that the nodes will make in the absen
e of 
oor-dination, by examining the Nash equilibria of the game de�ned in Se
tion 3.The assumption that the nodes will rea
h a Nash equilibrium is a very strongone, as it requires assuming that the nodes are aware of ea
h other's 
hoi
esto install or not and that the nodes 
an evaluate C (printed on the box forthe anti-virus software) and L (whi
h is more problemati
). It also assumesthat the nodes 
an 
ompute a Nash equilibrium in a reasonable amount oftime, whi
h is not always possible for some games. However, we 
an show thatNash equilibria for our game are easily 
hara
terized in terms of the sizes ofthe 
omponents of the atta
k graph (Se
tion 4.1), and that a population will
onverge to some Nash equilibrium qui
kly even though �nding the best orworst pure equilibrium as measured by total 
ost is NP-hard (Se
tion 4.2).We 
an further imagine that some of the diÆ
ulties of limited information
ould be over
ome by 
onsidering an iterated game where nodes pay C to rentthe anti-virus software in ea
h round and update their strategies based onobservations of losses to viruses and the strategies of other nodes in previousrounds; though we do not analyze this multi-round game formally, a simpli�ed9



version is impli
it in our 
onvergen
e result. We also show that the hardnessof �nding the worst-
ase equilibrium does not prevent obtaining further in-formation about its behavior; for example, its total 
ost is nonde
reasing as afun
tion of the ino
ulation 
ost C (Se
tion 4.3).Unfortunately, sel�sh behavior proves to be highly undesirable, be
ause the
ost of a Nash equilibrium solution may be very far from the so
ial optimum.In Se
tion 4.4, we prove that while the pri
e of anar
hy, de�ned as the ratioof total 
ost between the worst Nash equilibrium and the so
ial optimumnever ex
eeds n, this bound is tight up to 
onstant fa
tors for some graphsand 
hoi
es of C and L.
4.1 Chara
terization of mixed and pure equilibriaA useful feature of the Nash equilibrium for our game is its simple 
hara
-terization: there is always a 
omponent-size threshold t = Cn=L su
h thatea
h node will install the anti-virus software if it would otherwise end up ina 
omponent of vulnerable nodes with expe
ted size greater than t, and willnot install the software if it would otherwise end up in a 
omponent with ex-pe
ted size less than t. When the expe
ted 
omponent size equals t, the nodeis indi�erent between installing and not installing and may adopt a mixedstrategy. The threshold arises in a natural way: it is the break-even point atwhi
h the 
ost C of installing the software equals the expe
ted loss L(t=n) ofnot installing.We de�ne ~a[i=x℄ to be the strategy ve
tor that is identi
al to ~a, ex
ept thei'th 
omponent ai is repla
ed by x. Note that atta
k graph G~a[i=0℄ is the atta
k10



graph in whi
h player i never installs the anti-virus software.Theorem 1 (Chara
terization of mixed equilibria): Suppose S(i) is the ex-pe
ted size of the inse
ure 
omponent that 
ontains node i of the atta
k graphG~a[i=0℄, (i.e. S(i) = npi(~a)).Fix C;L. Let the threshold be t = Cn=L. A strategy pro�le ~a is a Nash equi-librium if and only if(a) For all i su
h that ai = 1, S(i) � t.(b) For all i su
h that ai = 0, S(i) � t.(
) For all i su
h that 0 < ai < 1, S(i) = t.
PROOF.Suppose ~a is a Nash equilibrium and 
onsider node i. The expe
ted 
ost tonode i is aiC + (1� ai)(L=n)S(i).(1) Suppose ai = 0. Then node i has expe
ted 
ost (L=n)S(i). If (L=n)S(i) >C, then i will want �nd the situation ai = 1 with 
ost C preferable. Thus,we must have S(i) � CL=n = t.(2) Suppose ai = 1. Then node i has expe
ted 
ost C. If (L=n)S(i) < C,then i would �nd the situation ai = 0 with expe
ted 
ost (L=n)S(i) < Cpreferable. Thus, we must have S(i) � CL=n = t.(3) Suppose 0 < ai < 1. If (L=n)S(i) > C, then i will �nd the situationai = 1 preferable. If (L=n)S(i) < C, then i will �nd the situation ai = 0preferable. Thus, we must have S(i) = CL=n = t.Thus, ~a satis�es 
ondition (a), (b), and (
) above.11



Conversely, suppose ~a satis�es 
onditions (a), (b) and (
) of the theorem.Consider node i.(1) Suppose ai = 0. Then node i will have expe
ted 
ost (L=n)S(i) < C,and thus will not want to swit
h to a di�erent ai that puts any weighton installing at 
ost C.(2) Suppose ai = 1. Then node i will have 
ost C, and thus will not want toswit
h to a di�erent ai that puts any weight on being inse
ure at expe
ted
ost (L=n)S(i) � C.(3) Suppose 0 < ai < 1. Then node i will have expe
ted 
ost aiC + (1 �ai)(L=n)S(i) = C. Swit
hing to any other strategy will have the sameexpe
ted 
ost.Thus, ~a is a Nash equilibrium. 2A spe
ial 
ase of Theorem 1 is the following 
hara
terization for pure Nashequilibria. Be
ause nodes in a pure Nash equilibrium do not make randomized
hoi
es, the atta
k graph is not a random obje
t, but a determined graph. Wehave the same threshold 
onditions as before, but the removal of randomnesssimpli�es the situation.Corollary 2 (Chara
terization of pure equilibria) Fix C;L. Let the thresholdbe t = Cn=L. A strategy pro�le ~a is a pure Nash equilibrium if and only if(a) Every 
omponent in atta
k graph G~a has size at most t.(b) Inserting any se
ure node j 2 I~a and its edges into G~a yields a 
omponentof size at least t.For example, let C = 0:5 and L = 1, and 
onsider the graph in Figure 1. The12



threshold for this graph is t = Cn=L = 3. Then Corollary 2 tells us that purestrategy ~a = 010100 must be a Nash equilibrium for these C and L.4.2 Computing pure Nash equilibriaDesigning algorithms for �nding mixed Nash equilibria or proving hardnessresults for �nding optimized mixed equilibria would most likely involve esti-mating or otherwise manipulating the expe
ted value of the sizes of 
ompo-nents in the atta
k graph, whi
h is at the very least a non-trivial problem.Furthermore, in the absen
e of 
entral 
ontrol, nodes attempting to 
al
ulatetheir best strategy based on a mixed strategy paradigm would possibly runinto similar 
omputational issues.Thus, we turn our attention to the 
omputation and hardness of pure Nashequilibria. Corollary 2 gives us a powerful tool with whi
h to reason aboutpure Nash equilibria. We now show that 
omputing the best or worst pureNash equilibria is hard, but that �nding some intermediate Nash equilibriumis easy. A 
onsequen
e of this algorithm is that the existen
e of a pure Nashequilibrium is always guaranteed. (The existen
e of a mixed Nash equilibriumis a 
onsequen
e of Nash's theorem.)Theorem 3 Both 
omputing the pure Nash equilibrium with lowest 
ost and
omputing the pure Nash equilibrium with highest 
ost are NP-hard problems.
PROOF. We redu
e vertex 
over to the de
ision problem \Does thereexist a pure Nash equilibrium with 
ost less than 
?" and we redu
e inde-pendent dominating set to \Does there exist a pure Nash equilibrium13



with 
ost greater than 
?"Fix some graph G = (V;E), and set C=L = 1:5=n so that t = Cn=L =1:5, where t is the 
omponent size threshold from Corollary 2. Then fromCorollary 2, in any Nash equilibrium the 
omponents of the atta
k graph allhave size at most 1, and any se
ure node is adja
ent to some inse
ure node(as otherwise it 
ould uninstall its software and be in a 
omponent of size atmost 1). It follows that in a Nash equilibrium (a) every vulnerable node iseither isolated or has all neighbors se
ure, and (b) every se
ure node has aninse
ure neighbor.We now argue that G has a vertex 
over of size k if and only if the ino
ulationgame on G with the above settings of C and L has a Nash equilibrium withk or fewer se
ure nodes, or equivalently an equilibrium with so
ial 
ost Ck +(n�k)L=n or less, as ea
h inse
ure node must be in a 
omponent of size 1 and
ontribute exa
tly L=n expe
ted 
ost. Given a minimal vertex 
over V 0 � V ,observe that installing the software on all nodes in V 0 satis�es 
ondition (a)be
ause V 0 is a vertex 
over, and (b) be
ause V 0 is minimal. Conversely, ifV 0 is the set of se
ure nodes in a Nash equilibrium, then V 0 is a vertex 
overby 
ondition (a). This 
on
ludes the proof that �nding a minimum-
ost Nashequilibrium is NP-hard.For a maximum 
ost equilibrium, 
onsider the set of inse
ure verti
es. These
onsist of isolated nodes (whi
h are already in 
omponents of size 1) andnodes that do not install the software be
ause all their neighbors do. Givenan independent dominating set V 0 � V , installing the software on all nodesex
ept the nodes in V 0 satis�es 
ondition (a) be
ause V 0 is independent and (b)be
ause V 0 is a dominating set. Conversely, the inse
ure nodes in any Nash14



equilibrium are independent by 
ondition (a) and dominating by 
ondition(b). This shows that G has an independent dominating set of size k if andonly if it has a Nash equilibrium with no more than k inse
ure nodes, whi
ho

urs only if it has a Nash equilibrium with at least n � k se
ure nodes or,equivalently, a 
ost of at least C(n� k) + (L=n)(k). 2Theorem 3 says that �nding extreme pure equilibria is hard. But what ifwe just want to 
onverge to some equilibrium, but we don't 
are whi
h one?Suppose we implement the pro
ess of 
onvergen
e implied by the Nash equilib-rium: at ea
h step, exa
tly one parti
ipant, whose 
urrent strategy is subopti-mal given the others' strategies, swit
hes (if there are several su
h parti
ipants,we break ties randomly). This is an easy pro
ess to implement be
ause ea
hparti
ipant 
an dete
t if its strategy is suboptimal using the t = Cn=L 
om-ponent size threshold from Corollary 2. 4 But does this pro
ess 
onverge to aNash equilibrium? If it does, how long does it take?By 
hoosing an appropriate potential fun
tion, we 
an show that this pro
essdoes indeed 
onverge to a Nash equilibrium qui
kly:Theorem 4 Starting from any pure strategy pro�le ~a, if at ea
h step someparti
ipant with a suboptimal strategy swit
hes its strategy, the system 
on-verges to a pure Nash equilibrium in no more than 2n steps.PROOF. Let t = Cn=L. For any strategy pro�le ~a, 
onsider the set Sbig(~a)4 We must assume in this implementation either that the 
hoi
e to install softwareor not is reversible, or that ea
h player 
an observe the other players' intendeda
tions and respond a

ordingly. 15



of \big" 
omponents of G~a of size greater than t and the set Ssmall(~a) of \small"
omponents of G~a of size less than or equal to t. De�ne a potential fun
tion� by �(~a) = XA2Sbig(~a) jAj � XA2Ssmall(~a) jAj:It is easy to see that �n � �(~a) � n for any ~a. We will now show that ea
hstep of the pro
ess redu
es � by at least one. There are two main 
ases:(1) Some node i swit
hes from inse
ure to se
ure. In this 
ase i was previouslyan element of a 
omponent in Sbig of size m > t. This former 
omponentbe
omes one or more new 
omponents with total size m� 1; if all of theresulting 
omponents are big, � is redu
ed by exa
tly one; otherwise, �is redu
ed by more than one as some 
omponents move from the positiveto the negative side of the ledger.(2) Some node i swit
hes from se
ure to inse
ure. In this 
ase the resulting
omponent 
ontaining i has m � t elements, and it repla
es one or moreold 
omponents with total size m � 1. As both the new 
omponent andthe old 
omponents are small, the net e�e
t on � is to de
rease it by one.If ea
h step redu
es � by one, the number of steps must be less than thedi�eren
e between the initial and �nal value of �, whi
h is at most n�(�n) =2n. 2
As a spe
ial 
ase, we 
an start with ~a = 1n and 
onverge to an equilibrium fromabove by 
he
king ea
h node on
e. Ea
h su
h test requires 
omputing the sizeof the 
omponent in the atta
k graph, whi
h takes time O(jV j+ jEj) = O(n2)using depth-�rst sear
h; this gives: 16



Corollary 5 A Nash equilibrium 
an be 
omputed in time O(n3).It is not hard to see that the 2n in Theorem 4 is 
lose to the best possiblebound, although a more 
areful analysis might redu
e it slightly. A lowerbound of n steps is trivial: in a system with C < L=n and no players se
urein the initial strategy pro�le, it takes n steps for all players to install theanti-virus software. To get 
loser to 2n, 
onsider a line with t = pn� 12 . Now
onsider an exe
ution of the pro
ess where initially players 1 through n�pn,in in
reasing order, install to es
ape the single overlarge 
omponent; but thenall players not at positions kpn for some k uninstall; this takes 2n � 2pnsteps.We also have:Corollary 6 A pure Nash equilibrium always exists.4.3 Consequen
es of 
hanges in the ino
ulation 
ostThough Theorem 3 suggests that we 
annot hope to 
hara
terize the worstpure Nash equilibrium exa
tly, we 
an give a des
ription of how it rea
ts to
hanges in the ino
ulation 
ost C.Theorem 7 The 
ost of the worst pure Nash equilibrium is a non-de
reasingfun
tion of C when C ranges over [2L=n; L).PROOF. Fix some pri
e of anti-virus software, C � 2L=n so that bCn=L
 �2. We shall use 
ost(~a;C) to denote the 
ost of strategy pro�le ~a when thepri
e is C. 17



Suppose we in
rease the pri
e from C to C 0 = C + � (� > 0). We denotethe worst-
ost Nash equilibrium when the pri
e is C by ~a and the worst-
ostequilibrium when the pri
e is C 0 by ~b.If the pri
e in
rement is � � L=n, then the threshold (in Theorem 1) in
reasesby at most one; that is, bC 0n=L
 � bCn=L
+ 1. We 
onsider two 
ases:Case 1: ~a is a Nash equilibrium for C 0. This 
ase is easy. Be
ause ~b is aworst-
ost Nash equilibrium for C 0, we have:
ost(~a;C) < 
ost(~a;C 0) � 
ost(~b;C 0):Case 2: ~a is not a Nash equilibrium for C 0. This 
an happen only if bC 0n=L
 =bCn=L
+1: Spe
i�
ally, there must exist a node w 2 I~a su
h that adding itinto atta
k graph G~a yields a 
omponent of size bCn=L
 but not bC 0n=L
.Let us denote the sizes of 
omponents adja
ent to w in G by k1; : : : ; ks. 5We then have: Psi=1 ki = bCn=L
 � 1.We de�ne a new strategy ~a0 = ~a[w=0℄, whi
h is the same as ~a ex
ept weno longer install anti-virus software on node w. Moreover,
ost(~a0;C 0)� 
ost(~a;C)= Ln bCn=L
2 �  C + Ln sXi=1 k2i!� Ln 0�bCn=L
2 �  sXi=1 ki!21A� C= Ln �bCn=L
2 � (bCn=L
 � 1)2�� C: (1)Equation (1) is non-negative whenever2 bCn=L
 � 1 � Cn=L;whi
h always holds by assumption for all C � 2L=n.5 We say that a 
omponent K � V is adja
ent to node w if 9v 2 K s.t. (v; w) 2 E.18



We repeat this pro
ess until there do not exist any nodes violating Nashequilibrium 
ondition. At ea
h step, the 
ost of our new strategy does notde
rease. Therefore, if at the end we get a Nash equilibrium ~d, then
ost(~a;C) � 
ost(~a;C 0) � 
ost(~d;C 0) � 
ost(~b;C 0):Be
ause we 
hose C arbitrarily, our argument holds for all values of �.24.4 Pri
e of anar
hy
0

1
2

3

n−1

n−2

...Fig. 2. Star graph G = K1;n used in the proof of the lower bound.The notion of the pri
e of anar
hy was introdu
ed by Koutsoupias andPapadimitriou in [26℄. It is de�ned as the worst-
ase ratio between the 
ost ofa Nash equilibrium and the 
ost of the optimal solution, and is thus a measureof how far away a Nash equilibrium 
an be from the so
ial optimum. 6 Whenthe network graph is G and the 
osts are C;L, we use �(G;C; L) to denotethe pri
e of anar
hy.We show that, in our game, the pri
e of anar
hy is quite high, �(n). This isa 
onsequen
e of two simple lemmas:6 Be
ause our game has a random 
omponent, the 
ost is an expe
ted 
ost.19



Lemma 8 (Lower bound). Let G be the star graph K1;n (see Figure 2). Letthe pri
e of the anti-virus software be C = L(n� 1)=n. Then�(G;C; L) = n=2:
PROOF. The given C and L satisfy t = Cn=L = n � 1. From Corollary 2,it follows that installing anti-virus software on exa
tly one node is a Nashequilibrium. If pure Nash strategy ~a installs anti-virus software on some nodethat is not the 
enter node, the 
ost will be C + L(n� 1)2=n = L(n� 1).An optimal strategy for the star with the given C and L is ~a� = (1; 0; : : : ; 0)(i.e., only the 
enter node installs anti-virus software.) Its 
ost is C + L(n �1)=n = 2L(n� 1)=n.The pri
e of anar
hy is thereforeL(n� 1)2L(n� 1)=n = n2 :2Lemma 9 (Upper bound). Fix any graph G and 
osts C;L. Then�(G;C; L) � n:
PROOF. Let ~a� denote the optimum solution.If C > L, no node in a Nash equilibrium will install anti-virus software. Hen
e,there is only one Nash equilibrium ~a = 0n, whose 
ost is Ln. If the optimumsolution 
ontains at least one se
ure node, then 
ost(~a�) � C > L. (Otherwise,20



~a� = 0n and �(G;C; L) = 1.) We thus have:�(G;C; L) � LnL = n:If C � L, then the expe
ted 
ost of the worst Nash equilibrium ~a is at mostCn, be
ause the expe
ted 
ost to ea
h node is at most C (if the expe
ted
ost to a node is greater than C, then it will want to swit
h to installing thesoftware with probability 1.) If the optimum solution 
ontains at least onese
ure node, then 
ost(~a�) � C. Otherwise, the optimum solution 
ontains nose
ure nodes and hen
e 
ost(~a�) � L � C.
�(G;C; L) � CnC = n:2

5 OptimizationAllowing users to sel�shly 
hoose whether or not to install anti-virus softwaremay be grossly ineÆ
ient, relative to the so
ial optimum. An alternative ap-proa
h to this problem is for a benevolent di
tator to attempt to maximizeso
ial welfare by 
entrally 
omputing a solution and imposing it on all nodes.DiÆ
ulties with this approa
h arise from the hardness of 
omputing the op-timum solution to the ino
ulation problem. In the �rst two se
tions, we givea 
hara
terization of the optimum solution and use it to show that the ino
-ulation problem is NP-hard.This suggests 
omputing an approximate solution. We 
an �nd in polynomial21



time a solution with approximation ratio at most O(log1:5 n); su
h a solu-tion is substantially better than the �(n) ratio derived from the worst Nashequilibrium.
5.1 Chara
terizationWe have a graph-theoreti
 
hara
terization of optimum strategies, similar toour 
hara
terization of Nash equilibria in Theorem 1:Theorem 10 Fix C;L and let t = Cn=L. If ~a is an optimum strategy, thenevery 
omponent in atta
k graph G~a has size at most max(1; (t+ 1)=2).
PROOF. Strategy ~a partitions G into disjoint 
omponents. Pi
k some 
om-ponent K � V from the atta
k graph, where k = jKj is at least two. (If we
an't �nd a 
omponent with at least two nodes, then all 
omponents in theatta
k graph have size one, and the theorem follows.)If we install the anti-virus software on some node of K, we may get m new
omponents in G~a, where 0 � m � k � 1. Let us denote the sizes of thesenew 
omponents by k1; : : : ; km, where Pmi=1 ki = k � 1. Be
ause ~a is alreadyan optimal strategy, installing the anti-virus software on an extra node 
annotimprove the total 
ost. Therefore, we have:C + Ln  mXi=1 k2i! � Lk2n, k2 �  mXi=1 k2i! � t: (2)22



If m = 0, then Equation (2) be
omes:k � pt � (t+ 1)=2:Meanwhile, for m > 0,k2 �  mXi=1 k2i!� k2 �  mXi=1 ki!2= k2 � (k � 1)2=2k � 1: (3)Combining Equations (2) and (3), we get:k � (t+ 1)=2:2Unfortunately, the optimal solution is hard to 
ompute.Theorem 11 It is NP-hard to 
ompute an optimal strategy.PROOF. The proof is by redu
tion from vertex 
over and is similar tothe proof of Theorem 3. 25.2 Redu
tion to sum-of-squares partitionBe
ause it is unlikely that we 
an �nd an optimal solution, we naturally 
on-sider approximation algorithms.The optimization problem that de�nes the ino
ulation problem 
an be posedas follows: 
hoose the set of se
ure nodes I~a that minimizes the following23



obje
tive fun
tion: CjI~aj+ Ln XV 2�(I~a) jV j2;where �(I~a) is the set of 
onne
ted 
omponents 
reated by the removal ofnodes in I~a.For the purposes of our approximation algorithm for the ino
ulation problem,we assume that we 
an guess m = jI~aj, the number of se
ure nodes in anoptimum 
on�guration. This assumption is without loss of generality, be
ausewe 
an run our algorithm on all possible 
hoi
es of m = 1; : : : n and take thebest solution.Thus, a solution to the ino
ulation problem is redu
ed to �nding a solution tothe problem of removing m nodes from a given graph to minimize the sum ofthe squares of the sizes of the surviving 
omponents. We dis
uss this problemin Se
tion 6.
6 Sum-of-squares partitionsIn Se
tion 5.2, we en
ountered the following problem, whi
h we now analyzein more detail.Sum-of-Squares Partition Problem: Given a graph G = (V;E), re-move a set F � V of at most m nodes in order to partition the graph intodis
onne
ted 
omponents H1; : : : ; Hl, su
h that Pi jHij2 is minimized.Although we have arrived at this 
ombinatorial optimization problem throughour study of the network se
urity problem, it may be of independent interest.24



Note that it is NP-hard by redu
tion from the ino
ulation problem. The edge
ut version of the sum-of-squares-partition problem is similar, but asks for theremoval of m edges, rather than nodes, to dis
onne
t the graph.We 
all an algorithm for the sum-of-squares partition problem an (�; �)-bi
riterion approximation algorithm, for �; � � 1, if it outputs a node 
ut
onsisting of at most �m nodes that partitions the graph into 
onne
ted 
om-ponents fHig su
h thatP jHij2 � ��OPT, where OPT is the obje
tive fun
tionvalue of the optimum solution that removes at most m nodes.In Se
tion 6.1, we present an algorithm for this problem and in Se
tion 6.2 weprove 
omplementary lower bounds. Our main result is:Theorem 12 There exists a polynomial time �O(log1:5 n); O(1)�-bi
riterionapproximation algorithm for the sum-of-squares partition problem.An immediate 
onsequen
e of Theorem 12 is the existen
e of an approximationalgorithm for the ino
ulation problem:Corollary 13 If OPTNS is the 
ost of the optimum solution for the ino
ulationproblem, there exists a polynomial-time approximation algorithm that �nds asolution with 
ost at most O(log1:5 n) �OPTNS.PROOF. Suppose an optimum solution 
ontains m se
ure nodes, and thesizes of the inse
ure node 
omponents are k1; : : : ; kp, so that OPTNS = Cm+L=nPi k2i . Using our approximation algorithm for the sum-of-squares partitionproblem, we 
an �nd a set of O(log1:5 n)m se
ure nodes su
h that the sum ofthe squares of the 
orresponding inse
ure 
omponents is at most O(1)Pi k2i .Thus, the 
ost of the approximate solution is:25



O(log1:5 n) � Cm +O(1) � Ln Xi k2i �O(log1:5 n) � Cm+O(log1:5 n) � Ln Xi k2i=O(log1:5 n) �OPTNS:26.1 Proof of Theorem 12Our proof of Theorem 12 is based on the algorithm PartitionGraph givenin Figure 3. It uses known approximation algorithms for sparse 
uts, whi
husually solve edge 
ut problems. For our purposes, 
uts that involve remov-ing nodes in order to dis
onne
t the graph are more relevant. Fortunately,the O(plogn) approximation algorithm of Arora, Rao, and Vazirani [23℄ for�nding sparse 
uts in graphs with uniform demands 
an be easily extended tonode 
uts; there is a well-known pro
edure for redu
ing a node 
ut algorithmin an undire
ted graph to an edge 
ut algorithm in a dire
ted graph. 7 Sin
eAgarwal et al. [27℄ extended the algorithm from [23℄ to �nd sparse edge 
uts indire
ted graphs, these results 
an be extended to node 
uts. The following the-orem is impli
it in the dis
ussion of balan
ed node 
uts in Leighton and Rao'spaper [22℄ on multi
ommodity 
ows and sparse 
uts, with the approximationratio updated to re
e
t the improved algorithms:Theorem 14 There exists an O(plogn)-approximation algorithm for the fol-lowing problem: Given graph G, �nd a node 
ut that partitions the nodes of G7 The redu
tion is as follows: Given graph G for whi
h we want a node 
ut, formdire
ted graph G� with vertex set V � = fvjv 2 V g [ fv0jv 2 V g and edge set E� =f(v; v0)jv 2 V g[f(v0; v)jv 2 V g[f(v0; u)j(u; v) 2 Eg[f(u0; v)j(u; v) 2 Eg. The 
ostsof the f(v; v0)jv 2 V g edges are 1, and all other edges have 
ost in�nity.26



into three sets: two sets de�ning dis
onne
ted subgraphs with node sets V1 andV2, and a set of removed nodes R, su
h that the quantity�jV1j+ jRj2 � �jV2j+ jRj2 �jRj (4)
is maximized.We refer to the quantity in expression (4) as the sparsity of the 
ut. Inthe literature, sparsity is usually de�ned as the inverse of expression (4), and�nding the sparsest 
ut is a minimization problem. We have presented it as amaximization problem, sin
e this is more natural for our appli
ation.Our algorithm for solving the sum-of-squares partition problem, Partition-Graph (see Figure 3), a
hieves the approximation results 
laimed in Theo-rem 12. The general approa
h of the algorithm is similar to the greedy logn-approximation algorithm for set 
over. A high-level des
ription is that we re-peatedly remove the node 
ut that gives us the best per-removed-node-bene�t,quanti�ed as its 
ost-e�e
tiveness.Suppose we have a 
onne
ted subgraph H with k nodes. If node 
ut R 
reates
onne
ted 
omponents with node sets V1 and V2, this 
ut has de
reased theobje
tive fun
tion value (P size of 
onne
ted 
omponent2) by k2�jV1j2�jV2j2.We thus de�ne the 
ost-e�e
tiveness of node 
ut R by (k2�jV1j2�jV2j2)=jRj.The 
ost-e�e
tiveness of R is equal to27



k2 � jV1j2 � jV2j2jRj = (jV1j+ jV2j+ jRj)2 � jV1j2 � jV2j2jRj= jRj2 + 2jV1jjV2j+ 2jRj(jV1j+ jV2j)jRj= 2jV1jjV2jjRj + jRj+ 2(k � jRj)= 2jV1jjV2jjRj + 2k � jRj:We then have the following relationship between �nding sparse 
uts and 
ost-e�e
tive 
uts.Lemma 15 Let H be a graph with k nodes. If �� is the maximum 
ost-e�e
tiveness of all node 
uts of H, the Arora-Rao-Vazirani sparse 
ut algo-rithm will �nd a 
ut with 
ost-e�e
tiveness at least ��=(
plog k), for some
onstant 
.PROOF. The sparsity of a node 
ut that removes node set R and partitionsthe remaining nodes of H into 
onne
ted 
omponents with node sets V1 andV2 is given by:�jV1j+ jRj2 � �jV2j+ jRj2 �jRj = jV1jjV2j+ jRj24 + jRj2 (jV1j+ jV2j)jRj= jV1jjV2jjRj + jRj4 + 12(k � jRj)= jV1jjV2jjRj + k2 � jRj4 :We then have the following relations between the 
ost-e�e
tiveness of a 
ut,�, and its sparsity, �.� = jV1jjV2jjRj + k2 � jRj4 = �2 � k2 + jRj4 � �4 :28



and � > 2�:Thus, we know there exists a node 
ut with sparsity at least ��=4 (i.e. the 
utwith the highest 
ost-e�e
tiveness). The sparse 
ut algorithm on H will �nd anode 
ut with sparsity at least ��=(
plog k), for some 
onstant 
. This node
ut will have 
ost-e�e
tiveness at least 2��=(
plog k). 2Input: A Graph G and an integer m > 0.Initialize: G1  G. F  ;. ` 0.(1) Use a sparse 
ut algorithm to �nd an approximate most 
ost-e�e
tive
ut in ea
h 
onne
ted 
omponent of G`.(2) Let H1; : : : ; Hk be the 
omponents of G` in whi
h the sparse 
ut algo-rithm found a 
ut that removes at most (20
plogn)m nodes, where 
is the 
onstant from Lemma 15. If no su
h 
omponent exists, then haltand output the partition of G that results from removing all nodes inset F .(3) Otherwise, 
hoose the 
omponent Hj from among those 
onsidered inStep 2 for whi
h the 
ost-e�e
tiveness is highest. Let R be the 
ut thatpartitions Hj into dis
onne
ted 
omponents V1 and V2 su
h that Hj =V1 [ V2 [R.(4) Set F  F [R and let G`+1 be the residual graph indu
ed by removingR from G`. If jF j > (36
 log1:5 n)m, then halt and output the partitionof G that results from removing all nodes in set F .(5) Otherwise, set ` `+ 1 and repeat.Fig. 3. Algorithm PartitionGraphWe now give some lemmas that 
hara
terize the behavior of the Partition-Graph algorithm. 29



Lemma 16 PartitionGraph outputs a node 
ut with at most O(log1:5 n)mremoved nodes.PROOF. Sin
e the algorithm halts as soon as we augment the set of markednodes su
h that jF j > (36
 log1:5 n)m, we know that at the beginning of ea
hiteration, F 
ontains at most (36
 log1:5 n)m marked nodes. Sin
e we add atmost (20
plogn)m marked nodes in the �nal iteration, the total number ofmarked nodes is at most O(log1:5 n)m. 2Fix an optimum solution for the sum-of-squares partition problem and let F �be the optimum set ofm removed nodes. In the next few proofs, we will denotethe order of graph G (i.e. the number of nodes) by jGj = jV (G)j. We will alsodenote an \interse
tion" of a graph G and a node set V by G \ V , whi
h isthe set of nodes that G and V share.Lemma 17 Suppose after a number of iterations, the graph G` 
onsists of k
onne
ted 
omponents H1; : : : ; Hk, and let S = P jHij2.Either S � 72 �OPT or there exists a 
omponent Hi su
h that the Arora-Rao-Vazirani algorithm will �nd a node 
ut in Hi with at most �20
plogn�m re-moved nodes and 
ost-e�e
tiveness at least S=(18
mplogn) (or possibly both).PROOF. Assume that S > 72 � OPT. Note that the node 
ut de�ned bythe set F � \G` divides G` into a graph with obje
tive fun
tion value at mostOPT. This node 
ut thus indu
es a 
ost de
rease of at least S � S=72 > S=2.De�ne F �i = F � \ Hi and mi = jF �i j. Also, let the subgraph indu
ed byremoving verti
es in F �i \Hi from Hi be 
omposed of 
onne
ted 
omponents30



Hji for j = 1; : : : ; ri (i.e, the optimum set of marked nodes partitions Hi intothese 
omponents). Note that PiPj jHji j2 � OPT.Sin
e the total redu
tion in our obje
tive fun
tion value from removing [iF �ifrom G` is at least S=2 due to our assumption that S > 2 �OPT, we have:Xi 0�jHij2 �Xj jHji j21A � S2 ; (5)be
ause the outer summand on the left hand side of the inequality is theamount the obje
tive fun
tion is redu
ed in ea
h 
omponent.Let I be the set of indi
es i for whi
h �jHij2 �Prij=1 jHji j2� =mi � S=(4m) (i.e.the per-node-bene�t is at least S=(4m)).We have two 
ases. We show that the �rst 
ase is 
onsistent with the statementof the lemma, whereas the se
ond 
ase is impossible.(1) There exists an i 2 I su
h that for all j = 1; : : : ; ri, jHji j � 1=3jHij. We as-sume that mi < jHij=50, be
ause otherwise removing all nodes in Hi willgive us a trivial node 
ut with 
ost-e�e
tiveness at least jHij2=(50mi) >S=(18
mplogn) for suÆ
iently large n. With this assumption, we knowthat there exists a set R � F �i that de�nes a node 
ut of Hji that 
re-ates two 
onne
ted 
omponents, V1 and V2, su
h that 1=3jHij � jV1j and1=3jHij � jV2j. The 
ost-e�e
tiveness of this 
ut will be2 jV1jjV2jjRj + 2jHij � jRj � 2jHij29mi � 2 �jHij2 �Prij=1 jHji j2�9mi � S18m:Lemma 15 guarantees that the sparse 
ut algorithm will �nd a 
ut in Hiwith 
ost-e�e
tiveness at least S=(18
mplogn). The node 
ut output bythe algorithm 
annot 
ontain more than 20
mplogn nodes. Su
h a node
ut would have 
ost-e�e
tiveness at most S=(20
mplogn), sin
e any 
ut31



in G` 
an de
rease the obje
tive fun
tion value by at most S, whi
h isless than the guaranteed 
ost-e�e
tiveness of S=(18
mplogn).(2) For ea
h i 2 I, there exists a j� su
h that jHj�i j > 1=3jHij. Also, note thatOPT > Pi2I jHj�i j2. We prove, by 
ontradi
tion, that this 
ase 
annoto

ur. Thus, assume the 
ase does o

ur.Claim: Pi2I �jHij2 �Pj jHji j2� � S=8.Proof of 
laim: Let I be the set of intervals su
h that �jHij2 �Prij=1 jHji j2� =mi �S=(4m). Re
alling equation (5), we haveS=2 �Xi2I 0�jHij2 �Xj jHji j21A+Xi2I 0�jHij2 �Xj jHji j21A :Also, we haveXi2I 0�jHij2 �Xj jHji j21A=Xi2I mi�jHij2 �Pj jHji j2�mi�Xi2I mi S4m� S4mXi2I mi � S4 :Combining these two inequalities proves the 
laim. We have the inequal-ities: OPT >Xi2I jHj�i j2 �Xi2I 19 jHij2 � 19 � S8 ;where we used our 
laim for the last inequality. Thus, OPT � S=72. Thisis a 
ontradi
tion to the assumption we made at the �rst line of the proof.2We now present the proof of Theorem 12.Let aj be the number of 
onne
ted 
omponents that 
omprise the graph Gjat the beginning of the jth iteration, and let those 
onne
ted 
omponents be32



Hj1 ; : : : ; Hjaj . Let Sj = Paji=1 jHji j2 be the value of the obje
tive fun
tion atthe beginning of the j'th iteration; thus S0 � n2 is its initial value. Let l bethe number of iterations the algorithm needs to terminate, and Sl+1 be theobje
tive fun
tion's �nal value.We wish to show that after the algorithm terminates, we have redu
ed theobje
tive fun
tion value to Sl+1 = O(1) � OPT. Let F be the �nal set ofmarked nodes removed from G. If the algorithm terminates at Step 2 of thel'th iteration be
ause the sparse 
ut algorithm only found node 
uts withmore than (20
plogn)m removed nodes, then from Lemma 17 we know thatSl+1 � 72�OPT. Thus, we assume this does not o

ur. Furthermore, we assumethat Sl+1 � 72 �OPT (in order to apply the \either" part of Lemma 17 to alliterations).In order to reason about the de
rease in the obje
tive fun
tion value after ea
hiteration, we impute to ea
h node in F a per-node-de
rease in the obje
tivefun
tion value, given by the 
ost-e�e
tiveness of its node 
ut. We then showthat the total imputed de
rease will de
rease the obje
tive fun
tion by a fa
torof O(1)=n2, from whi
h the theorem will follow.More formally, suppose the set of marked nodes is given by the sequen
eF = ff1; : : : ; fkg, where the nodes are in the order in whi
h they were removedfrom the graph: nodes removed at an earlier iteration o

ur earlier in thesequen
e. From Lemma 16, we know that k = jF j = �(log1:5 n)m.Let bj be the iteration in whi
h fj was removed. We impute to fj the valueÆj = 
ost-e�e
tiveness of 
ut removed in iteration bj. From Lemma 17, weknow that Æj � Sbj=(18
mplogn). 33



Set T0 = S0 and Ti = Ti�1 � Æi to be the value of the obje
tive fun
tionafter node fi's per-node-de
rease 
ontribution has been a

ounted for. NoteTk = Sl+1.Claim: For all i, Ti � Ti�1 � Ti�1=(18
mplogn)Proof of 
laim: Proving the 
laim redu
es to proving that Æi = Ti�1 � Ti �Ti�1=(18
mplogn). Fix an i. We have two 
ases.(1) bi = bi�1 (i.e. fi and fi�1 were removed in the same iteration). ThenÆi � Sbi=(18
mplogn), but Sbi > Ti, sin
e Sbi is the obje
tive fun
tionvalue at the beginning of iteration bi, whereas Ti is the obje
tive fun
tionvalue \during" iteration bi.(2) bi = bi�1+1 (i.e. fi was removed in the iteration after fi�1 was removed).Then Æi � Sbi=(18
mplogn) = Ti=(18
mplogn), sin
e in this 
ase Ti isthe obje
tive fun
tion value at the start of iteration bi.This proves the 
laim.We therefore have Tk � T0(1�1=(18
mplogn))k � n2(1�1=(18
mplogn))k.Sin
e k > 36
m log1:5 n, it follows that Sl+1 = Tk = O(1) � O(1) � OPT,
on
luding the proof of Theorem 12.The algorithm given above 
an be adapted in a straightforward way to yieldan algorithm for the edge 
ut version of the sum-of-squares partition problem(instead of taking sparse node 
uts, take sparse edge 
uts), from whi
h ananalog to Theorem 12 may be derived. The above analysis of the node 
utalgorithm is more 
ompli
ated than the 
orresponding analysis of the edge
ut algorithm, sin
e node 
uts modify the node set, 
ausing many diÆ
ulties.34



6.2 Hardness of ApproximationIn this se
tion, we prove that it is hard to a
hieve a bi
riterion approximationof (�; 1), for some 
onstant � > 1, by redu
tion from vertex 
over. Hastad [28℄proved that it is NP-hard to approximate vertex 
over to within a 
onstantfa
tor of 8=7 � �, for any � > 0. We show that if we have a graph G with avertex 
over of size m, then a (15=14� �; 1) algorithm for the sum-of-squarespartition problem 
an be used to �nd a vertex 
over in G of size at most(8=7� 2�)m.Theorem 18 It is NP-hard under Cook redu
tion to approximate the sum-of-squares partition problem to within a bi
riterion fa
tor (15=14 � �; 1), forany � > 0.PROOF. Suppose graph G = (V;E), jV j = n, 
ontains a vertex 
over C
onsisting of m nodes. Removing the m nodes of C and their in
ident edgeswill remove all edges from the graph. This will partition the graph into n�mdis
onne
ted 
omponents 
onsisting of 1 node ea
h.If we 
onsider C as a solution to the sum-of-squares partition problem forremoving m nodes, the solution will have an obje
tive fun
tion value of n �m. Thus, an (�; 1) approximation algorithm for sum-of-squares partition willremove a set R � V of nodes, su
h that jRj � �m, in order to a
hieve anobje
tive fun
tion of at most n�m. Let V 0 = V nR be the remaining nodes,and fHig be the 
onne
ted 
omponents in the residual graph.Let S be the nodes of V 0 that are 
ontained in 
onne
ted 
omponents of sizegreater than 1 in the residual graph. It follows that R [ S is a vertex 
over of35



G. We seek to bound the 
ardinality of R [ S.We �rst observe that the number of nodes that are 
ontained in 
onne
ted
omponents of size 1 is jV 0 nSj = n�jRj� jSj. Using the fa
t that if jHij � 2,then jHij2 � 2jHij, we note thatn�m�Xi jHij2� Xi:jHij=1 jHij2 + Xi:jHij�2 jHij2�n� jRj � jSj+ 2jSj�n� jRj+ jSj:This implies that jSj � jRj � m � �m � m, whi
h implies that jR [ Sj �(2�� 1)m.Thus, a (15=14� �; 1)-bi
riterion approximation algorithm for sum-of-squarespartition will �nd a vertex 
over of size (8=7 � 2�)m in G. If OPTVC is the
ardinality of the optimum vertex 
over, then we 
an sear
h for an approxi-mately minimum vertex 
over by running the algorithm des
ribed above forall m = 1; : : : ; n and outputting the best vertex 
over, whi
h will have size atmost (8=7� 2�) �OPTVC. 2As mentioned before, sum-of-squares partition is intimately related to theproblems of sparsest 
ut, balan
ed 
ut, and �-separator, all with uniformdemands (i.e. the nodes all have weight 1). Presently, there are no knownhardness of approximation results for any of these problem; we spe
ulate thatte
hniques for proving hardness of approximation for both � and � would yieldhardness of approximation for some of these fundamental 
ut problems, whi
hhave proved elusive thus far. We note that Chawla et al. [29℄ and Khot andVishnoi [30℄ have proved super-
onstant hardness of approximation results for36



stronger versions of these problems, spe
i�
ally sparsest 
ut and balan
ed 
utwith general demands, assuming the unique games 
onje
ture of Khot [31℄(whi
h is a stronger assumption than P 6= NP).7 Con
lusions and future resear
hWe have des
ribed a simple e
onomi
 game that represents the diÆ
ult prob-lem of 
hoosing on whi
h nodes to install anti-virus software to 
ontain thespread of 
omputer viruses in a network. The Nash equilibria of this gamehave a simple 
hara
terization, and we 
an show that in the worst 
ase, theratio between the so
ial 
ost of a Nash equilibrium and a so
ial optimum 
anbe linear in the number of nodes.Our model makes some very strong simplifying assumptions: every infe
tednode eventually infe
ts all unprote
ted neighbors; the 
osts of installing theanti-virus software and be
oming infe
ted are known and equal for all nodes;the virus imposes no 
osts on prote
ted nodes; and nodes 
an observe whi
h ofthe other nodes intend to install the anti-virus software and adjust their ownstrategies in response. None of these assumptions 
orrespond 
ompletely toreality, but we believe that as a �rst step the resulting model is a reasonable
ompromise between a

ura
y and analyzability, and that the results obtainedwith the model (espe
ially the 
hara
terization of Nash equilibria) are similarto what one might expe
t with a more 
omplex model that took into a

ountlimited information and learning by individual nodes. The natural next stepis to in
orporate more details in the model and see if su
h 
hanges a�e
t theresults; this might involve both theoreti
al work to predi
t the e�e
t of 
hangesand experimental or observational work to study how real-world de
ision-37



makers 
hoose whether or not to deploy spe
i�
 se
urity me
hanisms.We have also shown how a near-optimal deployment of anti-virus software 
anbe 
omputed by redu
tion to the sum-of-squares partition problem, a newvariant of 
lassi
al graph partitioning problems where the goal is to removem verti
es so as to minimize the sum of the squares of the sizes of surviving
omponents. Though it is NP-hard to solve this problem exa
tly, we give apolynomial-time �O(log1:5 n); O(1)�-bi
riterion approximation algorithm forsum-of-squares partition, whi
h yields a 
orresponding approximation algo-rithm for anti-virus software deployment. This algorithm may be of use asa network administration tool for 
hoosing how to deploy anti-virus softwareto minimize the 
ombined 
osts of deployment and infe
tion and as a publi
-health tool for designing ino
ulation strategies for 
ontaining outbreaks ofhighly-infe
tious diseases when a good approximation to the intera
tion graph
an be 
omputed but the initial sour
e of 
ontagion is unknown. Whether ornot a polynomial-time algorithm with a better approximation ratio exists re-mains open.8 A
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