Mutation Systems

Dana Angluin ~ James Aspnes Raonne Barbosa Vargas

Department of Computer Science
Yale University

LATA 2011

Dana Angluin, James Aspnes, Raonne Barbosa Vargas Mutation Systems

Introduction

o Biological evolution proceeds by variation and selection
@ A model of evolution of strings
Variation:
A function p mapping a string to possible mutations
Selection:
A function f deciding whether a string is fit
@ Evolvability:
Can s evolve to t via stepwise mutations to fit strings?

Dana Angluin, James Aspnes, Raonne Barbosa Vargas Mutation Systems

Mutation Systems

A mutation system (X, i,) has

@ an alphabet

@ a mutator y : ¥* — 2%
14 maps a string to the set of its mutations

e a fitness function f : ¥* — {0,1}
f decides whether a string is fit (1) or not (0)

Dana Angluin, James Aspnes, Raonne Barbosa Vargas Mutation Systems

Mutation and Evolution: Reachability

Let S = (X, u, f) be a mutation system
o s —, tifte pu(s)
s can mutate to t in one step
e s—gstifs—,tand f(s)=f(t)=1
s can evolve to t in one step
(both s and t must be fit)

s can mutate to t if s —>Z t
scanevolve to tif s —5 t

Dana Angluin, James Aspnes, Raonne Barbosa Vargas Mutation Systems

An Example Mutation System S = (X, i1, f)

Example S:
o Y ={a,b,c}
@ 1(s) = strings obtained by swapping adjacent symbols in s
e f(s) =1 if no two adjacent symbols are equal
Mutation steps:
abcbc —, abccb —,, acbcb —,, cabcb

But abcceb is not fit!
Alternative evolution steps:

abcbc —g bacbc —¢ bcabc —¢ bcacb —s cbacb —g cabcb

Dana Angluin, James Aspnes, Raonne Barbosa Vargas Mutation Systems

The Mutation Graph: (X*, —,)

Nodes: all strings of length 2 over {0,1,2,3}

Directed edges: —,

Unfit Strings are Removed

Remove unfit strings to get evolvability graph

The Evolvability Graph: (f71(1), —s)

Nodes: fit strings of length 2 over {0,1,2,3}
Directed edges: —5

Deciding Evolvability?

The problem
Input: A mutation system and two strings s and t
Output: Can s evolve to t7
is undecidable for
4 = point mutations
f = a strictly 2-testable predicate

Dana Angluin, James Aspnes, Raonne Barbosa Vargas Mutation Systems

Point Mutations

A point mutation of s is obtained by
e replacing one symbol in s
e or deleting one symbol from s
@ or inserting one symbol in s
So p(bcb) contains
e ach, ccb, bab, bbb, bca, bcc
e cb, bb, bc
e abcb, bbch, cbeb, bach, beeb, bcab, bebb, bcba, bebe

Point mutations are reversible: the mutation graph is
undirected

Dana Angluin, James Aspnes, Raonne Barbosa Vargas Mutation Systems

Strictly k-Testable Fitness Functions

A strictly k-testable L given by (PRE, MID, SUF)

e PRE contains strings of length kK — 1

e MID contains strings of length k

e SUF contains strings of length k — 1
L contains all strings s such that

o length k — 1 prefix of s in PRE
e every length k substring of s in MID
o length k — 1 suffix of s in SUF

Fitness function fi(s) =1iffse L

Dana Angluin, James Aspnes, Raonne Barbosa Vargas Mutation Systems

Example: a Strictly 2-Testable Fitness Function

Fitness function f with

PRE = {a, b}
MID = {aa, ac, bb, bd, cc, dd}
SUF = {c¢,d}

has fit strings aTc™ + bTd™

Dana Angluin, James Aspnes, Raonne Barbosa Vargas Mutation Systems

Symbol Duplication

How to control point mutations?

@ Duplication map d(s) replaces each symbol x by x3x
@ Define a fitness function:

PRE contains all symbols x;
MID contains all pairs of symbols x;x; and y»x;
SUF contains all symbols x;

e Fit strings are d(s)

@ Point mutations of fit strings are unfit

Dana Angluin, James Aspnes, Raonne Barbosa Vargas Mutation Systems

Simulating a FSM

Evolvability «» computational reachability

Issue of reversibility? Use computation histories
Annotate symbol read with state (x if unread)

Example M
Y ={a,b}
d(s) = parity of a's
Histories of M on input abaa
Initial history: a,byaxax
History after first step: ajbxaxax

Final history: a;bjaga;

Dana Angluin, James Aspnes, Raonne Barbosa Vargas Mutation Systems

Mutations Simulating a FSM

Duplicate history symbols: a}, a2
PRE: index 1, unread or correct transition from qg
MID: indices 1,2

main input symbols equal
both unread or both read and states equal
first read and second unread
MID: indices 2,1
both unread
first read and second unread
both read and state transition to second correct

SUF: index 2, unread or read

Dana Angluin, James Aspnes, Raonne Barbosa Vargas Mutation Systems

Example of Mutations Simulating M on abaa

Initial history, all unread

1 2 pl 42 1 .2 1 .2
a, a. by by a; a; ay ai
First symbol read
1 2 pl g2 1 .2 1 2
a; a, by by a, a; ay a

Duplicate of first symbol updated

1 2 pl 42 1 2 1 .2
a; aj by by a, a; a, a

Second symbol read

A 2 bR a2 a2
Duplicate of second symbol updated

X

Dana Angluin, James Aspnes, Raonne Barbosa Vargas Mutation Systems

1 2 pl g2 1 2 1 2
a; a; by by ay a; a; a:

Reversible Cellular Automata

A 1-dimensional reversible asynchronous cellular automaton:

An alphabet X~
Transition rules

Substitutions: axb < ayb
Insertions/Deletions: axb < ab

Example:
Rules {abc < adc, dce « dfe, fe <« fge}
Reachable from abce are {abce, adce, adfe, adfge}

Dana Angluin, James Aspnes, Raonne Barbosa Vargas Mutation Systems

Simulating a Cellular Automaton

From a cellular automaton C to a mutation system S:

Symbols ,a/,
main symbol component a from &
index i from {1,2 *}
left neighbor information u
right neighbor information v

Rules from substitution and deletion/insertion rules of C

Application of a rule of C becomes a sequence of mutations:
Symbol “locks” its neighbors
Symbol then changes
Symbol “unlocks” its neighbors

Up to 14 mutations for 1 rule application

Dana Angluin, James Aspnes, Raonne Barbosa Vargas Mutation Systems

Example of Locking

Starting with d(abcde):
al a2 bt -p?ctc?dt-d?ete?
After several mutations:
at-a% bl p? gty dyod? et e?

symbol ¢ has locked its left and right neighbors
and is prepared for a rule application

Dana Angluin, James Aspnes, Raonne Barbosa Vargas Mutation Systems

Fitness Pairs for axb <« ayb

al a2 xL x> bl b?

¢? //ax1>—<x2bb \ d?!
bi—bz
; e/
y bl b?

Dana Angluin, James Aspnes, Raonne Barbosa Vargas Mutation Systems

Fitness Pairs for abc <+ ac

Dana Angluin, James Aspnes, Raonne Barbosa Vargas Mutation Systems

Deciding Evolvability?

Thus the problem
Input: A mutation system and two strings s and t
Output: Can s evolve to t7
is undecidable for
4 = point mutations
f = a strictly 2-testable predicate

Dana Angluin, James Aspnes, Raonne Barbosa Vargas Mutation Systems

Other Questions

Random point mutations?
FSM simulation becomes a random walk: O(n?) steps
Can be biased forward: O(n?) steps
More generally?

Learnability?
Mutation process known & fitness function unknown?
k-testable languages POS limit learnable [GV 1990]
Also concatenations of k-testable languages [KY 1994]
Stochastic results?

Dana Angluin, James Aspnes, Raonne Barbosa Vargas Mutation Systems

Thank you!

(Research supported by NSF Grant CCF-0916389)

Dana Angluin, James Aspnes, Raonne Barbosa Vargas Mutation Systems

