
July 2, 2012 14:31 International Journal of Computer Mathematics paper-pdflatex

International Journal of Computer Mathematics
Vol. 00, No. 00, Month 200x, 1–18

RESEARCH ARTICLE

Mutation systems∗

Dana Angluina and James Aspnes and Raonne Barbosa Vargas

Computer Science Department, Yale University
(Received 00 Month 200x; in final form 00 Month 200x)

We propose mutation systems as a model of the evolution of a string subject to the effects of
mutations and a fitness function. One fundamental question about such a system is whether
knowing the rules for mutations and fitness, we can predict whether it is possible for one string
to evolve into another. To explore this issue we define a specific kind of mutation system with
point mutations and a fitness function based on conserved strongly k-testable string patterns.
We show that for any k greater than 1, such systems can simulate computation by both finite
state machines and asynchronous cellular automata. The cellular automaton simulation shows
that in this framework, universal computation is possible and the question of whether one
string can evolve into another is undecidable. We also analyze the efficiency of the finite state
machine simulation assuming random point mutations.

Keywords: mutation systems; finite automata; cellular automata; k-testable languages;
point mutations; reversible computation

1. Introduction

Biological evolution proceeds by variation and selection. Efforts to determine the
evolutionary relationships of different organisms often involve comparing the DNA
sequences of their genomes to find similar subsequences that have been conserved
during evolution, on the assumption that the conserved subsequences affect the
fitness of the organisms. In this work we propose mutation systems as a general
model of variation and selection acting on strings of symbols. Our goal is to explore
the properties of such systems, specifically what can be predicted and learned about
their behavior. Variation is modeled as a mutation function that maps a string to
the set of possible mutations of that string. Selection is modeled as a fitness function
that determines whether each string is fit or not. The main relation we consider
in this paper is whether one fit string can evolve to another fit string through a
sequence of fit strings, each of which is a possible mutation of its predecessor.

As one example of how small and locally conserved patterns in genome sequences
may play an important role in biological processes, we briefly describe transcription
factor binding sites. Alberts et al. [1] discuss evidence that evolutionary processes
have shaped the mechanisms controlling the selective expression of genes in each
cell. Proteins called transcription factors bind to the DNA sequence in specific
positions called transcription factor binding sites, and regulate the expression of
that gene by activating or inhibiting the transcription process. These functional
binding sites are called regulatory elements, and are usually small parts of the
DNA sequence situated near the location where transcription of the gene sequence

∗This material is based upon work supported by the National Science Foundation under Grant Number
CCF-0916389.
aCorresponding author.

ISSN: 0020-7160 print/ISSN 1029-0265 online
c© 200x Taylor & Francis
DOI: 10.1080/0020716YYxxxxxxxx
http://www.informaworld.com

July 2, 2012 14:31 International Journal of Computer Mathematics paper-pdflatex

2

starts. Estimates of the typical lengths of these regulatory elements include 10 base
pairs (by Tompa et al. [17, 18]) and a range of 5 to 12 base pairs (by Wasserman
and Sandelin [21].) The concept of Phylogenetic Footprinting [16] suggests that
these regulatory elements tend to be conserved in the genome sequence throughout
evolution, because of their functional importance in the control of gene expression.
Thus cross-species comparisons may help to discover transcription factor binding
sites.

In introducing the model of mutation systems, our main focus is on what an
outside observer can predict or learn about an evolutionary process, not on the
capacity of the process itself to learn or compute. Our model does not have a
final ideal target or answer, but instead has a variety of evolution pathways and
outcomes defined by the mutation operator and the fitness function. Though we
describe the construction of particular mutation systems capable of simulating
finite state machines or cellular automata, our primary purpose is to understand
the inherent limitations of an observer in regard to a mutation system, rather than
to propose practical methods of computation.

Cavaliere and Leupold[6, 7] have introduced the model of computing by observing
in which one system (the observed) evolves through a sequence of configurations
(for example, the successive sentential forms of a derivation of a terminal string
in a context-free grammar), and a separate system (the observer) generates an
output (a single symbol or the empty string) after processing each configuration.
This setting includes the observer as a component of the model, and focuses on the
sequences of incrementally produced observations. The fundamental results in this
area are aimed at characterizing what classes of languages can be generated using
very simple formalisms to model the observed and observer.

Valiant [19] has introduced the model of evolvability to explore the question of
what functions can be efficiently approximated through a polynomial-time evolu-
tion process. In this case, fitness or performance is measured by approximation to
a single ideal target function, and the class of evolvable functions is contained in
the class of PAC-learnable functions. The motivation is to study the capabilities
and limitations of evolution.

In contrast these approaches, the large and flourishing area of Evolutionary
Computation[8] is concerned with understanding and using evolutionary mecha-
nisms to design algorithms to optimize functions and solve other computational
problems. In this setting, the algorithm designer chooses the problem representa-
tion, the mutation and recombination operations, the fitness function, the details
and parameters of how the population evolves and various other aspects of the
model in order to solve a particular computational problem effectively and effi-
ciently.

After a short section of preliminaries, we introduce our new model of a mutation
system composed of an alphabet, a mutator and a fitness function in Section 3
and give several examples. We then specialize to the case of point mutations (in
Section 3.1) and fitness functions defined by strictly k-testable patterns (in Sec-
tion 3.3.) The combination of point mutations and a strictly k-testable fitness
function is termed a k-simple mutation system. In Section 3.4 we introduce the
technique of symbol duplication to help control the effects of point mutations.
In Section 4 we show that for any nondeterministic finite state machine, there
is a 2-simple mutation system that simulates its computations. We consider the
overhead of this simulation for deterministic finite state machines under the as-
sumption of random point mutations in Section 4.3. In Section 5 we show that
for any one-dimensional asynchronous reversible cellular automata with insertions
and deletions, there is a 2-simple mutation that simulates its computations, thus

July 2, 2012 14:31 International Journal of Computer Mathematics paper-pdflatex

3

showing that 2-simple mutation systems are a universal model of computation. In
Section 6 we give conclusions and discuss possible future directions.

2. Preliminaries

An alphabet Σ is a finite nonempty set of symbols. Σ∗ denotes the set of all finite
strings of symbols from Σ. The empty string is denoted λ. A string v is a substring
(or factor) of a string x if there exist strings u and w such that x = uvw. A language
is any subset of Σ∗. Σk denotes those elements of Σ∗ of length k. The symbols in
a string s of length n are indexed from 1 to n and s[i] denotes the ith symbol of s.

We consider non-deterministic finite state machines with no accepting states,
defined as follows. A finite state machine (FSM) is a quadruple M = (Σ, Q, q0, δ),
where Σ is the alphabet of input symbols, Q is the set of states, q0 is the initial
state, and δ is the transition function, which maps Q×Σ to subsets of Q. If every
δ(q, a) contains exactly one state, then M is deterministic. In this case we may
write δ(q, a) = q′ instead of δ(q, a) = {q′}.

3. Mutation systems

We propose a model of the evolution of a string subject to the effects of mutations
and a fitness function. A single step consists of a mutation of the current string
followed by an application of the fitness function. If the fitness function deter-
mines that the mutated string is fit, the mutated string replaces the current string;
otherwise the mutated string is discarded and the current string is kept.

Definition 3.1 A mutation system S = (Σ, µ, f) is composed of an alphabet Σ,
a mutator µ that maps Σ∗ to subsets of Σ∗ and a fitness function f : Σ∗ → {0, 1}.
The mutator µ specifies the set of strings to which a given string can mutate in one
step. The fitness function f determines whether a given string s is fit (f(s) = 1)
or not (f(s) = 0).

Our model permits the separation of the effects of the mutator µ and the fitness
function f . For example, in some situations we may be observing a system with a
known mutator and an unknown fitness function.

Given a mutation system S and two fit strings s1 and s2, we are interested in
the question of whether s1 can evolve to s2 through a sequence of steps permitted
by S.

Definition 3.2 Let a mutation system S = (Σ, µ, f) and two strings s1, s2 ∈ Σ∗

be given. We say that s1 can mutate to s2 in one step, denoted s1 →µ s2, if
s2 ∈ µ(s1). We say that s1 can evolve to s2 in one step, denoted s1 →S s2, if
f(s1) = f(s2) = 1 and s1 can mutate to s2 in one step.

As is usual, we denote the reflexive transitive closure of these relations by a
superscripted ∗ on the arrow. We say that s1 can mutate to s2 if s1 →∗µ s2, that
is, there is a finite sequence of zero or more mutation steps that carries s1 to s2.
Similarly, we say that s1 can evolve to s2 if s1 →∗S s2, that is, there is a finite
sequence of zero or more evolution steps that carries s1 to s2. Note that in the
latter case, s1, s2 and any intermediate strings in some evolution must be fit.

Example 3.3 Consider a mutation system S1 = (Σ1, µ1, f1) over the alphabet Σ1 =
{a, b, c} where µ1(s) is the set of strings obtained by interchanging two adjacent
symbols in s and f1(s) = 1 if and only if no two adjacent symbols of s are equal.

July 2, 2012 14:31 International Journal of Computer Mathematics paper-pdflatex

4

Then we have the following mutation steps.

abcbc→µ1 abccb→µ1 acbcb→µ1 cabcb.

However these are not all evolution steps because the string abccb is not fit ac-
cording to f1. An alternative path of evolution steps demonstrates that abcbc can
evolve to cabcb.

abcbc→S1 bacbc→S1 bcabc→S1 bcacb→S1 cbacb→S1 cabcb.

Example 3.4 Consider the mutation system S2 = (Σ2, µ2, f2) with alphabet Σ2 =
{a, b, c}, defined as follows. For any string s, µ2(s) is the set of strings that may be
obtained from s by one of the following operations: replace a contiguous substring
of a’s by an equal number of b’s, or replace a contiguous substring of b’s by an
equal number of c’s, or replace a contiguous substring of c’s by an equal number
of a’s. The following is a sequence of one step mutations in this system.

aacca→µ2 bbcca→µ2 bbaaa→µ2 bbaab.

Define f2(s) = 1 if and only if s does not contain occurrences of all three symbols:
a, b and c. The initial element of the above sequence (aacca) is fit according to
f2, but the second element (bbcca) is not. The following alternative sequence of
mutations shows that aacca can evolve to bbaab in S2.

aacca→S2 aaaaa→S2 bbaaa→S2 bbaab.

In fact, in S2 any fit string s of length n can evolve to any other fit string of length
n as follows. If s contains two different symbols x and y such that x →µ2 y, then
blocks of x’s can be converted to blocks of y’s until the string is of the form yn.
This can be converted to zn for any z ∈ {a, b, c} in at most two more mutation
steps. To produce a fit string with occurrences of different symbols x and y such
that x→µ2 y, first produce xn, and then covert blocks of x’s to y’s to achieve the
desired target string.

It may be helpful to visualize the mutation and evolution relations as directed
graphs. The mutation graph of a mutation system is the graph with vertices Σ∗

and directed edges (s1, s2) such that s1 can mutate to s2 in one step. The evolv-
ability graph of a mutation system is the subgraph of the mutation graph induced
by the set of fit strings (i.e., those s with f(s) = 1). Thus, the evolvability graph
is obtained from the mutation graph by removing all the vertices corresponding to
unfit strings. The string s1 can mutate to s2 if and only if there is a directed path
from s1 to s2 in the mutation graph, while s1 can evolve to s2 if and only if there
is a directed path from s1 to s2 in the evolvability graph.

Example 3.5 Suppose S3 = (Σ3, µ3, f3) has alphabet Σ3 = {0, 1, 2, 3} and the
mutator µ3 can transform a string by adding 1 to any single symbol that is not
3. The portion of the mutation graph of S3 restricted to strings of length two is
pictured in Figure 1. Suppose the fitness function f3 assigns 0 to any string that is
a decimal representation of a prime number. Vertices corresponding to unfit strings
are removed, and the evolution graph of S3 restricted to strings of length two is
pictured in Figure 2.

In what follows we focus on mutators and fitness functions defined very locally
on strings.

July 2, 2012 14:31 International Journal of Computer Mathematics paper-pdflatex

5

00

10

01

20

11

30

21

31

02

12

22

32

03

13

23

33

Figure 1. The mutation graph of S3 restricted to
strings of length two.

00

10

01

20

30

21

12

22

32

33

Figure 2. The evolution graph of S3 restricted to
strings of length two. Only vertices corresponding
to fit strings remain.

3.1 Point mutations

A point mutation of a string is obtained by deleting or inserting a single occurrence
of a symbol or by replacing a single occurrence of a symbol by any symbol.

Definition 3.6 Let s be any string. The mutators µd, µi, µr, and µp are defined as
follows.

(1) µd(s) is the set of strings that can be obtained by deleting exactly one
occurrence of a symbol from s.

(2) µi(s) is the set of strings that can be obtained from s by inserting exactly
one occurrence of a symbol from Σ into s.

(3) µr(s) is the set of strings that can be obtained from s by replacing exactly
one occurrence of a symbol in s by any symbol from Σ.

(4) µp(s) = µd(s)∪µi(s)∪µr(s). Thus, the mutator µp permits any single point
mutation of a string.

For example, over the alphabet {a, b, c} we have the following.

µd(bcb) = {cb, bb, bc}

µr(bcb) = {acb, ccb, bab, bbb, bca, bcc}

µi(bcb) = {abcb, bbcb, cbcb, bacb, bccb, bcab, bcbb, bcba, bcbc}

For comparison, the mutators µ1 and µ2 of Examples 3.3 and 3.4 permit mutations
that are not point mutations, while the mutator µ3 of Example 3.5 permits a subset
of the single symbol replacements.

3.2 Reversibility

Reversibility is an important property of mutators and mutation systems.

Definition 3.7 A mutator µ is stepwise reversible if for all strings s1 and s2,

s2 ∈ µ(s1)⇔ s1 ∈ µ(s2).

That is, if s1 can mutate to s2 in one step, then s2 can mutate back to s1 in one
step. A mutation system S = (Σ, µ, f) is reversible if for all strings s1 and s2,

(s1 →∗S s2)⇔ (s2 →∗S s1).

That is, if s1 can evolve to s2, then s2 can evolve to s1.

The point mutator µp is stepwise reversible: an insertion can be reversed by a
deletion, a deletion by an insertion, and a replacement by the opposite replacement.
The mutator µ1 of Example 3.3 is stepwise reversible, but the mutators µ2 and µ3

of Examples 3.4 and 3.5 are not.

July 2, 2012 14:31 International Journal of Computer Mathematics paper-pdflatex

6

If a mutator µ is stepwise reversible then its mutation graph can be considered
to be undirected, because every edge (s, t) has a corresponding reverse edge (t, s).
If a mutation system is reversible then every weakly connected component of its
evolvability graph is strongly connected.

Lemma 3.8 If µ is stepwise reversible then S = (Σ, µ, f) is reversible.

Proof Suppose s1 →∗S s2. Then there is a sequence u0, . . . , ut of fit strings such
that

s1 = u0 →µ u1 →µ . . .→µ ut−1 →µ ut = s2.

Because µ is stepwise reversible, we have also

s2 = ut →µ ut−1 →µ . . .→ u1 →µ u0 = s1,

which shows that s2 →∗S s1. Thus the mutation system S = (Σ, µ, f) is reversible.
�

The mutation system S2 in Example 3.4 is a counterexample to the converse
of this lemma. In particular, the mutator µ2 is not stepwise reversible, but the
mutation system S2 is reversible because any fit string can evolve to any other fit
string of the same length.

3.3 Conservation of strictly k-testable patterns

We consider fitness functions defined by very local properties of a string,
namely properties characterized by strictly k-testable languages [5, 12, 15]. Mc-
Naughton [15] introduced the notion of local testability and defined strict k-
testability. Brzozowski and Simon [5] gave an alternative definition that differs
slightly from the original by McNaughton, and proved the two definitions equiv-
alent. This alternative definition was also later used by McNaughton in Kim et
al. [12], and it is the definition we use in this paper.

Head [10] and Yokomori and Kobayashi [22] describe applications of k-testable
languages to modeling biological phenomena. Another reason to consider k-testable
languages is evidence for the tractability of learning them. In particular, the k-
testable languages are learnable in the limit from positive data [9] and also con-
catenations of k-testable languages are learnable in the limit from positive data [13].

Definition 3.9 Let Σ be an alphabet. A strictly k-testable pattern

P = (PRE,MID, SUF)

is composed of three sets of strings with PRE ⊆ Σk−1, MID ⊆ Σk, and SUF ⊆ Σk−1.
The language of P , denoted LP , is the set of all strings s of length at least k such
that the prefix of s of length k− 1 is in PRE, every substring of s of length k is in
MID, and the suffix of s of length k − 1 is in SUF.

Thus PRE specifies the permissible length k − 1 prefixes, SUF specifies the per-
missible length k−1 suffixes, and MID specifies the permissible length k substrings.
Note that if P is a strictly k-testable pattern, then LP is a regular set.

Example 3.10 Let Σ = {a, b, c} and P = (PRE,MID, SUF) with PRE = {a, b, c},
MID = {ab, ac, ba, bc, ca, cb} and SUF = {a, b, c}. Then P is a strictly 2-testable
pattern and LP consists of all strings of length at least 2 over Σ in which no two
adjacent symbols are equal.

July 2, 2012 14:31 International Journal of Computer Mathematics paper-pdflatex

7

A fitness function f is defined to be strictly k-testable if there exists a strictly
k-testable pattern P such that for every string s, f(s) = 1 iff s ∈ LP . Note that
this implies that f(s) = 0 for strings s of length less than k.

The fitness function f1 of Example 3.3 is strictly 2-testable because it simply
forbids two adjacent equal symbols. The fitness function f2 of Example 3.4 is not
strictly k-testable for any k because it may be necessary to see a substring of
unbounded length to witness that all three symbols a, b, and c are present in a
string. The fitness function f3 of Example 3.5 is also not strictly k-testable for any
k because the set of decimal representations of primes is not a regular set.

A k-simple mutation system is a mutation system with mutation operator
µp and a strictly k-testable fitness function. In what follows we focus on 2-simple
mutation systems.

3.4 Symbol duplication

The technique of symbol duplication is useful in preventing unwanted point mu-
tations in a 2-simple mutation system. If the alphabet is Σ, then the duplicated
alphabet D(Σ) consists of two copies of each symbol a ∈ Σ, one with index 1,
denoted a1, and one with index 2, denoted a2. We define the duplication map
d from Σ∗ to D(Σ)∗ such that d(s) is obtained from s by replacing every occur-
rence of a symbol a in s by the string a1a2. We define a projection map h1 from
D(Σ)∗ to Σ∗ such that h1(s) replaces every index 1 symbol a1 by a and every
index 2 symbol a2 by the empty string. For example, d(abb) = a1a2b1b2b1b2 and
h1(a1b1b2a2a1) = aba. Clearly h1(d(s)) = s.

Example 3.11 We define a 2-simple mutation system S4 = (Σ4, µ4, f4) that
protects strings against point mutations. Let Σ = {a, b}. The alphabet Σ4 is
D(Σ) = {a1, a2, b1, b2} and the strictly 2-testable fitness function f4 is defined
by the prefix strings {a1, b1}, the suffix strings {a2, b2}, and the middle strings

{a1a2, a2a1, a2b1, b1b2, b2a1, b2b1}.

The set of strings that are fit with respect to f4 are exactly those of the form d(s)
for some nonempty s ∈ Σ∗, for example, a1a2b1b2b1b2.

It is not difficult to show that if a fit string undergoes any non-identity point
mutation, the resulting string is not fit with respect to f4. Thus the evolution graph
of S4 consists of isolated vertices.

4. Simulating FSM computation

To represent FSM computation using a reversible mutation system, we choose
a reversible representation: FSM computation histories, analogous to Bennett’s
construction to make Turing machines reversible [3]. Let M = (Σ, Q, q0, δ) be a
finite state machine. Choose an element x 6∈ Q and define the state-annotated
alphabet ΣQ as the set of all symbols aq such that a ∈ Σ and q ∈ Q ∪ {x}. The
symbol aq represents the state q of M after reading the symbol a, with x indicating
that the symbol is unread. The main symbol component of aq is a and the state
component is q.

Given a string s ∈ Σ∗ of length n, a computation history of M on s is a
string s′ ∈ (ΣQ)∗ of length n such that the string of main symbol components of
s′ is s, and the sequence of state components consists of q1, q2, . . . , qi ∈ Q followed
by (n − i) x’s for some 0 ≤ i ≤ n, where for each 1 ≤ j < i, qj+1 ∈ δ(qj , s[j]). In

July 2, 2012 14:31 International Journal of Computer Mathematics paper-pdflatex

8

this case, s′ represents the computation in which M has read the first i symbols
of s and for each j gives the state reached after reading the jth input symbol. The
initial computation history of M on s, denoted Ix(s), is obtained from s by
replacing each a by ax, signifying that all the input symbols of s are unread.

Example 4.1 Define a deterministic finite state machine M1 = ({a, b}, {0, 1}, 0, δ1)
with transition function δ1 given by δ1(0, a) = 1, δ1(0, b) = 0, δ1(1, a) = 0, and
δ1(1, b) = 1. The state of M1 indicates whether it has read an odd (1) or even (0)
number of a’s. The computation histories of M1 on the input string abaa are the
following: axbxaxax, a1bxaxax, a1b1axax, a1b1a0ax, a1b1a0a1.

4.1 From FSMs to mutation systems

Given a FSM M = (Σ, Q, q0, δ), we describe how to construct a 2-simple mutation
system S = (Σ′, µp, f) such that for any non-empty input string s for M , the
computation histories of M on input s are represented by the strings that d(Ix(s))
may evolve to in S. The alphabet Σ′ is D(ΣQ). In the symbol aiq, the main symbol
component is a, the state component is q and the index is i. For the example FSM
M1,

Σ′ = {a1
x, a

2
x, a

1
0, a

2
0, a

1
1, a

2
1, b

1
x, b

2
x, b

1
0, b

2
0, b

1
1, b

2
1}.

Corresponding to the initial computation history Ix(s) of M on input s is the
initial string d(Ix(s)) with every symbol replaced by its duplicates indexed 1 and
2. For the FSM M1, we have

d(Ix(abaa)) = a1
xa

2
xb

1
xb

2
xa

1
xa

2
xa

1
xa

2
x.

We define a strictly 2-testable fitness function f that allows the initial string
d(Ix(s)) to evolve under point mutations to just those strings representing the
computation histories of M on input s. The goal is to permit those mutations of
symbols indexed 1 that represent reading the corresponding symbol of the input
and correctly updating the state component, and also those mutations that copy
this update to the immediately following symbol indexed 2.

The strictly 2-testable pattern P = (PRE,MID,SUF) that determines the fitness
function f is defined as follows. The set PRE contains all symbols of the form a1

x

and a1
q such that a ∈ Σ and q ∈ δ(q0, a). The set SUF contains all symbols of the

form a2
x and a2

q such that a ∈ Σ and q ∈ Q. The set MID contains several types of
strings of length 2, as follows.

(1) Initial duplicate: a1
xa

2
x for all a ∈ Σ.

(2) Initial boundary: a2
xb

1
x for all a, b ∈ Σ.

(3) Duplicate update needed: a1
qa

2
x for all a ∈ Σ and q ∈ Q.

(4) Updated duplicate: a1
qa

2
q for all a ∈ Σ and q ∈ Q.

(5) State transition needed: a2
qb

1
x for all a, b ∈ Σ and q ∈ Q.

(6) State transition made: a2
qb

1
q′ for all a, b ∈ Σ, q ∈ Q, and q′ ∈ δ(q, b).

For example, the sequence of steps of M1 on input abaa can be achieved by the
mutation steps shown in Figure 3. Each FSM step requires two mutations.

July 2, 2012 14:31 International Journal of Computer Mathematics paper-pdflatex

9

a1
x a

2
x b

1
x b

2
x a

1
x a

2
x a

1
x a

2
x

a1
1 a

2
x b

1
x b

2
x a

1
x a

2
x a

1
x a

2
x

a1
1 a

2
1 b

1
x b

2
x a

1
x a

2
x a

1
x a

2
x

a1
1 a

2
1 b

1
1 b

2
x a

1
x a

2
x a

1
x a

2
x

a1
1 a

2
1 b

1
1 b

2
1 a

1
x a

2
x a

1
x a

2
x

a1
1 a

2
1 b

1
1 b

2
1 a

1
0 a

2
x a

1
x a

2
x

a1
1 a

2
1 b

1
1 b

2
1 a

1
0 a

2
0 a

1
x a

2
x

a1
1 a

2
1 b

1
1 b

2
1 a

1
0 a

2
0 a

1
1 a

2
x

a1
1 a

2
1 b

1
1 b

2
1 a

1
0 a

2
0 a

1
1 a

2
1

Figure 3. Sequence of mutations for computation of M1 on input abaa.

4.2 Correctness of the FSM simulation

To see that S correctly represents computation by M , we establish certain prop-
erties of evolvability in S. Note that for every a, b ∈ Σ, a1

x ∈ PRE, a2
x ∈ SUF,

a1
xa

2
x ∈ MID and a2

xb
1
x ∈ MID, and therefore for every nonempty s ∈ Σ∗ we have

f(d(Ix(s))) = 1, that is, d(Ix(s)) is fit in S. The following lemmas prove Theo-
rem 4.5.

Lemma 4.2 Let s′ ∈ (Σ′)∗ be any nonempty string such that f(s′) = 1. Then s′

has the following properties.

(1) The indices of s′ alternate between 1 and 2, beginning with 1 and ending
with 2.

(2) If two consecutive symbols of s′ are indexed 1 and 2, they must be a1
xa

2
x or

a1
qa

2
x or a1

qa
2
q for some a ∈ Σ and q ∈ Q.

(3) If two consecutive symbols of s′ are indexed 2 and 1, they must be a2
xb

1
x or

a2
qb

1
x or a2

qb
1
q′ for some a, b ∈ Σ and q, q′ ∈ Q such that q′ ∈ δ(q, b).

(4) The state components of s′ consist of a sequence of elements of Q followed
by a sequence of x’s.

(5) The string h1(s′) is a computation history of M on the input s composed
of the sequence of main symbol components of h1(s′).

Proof PRE contains only symbols with index 1 and SUF contains only symbols
with index 2, therefore s′ must start with an index 1 symbol and end with an index
2 symbol. MID contains pairs of symbols with index 1 and then 2 or index 2 and
then 1. Thus the indices of symbols in s′ must strictly alternate: 1, 2, 1, 2,

Properties (2) and (3) are immediate from the definition of MID and imply
property (4).

In the string h1(s′) suppose positions i and i + 1 have state components qi and
qi+1 in Q and main symbol components ai and ai+1. Then s′[2i − 1] has index
1, main symbol component ai and state component qi, and s′[2i + 1] has index
1, main symbol component ai+1 and state component qi+1. The symbol between
them, s′[2i], must have index 2, main symbol component ai and state component
qi. This is because it must have the same main symbol component as the symbol
to its left in s′, and either the same state component or x. But x is not possible,
because the symbol to its right has a non-x state component. Thus by case (6) of
MID, we must have qi+1 ∈ δ(qi, ai+1). Therefore h1(s′) is a computation history of
M on input s. �

Lemma 4.3 Let s be a nonempty input string for M . Let s′ be any string evolvable
from d(Ix(s)) in S. Then h1(s′) is a computation history of M on input s.

July 2, 2012 14:31 International Journal of Computer Mathematics paper-pdflatex

10

Proof By Lemma 4.2, we know that h1(s′) is a computation history of M on the
input string that consists of the concatenation of the main symbol components
of h1(s′), but we need to show that this string is indeed s. This is easily seen by
induction on number of the evolution steps from d(Ix(s)), because h1(d(Ix(s))) =
Ix(s) and mutations that insert or delete a symbol, or change the main symbol
component of any symbol will be rejected by f , so every string evolvable from
d(Ix(s)) preserves the input string. �

Lemma 4.4 Let s be a nonempty input string for M . If t is any computation history
of M on input s, then d(t) is evolvable in S from d(Ix(s)).

Proof Let s = a1a2 · · · an. Consider the computation history t =
(a1)q1(a2)q2 · · · (an)qn

. Let r denote the number of symbols read in t, that is, the
maximum i such that qi 6= x. The proof is by induction on r.

If r = 0 then t is the initial computation history of M on input s, that is,
t = Ix(s). Because d(Ix(s)) is fit, d(t) is evolvable from d(Ix(s)).

If r > 0, then consider the computation history t′ of M on input s in which
the symbol (ar)qr

at position r is replaced with (ar)x. In t′ there are only r − 1
symbols read, so by induction, d(t′) is evolvable in S from d(Ix(s)). There is one
computation step of M from t′ to t which consists of reading ar and changing the
state to qr ∈ δ(qr−1, ar). The effect of this step can be accomplished by two point
mutations to d(t′), namely, to replace the symbol (ar)1

x at position 2r − 1 by the
symbol (ar)1

qr
, which is accepted by f , and then to replace the symbols (ar)2

x at
position 2r by the symbol (ar)2

qr
, which is also accepted by f . Thus d(t) is evolvable

in S from d(Ix(s)). �

The following Theorem is an immediate consequence of Lemmas 4.3 and 4.4.

Theorem 4.5 Let a finite state machine M = (Σ, Q, q0, δ) be given, and let S =
(Σ′, µp, f) be the 2-simple mutation system constructed from M according to the
method described in Section 4.1. Let s ∈ Σ∗ be a nonempty input string for M .
For every string s′ evolvable in S from d(Ix(s)), h1(s′) is a computation history of
M on input s. For every computation history t of M on input s, d(t) is evolvable
from d(Ix(s)).

If the FSM M is nondeterministic, the strings evolvable from d(Ix(s)) in the
mutation system S correspond to all possible computation histories of M on input
s because S is a reversible mutation system and may evolve backward to the initial
string from any string it reaches, and then forward again along another computation
path. If M is deterministic, the strings evolvable from d(Ix(s)) form a line graph
of 2n vertices, with d(Ix(s)) at one end and the final history, in which all symbols
have been read and have state components in Q, at the other end.

4.3 Random point mutations and simulation running time

To quantify the overhead of the FSM simulation, we consider the case of a de-
terministic FSM M and random point mutations. On an input of length n, the
machine M reads one symbol per step, for a total of n steps before it reaches the
final configuration.

In a random point mutation of a string s, the type of mutation is selected
according to probabilities pd (for a deletion), pi (for an insertion) and pr (for a
replacement) where each probability is nonzero and their sum is 1. Then, depending
on the type of mutation selected, a position in the string is selected equiprobably
(with |s| possible positions for a deletion or replacement and |s|+1 for an insertion.)
Finally, for a replacement or insertion, a symbol is selected equiprobably from the

July 2, 2012 14:31 International Journal of Computer Mathematics paper-pdflatex

11

alphabet of the mutation system to be the replacing symbol or the symbol to
insert. Once the mutation has been selected and applied to produce a mutated
string s′, the fitness function is applied to s′. If s′ is fit, it replaces s (a successful
mutation), and if s′ is not fit, s remains the string to be mutated (an unsuccessful
mutation.) We are interested in the expected total number of mutations (successful
and unsuccessful) for the mutation system simulating M on input s to evolve from
d(Ix(s)) to strings representing every computation history of M on s.

In the simulation described in Section 4.1, when the input string s has length n
we can consider the strings reachable from d(Ix(s)) as a Markov chain of 2n states,
one for each reachable string, with initial state d(Ix(s)) and final state with no
unread symbols, representing the final configuration of M on input s. Each other
state of the chain has one predecessor and one successor, with a forward transition
when a successful mutation causes another symbol to have state component q ∈ Q
and a backward transition when a successful mutation causes another symbol to
have state component x.

The probabilities of a forward transition and a backward transition from a state
of the chain that is not initial or final are each equal to

pr/(2n|Σ′|),

where pr is the probability of choosing a mutation of type replacement, n is the
length of the input to M , and Σ′ is the alphabet of the simulating mutation system.
In order to be successful, a mutation must be of type replacement (which has
probability pr) and choose a replacing symbol that leads to a fit string. For a
forward transition, the mutation must choose the first symbol with state component
x and the unique element of Σ′ that has the same main symbol, the same index,
and correct state component in Q, which happens with probability 1/(2n|Σ′|). For
a backward transition, the mutation must choose the last symbol with a non-x
state component and the unique element of Σ′ that has the same main symbol, the
same index, and state component x, which happens with probability 1/(2n|Σ′|).

By standard results on random walks, this implies that the expected total number
of mutations for the simulation described in Section 4.1 to evolve from d(Ix(s)) to
all 2n reachable strings is

Θ(|Σ′|n3/pr).

Intuitively, this bound can be viewed as the Θ(n2) expected number of steps for an
unbiased random walk to move a distance of n from the initial location, multiplied
by the waiting time Θ(n|Σ′|/pr) for a mutation that succeeds and makes a forward
or backward transition.

4.4 Modified simulation running time

By using a somewhat different construction for the simulation, we can bias the
walk in the forward direction, making forward transitions much more likely than
backward ones. This is a technique used by Bennett [4] to improve the speed of
reversible computation. In the modified simulation we make an additional copy
of every symbol aiq such that q ∈ Q, and treat the copies as equivalent in the
simulation. Note that there is still only one copy of each symbol aix.

In particular, h1 maps both copies of a1
q to aq and both copies of a2

q to the
empty string for each q ∈ Q. Thus, there are 2r different strings reachable from
d(Ix(s)) in which the first r symbols have non-x state components and the rest

July 2, 2012 14:31 International Journal of Computer Mathematics paper-pdflatex

12

have state component x, and they all represent just one computation history of
M on input s. We can consider the 22n+1 − 1 strings reachable from d(Ix(s)) as a
Markov chain with 22n+1 − 1 states, with each state that is not initial having one
predecessor (in which the last symbol with non-x state component is replaced by
the symbol with same main symbol component, same index, and state component
x) and each state that is non-final having two successors (in which the first symbol
with state component x is replaced by one of the two symbols with same main
symbol component, same index and the correct state component from Q.)

The result is that the probability of a forward transition is twice that of a back-
ward transition in this Markov chain. Therefore the expected total number of
mutations for the simulation to evolve from d(Ix(s)) to some string in which no
symbol has state component x (representing the final configuration of M on input
s) is reduced by a factor of n to

Θ(|Σ′|n2/pr).

Note that we do not require the simulation to evolve to every reachable string (an
exponential number), just to strings representing every computation history of M
on input s. Intuitively, this construction spends random bits (in the choice of which
copy of aiq to use) in order to make the choice of a backward transition much less
likely.

5. Simulating cellular automata

Cellular automata are a well known model of computation introduced by Von Neu-
mann [20], motivated by physical and biological problems. In a recent survey paper,
Kari [11] notes that cellular automata have several fundamental properties of the
physical world: they are massively parallel, homogeneous, and reversible, have only
local interactions, and facilitate formulation of conservation laws based on local up-
date rules. These properties match well with the features of our mutation system
model, and a detailed comparison sheds light on the power and expressiveness of
our new model. We choose to simulate one-dimensional asynchronous reversible
cellular automata with insertions and deletions because they share features with
mutation systems and support universal computation [14].

A cellular automaton C = (Σ, δ) is composed of an alphabet of symbols Σ
and a set δ transition rules of the form axb ↔ ayb for substitutions or ab ↔ axb
for insertions and deletions, where a, b, x, y ∈ Σ. The idea is that the value of a
given cell of the automaton may change only when both its neighbors have specific
values.

For s1, s2 ∈ Σ∗, s1 can reach s2 in one step of C, denoted s1 →C s2, if applying
one transition rule to s1 yields s2. And s1 can reach s2 in C if s1 →∗C s2. Given an
input string s ∈ Σ∗, a snapshot of C on input s is any string s′ such that s can
reach s′ in C. For example if we have the rules {abc↔ adc, dce↔ dfe, fe↔ fge},
and an input abce, the snapshots of the computation on this input are

{abce, adce, adfe, adfge}.

5.1 From cellular automata to mutation systems

Given a cellular automaton C = (Σ, δ), we describe how to construct a 2-simple
mutation system S = (Σ′, µp, f) such that for every nonempty input string s ∈ Σ∗,

July 2, 2012 14:31 International Journal of Computer Mathematics paper-pdflatex

13

the snapshots of C on input s are represented by the strings evolvable from d(s)
in S.

The simulation of a cellular automaton is more complex than the simulation of
a FSM; one step of the cellular automaton may require as many as fourteen point
mutations, as shown in Fig 6. To ensure the correct coordination of these mutations,
we duplicate the symbols and also allow them to store information about one or
two symbols to the left or right. The idea is that before performing a transition
of the cellular automaton, the system “locks” the left and right neighbors of the
symbol to be changed. The additional symbol (−) marks the left and right edges
of the transition. To permit insertions and deletions in the string, there is an extra
index (denoted ∗) besides 1 and 2. As an example, the following string

a1 · a2 · −b1 · bb2 · bbc1 · c2
dd · d1

d · d2
− · e1 · e2

represents the string abcde where c has locked its left and right neighbors prepar-
ing for a transition. The explicit concatenation operator (·) separates individual
symbols above. After a transition has been performed, symbols may unlock their
neighbors and return to having empty neighbor information.

Let J = {1, 2, ∗} be the set of indices and N = {λ} ∪ {−} ∪ Σ ∪ Σ2 be the set
of possible neighbor strings. Define the alphabet Σ′ for the mutation system as
follows.

Σ′ = {uaiv : a ∈ Σ, i ∈ J, u ∈ N, v ∈ N}.

In the symbol ua
i
v, a is the main symbol component, i is the index, u (resp. v) is

the left (resp. right) neighbor information. Let Σ1 denote the set of symbols of the
form ai with empty neighbor information and index i ∈ {1, 2}.

The symbol duplication map d maps Σ∗ to (Σ1)∗ by replacing each occurrence
of a symbol a by the string a1 · a2. We define a projection h1 from (Σ′)∗ to Σ∗

that maps each symbol with index 1 to its main symbol component, and maps all
others to the empty string. Thus h1(d(s)) = s for all s ∈ Σ∗. Also, for example,

h1(−a
1 · aa2 · aad1 · b2cc · c1

c · c2
−) = adc.

5.2 Defining the fitness function

We describe the strictly 2-testable pattern P = (PRE,MID,SUF) that determines
the fitness function f of the mutation system. PRE consists of all symbols a1 and
−a

1 such that a ∈ Σ. SUF consists of all symbols a2 and a2
− such that a ∈ Σ.

The set MID contains strings of length two to deal with the situations: (1) empty
neighbor information, (2) substitution rules, and (3) insertion/deletion rules.

5.2.1 Empty neighbor information

To permit duplicated symbols we have a1 ·a2 for all a ∈ Σ. To permit a boundary
between symbols we have a2 ·b1 for all a, b ∈ Σ. Together with PRE and SUF, these
cases ensure that f(d(s)) = 1 for every nonempty string s ∈ Σ∗.

5.2.2 Substitution rules

For each substitution rule axb↔ ayb we add strings to MID that permit d(axb)
and d(ayb) to mutate to each other as follows.

To add left neighbor information − to a1 we have c2 · −a1 and c2
− · −a1 for all

c ∈ Σ, as well as −a
1 · a2. To add right neighbor information − to b2 we have b2− · d1

and b2− · −d1 for all d ∈ Σ, as well as b1 · b2−.

July 2, 2012 14:31 International Journal of Computer Mathematics paper-pdflatex

14

a1 a2 x1
HH

x2

@
@

b1

@
@

b2

c2
H
H

aax
1
��

@
@

x2
bb H

H
d1

−a
1
�
�

@
@

aa
2
�
�

�
�

HH@
@

b1b b2−
�
�

HH
c2
−
��

aay
1

HH

�
�

y2
bb

��

−d
1

a1 a2 y1
��

y2
�
�

b1
�
�

b2

Figure 4. MID strings allowing substitutions for the rule axb↔ ayb.

To add left neighbor information a to the symbol a2 we have −a
1 · aa2, as well

as aa
2 · x1 and aa

2 · y1. To add right neighbor information b to the symbol b1 we
have b1b · b2−, as well as x2 · b1b and y2 · b1b .

To add left neighbor information aa to the symbol x1 or y1 we have aa
2 ·aax1 and

aax
1 ·x2, as well as aa

2 · aay1 and aay
1 · y2. To add right neighbor information bb to

the symbol x2 or y2 we have x2
bb · b1b and x1 · x2

bb, as well as y2
bb · b1b and y1 · y2

bb. The
strings that permit both left neighbor information of aa on x1 and right neighbor
information bb on x2 (and similarly for y1 and y2) are aax

1 · x2
bb and aay

1 · y2
bb.

The above strings permit consecutive symbols indexed 1 and 2 only if they have
the same main symbol. However, we need to permit x to be replaced by y and vice
versa. The strings that permit this are aax

1 · y2
bb and aay

1 · x2
bb. Figure 4 shows the

strings added to MID for the substitution rule axb↔ ayb. Each line connects two
symbols forming a string in MID.

5.2.3 Insertion/deletion rules

For each insertion/deletion transition rule ac↔ abc we add the following strings
to MID. To add left neighbor information − to a1 we have d2 ·−a1 and d2

− ·−a1 for
all d ∈ Σ, as well as −a

1 · a2. To add right neighbor information − to c2 we have
c2
− · e1 and c2

− · −e1 for all e ∈ Σ, as well as c1 · c2
−.

To add left neighbor information a to a2 we have −a
1 · aa2 as well as aa

2 · b1 and
aa

2 · c1. To add right neighbor information c to c1 we have c1
c · c2

− as well as b2 · c1
c

and a2 · c1
c . The string that permits both left neighbor information of a on a2 and

right neighbor information of c on c1 when a2 and c1 are adjacent is aa
2 · c1

c .
To add left neighbor information aa to b1 when a2 is adjacent to b1, we have

aa
2 · aab1 and aab

1 · b2.
To allow b to be deleted or inserted, we add strings using the ∗ index that permit

b2 to become aab
∗
cc and vice versa, namely aab

1 ·aab∗cc and aab
∗
cc ·c1

c . Finally we add a
string that permits the insertion/deletion of b1 and aab

∗
cc, namely aa

2 · aab∗cc. Figure
5 shows the strings in MID for the insertion/deletion rule ac ↔ abc. Again each
line connecting two symbols indicates a string in MID.

This completes the construction of MID and the mutation system S. To see that
f permits the transitions of C to be simulated, we prove the following.

Lemma 5.1 If s ∈ Σ∗ is nonempty and s→C t then d(s)→∗S d(t).

Proof If t is obtained from s by using a substitution rule to substitute ayb for
axb in s, then the sequence of point mutations in Figure 6 applied to the relevant
portion of d(s) shows that d(t) is evolvable from d(s). Symbols (if any) to the left
and right of this portion of d(s) are unchanged.

If t is obtained from s by using an insertion/deletion rule to replace abc in s by
ac, then the sequence of point mutations in Figure 7 applied to the relevant portion
of d(s) shows that d(t) is evolvable from d(s). Symbols (if any) to the left and right
of this portion of d(s) are unchanged. Because point mutations are reversible, the

July 2, 2012 14:31 International Journal of Computer Mathematics paper-pdflatex

15

a1 a2
PPPPPPPPPP

c1

@
@

c2

d2
H
H

e1

−a
1
�
�

J
J
J
J

aa
2�
��

��
��

��
�

XXXXXX@
@@

J
J
J
J

c1
c c2

−
�
�

HH
d2
−
��

aab
∗
cc

��

−e
1

aab
1
��

HH
a1 a2 b1 b2

c1

c2

Figure 5. MID strings allowing insertions and deletions for the rule ac↔ abc.

a1 · a2 · x1 · x2 · b1 · b2

−a
1 · a2 · x1 · x2 · b1 · b2

−a
1 · a2 · x1 · x2 · b1 · b2−

−a
1 · aa2 · x1 · x2 · b1 · b2−

−a
1 · aa2 · x1 · x2 · b1b · b2−

−a
1 · aa2 · aax1 · x2 · b1b · b2−

−a
1 · aa2 · aax1 · x2

bb · b1b · b2−
−a

1 · aa2 · aay1 · x2
bb · b1b · b2−

−a
1 · aa2 · aay1 · y2

bb · b1b · b2−
−a

1 · aa2 · aay1 · y2 · b1b · b2−
−a

1 · aa2 · y1 · y2 · b1b · b2−
−a

1 · aa2 · y1 · y2 · b1 · b2−
−a

1 · a2 · y1 · y2 · b1 · b2−
−a

1 · a2 · y1 · y2 · b1 · b2
a1 · a2 · y1 · y2 · b1 · b2

Figure 6. Sequence of mutations to achieve
d(axb)↔∗

S d(ayb).

a1 · a2 · b1 · b2 · c1 · c2

−a
1 · a2 · b1 · b2 · c1 · c2

−a
1 · a2 · b1 · b2 · c1 · c2

−
−a

1 · aa2 · b1 · b2 · c1 · c2
−

−a
1 · aa2 · b1 · b2 · c1

c · c2
−

−a
1 · aa2 · aab1 · b2 · c1

c · c2
−

−a
1 · aa2 · aab1 · aab∗cc · c1

c · c2
−

−a
1 · aa2 · aab

∗
cc · c1

c · c2
−

−a
1 · aa2 · c1

c · c2
−

−a
1 · aa2 · c1 · c2

−
−a

1 · a2 · c1 · c2
−

−a
1 · a2 · c1 · c2

a1 · a2 · c1 · c2

Figure 7. Sequence of mutations to achieve
d(abc)↔∗

S d(ac).

reverse of this sequence indicates how ac can be replaced by abc. �

5.3 Correctness of the cellular automaton simulation

Theorem 5.2 Let C = (Σ, δ) be a cellular automaton and let S = (Σ′, µp, f) be
the 2-simple mutation system constructed from C as described above. Let s ∈ Σ∗

be a nonempty string. For any string t reachable from s in C, the string d(t) is
evolvable from d(s). Conversely, for any string s′ evolvable in S from d(s), h1(s′)
is reachable from s in C.

Proof The first part follows by induction on the number of transitions to reach t
from s in C, using Lemma 5.1.

For the converse, it suffices to show that if d(s) →∗S s′ and s →∗C h1(s′) and
s′ →S t then h1(s′)→∗C h1(t).

Suppose a1 is the first symbol and b2 is the last symbol of d(s). To maintain
fitness, these symbols cannot be deleted, and no symbol can be inserted before the
first or after the last. The only changes they can undergo that result in fit strings
is that a1 can be replaced by −a

1 and vice versa, and b2 can be replaced by b2− and
vice versa. Thus we need only consider changes to interior symbols.

Let s′ ∈ (Σ′)∗ be any nonempty fit string. The indices of any three consecutive

July 2, 2012 14:31 International Journal of Computer Mathematics paper-pdflatex

16

symbols in s′ must be one of the seven possibilities: (1, 2, 1), (2, 1, 2), (1, 2, ∗),
(2, 1, ∗), (1, ∗, 1), (2, ∗, 1), and (∗, 1, 2).

If the deletion of a symbol from the interior of s′ yields another fit string t,
then the symbol deleted must be the middle symbol in one of the index sequences:
(1, 2, ∗), (2, 1, ∗) or (2, ∗, 1). In the first and third cases the symbols of index 1 are
unchanged and h1(t) = h1(s′). In the case of (2, 1, ∗), the three symbols in s′ must
be

aa
2 · aab1 · aab∗cc,

which implies that abc↔ ac is a rule in C. Moreover, the symbol before this triple
must be −a

1 and the symbol after it must be c1
c , which means that h(t) is obtained

from h1(s′) by replacing abc by ac, and h1(s′)→C h1(t).
Analogously, if an insertion of a symbol in the interior of s′ yields another fit

string t, then only an insertion into (2, ∗) (yielding (2, 1, ∗)) results in h1(t) 6= h1(s′).
This implies that the inserted symbol and its two neighbors to the left and right
in t are as follows:

−a
1 · aa2 · aab1 · aab∗cc · c1

c .

Thus, abc↔ ac is a rule of C and h1(t) is obtained from h1(s′) by replacing ac by
abc and h1(s′)→C h1(t).

If a replacement of one interior symbol of s′ by another yields a fit string t,
then either the replacement changes the index of the symbol or not. The only
possible kinds of replacements that change the index of the symbol are of the form
(1, 2, 1) ↔ (1, ∗, 1). This leaves the symbols of index 1 unchanged, and h1(t) =
h1(s′).

Thus the only replacements that we must consider are replacements of symbols of
index 1 by symbols of index 1 with a different main symbol, so that h1(t) 6= h1(s′).
The indices of the replaced symbol and its two neighbors must be either (2, 1, ∗)
or (2, 1, 2). In the first case, the three symbols of s′ are of the form

aa
2 · aab1 · aab∗cc,

and there is no other symbol that can replace aab
1 and yield a fit string t. In the

case of (2, 1, 2) the possibilities for the symbol of index 1 are a1, −a
1, a1

a, and bba
1.

When the symbol to its right is one of a2, a2
−, or aa

2, replacing the symbol of index
1 in s′ by a symbol of index 1 and main symbol other than a does not yield a
fit string. Thus, the only possibilities in s′ for the symbol of index 1 and its right
neighbor are the following: (1) a1 · a2

bb, (2) bba
1 · a2

cc, (3) bba
1 · c2

dd.
In case (1) the only replacement for a1 that changes the main symbol component

is of the form ddc
1 and yields

−d
1 · dd2 · ddc1 · a2

bb · b1b

in t. Then dcb↔ dab is a rule in C and h1(t) is obtained from h1(s′) by replacing
dab by dcb, so that h1(s′)→C h1(t).

In cases (2) and (3) the symbols to the left of bba
1 must be −b

1 · bb2. The only
possible replacement for bba

1 that changes the main symbol component is of the
form bbe

1.
In case (2), the result in t is

−b
1 · bb2 · bbe1 · a2

cc · c1
c .

July 2, 2012 14:31 International Journal of Computer Mathematics paper-pdflatex

REFERENCES 17

Thus bec ↔ bac is a rule in C and h1(t) is obtained from h1(s′) by replacing bac
by bec, so that h1(s′)→C h1(t).

In case (3), the result in t is

−b
1 · bb2 · bbe1 · c2

dd · d1
d.

Thus both bed ↔ bcd and bad ↔ bcd are rules in C, and h1(t) is obtained from
h1(s′) by replacing bad by bed. Though this is not necessarily a single step of C, it
is accomplished by two steps: bad→C bcd→C bed, so that h1(s′)→∗C h1(t), which
concludes the proof of Theorem 5.2. �

6. Conclusion

We have introduced mutation systems to model the evolution of a string subject
to the effects of mutations and a fitness function. We have shown that 2-simple
mutation systems, defined as having point mutations and a strictly 2-testable fitness
function, are sufficiently powerful to simulate computation by nondeterministic
finite automata. Under the assumption of random point mutations, the number of
steps to simulate a deterministic finite automaton is bounded by a polynomial in the
number of steps in the computation. We have also shown that 2-simple mutation
systems can simulate one-dimensional asynchronous reversible cellular automata
with insertions and deletions. Because this is a universal model of computation, it
is in general undecidable to predict whether one string can evolve into another in
a 2-simple mutation system.

Some possible generalizations of our definitions may be fruitful to explore. In-
stead of just one evolving string, we could consider a population of evolving strings.
Rather than a deterministic, time-invariant fitness function, we could consider fit-
ness functions that were probabilistic and/or time-varying, possibly depending on
comparisons with other strings in the current population.

A promising future direction is to explore the learnability of fitness functions
given positive data derived from the evolution of one or more strings in a mutation
system. The intuition is that observation of strings related by mutation and evo-
lution may provide additional information for a learning process. One reason for
considering k-testable fitness functions in connection with learnability is that for
any k the class of strictly k-testable languages, and even the class of concatenations
of strictly k-testable languages, are learnable in the limit from positive data [9, 13].

Acknowledgements

This material is based upon work supported by the National Science Foundation
under Grant Number CCF-0916389. A preliminary version of this paper appears
in the proceedings of LATA 2011 [2]. Raonne Barbosa Vargas is now employed by
Microsoft Corporation. The authors thank David Eisenstat and Sarah Eisenstat
for help with aspects of this paper.

References

[1] Bruce Alberts, Alexander Johnson, Julian Lewis, Martin Raff, Keith Roberts, and Peter Walter.
Molecular Biology of the Cell. Garland Publishing, 1994.

[2] Dana Angluin, James Aspnes, and Raonne Barbosa Vargas. Mutation systems. In Language and
Automata Theory and Applications: 5th International Conference, LATA 2011, Tarragona, Spain,

July 2, 2012 14:31 International Journal of Computer Mathematics paper-pdflatex

18 REFERENCES

May 26-31, 2011. Proceedings, volume 6638 of Lecture Notes in Computer Science, pages 92–104.
Springer-Verlag, May 2011.

[3] C.H. Bennett. Logical reversibility of computation. IBM J. RES. DEVELOP., pages 525–532,
November 1973.

[4] Charles H. Bennett. The thermodynamics of computation – a review. International Journal of
Theoretical Physics, 21:905–940, 1982.

[5] J.A. Brzozowski and Imre Simon. Characterizations of locally testable events. Discrete Mathematics,
4:243–271, 1973.

[6] Matteo Cavaliere and Peter Leupold. Evolution and observation – a non-standard way to generate
formal languages. Theoretical Computer Science, 321:233–248, 2004.

[7] Matteo Cavaliere and Peter Leupold. Computing by observing: Simple systems and simple observers.
Theoretical Computer Science, 412:113–123, 2010.

[8] Kenneth A. De Jong. Evolutionary Computation: A Unified Approach. MIT Press, Cambridge, MA,
2006.

[9] P. Garćıa and E. Vidal. Inference of k-testable languages in the strict sense and application to
syntactic pattern recognition. IEEE Trans. Pattern Anal. Mach. Intell., 12:920–925, 1990.

[10] Tom Head. Splicing representations of strictly locally testable languages. Discrete Appl. Math.,
87:139–147, 1998.

[11] Jarkko Kari. Theory of cellular automata: A survey. Theoretical Computer Science, 334(1–3):3–33,
April 2005.

[12] Sam M. Kim, Robert McNaughton, and Robert McCloskey. A polynomial time algorithm for the local
testability problem of deterministic finite automata. Algorithms and Data Structures, 382:420–436,
1989.

[13] Satoshi Kobayashi and Takashi Yokomori. Learning concatenations of locally testable languages from
positive data. In Setsuo Arikawa and Klaus Jantke, editors, Algorithmic Learning Theory, volume
872 of Lecture Notes in Computer Science, pages 407–422. Springer Berlin / Heidelberg, 1994.

[14] K. Lindgren and M.G. Nordahl. Universal computation in simple one-dimensional cellular automata.
Complex Systems, 4:299–318, 1990.

[15] Robert McNaughton. Algebraic decision procedures for local testability. Theory of Computing Sys-
tems, 8(1):60–76, March 1974.

[16] John Quackenbush. Computational analysis of microarray data. Genetics, 2:418–427, June 2001.
[17] Martin Tompa, Nan Li, and Timothy Bailey. Assessing computational tools for the discovery of

transcriptional factor binding sites. Nature Biotechnology, 23(1):137–144, January 2005.
[18] Martin Tompa and Amol Prakash. Discovery of regulatory elements in vertebrates through compar-

ative genomics. Nature Biotechnology, 23(10):1249–1256, October 2005.
[19] Leslie G. Valiant. Evolvability. J. ACM, 56:3:1–3:21, 2009.
[20] J. Von Neumann. Theory of self-reproducing automata. Editor A.W. Burks, University of Illinois

Press, 1966.
[21] Wyeth W. Wasserman and Albin Sandelin. Applied bioinformatics for the identification of regulatory

elements. Genetics, 5:276–287, April 2004.
[22] Takashi Yokomori and Satoshi Kobayashi. Learning local languages and their application to DNA

sequence analysis. IEEE Trans. Pattern Anal. Mach. Intell., 20:1067–1079, 1998.

