
Mutation Systems

Dana Angluin James Aspnes Raonne Barbosa Vargas

Department of Computer Science
Yale University

LATA 2011

Dana Angluin, James Aspnes, Raonne Barbosa Vargas Mutation Systems



Introduction

Biological evolution proceeds by variation and selection

A model of evolution of strings

Variation:
A function µ mapping a string to possible mutations
Selection:
A function f deciding whether a string is fit

Evolvability:
Can s evolve to t via stepwise mutations to fit strings?

Dana Angluin, James Aspnes, Raonne Barbosa Vargas Mutation Systems



Mutation Systems

A mutation system (Σ, µ, f ) has

an alphabet Σ

a mutator µ : Σ∗ → 2Σ∗

µ maps a string to the set of its mutations

a fitness function f : Σ∗ → {0, 1}
f decides whether a string is fit (1) or not (0)

Dana Angluin, James Aspnes, Raonne Barbosa Vargas Mutation Systems



Mutation and Evolution: Reachability

Let S = (Σ, µ, f ) be a mutation system

s →µ t if t ∈ µ(s)
s can mutate to t in one step

s →S t if s →µ t and f (s) = f (t) = 1
s can evolve to t in one step
(both s and t must be fit)

s can mutate to t if s →∗
µ t

s can evolve to t if s →∗
S t

Dana Angluin, James Aspnes, Raonne Barbosa Vargas Mutation Systems



An Example Mutation System S = (Σ, µ, f )

Example S :

Σ = {a, b, c}
µ(s) = strings obtained by swapping adjacent symbols in s

f (s) = 1 if no two adjacent symbols are equal

Mutation steps:

abcbc →µ abccb →µ acbcb →µ cabcb

But abccb is not fit!
Alternative evolution steps:

abcbc →S bacbc →S bcabc →S bcacb →S cbacb →S cabcb

Dana Angluin, James Aspnes, Raonne Barbosa Vargas Mutation Systems



The Mutation Graph: (Σ∗,→µ)

00

10

01

20

11

30

21

31

02

12

22

32

03

13

23

33

Nodes: all strings of length 2 over {0, 1, 2, 3}
Directed edges: →µ

Dana Angluin, James Aspnes, Raonne Barbosa Vargas Mutation Systems



Unfit Strings are Removed

00

10

01

20 31

02

12

22

32

03

33

Remove unfit strings to get evolvability graph

Dana Angluin, James Aspnes, Raonne Barbosa Vargas Mutation Systems



The Evolvability Graph: (f −1(1),→S)

00

10

01

20 31

02

12

22

32

03

33

Nodes: fit strings of length 2 over {0, 1, 2, 3}
Directed edges: →S

Dana Angluin, James Aspnes, Raonne Barbosa Vargas Mutation Systems



Deciding Evolvability?

The problem

Input: A mutation system and two strings s and t

Output: Can s evolve to t?

is undecidable for

µ = point mutations

f = a strictly 2-testable predicate

Dana Angluin, James Aspnes, Raonne Barbosa Vargas Mutation Systems



Point Mutations

A point mutation of s is obtained by

replacing one symbol in s
or deleting one symbol from s
or inserting one symbol in s

So µ(bcb) contains

acb, ccb, bab, bbb, bca, bcc
cb, bb, bc
abcb, bbcb, cbcb, bacb, bccb, bcab, bcbb, bcba, bcbc

Point mutations are reversible: the mutation graph is
undirected

Dana Angluin, James Aspnes, Raonne Barbosa Vargas Mutation Systems



Strictly k-Testable Fitness Functions

A strictly k-testable L given by (PRE, MID, SUF)

PRE contains strings of length k − 1
MID contains strings of length k
SUF contains strings of length k − 1

L contains all strings s such that

length k − 1 prefix of s in PRE
every length k substring of s in MID
length k − 1 suffix of s in SUF

Fitness function fL(s) = 1 iff s ∈ L

Dana Angluin, James Aspnes, Raonne Barbosa Vargas Mutation Systems



Example: a Strictly 2-Testable Fitness Function

Fitness function f with

PRE = {a, b}
MID = {aa, ac , bb, bd , cc , dd}
SUF = {c , d}

has fit strings a+c+ + b+d+

Dana Angluin, James Aspnes, Raonne Barbosa Vargas Mutation Systems



Symbol Duplication

How to control point mutations?

Duplication map d(s) replaces each symbol x by x1x2

Define a fitness function:

PRE contains all symbols x1

MID contains all pairs of symbols x1x2 and y2x1

SUF contains all symbols x2

Fit strings are d(s)

Point mutations of fit strings are unfit

Dana Angluin, James Aspnes, Raonne Barbosa Vargas Mutation Systems



Simulating a FSM

Evolvability ↔ computational reachability

Issue of reversibility? Use computation histories
Annotate symbol read with state (x if unread)

Example M

Σ = {a, b}
δ(s) = parity of a’s

Histories of M on input abaa

Initial history: axbxaxax

History after first step: a1bxaxax

. . .
Final history: a1b1a0a1

Dana Angluin, James Aspnes, Raonne Barbosa Vargas Mutation Systems



Mutations Simulating a FSM

Duplicate history symbols: a1
q, a2

q

PRE: index 1, unread or correct transition from q0

MID: indices 1,2

main input symbols equal
both unread or both read and states equal
first read and second unread

MID: indices 2,1

both unread
first read and second unread
both read and state transition to second correct

SUF: index 2, unread or read

Dana Angluin, James Aspnes, Raonne Barbosa Vargas Mutation Systems



Example of Mutations Simulating M on abaa

Initial history, all unread

a1
x a2

x b1
x b2

x a1
x a2

x a1
x a2

x

First symbol read

a1
1 a2

x b1
x b2

x a1
x a2

x a1
x a2

x

Duplicate of first symbol updated

a1
1 a2

1 b1
x b2

x a1
x a2

x a1
x a2

x

Second symbol read

a1
1 a2

1 b1
1 b2

x a1
x a2

x a1
x a2

x

Duplicate of second symbol updated

a1
1 a2

1 b1
1 b2

1 a1
x a2

x a1
x a2

x

Dana Angluin, James Aspnes, Raonne Barbosa Vargas Mutation Systems



Reversible Cellular Automata

A 1-dimensional reversible asynchronous cellular automaton:

An alphabet Σ

Transition rules

Substitutions: axb ↔ ayb
Insertions/Deletions: axb ↔ ab

Example:

Rules {abc ↔ adc , dce ↔ dfe, fe ↔ fge}
Reachable from abce are {abce, adce, adfe, adfge}

Dana Angluin, James Aspnes, Raonne Barbosa Vargas Mutation Systems



Simulating a Cellular Automaton

From a cellular automaton C to a mutation system S :

Symbols ua
i
v

main symbol component a from Σ
index i from {1, 2, ∗}
left neighbor information u
right neighbor information v

Rules from substitution and deletion/insertion rules of C

Application of a rule of C becomes a sequence of mutations:

Symbol “locks” its neighbors

Symbol then changes

Symbol “unlocks” its neighbors

Up to 14 mutations for 1 rule application

Dana Angluin, James Aspnes, Raonne Barbosa Vargas Mutation Systems



Example of Locking

Starting with d(abcde):

a1 · a2 · b1 · b2 · c1 · c2 · d1 · d2 · e1 · e2

After several mutations:

a1 · a2 · −b1 · bb2 · bbc
1 · c2

dd · d1
d · d2

− · e1 · e2

symbol c has locked its left and right neighbors
and is prepared for a rule application

Dana Angluin, James Aspnes, Raonne Barbosa Vargas Mutation Systems



Fitness Pairs for axb ↔ ayb

Dana Angluin, James Aspnes, Raonne Barbosa Vargas Mutation Systems



Fitness Pairs for abc ↔ ac

Dana Angluin, James Aspnes, Raonne Barbosa Vargas Mutation Systems



Deciding Evolvability?

Thus the problem

Input: A mutation system and two strings s and t

Output: Can s evolve to t?

is undecidable for

µ = point mutations

f = a strictly 2-testable predicate

Dana Angluin, James Aspnes, Raonne Barbosa Vargas Mutation Systems



Other Questions

Random point mutations?

FSM simulation becomes a random walk: O(n3) steps
Can be biased forward: O(n2) steps
More generally?

Learnability?

Mutation process known & fitness function unknown?
k-testable languages POS limit learnable [GV 1990]
Also concatenations of k-testable languages [KY 1994]
Stochastic results?

Dana Angluin, James Aspnes, Raonne Barbosa Vargas Mutation Systems



Thank you!

(Research supported by NSF Grant CCF-0916389)

Dana Angluin, James Aspnes, Raonne Barbosa Vargas Mutation Systems


