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Introduction

Biological evolution proceeds by variation and selection

A model of evolution of strings

Variation:
A function µ mapping a string to possible mutations
Selection:
A function f deciding whether a string is fit

Evolvability:
Can s evolve to t via stepwise mutations to fit strings?
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Mutation Systems

A mutation system (Σ, µ, f ) has

an alphabet Σ

a mutator µ : Σ∗ → 2Σ∗

µ maps a string to the set of its mutations

a fitness function f : Σ∗ → {0, 1}
f decides whether a string is fit (1) or not (0)
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Mutation and Evolution: Reachability

Let S = (Σ, µ, f ) be a mutation system

s →µ t if t ∈ µ(s)
s can mutate to t in one step

s →S t if s →µ t and f (s) = f (t) = 1
s can evolve to t in one step
(both s and t must be fit)

s can mutate to t if s →∗
µ t

s can evolve to t if s →∗
S t
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An Example Mutation System S = (Σ, µ, f )

Example S :

Σ = {a, b, c}
µ(s) = strings obtained by swapping adjacent symbols in s

f (s) = 1 if no two adjacent symbols are equal

Mutation steps:

abcbc →µ abccb →µ acbcb →µ cabcb

But abccb is not fit!
Alternative evolution steps:

abcbc →S bacbc →S bcabc →S bcacb →S cbacb →S cabcb
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The Mutation Graph: (Σ∗,→µ)
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Nodes: all strings of length 2 over {0, 1, 2, 3}
Directed edges: →µ
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Unfit Strings are Removed

00

10

01

20 31

02

12

22

32

03

33

Remove unfit strings to get evolvability graph
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The Evolvability Graph: (f −1(1),→S)
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Nodes: fit strings of length 2 over {0, 1, 2, 3}
Directed edges: →S
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Deciding Evolvability?

The problem

Input: A mutation system and two strings s and t

Output: Can s evolve to t?

is undecidable for

µ = point mutations

f = a strictly 2-testable predicate
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Point Mutations

A point mutation of s is obtained by

replacing one symbol in s
or deleting one symbol from s
or inserting one symbol in s

So µ(bcb) contains

acb, ccb, bab, bbb, bca, bcc
cb, bb, bc
abcb, bbcb, cbcb, bacb, bccb, bcab, bcbb, bcba, bcbc

Point mutations are reversible: the mutation graph is
undirected
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Strictly k-Testable Fitness Functions

A strictly k-testable L given by (PRE, MID, SUF)

PRE contains strings of length k − 1
MID contains strings of length k
SUF contains strings of length k − 1

L contains all strings s such that

length k − 1 prefix of s in PRE
every length k substring of s in MID
length k − 1 suffix of s in SUF

Fitness function fL(s) = 1 iff s ∈ L
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Example: a Strictly 2-Testable Fitness Function

Fitness function f with

PRE = {a, b}
MID = {aa, ac , bb, bd , cc , dd}
SUF = {c , d}

has fit strings a+c+ + b+d+
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Symbol Duplication

How to control point mutations?

Duplication map d(s) replaces each symbol x by x1x2

Define a fitness function:

PRE contains all symbols x1

MID contains all pairs of symbols x1x2 and y2x1

SUF contains all symbols x2

Fit strings are d(s)

Point mutations of fit strings are unfit
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Simulating a FSM

Evolvability ↔ computational reachability

Issue of reversibility? Use computation histories
Annotate symbol read with state (x if unread)

Example M

Σ = {a, b}
δ(s) = parity of a’s

Histories of M on input abaa

Initial history: axbxaxax

History after first step: a1bxaxax

. . .
Final history: a1b1a0a1
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Mutations Simulating a FSM

Duplicate history symbols: a1
q, a2

q

PRE: index 1, unread or correct transition from q0

MID: indices 1,2

main input symbols equal
both unread or both read and states equal
first read and second unread

MID: indices 2,1

both unread
first read and second unread
both read and state transition to second correct

SUF: index 2, unread or read

Dana Angluin, James Aspnes, Raonne Barbosa Vargas Mutation Systems



Example of Mutations Simulating M on abaa

Initial history, all unread

a1
x a2

x b1
x b2

x a1
x a2

x a1
x a2

x

First symbol read

a1
1 a2

x b1
x b2

x a1
x a2

x a1
x a2

x

Duplicate of first symbol updated

a1
1 a2

1 b1
x b2

x a1
x a2

x a1
x a2

x

Second symbol read

a1
1 a2

1 b1
1 b2

x a1
x a2

x a1
x a2

x

Duplicate of second symbol updated

a1
1 a2

1 b1
1 b2

1 a1
x a2

x a1
x a2

x
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Reversible Cellular Automata

A 1-dimensional reversible asynchronous cellular automaton:

An alphabet Σ

Transition rules

Substitutions: axb ↔ ayb
Insertions/Deletions: axb ↔ ab

Example:

Rules {abc ↔ adc , dce ↔ dfe, fe ↔ fge}
Reachable from abce are {abce, adce, adfe, adfge}
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Simulating a Cellular Automaton

From a cellular automaton C to a mutation system S :

Symbols ua
i
v

main symbol component a from Σ
index i from {1, 2, ∗}
left neighbor information u
right neighbor information v

Rules from substitution and deletion/insertion rules of C

Application of a rule of C becomes a sequence of mutations:

Symbol “locks” its neighbors

Symbol then changes

Symbol “unlocks” its neighbors

Up to 14 mutations for 1 rule application
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Example of Locking

Starting with d(abcde):

a1 · a2 · b1 · b2 · c1 · c2 · d1 · d2 · e1 · e2

After several mutations:

a1 · a2 · −b1 · bb2 · bbc
1 · c2

dd · d1
d · d2

− · e1 · e2

symbol c has locked its left and right neighbors
and is prepared for a rule application
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Fitness Pairs for axb ↔ ayb
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Fitness Pairs for abc ↔ ac

Dana Angluin, James Aspnes, Raonne Barbosa Vargas Mutation Systems



Deciding Evolvability?

Thus the problem

Input: A mutation system and two strings s and t

Output: Can s evolve to t?

is undecidable for

µ = point mutations

f = a strictly 2-testable predicate
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Other Questions

Random point mutations?

FSM simulation becomes a random walk: O(n3) steps
Can be biased forward: O(n2) steps
More generally?

Learnability?

Mutation process known & fitness function unknown?
k-testable languages POS limit learnable [GV 1990]
Also concatenations of k-testable languages [KY 1994]
Stochastic results?
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Thank you!
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