Mutation Systems

Dana Angluin James Aspnes Raonne Barbosa Vargas
Department of Computer Science
Yale University
LATA 2011

Introduction

- Biological evolution proceeds by variation and selection
- A model of evolution of strings

Variation:
A function μ mapping a string to possible mutations Selection:
A function f deciding whether a string is fit

- Evolvability:

Can s evolve to t via stepwise mutations to fit strings?

Mutation Systems

A mutation system (Σ, μ, f) has

- an alphabet Σ
- a mutator $\mu: \Sigma^{*} \rightarrow 2^{\Sigma^{*}}$
μ maps a string to the set of its mutations
- a fitness function $f: \Sigma^{*} \rightarrow\{0,1\}$
f decides whether a string is fit (1) or not (0)

Mutation and Evolution: Reachability

Let $S=(\Sigma, \mu, f)$ be a mutation system

- $s \rightarrow{ }_{\mu} t$ if $t \in \mu(s)$
s can mutate to t in one step
- $s \rightarrow s t$ if $s \rightarrow \mu t$ and $f(s)=f(t)=1$
s can evolve to t in one step
(both s and t must be fit)
s can mutate to t if $s \rightarrow{ }_{\mu}^{*} t$
s can evolve to t if $s \rightarrow{ }_{S}^{*} t$

An Example Mutation System $S=(\Sigma, \mu, f)$

Example S:

- $\Sigma=\{a, b, c\}$
- $\mu(s)=$ strings obtained by swapping adjacent symbols in s
- $f(s)=1$ if no two adjacent symbols are equal

Mutation steps:

$$
a b c b c \rightarrow_{\mu} a b c c b \rightarrow_{\mu} a c b c b \rightarrow_{\mu} c a b c b
$$

But abccb is not fit!
Alternative evolution steps:
$a b c b c \rightarrow s b a c b c \rightarrow s b c a b c \rightarrow s b c a c b \rightarrow s c b a c b \rightarrow s^{s} c a b c b$

The Mutation Graph: $\left(\Sigma^{*}, \rightarrow_{\mu}\right)$

Nodes: all strings of length 2 over $\{0,1,2,3\}$
Directed edges: $\rightarrow \mu$

Unfit Strings are Removed

Remove unfit strings to get evolvability graph

The Evolvability Graph: $\left(f^{-1}(1), \rightarrow s\right)$

Nodes: fit strings of length 2 over $\{0,1,2,3\}$
Directed edges: $\rightarrow s$

Deciding Evolvability?

The problem
Input: A mutation system and two strings s and t
Output: Can s evolve to t ?
is undecidable for
$\mu=$ point mutations
$f=$ a strictly 2-testable predicate

A point mutation of s is obtained by

- replacing one symbol in s
- or deleting one symbol from s
- or inserting one symbol in s

So $\mu(b c b)$ contains

- acb, ccb, bab, bbb, bca, bcc
- $c b, b b, b c$
- abcb, bbcb, cbcb, bacb, bccb, bcab, bcbb, bcba, bcbc

Point mutations are reversible: the mutation graph is undirected

Strictly k-Testable Fitness Functions

A strictly k-testable L given by (PRE, MID, SUF)

- PRE contains strings of length $k-1$
- MID contains strings of length k
- SUF contains strings of length $k-1$
L contains all strings s such that
- length $k-1$ prefix of s in PRE
- every length k substring of s in MID
- length $k-1$ suffix of s in SUF

Fitness function $f_{L}(s)=1$ iff $s \in L$

Example: a Strictly 2-Testable Fitness Function

Fitness function f with

$$
\begin{aligned}
& \mathrm{PRE}=\{a, b\} \\
& \mathrm{MID}=\{a a, a c, b b, b d, c c, d d\} \\
& \mathrm{SUF}=\{c, d\}
\end{aligned}
$$

has fit strings $a^{+} c^{+}+b^{+} d^{+}$

Symbol Duplication

How to control point mutations?

- Duplication map $d(s)$ replaces each symbol x by $x_{1} x_{2}$
- Define a fitness function:

PRE contains all symbols x_{1}
MID contains all pairs of symbols $x_{1} x_{2}$ and $y_{2} x_{1}$
SUF contains all symbols x_{2}

- Fit strings are $d(s)$
- Point mutations of fit strings are unfit

Simulating a FSM

Evolvability \leftrightarrow computational reachability
Issue of reversibility? Use computation histories
Annotate symbol read with state (x if unread)
Example M

$$
\begin{aligned}
& \Sigma=\{a, b\} \\
& \delta(s)=\text { parity of } a \text { 's }
\end{aligned}
$$

Histories of M on input abaa
Initial history: $a_{x} b_{x} a_{x} a_{x}$
History after first step: $a_{1} b_{x} a_{x} a_{x}$
Final history: $a_{1} b_{1} a_{0} a_{1}$

Mutations Simulating a FSM

Duplicate history symbols: a_{q}^{1}, a_{q}^{2}
PRE: index 1 , unread or correct transition from q_{0}
MID: indices 1,2
main input symbols equal
both unread or both read and states equal first read and second unread
MID: indices 2,1
both unread
first read and second unread
both read and state transition to second correct
SUF: index 2, unread or read

Example of Mutations Simulating M on abaa

Initial history, all unread

$$
\begin{array}{llllllll}
a_{x}^{1} & a_{x}^{2} & b_{x}^{1} & b_{x}^{2} & a_{x}^{1} & a_{x}^{2} & a_{x}^{1} & a_{x}^{2}
\end{array}
$$

First symbol read

$$
\begin{array}{llllllll}
a_{1}^{1} & a_{x}^{2} & b_{x}^{1} & b_{x}^{2} & a_{x}^{1} & a_{x}^{2} & a_{x}^{1} & a_{x}^{2}
\end{array}
$$

Duplicate of first symbol updated

$$
\begin{array}{llllllll}
a_{1}^{1} & a_{1}^{2} & b_{x}^{1} & b_{x}^{2} & a_{x}^{1} & a_{x}^{2} & a_{x}^{1} & a_{x}^{2}
\end{array}
$$

Second symbol read

$$
\begin{array}{llllllll}
a_{1}^{1} & a_{1}^{2} & b_{1}^{1} & b_{x}^{2} & a_{x}^{1} & a_{x}^{2} & a_{x}^{1} & a_{x}^{2}
\end{array}
$$

Duplicate of second symbol updated

$$
\begin{array}{llllllll}
a_{1}^{1} & a_{1}^{2} & b_{1}^{1} & b_{1}^{2} & a_{x}^{1} & a_{x}^{2} & a_{x}^{1} & a_{x}^{2}
\end{array}
$$

Reversible Cellular Automata

A 1-dimensional reversible asynchronous cellular automaton:
An alphabet Σ
Transition rules
Substitutions: $a x b \leftrightarrow a y b$
Insertions/Deletions: $a \times b \leftrightarrow a b$
Example:
Rules $\{a b c \leftrightarrow a d c, d c e \leftrightarrow d f e, f e \leftrightarrow f g e\}$
Reachable from abce are $\{a b c e$, adce, adfe, adfge $\}$

From a cellular automaton C to a mutation system S :
Symbols ${ }_{u} a_{v}^{i}$
main symbol component a from Σ
index i from $\{1,2, *\}$
left neighbor information u
right neighbor information v
Rules from substitution and deletion/insertion rules of C
Application of a rule of C becomes a sequence of mutations:
Symbol "locks" its neighbors
Symbol then changes
Symbol "unlocks" its neighbors
Up to 14 mutations for 1 rule application

Example of Locking

Starting with $d($ abcde $)$:

$$
a^{1} \cdot a^{2} \cdot b^{1} \cdot b^{2} \cdot c^{1} \cdot c^{2} \cdot d^{1} \cdot d^{2} \cdot e^{1} \cdot e^{2}
$$

After several mutations:

$$
a^{1} \cdot a^{2} \cdot{ }_{-} b^{1} \cdot{ }_{b} b^{2} \cdot{ }_{b b} c^{1} \cdot c_{d d}^{2} \cdot d_{d}^{1} \cdot d_{-}^{2} \cdot e^{1} \cdot e^{2}
$$

symbol c has locked its left and right neighbors and is prepared for a rule application

Fitness Pairs for $a \times b \leftrightarrow a y b$

Fitness Pairs for $a b c \leftrightarrow a c$

Deciding Evolvability?

Thus the problem
Input: A mutation system and two strings s and t
Output: Can s evolve to t ?
is undecidable for
$\mu=$ point mutations
$f=$ a strictly 2-testable predicate

Other Questions

Random point mutations?
FSM simulation becomes a random walk: $O\left(n^{3}\right)$ steps Can be biased forward: $O\left(n^{2}\right)$ steps More generally?
Learnability?
Mutation process known \& fitness function unknown? k-testable languages POS limit learnable [GV 1990] Also concatenations of k-testable languages [KY 1994] Stochastic results?

Thank you!

(Research supported by NSF Grant CCF-0916389)

