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We develop a simple agent-based model for a stok market [9, 21℄. The agents are tradersequipped with simple trading strategies, and their trades together determine the stok pries. We�rst onsider a basi ase of this model where there are only two strategies, namely, momentumand ontrarian strategies. The hoie of this base model and thus our general model is justi�edat two levels: (1) Experimental and empirial studies in the �nane literature [1, 4, 7, 10{12, 19℄show that a large number of traders primarily follow these two strategies. (2) Our own simulationresults show that despite its simpliity, the base model is apable of generating prie graphs whihare visually similar to the reent prie movements of high teh stoks (Figures 1 and 2).With these justi�ations, we then onsider the issue of market preditability in the generalmodel. We prove that if there are a large number of traders but they employ a relatively smallnumber of strategies, then there is a polynomial-time algorithm to predit future prie movementswith high auray (Theorem 5). On the other hand, if there are also a large number of strategies,then the problem of prediting future pries beomes omputationally very hard. To desribe thishardness, we de�ne two new omputational omplexity lasses alled CPP and promise-BCPP(De�nitions 8 and 16). We show that some market predition problems are hard for these twolasses (Theorems 17 and 18) and that PNP[O(logn)℄ � BPPpath � promise-BCPP � CPP = PP.These omputational ompleteness results open up the possibility that the prie graph of anatual stok ould be suÆiently deterministi for various predition purposes but appear randomto all polynomial-time predition algorithms. This is in ontrast to the most popular aademibelief that the future prie of a stok annot be predited from its historial pries beause thelatter are statistially random and ontain no information. This new possibility also di�ers fromthe fratal-based methodology in that the prie graph of a stok ould be a fratal but the fratalmight not be omputable in polynomial time. The �ndings in this paper an by no means settle thedebate about market preditability. Our goal is only that our alternative approah ould providenew insights to the preditability issue in a systemati manner. In partiular, it ould provide ageneral framework to investigate the many doumented tehnial trading rules [25℄ and to generatenovel and signi�ant interdisiplinary researh problems for omputer siene and �nane.The rest of the paper is organized as follows. Setion 2 disusses the basi market model. Se-tion 3 formulates the general model. Setion 4 proves the omplexity results for market preditionin the general model. We onlude the paper with some diretions for future researh in Setion 5.2 A Basi Market ModelIn this setion, we present a very simple market model, alled the deterministi-swithing MC(DSMC) model. The letter M stands for a momentum strategy, and the letter C for a ontrarianstrategy. These two strategies and the model itself are de�ned in Setion 2.1. Some omputersimulations for this model are reported in Setion 2.2.Intuitively, these strategies are heuristis (\rules of thumb") used by traders in the absene ofreliable asset valuation models. As disussed in [12℄, a momentum trader may observe a sequeneof \up" trades (prie inrements) and exeute a buy trade in the antiipation that she will notbe one of the last buyers, knowing very well that the asset is overpried. Similarly, she may seesome \down" trades (prie derements) and then make a sell trade in the hope that there will bemore sellers after her. In ontrast, after deteting a number of \up" (respetively, down) trades, aontrarian trader may submit a sell (respetively, buy) trade, antiipating a prie reversal.Both experimental and empirial studies have shown that traders look at past prie dynamisto form their expetations of future pries, and a large number of them primarily follow momentumor ontrarian strategies [1, 7, 10, 11℄. In addition, the traders may swith between these two dia-2



metrially opposite strategies. Momentum and ontrarian strategies are dominant in the behaviorof professional market timers as well [19℄. The use of momentum and ontrarian strategies some-times signi�es gambling tendenies among traders [7℄. In fat, a market model with momentumand ontrarian traders an also be interpreted as a market with noise traders and rational traders,where the noise traders essentially follow a momentum strategy while the rational traders attemptto exploit the noise traders by following a ontrarian strategy [4, 12℄.2.1 De�ning the DSMC ModelIn the DSMC model, there is only one stok traded in the market. The model is ompletelyspei�ed by three integer parameters m;L; k > 0, and a real parameter � > 0 as follows.There are m traders in the market, and eah trader's strategy set onsists of momentum (M)and ontrarian (C) strategies. At the beginning of day 1 of the investment period, eah traderrandomly hooses her initial strategy from fM; Cg and an integer `i 2 [2; L℄ with equal probability,where L is the maximum strategy swithing period. This is the only soure of randomness in theDSMC model; from this point onwards, there is no random hoie.Rule 1 (Deterministi Strategy Swithing Rule) For days 1; : : : ; k + 1, there is no trading.Eah trader starts trading from day k+2 using her initial strategy. Trader i uses the same strategyfor `i days and swithes it at the beginning of every `i days.The next rule de�nes the two strategies with respet to a given memory size k, whih is thesame for all traders.Rule 2 (Trading Rule) At the beginning of day t, observe the stok pries Pf of days f 2[t � (k + 1); t � 1℄. For g 2 [t � k; t � 1℄, ount the number ku of days g when Pg > Pg�1; andthe number kd of days when Pg < Pg�1. The k-day trend is de�ed as Tr(k; t) = ku � kd. Then, ifTr(k; t) � 0 (respetively, < 0), the momentum strategy M buys (respetively, sells) one share ofthe stok at the market prie determined by Rule 3 below. In ontrast, the ontrarian strategy Csells (respetively, buys) one share of the stok.For instane, suppose that k = 2, and investor i piks her initial strategy M and `i = 2 at thebeginning of day 1. She then observes the pries of days 1, 2, 3, whih are, say, $80; $82; $90. Atthe beginning of day 4, she issues a market order to buy one share of the stok. The orders issuedby the traders on day 4 together determine the prie of day 4 as spei�ed by Rule 3. Suppose thatthe prie of day 4 is $91, then investor i issues another market buy order at the beginning of day5. Sine her `i is 2, at the beginning of day 6, she swithes her strategy from M to C.Rule 3 (Prie Adjustment Rule) The pries for days 1; : : : ; k+1 are given. On day t � k+2,let mb and ms be the total numbers of buys and sells, respetively. Then, the prie Pt on day t isdetermined by the following equation:Pt � Pt�1 = ��(mb �ms);where � is the unit of prie hange.
3
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Figure 1: A one-year prie sequene generated using the DSMC model. Parameters: number oftraders m = 20, memory size k = 2, maximum strategy swithing period L = 8, unit of priehange � = 0:25, number of trading days = 250. The prie graph appears strikingly similar to thereent prie movements of high teh stoks.
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Figure 2: A one-year prie sequene generated using the DSMC model. The parameters are thesame as those for Figure 1. 4



2.2 Computer Simulation on the DSMC ModelWe have onduted some omputer simulations of the DSMC model to test whether it an generaterealisti prie graphs. Beause we had to examine the graphs visually, our time onstraints limitedthe number of these simulations to only about six hundred. For a large fration of them, we setm = 20, L = 8, and the initial k pries in the range of $70 to $90. We then foused on testing thee�et of memory size k [24℄. Two main �ndings are as follows:� For k = 1, the prie graphs were not visually real.� For k = 2, about one out of four graphs were strikingly similar to those of reent high tehstoks, whih was a major positive surprise to us. Two representatives of suh graphs areshown in Figures 1 and 2.These two statements are based on our subjetive impressions and limited simulations. Tofurther understand the DSMC model, it would be useful to automate statistial analysis on theprie graphs generated by this model and ompare them with real stok pries.3 A General Market ModelIn this setion, we de�ne a market model, alled the AS model, where the word AS stands forarbitrary strategies. It an be veri�ed in a straightforward manner that the DSMC model is aspeial ase of the AS model.In the AS model, there is only one stok traded in the market. The model is ompletely spei�edas follows with �ve parameters: (1) the number m of traders, (2) a unit � > 0 of prie hange, (3)a set � = fS1; : : : ;Shg of strategies, (4) a prie adjustment rule (Equation 1 or 2 below), and (5)a joint distribution of the population variables X1; : : : ;Xh.Rule 4 (Market Initialization) There are m traders in the market. At the beginning of day 1of the investment period, eah trader randomly hooses her initial strategy from �. Let Xi be thenumber of traders who hoose Si. Then, eah Xi is a random variable, whih is the only soureof randomness in the model. (Unlike the DSMC model, beause the allowable generality of �, theAS model does not need strategy swithing.)Di�erent joint distributions of the variables Xi lead to di�erent spei� models and preditionproblems. In Setion 4.2, we onsider joint distributions that tend to Gaussian in the limit as thenumber m of traders beomes large. In Setion 4.3, we onsider the ase where the variables Xiare independent, and eah is 0 or 1 with equal probability.Rule 5 (Trading Strategies) There is no trading on day 0. At the beginning of day t � 1, atrader observes the historial pries P0; : : : ; Pt�1 and reats by issuing a market order to buy oneshare of the stok, hold (i.e., do nothing), or sell one share aording her strategy. Formally, astrategy is a olletion of funtions S = fS1;S2; : : : ;St; : : :g, where eah St maps P0; : : : ; Pt�1 to+1 (buy), 0 (hold), or �1 (sell).The prie Pt of day t is determined at the end of the day by the day's m market ordersusing Rule 6. Sine the traders hoose their strategies randomly, the sequene P0; P1; : : : ; Pt; : : :is a stohasti proess. We write Ft for the probability spae indued by all possible sequeneshP0; : : : ; Pti [18℄. Then, we think of eah funtion St as a random variable on Ft�1.We distinguish between strategies that reat to prie movements and those that ignore them.5



� S is an ative strategy if the funtions St may or may not be onstant funtions. An ativetrader is one with an ative strategy. Examples of ative strategies inlude many used byday traders, who try to apture extremely short-term prie trends.� S is a passive strategy if the funtions St all are onstant funtions. A passive trader is onewith a passive strategy. Examples of passive strategies inlude two very popular ones: (1)dollar averaging, whih invests an equal amount every day over a hosen period, and (2)monthly retirement ontributions by eduational institutions, whih are made on the sameday every month.Rule 6 (Prie Adjustment) The prie P0 is given. At the end of day t � 1, the prie Pt isdetermined by the day's market orders to buy or sell from the traders. We onsider two simplerules:With the proportional inrement (PI) rule,Pt = Pt�1 + �� hXi=1Xi�Sit ; (1)where � is the unit of prie hange. Thus we an observe diretly the net di�erene between thenumber of buyers and sellers on day t.With the �xed inrement (FI) rule,Pt = Pt�1 + �� sign hXi=1Xi�Sit! : (2)In this ase, the market moves up or down depending on whether the majority of traders are buyingor selling, but the amount by whih it moves is �xed at �.For notational brevity, an AS+FI model refers to an AS model with the �xed inrement rule,and an AS+PI model refers to an AS model with the proportional inrement rule.In reality, the prie tends to move up if there are more buy orders than sell orders; similarly,the prie tends to move down if there are more sell orders than buy orders. The FI rule is meant tomodel the sign but not the magnitude of the slope of this orrelation, while the PI rule attempts tomodel both. Clearly, there an be many other inrement rules, whih this paper leaves for futureresearh.4 Prediting the MarketInformally, the market predition problem at the beginning of day t is de�ned as follows:� The data onsists of (1) the �ve parameters of an AS-model, i.e., m, �, �, Xi, and a prieadjustment rule, and (2) a prie history P0; : : : ; Pt�1.� The goal is to predit the prie Pt by estimating the onditional probabilities Pr[Pt > Pt�1 jP0; : : : ; Pt�1℄, Pr[Pt < Pt�1 j P0; : : : ; Pt�1℄, and Pr[Pt = Pt�1 j P0; : : : ; Pt�1℄.Note that Pr[Pt > Pt�1 j P0; : : : ; Pt�1℄ is symmetri to Pr[Pt < Pt�1 j P0; : : : ; Pt�1℄ and Pr[Pt =Pt�1 j P0; : : : ; Pt�1℄ = 1 � Pr[Pt > Pt�1 j P0; : : : ; Pt�1℄ � Pr[Pt < Pt�1 j P0; : : : ; Pt�1℄. Thus, fromthis point onwards, our disussion fouses on estimating Pr[Pt > Pt�1 j P0; : : : ; Pt�1℄.6



From an algorithmi perspetive, we sometimes assume that the prie adjustment rule and thejoint distribution of the variables Xi are �xed, and that the input to the algorithm is m, �, adesription of �, and the prie history. This allows di�erent algorithms for di�erent model familiesas well as side-steps the issue of how to represent the possibly very ompliated joint distribution ofthe variables Xi as part of the input. As for the desription of �, we only need Si1; : : : ;Sit for eahSi 2 � instead of the whole �, and the desription of these funtions an simpli�ed by restritingtheir domains to onsist of the prie sequenes onsistent with the given prie history.4.1 Markets as Systems of Linear ConstraintsIn the AS+FI model with parameters m and �, a prie sequene P0; : : : ; Pt and � an yield a setof linear inequalities in the population variables Xi as follows. If the prie hanges on day t, wehave sign(Pt � Pt�1) hXi=1 SitXi > 0: (3)If the prie does not hange, we have instead the equationhXi=1 SitXi = 0: (4)Furthermore, any assignment of the variables Xi that satis�es either inequality is feasible withrespet to the orresponding prie movement on day t. In both ases, Sit is omputable from theprie sequene P0; : : : ; Pt�1. The same statements hold for days 1; : : : ; t � 1. Therefore, given mand �, we an extrat from � and P0; : : : ; Pt a set of linear onstraints on the variables Xi. Theonverse holds similarly. We formalize these two observations in Lemmas 1 and 2 below.Lemma 1 In the AS+FI model with parameters m and �, given � and a prie sequene P0; : : : ; P�,there are matries A and B with oeÆients in f�1; 0;+1g, h olumns eah, and � rows in total.The rows of A (respetively, B) orrespond to the days when Pj 6= Pj�1 (respetively, Pj = Pj�1).Furthermore. the olumn vetors x = (X1; : : : ;Xh)> onsistent with � and P0; : : : ; P� are exatlythose that satisfy Ax > 0 and Bx = 0. The matries A and B an be omputed in time O(h�T ),where T is an upper bound on the time to ompute a single Sij from P0; : : : ; P� over all j 2 [1; �℄and Si.Proof: Follows immediately from Equations 3 and 4.Lemma 2 In the AS+FI model with parameters m and �, given a system of linear inequalitiesAx > 0; Bx = 0, where A and B have oeÆients in f�1; 0;+1g with h olumns eah, and � rowsin total, there exist (1) a set � of h strategies orresponding to the h olumns of A and B, and(2) a (� + 1)-day prie sequene P0; : : : ; P� with the latter � days orresponding to the � rows ofA and B. Furthermore, the values of the population variables X1; : : : ;Xn are feasible with respetto the prie movement on day j if and only if olumn vetor x = (X1; : : : ;Xn)> satis�es the j-thonstraint in A and B. Also, P0; : : : ; P� and a desription of � an be omputed in O(h�) time.Proof: Follows immediately from Equations 3 and 4.In the AS+PI model we obtain only equations, of the form:hXi=1 SitXi = 1�(Pt � Pt�1): (5)7



In this ase there is a diret orrespondene between market data and systems of linear equations.We formalize this orrespondene in Lemmas 3 and 4 below.Lemma 3 In the AS+PI model with parameters m and �, given � and a prie sequene P0; : : : ; P�,there is a matrix B with oeÆients in f�1; 0;+1g, h olumns, and � rows, and a olumn vetor bof length h, suh that the olumn vetors x = (X1; : : : ;Xh)> onsistent with � and P0; : : : ; P� areexatly those that satisfy Bx = b. The oeÆients of B and b an be omputed in time O(h�T ),where T is an upper bound on the time to ompute a single Sij from P0; : : : ; P� over all j 2 [1; �℄and Si.Proof: Follows immediately from Equation 5.Lemma 4 In the AS+PI model with parameters m and �, given a system of linear equationsBx = b, where B is a � � h matrix with oeÆients in f�1; 0;+1g, there exist (1) a set � of hstrategies orresponding to the h olumns of B, and (2) a (� + 1)-day prie sequene P0; : : : ; P�with the last � days orresponding to the � rows of B. Furthermore, the values of the populationvariables X1; : : : ;Xn are feasible with respet to the prie movement on day j if and only if olumnvetor x = (X1; : : : ;Xn)> satis�es the j-th onstraint in B. Also, P0; : : : ; P� and a desription of� an be omputed in O(h�) time.Proof: Follows immediately from Equation 5.4.2 An Easy Case for Market Predition: Many Traders but Few StrategiesIn Setion 4.2.1, we show that if an AS+FI market has far more traders than strategies, then ittakes polynomial time to estimate the probability that the next day's prie will rise. In Setion4.2.2, we disuss why the same analysis tehnique does not work for an AS+PI market.4.2.1 Prediting an AS+FI MarketFor the sake of emphasizing the dependene on m, let Prm[E℄ be the probability that event Eours when there are m traders in the market.This setion makes the following assumptions:E1 The input to the market predition problem is simply a prie history P0; : : : ; Pt�1. The outputis limm!1 Prm[Pt > Pt�1 j P0; : : : ; Pt�1℄.E2 The market follows the AS+FI model.E3 � is �xed. The values Sij over all i 2 [1; h℄ are omputable from the input in total timepolynomial in j.E4 Eah of them traders independently hooses a random strategy Si from � with �xed probabilitypi > 0, where p1 + � � � + ph = 1.The parameter � is irrelevant.Notie that the olumn vetor X = (X1; : : : ;Xh)> is the sum of m independent identially-distributed vetor-valued random variables with a enter at p = m�(p1; : : : ; ph)>. We reenterand resale X to Y = (X � m�(p1; : : : ; ph)>)=pm. Then, by the Central Limit Theorem (see,e.g., [3, Theorem 29.5℄), as m ! +1, Y onverges weakly to a normal distribution entered atthe h-dimensional vetor (0; : : : ; 0)>. In Theorem 5 below, we rely on this fat to estimate theprobability that the market rises for prie histories that our with nonzero probability.8



Theorem 5 Assume that limm!1 Prm[P0; : : : ; Pt�1℄ > 0. Then there is a fully polynomial-timeapproximation sheme for estimating limm!1 Prm[Pt > Pt�1 j P0; : : : ; Pt�1℄ from P0; : : : ; Pt�1.The time omplexity of the sheme is polynomial in (1) the length t of the prie history, (2) theinverse of the relative error bound �, and (3) the inverse of the failure probability �.Remark. We omit the expliit dependeny of the running time in h and p1; : : : ; ph in order toonentrate on the main point that market predition is easy with this setion's four assumptions.The parameters h and p1; : : : ; ph are onstant under the assumptions.Proof: We use Lemma 1 to onvert the prie history P0; : : : ; Pt�1 and the strategy set � intoa system of linear onstraints AX > 0 and BX = 0, with the next day's prie hange Pt � Pt�1determined by sign(�X 0) for some . Sine the values Sij are omputable in time polynomial in j,this onversion takes time polynomial in t.Then, Prm[P0; : : : ; Pt�1℄ = Prm[AX > 0^BX = 0℄. Sine limm!1 Prm[AX > 0^BX = 0℄ > 0,the onstraints in B must be vauous; in other words, for eah Pi = 0 with i 2 [0; t � 1℄, theorresponding onstraint in B is 0�X1+ � � �+0�Xh = 0. Therefore, Prm[P0; : : : ; Pt�1℄ = Prm[AX >0℄. Furthermore, sine both A and  are onstant with respet to m,limm!1Prm[Pt > Pt�1 j P0; : : : ; Pt�1℄ = limm!1 Prm[AX > 0 ^ �X > 0℄limm!1 Prm[AX > 0℄ : (6)So to ompute the desired limm!1 Prm[Pt > Pt�1 j P0; : : : ; Pt�1℄, we ompute limm!1 Prm[AX >0 ^ �X > 0℄ and limm!1 Prm[AX > 0℄ as follows.To avoid the degeneray aused by Phi=1Xi = m, we work with X 0 = (X1; : : : ;Xh�1)> insteadof X by replaing Xh with m �Ph�1i=1 Xi and making related hanges. Let p0 = (p1; : : : ; ph�1)>,whih is the enter of X 0. As is true for Y , as m ! +1, the vetor Y 0 = (X 0 � m�p0)=pmonverges weakly to a normal distribution entered at the (h � 1)-dimensional point (0; : : : ; 0)> .Under the assumption that eah pi is nonzero, the distribution of Y 0 is full-dimensional (withinits restrited (h � 1)-dimensional spae), as in the limit the variane of eah oordinate Y 0i isnonzero onditioned on the values of the other oordinates, whih implies that the smallest subspaeontaining the distribution must ontain all h� 1 axes. We an alulate the ovariane matrix ofY 0 diretly from the pi, as it is equal to the ovariane matrix for a single trader: on the diagonal,Cii = pi � p2i ; and for o�-diagonal elements, Cij = �pipj. Given C, Y 0 has density �(x) = aex>Cxfor some onstant a, and we an evaluate this density in O(h2) time given x, whih is O(1) timeunder our assumption that � is �xed.Let Ai be the i-th onstraint of A, i.e., Ai;1X1+ � � �+Ai;hXh > 0. Let A0i denote the onstraint(Ai;1 �Ai;h; : : : ; Ai;h�1 �Ai;h). Let 0 = (1 � h; : : : ; h�1 � h).We next onvert the onstraints of A on X into onstraints on Y 0. First of all, notie thatAiX = pm�(A0iY 0) +m�Aip. So AiX > 0 if and only if A0iY 0 > �pm�Aip. The term �pm�Aipmay not be onstant. In suh a ase, as m ! 1, the hyper plane bounding the half spaeA0iY 0 > �pm�Aip keeps moving away from the origin, whih presents some tehnial ompliation.To remove this problem, we analyze the term in three ases. If Aip < 0, then sine m�p is theenter of X, as m ! 1, Prm[AiX < 0℄ onverges to 1. In other words, Ai is infeasible withprobability 1 in the limit. Then, sine limm!1 Prm[P0; : : : ; Pt�1℄ > 0, suh Ai annot exist inA. Similarly, if Aip > 0, then limm!1 Prm[AiX > 0℄ = 1 and Ai is vauous. The interestingonstraints are those for whih Aip = 0; in this ase, by algebra, AiX > 0 if and only if A0iY 0 > 0.Thus, let D be the matrix formed by these onstraints; D an be omputed in O(ht) time. Then,sine D is onstant with respet to m, limm!1Prm[AX > 0℄ = limm!1 Prm[DY 0 > 0℄. Similarly,Prm[AX > 0 ^ �X > 0℄ onverges to (1) 0, (2) Prm[DY 0 > 0℄, or (3) Prm[DY 0 > 0 ^ 0�Y 0 > 0℄ forase (1) �p < 0, ase (2) �p > 0, or ase (3) �p = 0, respetively.9



Therefore, by Equation 6, limm!1 Prm[Pt > Pt�1 j P0; : : : ; Pt�1℄ equals 0 for ase (1) andequals 1 for ase (2). Case (3) requires further omputation.limm!1Prm[Pt > Pt�1 j P0; : : : ; Pt�1℄ = limm!1 Prm[DY 0 > 0 ^ 0�Y 0 > 0℄limm!1 Prm[DY 0 > 0℄ : (7)The numerator and denominator of the ratio in Equation 7 are both integrals of the distributionof Y 0 in the limit over the bodies of possibly in�nite onvex polytopes. To deal with the possiblein�niteness of the onvex bodies DY 0 > 0 ^ 0�Y 0 > 0 and DY 0 > 0, notie that the densitydrops exponentially. So we an trunate the regions of integration to some �nite radius aroundthe (h � 1)-dimensional origin (0; : : : ; 0)> with only exponentially small loss of preision. Finally,sine the distribution of Y 0 in the limit is normal, by applying the Applegate-Kannan integrationalgorithm for log-onave distributions [2℄ to the numerator and denominator separately, we anapproximate limm!1 Prm[Pt > Pt�1 j P0; : : : ; Pt�1℄ within the desired time omplexity.4.2.2 Remarks on Prediting an AS+PI MarketThe probability estimation tehnique based on taking m to 1 does not appear to be appliable tothe AS+PI model for the following reasons.First of all, by Lemma 3, the input prie history indues a system of linear equations BX = b.If any equation in BX = b is not equivalent to X1 + � � �+Xh = m or 0�X1 + � � �+ 0�Xh = 0, thenlimm!1Prm[P0; : : : ; Pt�1℄ = 0.A natural attempt to overome this seemingly tehnial diÆulty would be to (1) solve BX = bto hoose a maximal set U of independent variables Xi and (2) evaluate Prm[P0; : : : ; Pt�1℄ in theprobability spae indued by this set. Still, a single onstraint suh as Bi;1�X1+� � �+Bi;h�Xh = ��m0with Bi;j � 0 for all j 2 [1; h℄ and Bi;j0 > 0 for some Xj0 2 U fores limm!1 Prm[P0; : : : ; Pt�1℄ = 0in the new probability spae. This is due to the fat that m0 is onstant with respet to m.A further attempt would be to evaluate limm!1Prm[Pt > Pt�1 j P0; : : : ; Pt�1℄ by diretlyworking with the probability spae indued by P0; : : : ; Pt�1. This also does not work beause weshow below that the market predition problem an be redued to the ase where taking a limitin m has no e�et on the distribution of the strategy ounts. Suppose that we are given a marketwhih follows the assumptions E1, E3, and E4 of Setion 4.2.1 exept that this market uses the PIrule and has m0 traders. We onstrut a new market with any m � m0 traders with the followingmodi�ations:1. The prie history P0; : : : ; Pt�1 is extended with an extra day into P 00; : : : ; P 0t�1; P 0t , whereP 0j = Pj for 0 � j � t� 1. Eah strategy Si is extended into a new strategy S 0i where (1) onday j 2 [1; t � 1℄, S 0i(P0; : : : ; Pj�1) = Si(P0; : : : ; Pj�1), (2) on day t, S 0i always buys, and (3)on day t+ 1, S 0i(P 00; : : : ; P 0t ) = Si(P0; : : : ; Pt�1). Thus, P 0t = P 0t�1 + ��m0.2. Add a passive strategy S 0h+1 that always holds.3. Let p0i = 12pi for 1 � i � h and p0h+1 = 12 .Note that sine P 0t � P 0t�1 = ��m0, m �m0 traders hoose the passive strategy Sh+1. Also, thenew market and the new prie history an aommodate any m � m0 traders. Note that beauseof the onstraint P 0t � P 0t�1 = ��m0, the probability distribution of (X1; � � � ;Xh)> onditionedon P 00; : : : ; P 0t in the new market for eah m � m0 is idential to the probability distribution of(X1; � � � ;Xh)> onditioned on P0; : : : ; Pt�1 in the original market with m = m0. Furthermore,10



Prm[P 0t+1 > P 0t j P 00; : : : ; P 0t ℄ = Prm0 [Pt > Pt�1 j P0; : : : ; Pt�1℄. So we have obtained the desiredredution.Consequently, we are left with a situation where the number of ative strategies may be om-parable to the number of traders. Suh a market turns out to be very hard to predit, as shownnext in Setion 4.3.4.3 A Hard Case for Market Predition: Many StrategiesSetion 4.2 shows that prediting an AS+FI market is easy (i.e., takes polynomial time) when thenumberm of traders vastly exeeds the number h of strategies. In this setion, we onsider the asewhere every trader may have a distint strategy, and show that prediting an AS+FI or AS+PImarket beomes very hard indeed.We now de�ne two deision-problem versions of market predition. Both versions make thefollowing assumption:� Eah Xi is independently either 0 or 1 with equal probability.The bounded market predition problem is:� Input: a set of n passive strategies and a prie history spanning n days suh that the proba-bility that the market rises on day n+1 onditioned on the prie history is either (1) greaterthan 2=3 or (2) less than 1=3.� Question: Whih ase is it, ase (1) or ase (2)?The output of boundedmarket predition is not de�ned when the input does not yield a boundedprobability of a rise or fall on the next day. Bounded market predition is thus an example of apromise problem [13, 14℄, de�ned as a pair of prediates (Q;R) where Q, the promise, spei�eswhih inputs are permitted, and R spei�es whih inputs in Q are ontained in the language.The unbounded market predition problem is:� Input: a set of n passive strategies and a prie history spanning n days.� Question: Is the probability that the market rises on day n + 1 onditioned on the priehistory greater than 1/2 (without the usual � term)?The unbounded market predition problem has less �nanial payo� than the bounded one dueto di�erent probability thresholds. For eah of these two problems, there are in e�et two versions,depending on whih prie inrement rule is used; however, both versions turn out to be equallyhard. These two problems an be analyzed by similar tehniques, and our disussion below fouseson the bounded market predition problem with a hardness theorem for the unbounded marketpredition problem in Setion 4.3.5.We show in Setion 4.3.1 how to onstrut passive strategies and prie histories suh thatsolving bounded market predition is equivalent to estimating the probability that a Booleaniruit outputs 1 on a random input onditioned on a seond iruit outputting 1. In Setion4.3.2, we show that this problem is hard for PNP[O(logn)℄ and omplete for a lass that lies betweenPNP[O(log n)℄ and PP. Thus bounded market predition is not merely NP-hard, but annot be solvedin the polynomial-time hierarhy at all unless the hierarhy ollapses to a �nite level.
11



4.3.1 Redutions from Ciruits to MarketsLemma 6 onverts a iruit into a system of linear inequalities, while Lemma 7 onverts a systemof linear inequalities into a system of linear equations. These systems an then be onverted intoAS+FI and AS+PI market models using Lemmas 2 and 4, respetively.Note that the restrition in Lemma 6 to iruits onsisting of 2-input NOR gates is not anobstale to representing arbitrary ombinatorial iruits (with onstant blow-up), as 2-input NORgates are universal.Lemma 6 For any n-input Boolean iruit C onsisting of m 2-input NOR gates, there exists asystem Ax > 0 of 3m+2 linear onstraints in n+m+2 unknowns and a length n+m+2 olumnvetor  with the following properties:1. Both A and  have oeÆients in f�1; 0;+1g that an be omputed in time O((n+m)2).2. Any 0-1 vetor (x1; : : : ; xn) has a unique 0-1 extension x = (x1; : : : ; xn; xn+1; : : : xn+m+2)satisfying Ax > 0.3. If Ax > 0, then x > 0 if and only if C(x1; x2; : : : ; xn) = 1.Proof: Let xn+k represent the output of the k-th NOR gate, where 1 � k � m. Without lossof generality we assume that gate m is the output gate.The variables xn+m+1 and xn+m+2 are dummies to allow for a zero right-hand-side in Ax > 0;our �rst two onstraints are xn+m+1 > 0 and xn+m+2 > 0.Suppose gate k has inputs xi and xj . The NOR operation is implemented by the followingthree linear inequalities: xi + xn+k < 2;xj + xn+k < 2;xi + xj + xn+k > 0:The �rst two onstraints ensure that the output is never 1 if an input is 1, while the last requires thatthe output is 1 if both inputs are 0; the onstraints are thus satis�ed if and only if xn+k = :(xi_xj).Using the dummy variables, the �rst two onstraints are written as�xi � xn+k + xn+m+1 + xn+m+2 > 0;�xj � xn+k + xn+m+1 + xn+m+2 > 0:Let Ax > 0 be the system obtained by ombining all of these inequalities. Then for eah(x1; : : : ; xn), Ax > 0 determines xn+k for all k � 1. The vetor  is hosen so that x = xn+m.One might suspet that the �xed inrement rule's ability to hide the exat values of the left-handside of eah onstraint is ritial to disguise the inner workings of the iruit. However, by addingslak variables we an translate the inequalities into equations, allowing the use of a proportionalinrement rule without revealing extra information.Lemma 7 Let Ax > 0 be a system of m linear inequalities in n variables where A has oeÆientsin f�1; 0;+1g. Then there is a system By = 1 of mn�m+1 linear equations in 2mn�3m+n+1variables with the following properties:1. B has oeÆients in f�1; 0;+1g that an be omputed in time O((mn)2).2. There is a bijetion f : x 7! y between the 0-1 solutions x to Ax > 0 and the 0-1 solutions yto By = 1, suh that xj = yj for 1 � j � n whenever y = f(x).12



Proof: For eah 1 � i � m, let Ai be the onstraint Pj Aijxj > 0. To turn these inequalitiesinto equations, we add slak variables to soak up any exess over 1, with some additional are takento ensure that there is a unique assignment to the slak variables for eah setting of the variablesxj . We will use the following 0-1 variables, whih we think of as alternate names for y1 throughy2mn�3m+n+1:Variables Purpose Indies Countxj original variables 1 � j � n nu onstant 1 none 1sij slak variables for Ai 1 � i � m; 1 � j � n� 1 m(n� 1)tij slak variables for sij � si;j+1 1 � i � m; 1 � j � n� 2 m(n� 2)Name Equation Purpose Indies CountU u = 1 set u none 1Bi Pj Aijxj �Pj sij = 1 represent Ai 1 � i � m mSij sij � si;j+1 � tij + u = 1 require sij � si;j+1 1 � i � m, 1 � j � n� 2 m(n� 2)Observe that for eah i, Pj sij an take on any integer value �i between 0 and n� 1, and thatfor any �xed value of �i, the Sij onstraints uniquely determine the values of sij and tij for all j.So eah onstraint Bi permits �i = Pj Aijxj to take on preisely the same values 1 to n that Aidoes, and eah �i uniquely determines �i and thus the assignment of all sij and tij .4.3.2 Conditional Probability Complexity ClassesSuppose that we take a polynomial-time probabilisti Turing mahine, �x its inputs, and use theusual Cook's Theorem onstrution to turn it into a iruit whose inputs are the random bits usedduring its omputation. Then, we an feed the resulting iruit to Lemmas 6 and 2 to obtain anAS+FI market model in whih there is exatly one assignment of population variables for eah setof random bits, and the prie rises on the last day if and only if the output of the Turing mahine is1. By applying Lemma 7 to the intermediate system of linear inequalities, we an similarly onverta iruit to an AS+PI model. It follows that bounded market predition is BPP-hard for eithermodel. But with some leverness, we an exploit the onditioning on past history to show thatbounded market predition is in fat muh harder than this. We do so in Setion 4.3.4, after abrief detour through omputational omplexity in this setion.We proeed to de�ne some new ounting lasses based on onditional probabilities. One ofthese, BCPP, has the useful feature that bounded market predition solves all problems in BCPP,and is omplete for the \promise problem" version of BCPP, whih we will write as promise-BCPPand whih we de�ne in Setion 4.3.3. We will use this fat to relate the omplexity of boundedmarket predition to more traditional omplexity lasses.The usual ounting lasses of omplexity theory (PP, BPP, R, ZPP, C=, et.) are de�nedin terms of ounting the relative numbers of aepting and rejeting states of a nondeterministiTuring mahine. We will de�ne a new family of ounting lasses by adding a third deision statethat does not ount for the purposes of determining aeptane or rejetion.A nonommittal Turing mahine is a nondeterministi Turing mahine with three deisionstates: aept, rejet, and abstain. We represent a nonommittal Turing mahine as a deterministiTuring mahine whih takes a polynomial number of random bits in addition to its input; eah13



assignment of the random bits gives a distint omputation path. A omputation path is aept-ing/rejeting/abstaining if it ends in an aept/rejet/abstain state, respetively. We often write1, 0, or ? as shorthand for the output of an aepting, rejeting, or abstaining path.Conditional versions of the usual ounting lasses are obtained by arrying over their de�nitionsfrom standard nondeterministi Turing mahines to nonommittal Turing mahines, with some arein handling the ase of no aepting or rejeting paths. We an still think of these modi�ed lassesas orresponding to probabilisti mahines, but now the probabilities we are interested in areonditioned on not abstaining.De�nition 8 The onditional probabilisti polynomial-time lass (CPP) onsists of those languagesL for whih there exists a polynomial-time nonommittal Turing mahine M suh that x 2 L ifand only if the number of aepting paths when M is run with input x exeeds the number ofrejeting paths.De�nition 9 The bounded onditional probabilisti polynomial-time lass (BCPP) onsists of thoselanguages L for whih there exists a onstant � > 0 and a polynomial-time nonommittal Turingmahine M suh that (1) x 2 L implies that a fration of at least 12 + � of the total number ofaepting and rejeting paths are aepting and (2) x =2 L implies that a fration of at least 12 + �of the total number of aepting and rejeting paths are rejeting.De�nition 10 The onditional randomized polynomial-time lass (CR) onsists of those languagesL for whih there exists a onstant � > 0 and a polynomial-time nonommittal Turing mahineM suh that (1) x 2 L implies that a fration of at least � of the total number of aepting andrejeting paths are aepting, and (2) x =2 L implies that there are no aepting paths.As we show in Theorems 11 and 12, CPP and CR turn out to be the same as the unonditionallasses PP and NP, respetively.Theorem 11 CPP = PP.Proof: First of all, PP � CPP beause a PP mahine is a CPP mahine that happensnot to have any abstaining paths. For the inverse diretion, represent eah abstaining path of aCPP mahine by a pair onsisting of one aepting and one rejeting path, and eah aepting orrejeting path by two aepting or rejeting paths. Then the resulting PP mahine aepts if andonly if the CPP mahine does.Theorem 12 CR = NP.Proof: To show NP � CR, replae eah rejeting path of an NP mahine with an abstainingpath in a CR mahine. For the inverse diretion, replae eah abstaining path of the CR mahinewith a rejeting path in the NP mahine.The lass BCPP is more obsure; it is equivalent to the threshold version of BPP, BPPpath[17℄.1. The lass BPPpath is de�ned as the lass of all languages aepted by a threshold mahinewith threshold 12 + � for some � > 0, where a threshold mahine aepts or rejets if at least a �xedproportion of its omputation paths aept or rejet, with eah omputation path ounted as onewithout regard to its probability.1We are grateful to Lane Fortnow[16℄ for pointing out this equivalene14



Theorem 13 BCPP = BPPpath.Proof: To show BCPP � BPPpath, replae eah abstaining path with one aepting and onerejeting path. To show BPPpath � BCPP, we must normalize the BPPpath omputation so thatall paths inlude the same number of branhes. Suppose that in some BPPpath omputation, thenumber of branhes on any path is bounded by some polynomial T (n). Extend eah path in theBPPpath mahine with k < T (n) branhes into 2T (n)�k paths in the BCPP mahine, of whih allbut one are abstaining and the remaining path aepts or rejets depending on the output of theorresponding BPPpath path.BCPP = BPPpath is a muh stronger lass than the analogous non-onditional lass BPP. Forexample, if one takes a NP mahine and replaes eah aepting path with exponentially manyaepting paths and eah rejeting path with an equally large family of abstaining paths sprinkledwith a single rejeting path, the result is a BCPP mahine that aepts the same language as theNP mahine. By repeating this sort of ampli�ation of \good" paths, BCPP an in fat simulateO(log n) queries of an NP-orale. Beause of the equivalene of BCPP and BPPpath, we an showthis formally by using similar results for BPPpath from [17℄.Corollary 14 PNP[O(log n)℄ � BCPP � PP.Proof: The �rst inlusion is immediate from Theorem 13 and the fat that PNP[O(log n)℄ �BPPpath, shown in Corollary 3.4 in [17℄. The seond inlusion follows from Theorem 13 and theobservation that BPPpath � PPpath = PP, also from [17℄.An interesting open question is where exatly BCPP = BPPpath lies between PNP[O(logn)℄and PP. It is oneivable that by leverly exploiting the power of onditioning to amplify low-probability events one ould show BCPP = PP. However, we will ontent ourselves with the muheasier observation that the usual ampli�ation tehnique for BPP also applies to BCPP; as withother results in this setion, this observation follows from the equivalene of BCPP and BPPpath.Corollary 15 If L 2 BCPP, then there exists a nonommittal Turing mahine M suh that theprobability that M aepts onditioned on not abstaining is at least 1 � f(n) if x 2 L and at mostf(n) if x =2 L, where n = jxj and f(n) is any funtion of the form 2�O(n) for some onstant  > 0.Proof: Immediate from Theorem 13 and Theorem 3.1 of [17℄.4.3.3 Promise Problems and Promise-BCPPPart of the motivation for de�ning BCPP and CPP was to identify exatly the omplexity of solvingbounded and unbounded market predition. Unfortunately, while we an show that boundedmarket predition is hard for BCPP, in the sense that any problem in BCPP redues to boundedmarket predition, it is not lear that bounded market predition is atually ontained in BCPP.The reason is that the de�nition of BCPP does not allow exluding bad inputs. Though wedon't are what our BCPP mahine does when given an instane of market predition in whihthe next day's prie movement is not preditable, the de�nition of the lass still requires that themahine produe more than 12 + � aepting or rejeting paths. The natural solution to boundedmarket predition using a nonommittal mahine does not have this property, and it is not learthat we an guarantee it in general. Instead, we de�ne a promise-problem version of BCPP, andshow (in Setion 4.3.4) that bounded market predition is omplete for this lass.15



De�nition 16 The lass promise-BCPP onsists of all pairs of prediates (Q;R) for whih thereexists a onstant � > 0 and a polynomial-time nonommittal Turing mahine M suh that for allx 2 Q, (1) x 2 R implies that a fration of at least 12 + � of the total number of aepting andrejeting paths are aepting and (2) x =2 R implies that a fration of at least 12 + � of the totalnumber of aepting and rejeting paths are rejeting.A pair of prediates (Q;R), in whih Q spei�es whih inputs are valid and R spei�es whihvalid inputs should be aepted, is alled a promise problem [13, 14℄. Polynomial-time redutions,as de�ned for languages, have a natural analog for promise problems: (Q;R) is polynomial-timereduible to (Q0; R0) if and only if there is a polynomial-time funtion f suh that (a) f(Q) � f(Q0),and (b) for all x 2 Q, f(x) 2 R0 if and only if x 2 R.2 Similarly, a partiular promise problem ishard for a lass of suh problems if every problem in the lass redues to it in polynomial-time,and that it is omplete for a lass if it is both hard for the lass and ontained in the lass.There is also a natural orrespondene between promise problems and standard languages. Asolution to a promise problem (Q;R) is a language L for whih L and R agree on inputs in Q;in this way promise problems an be turned into languages. In the other diretion, any standardlanguage L an be through of as a promise problem (true; L).With this orrespondene, we an easily see that BCPP = BPPpath is ontained in promise-BCPP,in the sense that for any L in BCPP, (true; L) is in promise-BCPP; and that promise-BCPP isin turn ontained in CPP, in the sense that any problem (Q;R) in promise-BCPP has a solutionin CPP(we an just run the nonommittal mahine that aepts (Q;R)). We will abuse notationslightly by writing BPPpath � promise-BCPP � CPP, eliding the impliit onversions betweenlanguages and promise problems.4.3.4 Bounded Market Predition is Promise-BCPP-CompleteIn Setion 4.3.2, we have de�ned the omplexity lass BCPP and observed that it is equal toBPPpath, whih implies that it ontains the powerful lass PNP[O(logn)℄. In this setion, we showthat solving bounded market predition solves all problems in BCPP.In a sense, this result says that market predition is a universal predition problem: if we anpredit a market, we an predit any event onditioned on past history as long as we an samplefrom an underlying disrete probability spae whose size is at most exponential.It also says that bounded market predition is very hard. That is, using Corollaries 15 and 14,even if the next day's prie is determined with all but an exponentially small probability, it annotbe solved in the polynomial-time hierarhy unless the hierarhy ollapses to a �nite level.Theorem 17 The bounded market predition problem is omplete for promise-BCPP, in eitherthe AS+FI or the AS+PI model.Proof: First we show that bounded market predition is a member of promise-BCPP. Givena market, onstrut a nonommittal Turing mahine M whose input is the prie history andstrategies, and whose random inputs supply the settings for the population variables Xi. Let Mabstain if the prie history is inonsistent with the input and population variables; depending onthe model, this is either a matter of heking the linear inequalities produed by Lemma 1 orthe equations produed by Lemma 3. Otherwise, M aepts if the market rises and rejets if themarket falls on the next day. The probability that M aepts thus equals the probability that the2There are many ways to de�ne more ompliated redutions involving promise problems; a detailed disussionof this issue an be found in [5℄. 16



market rises: either more than 2=3 or less than 1=3. Sine the problem is to distinguish betweenthese two ases, M solves the problem within the de�nition of promise-BCPP.In the other diretion, we will show how to redue from any promise-BCPP-language L tobounded market predition. Suppose (Q;R) is aepted by some BCPP-mahine M for all x 2Q. We will translate M and its input x into a bounded market predition problem. First useCorollary 15 to amplify the onditional probability that M aepts to either more than 2=3 orless than 1=3 as bounded market predition demands. Then onvert M into two polynomial-sizeiruits, one omputing C6?(r) = ( 0 if M(x; r) =?;1 if M(x; r) 6=?;and the other omputing C1(r) = ( 0 if M(x; r) 6= 1;1 if M(x; r) = 1:Without loss of generality we may assume that C6? and C1 are built from NOR gates. ApplyingLemma 6 to eah yields two sets of onstraints A 6?y > 0 and A1y > 0 and olumn vetors 6?and 1 suh that  6?y > 0 if and only if C6?y = 1 and 1x > 0 if and only if C1(x) = 1, where ysatis�es the previous linear onstraints and x is the initial pre�x of y onsisting of variables notintrodued by the onstrution of Lemma 6. We also have from Lemma 6 that there is a one-to-one orrespondene between assignments of x and assignments of y satisfying the A onstraints, soprobabilities are not a�eted by this transformation.Now use Lemma 2 to onstrut a market model in whih A 6?y > 0, A1y > 0, and 6?y > 0 areenfored by the strategies and prie history, and sign(1y) determines the prie hange on the nextday of trading. Thus the onsistent settings of the variables Xi are preisely those orrespondingto settings of r for whih C6?(r) = 1, or, in other words, those yielding omputation paths that donot abstain. The market rises when C1(r) = 1, or when M aepts. So if we an predit whetherthe market rises or falls with onditional probability at least 2=3, we an predit the likely outputof M . It follows that bounded market predition for the AS+FI model is promise-BCPP-hard.To show the similar result for the AS+PI model, use Lemma 7 to onvert the onstraintsA6?y > 0, A1y > 0 into a system of linear equations Bz = 1, and then proeed as before, usingLemma 4 to onvert this system to a prie history and letting 1z determine the prie hange (andthus the sign of the prie hange) on the next day of trading.4.3.5 Unbounded Market Predition is CPP-CompleteThe unbounded market predition problem seems harder beause the probability threshold inquestion is 12 with no � bound in ontrast to the thresholds 23 and 13 for the bounded marketpredition problem. The following theorem reets this intuition. However, sine we do not knowwhether BCPP is distint from PP, we do not know whether unbounded predition is stritlyharder.Theorem 18 The unbounded market predition problem is omplete for CPP = PP, in either theAS+FI or the AS+PI model.Proof: Similar to the proof of Theorem 17.
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5 Future Researh DiretionsThere are many problems left open in this paper. Below we briey disuss some general diretionsfor further researh.We have reported a number of simulation and theoretial results for the AS model. As forempirial analysis, it would be of interest to �t atual market data to the model. We an thenuse the estimated parameters to (1) test whether the model has any prediative power and (2)test the e�etiveness of new or known trading algorithms. This diretion may require arefullyhoosing \realisti" strategies for �. Besides the momentum and ontrarian strategies, there aresome popular ones whih are worth onsidering, suh as those based on support levels. Investmentnewsletters ould be a useful soure of suh strategies.The AS model is an idealized one. We have hosen suh simpliity as a matter of researhmethodology. It is relatively easy to design highly ompliated models whih an generate veryomplex market behavior. A more hallenging and interesting task is to design the simplest possiblemodel whih an generate the desired market harateristis. For instane, a signi�ant researhdiretion would be to �nd the simplest model in whih market predition is omputationally hard.On the other hand, it would be of great interest to �nd the most general models in whih marketpredition takes only polynomial time. For this goal, we an onsider injeting more realism intothe model by introduing resoure-bounded learning (the generality of � is equivalent to unboundedlearning), variable memory size, transation osts, buying power, limit orders, short sell, options,et.AknowledgmentsWe would like to thank Lane Fortnow for pointing out the equivalene of BCPP and BPPpath,and Lane Hemaspaandra for explaining the mehanis of promise problems.This work originated with David Fisher's senior projet in 1999, advised by Ming-Yang Kao.David would like to thank his father and role model, Professor Mihael Fisher, for teahing,mentoring, and inspiring him throughout ollege.Referenes[1℄ P. B. Andreassen and S. Krause. Judgemental extrapolation and the saliene of hange.Journal of Foreasting, 9(4):347{372, 1990.[2℄ D. Applegate and R. Kannan. Sampling and integration of near log-onave funtions. InProeedings of the 23rd Annual ACM Symposium on Theory of Computing, pages 156{163,1991.[3℄ P. Billingsley. Probability and Measure. John Wiley and Sons, seond edition, 1986.[4℄ F. Blak. Noise. Journal of Finane, 41(3):529{543, 1986.[5℄ J.-Y. Cai, L. A. Hemahandra, and J. Vysko�. Promises and fault-tolerant database aess. InK. Ambos-Spies, S. Homer, and U. Sh�oning, editors, Complexity Theory: Current Researh,pages 101{146. Cambridge University Press, 1993.[6℄ J. Y. Campbell, A. W. Lo, and A. C. MaKinlay. The Eonometris of Finanial Markets.Prineton University Press, Prineton, NJ, 1997.18
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