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Abstract

It is well known that the consensus problem cannot be solved de-
terministically in an asynchronous environment, but that randomized
solutions are possible. We propose a new model, called noisy schedul-
ing, in which an adversarial schedule is perturbed randomly, and show
that in this model randomness in the environment can substitute for
randomness in the algorithm. In particular, we show that a simplified,
deterministic version of Chandra’s wait-free shared-memory consensus
algorithm (PODC, 1996, pp. 166—175) solves consensus in time at most
logarithmic in the number of active processes. The proof of termination
is based on showing that a race between independent delayed renewal
processes produces a winner quickly. In addition, we show that the
protocol finishes in constant time using quantum and priority-based
scheduling on a uniprocessor, suggesting that it is robust against the
choice of model over a wide range.

1 Introduction

Perhaps the single most dramatic result in the theory of distributed com-
puting is Fischer, Lynch, and Paterson’s proof of the impossibility of deter-
ministic consensus in an asynchronous environment with failures [22]. This
result and its extensions [20,27] show that the consensus problem, in which
a group of processes must collectively agree on a bit, cannot be solved deter-
ministically in an asynchronous message-passing or shared-memory model
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if an unrestricted adversary controls scheduling. Solutions to the shared-
memory version of this fundamental problem have thus taken the approach
of restricting the adversary, either by allowing randomization that limits
the adversary’s knowledge [1,6,8,10,12,13,15-17,30] or by imposing timing
constraints that limit the adversary’s control [3,20,21]. As a corollary to
granting less power to the adversary, these solutions often involve granting
more power to the algorithm, in the form of the ability to obtain random
bits or explicitly delay steps. By using these additional powers an algorithm
can escape the FLP bound and reach agreement.

These additional powers come at a cost. Randomization alone is not
powerful enough to allow sublinear consensus protocols [7], so efficient ran-
domized solutions have required additional constraints on the ability of the
adversary to observe the arguments to operations and the contents of unread
memory locations [12,13,16]. These algorithms carefully manage common
pools of unread random bits for future use, a clever but odd-looking prac-
tice that is justified primarily by the specific details of the model. The
delay-based algorithm of [3] is less convoluted, but still depends on using
explicit delays that at the minimum require that a process has the power to
invoke them and at worst may add unnecessary delay when few processes
participate.

As an alternative to designing an algorithm specifically to exploit the
weaknesses of a particular adversary model, we consider the approach of
using a simple algorithm that guarantees agreement but relies on good luck
to terminate. Our LEAN-CONSENSUS algorithm, described in Section 4, is
obtained by removing all of the randomized parts of a similar algorithm due
to Chandra [16]. The essential idea (which is the core of many consensus
protocols in the literature) is to stage a race between those processes that
prefer 0 and those that prefer 1, with the rule that if a slow process sees
that faster processes are all in agreement it adopts their common preference.
The race is implemented using two arrays of atomic read/write bits. The
algorithm terminates when the fastest processes are all in agreement and
can decide on their preferred value safely, knowing that other processes will
adopt the same preference before they catch up. As shown in Section 5,
this mechanism is enough to ensure that if any one process decides then all
other processes soon decide on the same value, no matter how the adversary
arranges the schedule.

In effect, the race framework allows the processes to detect agreement
once it occurs. But unlike other consensus algorithms, LEAN-CONSENSUS
makes no attempt to cajole the processes into reaching agreement— it relies
entirely on the hope that some process eventually pulls ahead of the others.



In order to dash this hope, the adversary must exercise enough control to
ensure that the fastest processes run in lockstep. We believe that in many
natural system models it will be difficult for the adversary to exercise this
much control.

One such model is what we call the noisy scheduling model, described
in Section 3.1. In this model, the adversary proposes a schedule that spec-
ifies the order in which read and write operations occur, but this schedule
is perturbed by random noise drawn from some arbitrary non-constant dis-
tribution. This noise corresponds to random factors in a system that might
not be strongly correlated with the algorithm’s behavior, such as network
delays, clock skew, or bus or memory contention.

We show in Section 6 that, in the noisy scheduling model, LEAN-CONSENSUS
terminates with expected ©(logn) work per process, where n is the number
of active processes. This result is distribution-independent, in the sense that
the algorithm’s asymptotic performance does not depend on the noise dis-
tribution in the model (though the constant factor does), and it holds even
if processes are subject to random halting failures. Because the algorithm’s
performance depends only on the number of processes actually executing
the protocol and not on the total number of processes in the system, it is
adaptive in the sense of [11], which implies it is fast in the sense of [2,26].
Thus it is well-suited to situations where only one or a few processes attempt
to run the algorithm at the same time.

Our noisy scheduling model is similar to the model used by Gafni and
Mitzenmacher [23] in their analysis of mutual exclusion protocols with ran-
dom timing, but is extended to include constant delays inserted by the
adversary in addition to random delays. Another source of inspiration is
Koutsoupias and Papadimitriou’s diffuse adversary [25], which chooses a dis-
tribution over executions in which no branch at any decision point can occur
with probability more than some fixed e. Our model is not the first in which
an adversary chooses parameters for a stochastic process that then con-
trols scheduling; a sophisticated model of this type, based on asynchronous
PRAMs, has been proposed by Cole and Zajicek [19].

To give support to our intuition that many possible restrictions on the
adversary make LEAN-CONSENSUS work, we also consider what happens with
a hybrid quantum and priority-based scheduler on a uniprocessor, following
the approach of [5]. (The details of this model, which subsumes both quan-
tum scheduling and priority-based scheduling, are sketched in Section 3.2.)
We show in Section 7 that LEAN-CONSENSUS terminates in O(1) steps in
the hybrid-scheduling model, as long as the quantum is at least 8. The
restriction to a uniprocessor is necessary because [5] shows that no deter-



ministic algorithm can solve consensus with multiple processors, even with
hybrid scheduling, without using stronger primitives than atomic read/write
registers.

Our basic consensus algorithm requires infinitely long arrays. Obviously
this is undesirable in a real system. In order to bound the required space,
we adopt a technique from [16] and cut off the algorithm after consuming
O(log2 n) bits of space, using the preference each undecided process has at
that point as input to a more expensive, bounded-memory consensus algo-
rithm satisfying the validity property.! Since the more expensive algorithm
is only run with low probability, its higher costs do not increase the ex-
pected time for the algorithm as a whole by more than a small constant
factor. Details are given in Section 8.

Section 9 describes some simulation results that show that the constant
factors in the noisy scheduling analysis are in fact quite small for plausi-
ble noise distributions, suggesting that the good theoretical performance
of LEAN-CONSENSUS might actually translate into fast execution in a real
system.

In Section 10, we suggest a number of directions in which the current
work could be extended, including extensions to the noisy scheduling model.
One interesting possibility is the inclusion of adaptive crash failures. We
argue briefly that because LEAN-CONSENSUS recovers quickly from such fail-
ures, it terminates in at most O(flogn) work per process even if up to f
processes fail. However, there remains an interesting open question whether
noisy scheduling is enough to get O(log n) performance even with ©(n) crash
failures.

2 The Consensus Problem

In the binary consensus problem, a group of n processes, possibly subject to
halting failures, must agree on a bit.? A consensus protocol is a distributed
algorithm in which each non-faulty process starts with an input bit and
eventually terminates by deciding on an output bit. It must satisfy the
following three conditions with probability 1:

! An early example of this approach is found in the bounded-rounds randomized Byzan-
tine agreement protocol of Goldreich and Petrank [24], which switches from a randomized
to a deterministic protocol if the randomized protocol does not terminate quickly enough.

2Some authors consider the stronger problem of id consensus, in which the decision
value is the id of some active process. In many cases, id consensus can be solved in
a natural way using a (lgn)-depth tree of binary consensus protocols; examples of this
approach can be found in [12,16].



e Agreement. All non-faulty processes decide on the same bit.

e Termination. All non-faulty processes finish the protocol in a finite
number of steps.

o Validity. If all processes start with the same input bit, all non-faulty
processes decide on that bit.?

3 Model

We assume a shared-memory system consisting of an unbounded number of
processes that communicate only through shared atomic read/write regis-
ters. We use the usual interleaving model, in which operations are assumed
to occur in a sequence 7y, T2, ..., and in which each read operation returns
the value of the last previous write to the same location. The order in which
operations occur is determined by a stochastic process that is partially un-
der the control of an adversary (Section 3.1), or directly by the adversary
subject to certain regularity constraints (Section 3.2).

3.1 Noisy Scheduling

In the noisy scheduling model, we assume that the adversary specifies when
operations occur (subject to an upper bound on the time between successive
operations by the same process), but that this specification is perturbed by
random noise.

Formally, the adversary chooses:

1. An arbitrary starting time A;y for each process p;,

2. A non-negative delay A;; between process p;’s (j — 1)-th and j-th
operations, bounded by some fixed constant M, and

3. A fixed common distribution F; of the random delay added to each
type of operation 7 (e.g., read or write). If process p;’s j-th operation
is of type m, it suffers an additional delay X;; whose distribution is F}.
There is no restriction on the choice of the F, except that they must

3Some definitions of consensus replace the validity condition with a weaker non-
triviality condition that says that there must exist executions in which different decision
values occur.



not be concentrated on a point and must produce only non-negative
values Xij.4

The time of process p;’s j-th operation is given by
J
Sij = Do+ Y (Aje + Xige) -
k=1

Since we are using interleaving semantics, the effect of executing two
operations at exactly the same time is not well-defined. To avoid ill-defined
executions, we impose the additional technical constraint on the adversary’s
choices that the probability that any two operations occur simultaneously
must be zero. This is automatic if, for example, the noise distributions F;
are continuous. Alternatively, it can be arranged by dithering the starting
times of each process by some small epsilon. This technical constraint does
not qualitatively change our results.

Below we discuss the unfairness of noisy scheduling and extensions to
allow random failures.

3.1.1 Unfairness

The upper bound on the A;; and the common distribution on the X;; might
suggest that the noisy scheduling model produces fair schedules. This is not
entirely true for sufficiently pathological distributions.

Theorem 1 There exists a choice of Fr and A;; such that for any distinct
processes p; and p;r, and any operation j, the expected number of operations
py completes between p;’s j-th and (j + 1)-th operations is infinite.

Proof: Set each F; so that X;; takes on the value 2F with probability
27k for k = 1,2,.... For simplicity, let us suppose that A;; =0 for 57 > 0.
We will also assume that A and B execute no operations before time 0.

Let X be the number of operations completed by p; between S;; and
Sij+1. We will show that the expectation of X is infinite conditioned on the
value of t = [S;;] (the ceiling is so that we have countably many cases).

The idea is this: for each k£ we have probability 2=k that Sijr1 =
Xij1 = 2k* . Condition on this event occurring for some particular £ and
consider how many operations py must execute to reach time 2 Either
(a) one of these operations takes time 25 or more (with probability 27 *+!

In fact, the F, distributions can be quite bizarre; it is not required, for example, that
the X;; have finite expectation.



per operation); or (b) a total of at least 22*~! faster operations, each of
which takes at most 2(+—1* time, must occur. If we wait only for event (a),
we expect to see 2¥~1 operations; to get the actual expected number, we
must subtract off the expected number of operations until (a) occurs after
(b) occurs (25~1 again) multiplied by the probability that (b) occurs. This
latter probability is at most (1 — 2,9%1)2’“_1, which goes to e™? in the limit
as k grows; it follows that p; executes (2*) operations on average before
time 2%°. Of these, at most /2 can occur before time S;;, so if k > Igt, we
have €2(2%) operations on average between ¢ and 2F°, and thus also between
Sij and Si,j+1, since Sij <t< 2k2 < Si,j—l—l-

To get the full result, we must remove two layers of conditioning. First
compute the expectation conditioned only on ¢ by summing 27%Q(2¥) for
each of the infinitely many sufficiently large k. It is not difficult to see that
this sum diverges and the expectation is infinite. Summing over all values
of t doesn’t make it any less infinite, and we are done. i1

3.1.2 Failures

We can extend the noisy scheduling model to allow halting failures. For each
¢ and each j > 0 let H;; = oo if process p; halts before its j-th operation
and 0 otherwise. Define

J
Sij = Do+ Y (A + Xiw + Hyg)
k=1

with the usual convention for the extended real line that z+00 = co+x = o0
for any finite z. If SZ{j = 00, p;’s j-th operation does not occur.

We do not include failures in the noise distributions F; because these
distributions do not depend on n, and a constant probability of failure would
mean that all processes die after O(logn) steps. Instead, we assume that
failures occur independently with probability h(n) per operation, where h is
some function chosen by the adversary. The effect of stronger failure models
is discussed in Section 10.

3.2 Quantum and Priority-Based Scheduling

Our intuition is that LEAN-CONSENSUS should perform well in any setting
that prevents lockstep executions. One such setting is the hybrid-scheduled
uniprocessor model of [5], which combines the priority-based scheduling
model of [29] with the quantum-based scheduling model of [4]. In this model,



processes are assumed to be time-sharing a uniprocessor under the control
of a pre-emptive scheduler. Each process has a priority, and a process may
be pre-empted at any time by a process of higher priority. A process may
only be pre-empted by a process of the same priority if it has exhausted
its quantum, a minimum number of operations it must complete between
the time it wakes up and the time at which it becomes vulnerable to pre-
emption. There is no requirement that a process start the protocol at the
beginning of a quantum; it may have used up some or all of its quantum
performing other work before starting the protocol. We do not consider fail-
ures in the hybrid-scheduling model; instead, a process may be arbitrarily
delayed subject to the constraints on the scheduler.

4 The LEAN-CONSENSUS Algorithm

In this section, we describe the LEAN-CONSENSUS algorithm. The algorithm
is very simple, because we are relying on randomness in the environment
to guarantee termination and thus the algorithm itself must only guarantee
correctness and provide the opportunity for the underlying system to quickly
jostle it into a decision state. Structurally, it is essentially identical to the
multi-writer register consensus protocol of Chandra [16] with the shared
coins removed, leaving only the implementation from multi-writer bits of
the “racing counters” technique that has been used in many shared-memory
consensus protocols. It also bears some similarities to the Time-Adaptive
Consensus algorithm of Alur et al. [3] with the delays removed.

At each step of the algorithm, each process prefers either 0 or 1 as its
decision value. The conflict between the O-preferring processes and the 1-
preferring processes is settled by a race implemented using two arrays ag and
a; of atomic read/write bits, each initialized to zero. Each process carries
out a sequence of rounds, each consisting of a fixed sequence of operations.
During round r, a process that prefers b marks location a;[r] with a one and
looks to see if either (a) it has fallen behind its rivals who prefer (1 — b),
in which case it abandouns its former preference and joins the winning team,
or (b) it and its fellows have sped far enough ahead of any rival processes
that they can safely decide b knowing that those rivals will give up and join
the b team before they catch up. The algorithm finishes fastest when the
pack of processes disperses quickly, so that a clear winner emerges as early
as possible.

Let us look more closely at the details of the algorithm. A process with
input b sets its preference p to b and its round number r to 1. (We say that



a process is at round r if its round number is set to r; processes thus start
at round 1.) It then repeatedly executes the following sequence of steps. To
simplify the description of the algorithm, we assume that while ag and a; are
initialized to zeroes, they are prefixed with (effectively read-only) locations
ap[0] and a1[0], both set to 1.

1. Read ao[r] and a;[r]. If for some b, ap[r] is 1 and a;_p[r] is 0, set p to
b.

2. Write 1 to ap|r].
3. Read a1_p[r — 1]. If this value is 0, decide p and exit.

4. Otherwise, set r to  + 1 and repeat.

Note that in each round the process carries out exactly four operations
in the same sequence: two reads, a write, and another read. It is tempting
to optimize the algorithm by eliminating the write when it is already evident
from the previous step that ap[r] is set or eliminating the last read when it
can be deduced from the value of a;_,[r] that a;_,[r — 1] is set. However,
this optimization reduces the work done by slow processes (whom we’d like
to have fall still further behind) while maintaining the same per-round cost
for fast processes (whom we’d like to have pull ahead). So we must para-
doxically carry out operations that might appear to be superfluous in order
to minimize the actual total cost.

5 Agreement and Validity

If we ignore the termination requirement, the correctness of the algorithm
does not depend on the behavior of the scheduler. The following two lemmas
show that the validity and agreement properties hold whenever the algorithm
terminates. The proofs are very similar in spirit to those of Lemmas 1-4
in [16].

Lemma 2 No process sets ap|r| unless (a) r = 1 and b is an input value,
or (b) r > 1 and ay[r — 1] has already been set.

Proof: Consider the first process P that sets ap[r]. Then P does not
read 1 from ay[r] at round r and does not change its preference during round
r. If r =1, P’s preference equals its input, establishing case (a); if r > 1, P
must have set ap[r — 1] at round r — 1, establishing case (b). il



Lemma 3 If every process starts with the same input bit b, every process
decides b after executing 8 operations.

Proof: From Lemma 2, if no process has input 1 — b, no process ever
sets aj_p[1]. It follows that every process sees a zero in a;_p[1] at round 2
and decides b. I

Lemma 4 If some process decides b at round r, then (a) no process ever
writes a1—p[r]|, and (b) every process decides b at or before round r + 1.

Proof: Let P decide b at round . We will show that this implies that
no process ever sets aj_p|[r].

Suppose some process sets a;_p[r]; let @ be the first such process. Be-
cause (Q is the first process to set aj_p[r], it must read a 0 from a;_p[r] at
the start of round r. Thus @ can only set a;_p[r] if it already prefers 1 —b at
the start of round r, implying that it set a;_[r — 1] during round r — 1; and
if it reads a 0 from ay[r] at the start of round r, preventing it from changing
its preference after seeing a 0 in a;_[r]. But @’s read of ap[r] occurs after
Q’s write to aj_p[r — 1], which occurs after P’s read of a;_p[r — 1] at round
r (because P reads 0), which in turn occurs after P’s write to ap[r]. Thus
@ reads 1 from ap[r], and changes its preference to b at round r. This con-
tradicts our assumption that @ is the first to set a;_p[r]. It follows that if
any process decides b in round r, no process sets aj_p[r].

Since no process sets a;_p[r|, any process that reaches round r + 1 must
set ap[r + 1] (by Lemma 2), and will decide b after reading 0 from a;_p[r].
Thus no process runs past round r + 1 without deciding b.

To show agreement in earlier rounds, let P’ decide b at round r' < r.
By the preceding argument, if P’ decides b’ at round 7/, then no process sets
aj_y[r'] and thus (by Lemma 2 again) no process sets aj_y[r]. But since P
sets ap[r], we must have v’ = b. i1

6 Termination with Noisy Scheduling

In this section, we show that LEAN-CONSENSUS terminates in ©(logn) rounds
with noisy scheduling and random failures. (This analysis includes the core
model without random failures as well, since the adversary can always choose
h(n) = 0.) We show that either all processes die (in which case we treat the
algorithm as terminating in the last round in which some process takes a
step), or some group of processes with a common preference eventually gets

10



two rounds ahead of the other processes. To avoid analyzing the details of
how processes shift preferences, we will show the even stronger result that
unless all processes die, a single process eventually gets two rounds ahead
of the other processes.

To simplify the argument, we abstract away from the individual sequence
of operations in each round and look only at the times at which rounds are
completed. We can thus assume that the adversary provides a single noise
distribution F' (corresponding to the distribution of the sum of the delays on
three reads and one write) and that the values A;;, X;;, and H;; provide the
delay not on the j-th operation but on the j-th round. Since this abstraction
merely involves summing together the underlying variables on operations, it
does not reduce the adversary’s control over the protocol. We will scale M
appropriately so that it is still the case that 0 < A;; < M when 5 > 0.

Using this approach, the increment A;; + X;; + H;; is the time taken
for process ¢ to move from the end of round j — 1 to the end round j.
The constant A;y represents the process’s starting time, and S}, = Ajp +
> =1 (Aij + Xij + Hij) gives the time at which the process finishes round r.
A process ¢ wins the race with a lead of ¢ rounds at round r + ¢ if it finishes
round r + ¢ before any other process finishes round r, ie., if 57, < Sj .
for all 7' # 1.

We would like to show a bound on how the expected round at which some
process wins by ¢ scales as a function of the number of processes n, keeping c,
M, and F fixed. This bound is given in Corollary 11 below. We will assume
that h(n) = o(1), as otherwise all processes die after O(logn) rounds on
average. The proof proceeds in two steps: first we show that for any r
which some process finishes with at least constant probability, there exists
a critical time ¢ that gives at least a constant probability that S}, < ¢ for
exactly one i. We then show that if r is large enough, Pr[S], . < t|S]. <]

1,rrcC
is also at least a constant. It then follows that the probability ;—hat Strpe <t
while S, > t for any i’ # i is at least the product of these two constants
and the constant probability that p; is not killed between rounds r and r+c.
Thus after a constant number of phases each counsisting of r + ¢ rounds we

expect some process to win.

6.1 Existence of a winner

In this section, we build up the tools needed to show that for each round
there exists a fixed time at which there is likely to be a unique winner.

11



Lemma 5 Let Aq,..., A, be independent events. If the probability that no
A; occurs is x, where x is not zero, then the probability that exactly one A;
occurs s at least —xInx.

Proof: Let g; be the probability that A; does not occur. The probabil-
ity « that no A; occurs is the product of the ¢;. Since x is nonzero, each g;

must also be nonzero. The probability that exactly one A; occurs is given
by

)£ - -9

- i—1
= x(—nﬁ—zl) (1)

Let G be the geometric mean of the ¢; and let H be their harmonic
mean. By the theorem of the means, G > H. Observe that G = z'/" and

~ 1 1 1
Z— =n/H >n/G =nz"" = nexp <—ﬂ> >n (1— ﬂ) =n—Inz.
; n n

i=1 1¢
Plugging this inequality into (1) gives the result. il

Suppose X, ..., X, are random times. The following lemma shows that
under certain conditions there exists a constant time ty, such that, with
constant probability, at most one of the X; is less than t:

Lemma 6 Let Xi,...,X, be independent random variables such that for
all finite values t and all distinct ¢,7, the probability that X; = X; =t is
zero. Then either Pr[ViX; = oo] is greater than e ' or there ewists to such
that the probability that exactly one of the X; s less than or equal to ty is
at least 1/5.

Proof: For each ¢, let g;(t) be the probability that X; is not less than
or equal to t. Let ¢(t) = [[i; ¢i(t) be the probability that none of the
X; are less than or equal to ¢. Note that each ¢;(¢) is a decreasing right-
continuous left-limited function with limy_, . ¢;(t) = 1 and limy_, ¢;(t) =
Pr[X; = oo]. Similarly, ¢(t) = []; ¢i(t) is right-continuous, left-limited, and
has lim;, o ¢(t) = 1 and lim;_, q(t) = Pr[ViX; = o0].

Suppose that this latter quantity is less than or equal to e~!. (If not,
the first case of the lemma holds.) Then for some finite ¢, ¢(t) < e!. Let
to be the least such .

12



Now suppose q(tg) > e 2. Then, by Lemma 5, the probability that
exactly one X; is less than or equal to ¢y is at least 2e72 ~ 0.27.. ..

Otherwise, we have q(to) < e=2 but g(tp—) = limy_s, q(t) > e~L. (We
are using the usual convention that f(z—) denotes the left limit of f at
x.) This discontinuity must correspond to a discontinuity in ¢; for some
7. At most one ¢; has a discontinuity at ty, by the assumption that the
probability that distinct X;, X; both equal ¢ is zero. Hence, for all j # 4
we have g;(to—) = g;(to) and thus g;(to—)/gi(to) = q(to—)/q(to) < e

Since ¢;(tp—) < 1, it follows immediately that ¢;(to) < e ! and thus
the probability that X; is less than or equal to t; is at least 1 — e™!.
Now the probability that no other Xj; is less than or equal to tp is at
least q(to)/qi(to) > q(to—) > e~!. Since the variables are independent,
the probability that only X; is less than or equal to #y is thus at least
(1—eHet=023.... 1

6.2 Size of the lead

In this section, we show that if enough rounds have passed, a process that is
likely to be ahead of the others is in fact likely to be several rounds ahead.
The proof is somewhat complicated by the lack of restrictions on the noise
distribution, but the following lemma shows how the Strong Law of Large
Numbers can be used to smooth the noise terms out a bit.

Lemma 7 Let X1, Xo,... be finite non-negative independent identically dis-
tributed random wvariables whose common distribution is not concentrated
on a point. Define S, = > i1 X;. For any c, there exist n,t such that
Pr[S, < t] < 1 but Pr[S, <t —c] > 0.

Proof: Let us first consider the case where X; has a finite expectation
m. Then the Strong Law of Large Numbers says that S, /n converges to m
in the limit with probability 1. So for any € > 0, the probability that S, is
less than m — e goes to zero and thus drops below 1/2 for all n greater than
some 7.

Let t, = n(m —€). As long as n > ng, we have Pr[S, < t] < 2. Now
suppose that Pr[S, < ¢, — ¢ = 0 whenever n > ny. Since the X; are
independent, this event can only occur if for each X;, X; < t"T*C =m-—e—
with probability 0. Taking the union of countably many such bad events
for each rational ¢ and each n > my shows that the event X; < m, also
has probability 0. It follows that X; > E[X;] almost surely and thus the
distribution of Xj is concentrated on E[X;], a contradiction.

13



If X; does not have a finite expectation, then S,,/n grows without bound
with probability 1 (see the corollary to Theorem 22.1 in [14]). So for any
z, there exists ng, such that Pr[S,/n < z] < 3 for n > ng. We repeat
the above analysis for ¢ = nz; if Pr[S, < t — ¢] = 0 for all such ¢, we get
X; > z — - almost surely, implying X; exceeds any finite bound z. Again,
a contradiction. |l

Once the noise terms have been smoothed, it is not hard to show that
they eventually accumulate enough to push a winner ahead:

Lemma 8 Fiz ¢ > 0. Let X1, Xo,... be finite independent identically dis-
tributed random wvariables such that there exists a threshold ty for which
Pr[X < to] < 1 but Pr[X < ty—c] =3y > 0. Define S, = Y1) X;.

Then for any € > 0, there exists an n = O(log(1/€)), such that for any
t, Pr[S, < t] > € implies Pr[S, <t —c|S, <t] > L.

Proof: Set n = 8(In(1/¢) +1). Each X; has probability at most 1/2 of
being less than g, so a simple application of Chernoff bounds shows that the
probability that 3/4 or more of the X; are less than ¢ is at most e /8 =¢ /e.

We will use this fact to argue that even when conditioning on S, < t,
there is nearly one chance in four that X,, in particular is greater than .
In this case, Sy, _1 is less than t — ¢ty and we can use independence to replace
X, with a new value less than ¢y — ¢, giving a sum S, less than ¢t — ¢, all
without reducing the probability by much.

Formally, we have the following sequence of inequalities, each of which
is implied by the previous one. Let Pr[S,, < t] = p and suppose p > €. Then
we have:

Pr[S, <t] = p
Pr[S, <t Aat least 1 of X; are greater than t)] > p—e€/e
Pr[S, < tA X, > to] > i(p _e/e)
PrSiy<t—t] > /o)
PrSy 1 <t—tgA Xy <to—c > i(p — e/e)ds
Pr[S, <t—¢ > i(p —€/e)dy
Pr[S, <t—c¢|S, <t] > i(p—e/e)do/p
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Since p > ¢, this last quantity is at least i(l — 1/e)dp, which is in turn
greater than 16;.

We can now combine Lemmas 7 and 8 into the following:

Lemma 9 Let Xy, Xo,... be finite non-negative independent identically dis-
tributed random wvariables whose common distribution is not concentrated
on a point. Define S, = Y.i' 1 X;. Fiz ¢ > 0. Then there is a con-

stant §, such that for any € > 0, there exists n = O(log(1/e)), such that
Pr[S,, < t—c|S, < t] > 6 whenever Pr[S,, <t] >e.

Proof:  Use Lemma 7 to group the X; together into partial sums
Y, = Z;@%g_‘f_l X; with the property that for some ¢ PrY; < t] < % but
Pr[Y; <t—c] =6y > 0. (Note that ny does not depend on ¢, so it disappears
into the constant factor.) Then apply Lemma 8 to sums of these Y; variables
to get the full result. il

6.3 When the Race Ends

In this section, we show that a race between n independent delayed renewal
processes with bounded added delays ends in O(logn) rounds with at least
constant probability. In the following section, we translate this result, which
appears as Corollary 11, back into terms of the LEAN-CONSENSUS algorithm
to get Theorem 12.

Theorem 10 Let {X;;}, where i,j > 1, be a two-dimensional array of fi-
nite non-negative independent identically distributed random variables with
a common distribution function F that is not concentrated on a point. Let
{Ai;}, where i > 1,5 > 0, be a two-dimensional array of constants with
0 <Ay <M when j > 1. Let {H;j}, where i,j > 1, be a two-dimensional
array of independent random wvariables, each of which is equal to oo with
probability h(n) and 0 otherwise. Define

T
Sz’-r =N+ Z (Ai]‘ + Xij + Hij) .
j=1
Assume that for any finite t, integer v, and i # j, Pr[Si, = S}, =] = 0.
Let ¢ be any integer constant greater than 0.

Then there exists a constant 6 > 0, such that for any n, there exists
r = O(logn) and t, such that

PriviS, = ooV (3 <n: S,y <AV #i0,i <n:Sp >1)] >0
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The constant factor in r = O(logn) and the constant 6 may depend on
c, F, M, and h; but neither constant depends on n.

Proof: Since each Xj; is finite with probability 1, there exists some
constant ¢; such that Pr| ;iﬁﬂ Xij < ci] > % Let T;, = 25:1 X;j and
let S; = T + Z;ZO Ajr. Apply Lemma 9 to the sequence X;; with ¢ =
cM + c; and € = n=2 to obtain r = O(logn) and a constant & for which
Pr[T}, <t —cM — c1|T; < t] > & whenever Pr[T;, < t] > n 2. Adding the
missing constant terms Z;ZU A;j to Tjy to get S;r is equivalent to subtracting
these same terms from each occurrence of ¢, so we in fact have Pr[S; <
t —cM — ¢1|S; < t] > dp whenever Pr[S; < t] > n~2. This gives us our
target round r.

Now apply Lemma 6 to S.,, for all i < n, to show that with probability
at least 1/5 either ViS], = oo or there exists a time g, such that there is a
unique winner ¢ < n for which S, is less than #;. Let us assume without loss
of generality that n is at least 6. Throw out all cases where 7 has Pr[S], <
to] < n~2; this leaves a probability of at least 1/5—1/n > 1/30 that (a) there
is a unique winner i, and (b) 7 satisfies the condition Pr[S!. < to] > n=2,
implying Pr[S;; = S, < to] > n~? and thus Pr[S; < tg — cM — ¢1|S;; <
to] > dp. So with probability at least %60, we have S;. < tg — cM — ¢y,
and thus with probability at least 6—1050 we have S; ;1. < Sip +cM + ¢ =
Si.+cM + ¢ < tp.

Suppose that this event holds. It is still possible for S}, . to be infinite
if Y050, Hij = oo. Call this event I; if Pr[I] = 1 — (1 — h(n))® > 50,
then h(n) is bounded below by a constant and there exists ' = O(logn)
such that Pr[ViS], = oo] is at least a constant. Alternatively, we have
Pr(S], .= Siste < S} +¢M +c1] > 6 = 73500. In either case, the theorem
holds. 1

Corollary 11 Let R be the first round for which either
o There exists i, such that S} g, . < Sjp for all i’ # i, or

e Foralli, S;p .= oo.

Under the conditions of the preceding theorem, E[R] = O(logn), and, for
any k >0, Pr[R > k] < e~ Lk/O(logn)]

Proof: Theorem 10 says that the desired event occurs with constant
probability § after a phase consisting of r = O(logn) rounds. If it does not
occur, we can apply the theorem again to the subset of the i’s for which
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S} r+c 1s finite, starting with round r +c+ 1 and setting the initial delay Ay

to the value of SZ’-,T 1 from the previous phase.
On average, at most 1/6 = O(1) such phases are needed, giving E[R] <
(1/0)r = O(logn). For the exponential tail bound, observe that the proba-

bility that the algorithm runs for more than ¢ phases of r rounds each is at
0
most (1 —0)¢ = ((1 - (5)1/‘5)C < (eil)as = e %, So the probability that the

algorithm runs for more than k rounds is at most e~ /710 < ¢—1k/O(logn)|

6.4 When LEAN-CONSENSUS Ends

Translating Corollary 11 back into terms of the LEAN-CONSENSUS algorithm
gives:

Theorem 12 Under the noisy scheduling model with random failures, start-
ing from any reachable state in the LEAN-CONSENSUS algorithm in which the
largest round number of any process is r, the algorithm running with n active
processes terminates by round r + ', where ' has expected value O(logn)
and Pr[r' > k] < e=5/00ogn)] for any k> 0.

Proof: Apply Corollary 11 with ¢ = 2 and the initial delays A;p set to
the times at which each process completes round r. This shows that after
R additional rounds, where E[R] = O(logn) and Pr[R > k] < e~ [k/O(cgn)]
either some process P finishes some round s before any other process finishes
round s — 2, or all processes fail. In the first case, if P prefers b, it is the
only process to have written to ap[s — 1] or a;_[s — 1] by the time it reads
a1_p[s — 1] as part of round s. Thus it reads a zero from ay_p[s — 1] and
decides. All other processes decide at most one round later by Lemma 4. We
thus get 7' < R+ 1, and the single extra round disappears into the constant
factors. Il

It is not hard to see that an O(logn) bound is the best possible, up to
constant factors.

Theorem 13 There exists a noise distribution F and o set of delays A such
that the LEAN-CONSENSUS algorithm requires expected Q(logn) rounds in the
noisy scheduling model, even without failures.

Proof: Let all A;; = 0 for j > 0, and let F' have each operation take
either 1 or 2 time units with equal probability. Then any single processor
completes its first log n operations in 1 time unit each with probability 1/n.
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To avoid simultaneous operations, let A;yp be some small distinct epsilon
value for each 3.

Start n/2 processes with input 0 and n/2 with input 1. The probability
that there exists at least one O-input process and at least one 1-input process
that both complete their first logn operations in 1 time unit each is given

) )

which goes to (1 — e 1/2)2 = ©(1) in the limit as n grows. So there is
a constant probability that at least one process with each input runs for
logn operations without ever changing its preference to that of a faster
process with the opposite preference, and we get expected €2(logn) rounds
of disagreement. il

7 Termination with Quantum and Priority-Based
Scheduling

In this section, we consider the question of termination subject to hybrid
quantum and priority-based scheduling on a uniprocessor. The required
quantum size is 8 operations; curiously, this is the same size required for
the specialized algorithm given in [5]. We see this coincidence as hinting at
the possibility that all shared-memory consensus algorithms may ultimately
converge to a single ideal algorithm (though such an ideal algorithm, if it
exists, is probably not identical to LEAN-CONSENSUS).

Theorem 14 When running LEAN-CONSENSUS in a hybrid-scheduled sys-
tem with a quantum of at least 8 operations, every process decides after
executing at most 12 operations.

Proof: We will show that at most one of ag[l] and a,[1] is set before
some process finishes round 2 and decides. Consider an execution in which
ap[l] and a1 [1] are each set at some point. Let Py and P; be the first processes
to set agp[1] and aq[1], respectively. Neither Py nor P; can have observed the
round-1 write of the other, or it would have changed its preference. Thus
both processes’ round-1 reads of ap[1] and a;[1l] must have occurred before
either performed its round-1 write. Since we are on a uniprocessor, this can
only occur if one of the processes was pre-empted before its write occurred.
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Assume without loss of generality that Py is this unlucky process. Since
Py is the first process to write to ag[1], if we can show that Py is not resched-
uled before some process completes round 2, then that process decides 1 (and
by Lemma 4, all processes eventually decide 1) as soon as it observes a zero
in ap[1]. So we need only show that Py is not rescheduled until some other
process completes eight operations.

Let Q1 be the process that pre-empts Fy. At the time of pre-emption,
Q1 is at the start of a quantum; it either finishes eight operations without
being pre-empted or is pre-empted by a higher-priority process Q2. But
(2 in turn can only be pre-empted before completing its quantum by some
higher-priority process (3. After at most n such pre-emptions, we run out of
higher-priority processes, and the last process runs to the end of its quantum
and decides. Note that all of the processes in this chain (except possibly Q1)
have a higher priority than P and thus cannot be equal to F,. It follows
that some process finishes round 2 before Py is rescheduled, and thus every
process decides 1 by the end of round 3. 1

8 Bounded space LEAN-CONSENSUS

The LEAN-CONSENSUS algorithm as described in Section 4 requires infinite
space. In this section, we describe how to modify the algorithm to use
bounded space. We assume that we have available a backup protocol, which
is a bounded-space consensus protocol that requires polynomial work per
process (for example, the O(n?) protocol in [6] works). We will build a
protocol that combines LEAN-CONSENSUS with the backup protocol in a
way that only uses the backup protocol rarely, so that its high cost adds
only a constant to the O(logn) cost of the combined protocol.

Note that such a combined protocol is not necessary in the model of Sec-
tion 7, as in that model we only need space for 3 rounds of LEAN-CONSENSUS.

The combined protocol operates as follows:

1. Run LEAN-CONSENSUS through round rpx.

2. At round rpax + 1, switch to the backup protocol, using the preference
at the end of round rp,,x of LEAN-CONSENSUS as input to the backup
protocol.

If rpax is large enough, most of the time we will expect that LEAN-
CONSENSUS terminates before reaching ry,x and the backup algorithm will

19



not be used. But in the case where r,x is reached (say, because the sched-
uler is nastier than we have assumed), the backup algorithm guarantees
termination using bounded space and bounded (but possibly very large)
expected time.

Theorem 15 For any polynomial-work consensus protocol chosen as a backup
algorithm and any noise distribution, there is a choice of rmax = O(log2 n)
such that the combined algorithm described above is a consensus protocol
that requires O(logn) expected operations per process and O(log®n) bits in
the ag and ay arrays.

Proof: First let us show that the combined algorithm solves consensus.
Validity is immediate from Lemma 3; when all inputs are equal, we never
get past round 2 and the combined algorithm behaves identically to LEAN-
CONSENSUS. For agreement, the only tricky case is when some processes
decide during LEAN-CONSENSUS and others decide during the backup proto-
col. But if some process P decides b at or before round r, then by Lemmas 2
and 4 no process writes aj_[r] and every process that executes the backup
protocol has b as input. Thus the validity condition for the backup protocol
implies that all processes decide b.

Now let us show that there is a choice of ryax that gives the desired
performance bound. Suppose each process finishes the backup protocol in
O(n®) expected operations. By Theorem 12, there is a value 7' = O(logn)
such that the probability that LEAN-CONSENSUS does not finish by round & is
at most e~ /7] Setting rmax = T-c-logn = O(log? n), the backup protocol
is run with probability at most e~¢1°8" = p=¢ and thus it contributes at
most n~¢O(n¢) = O(1) to the expected cost.

Finally, the size of the ay and a; arrays is clearly equal to rp.x =
O(log®n). 11

9 Simulation Results

Figure 1 gives the results of simulating LEAN-CONSENSUS with various in-
terarrival distributions. These simulations are of the model as described in
Section 3.1; in particular it is assumed that all operations take zero time
and that there are no contention effects or synchronization issues.

The X axis is plotted on a logarithmic scale and represents the number
of processes. The Y axis is plotted on a linear scale and represents the round
at which the first process terminates (which may be one less than the round
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Figure 1: Results of simulating LEAN-CONSENSUS with various interarrival
distributions.

at which the last process terminates). Each point in the graph represents an
average termination round in 10,000 trials with the given distribution and
number of processes. The starting times for all processes are the same except
for a small random epsilon, generated uniformly in the range (0,10%). In
each case, half the processes are started with input 0 and half with input 1.
There are no failures.

The random number generator used was drand48. The distributions
used were:

1. Normal distribution with mean 1 and standard deviation 0.2 (variance
0.04), rejecting points outside (0, 2).

2. 2/3 or 4/3 with equal probability.

3. 0.5 plus an exponential random variable with mean 0.5. This corre-
sponds to a delayed Poisson process.

4. Geometric with p = 0.5.

5. Uniform in (0,2).
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6. Exponential with mean 1. This corresponds to a Poisson process with
no initial delay; it is also equivalent to generating a schedule by choos-
ing one process uniformly at random for each time unit.

It is worth noting that while the expected number of rounds grows log-
arithmically for most distributions, both the rate of growth and the initial
value are small. These small constant factors may be the result of most
processes adopting the values of early leaders, so that termination can be
reached by agreement among leaders rather than the emergence of a single
leader.

The inverted behavior with a normal distribution is intriguing; it sug-
gests that with large numbers of processes there are more chances for one
particularly speedy process to leap ahead of its competitors, and that for
some distributions this effect overshadows the effect of having more com-
petitors to leap ahead of. It is not clear from the data whether this curve
eventually turns around and starts rising again, or whether it converges to
some constant asymptote.

10 Conclusions, Extensions, and Future Work

We see this paper as making two main contributions. The first is the ex-
traction of the adaptive O(logn) time LEAN-CONSENSUS protocol from its
more sophisticated predecessors and the demonstration that this simplified
algorithm can solve consensus in models that are less extreme than those
predecessors were designed to survive but that are perhaps closer to captur-
ing the scheduling behavior an algorithm is likely to experience in practice.
Although LEAN-CONSENSUS does not really contain any new ideas, we be-
lieve that ripping out features that practitioners might balk at implementing
is a valuable task in its own right.

The second is the noisy scheduling model. This model limits the adver-
sary not by covering its eyes but by making its hands shake. It allows us
to express the understanding that in the real world failures and timing are
usually not fully under the control of intelligent demons, while still retain-
ing a healthy respect for the subtlety and unpredictability of the world. We
believe that this “perturbed worst-case analysis” approach is likely to have
applications in many areas both in and outside of distributed computing.

There are still many questions left unanswered and many ways in which
the noisy scheduling model could be extended. We discuss some of these
issues below.
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Non-random failures. It would be nice to understand how LEAN-CONSENSUS
fares with failures that are not random. We can get an upper bound in this
situation by restarting Theorem 12 whenever a process dies. Since the ad-
versary must kill at least one process every expected O(logn) rounds, the
algorithm terminates in expected O(f logn) rounds where f is the number of
failures. This bound compares favorably with the O(nlog? n) work per pro-
cessor needed by the best known randomized algorithm that solves consensus
with a fully-adaptive adversary and up to n — 1 failures [9], but the fully-
adaptive adversary is much stronger than one limited to noisy scheduling.
It seems likely that a better upper bound than O(f logn) could be obtained
by a more careful analysis that includes how processes change preferences.
We conjecture that the real bound is in fact O(logn).

Statistical adversaries. We would also like to do away with the fixed
bound M on the delay between operations under the control of the adver-
sary. The technical reason for including this bound in the model is that
it provides a scale for the noise introduced by the X;; variables; if the ad-
versary can increase A;; without limit, it can construct a steadily slower
and slower execution in which the noise, relative to the gap between rounds,
never accumulates enough to affect the schedule. But a weaker statistical
constraint, such as requiring 2521 A;j < rM, might avoid such Zeno-like
pathologies while allowing more variation in the gaps between operations.®
The present proof does not work with just this statistical constraint (the
particular step that breaks down is the use of Lemma 9 to show that being
ahead at round r often means being ahead by ¢ at round r), but we conjec-
ture that the statistical constraint is in fact enough to get termination in
O(logn) rounds.

Synchronization and contention. Though the present work was moti-
vated by a desire to move away from powerful theoretical adversaries toward
a model more closely reflecting the non-maliciousness of misbehavior in real
systems, we cannot claim that the model accurately describes the behavior of
any real shared-memory system. One difficulty is that real shared-memory
systems generally do not guarantee full serializability of memory operations
in the absence of additional synchronization operations (see [28, Section
8.6]). We can overcome this difficulty by adding synchronization barriers to
each round of LEAN-CONSENSUS; in principle this does not affect the analysis
since the structure of each round is still the same as all other rounds. A

This is a bit like using the statistical adversary of [18].
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second problem is memory contention, which we have not analyzed. The
difficulty with both explicit synchronization and memory contention is that
their effects are unlikely to be consistent with the assumption that the tim-
ing of different processes’ operations are independent. To the extent that
this lack of independence disperses processes (say, by slowing down laggards
fighting over congested early-round registers while allowing the speedy to
sail through relatively clear late-round registers), it helps the algorithm.
Whether such an effect would occur in practice cannot easily be predicted
without experimentation.

Lower bounds. The noisy scheduling model is friendly enough that an
O(logn) running time for consensus might not be the best possible. A
counterexample like the one given in the proof of Theorem 13 might be
able to show that no deterministic algorithm with certain strong symmetry
properties (such as no dependence on process identity and a mirror-image
handling of the different inputs) can do better, but it not obvious where to
look for a more general lower bound. It is not out of the question that a
clever algorithm could solve consensus with noisy scheduling in as little as
O(1) time.

Message passing. All of our results are set in a shared-memory model.
It would be interesting to see whether a noisy scheduling assumption can be
used to solve consensus quickly in an asynchronous message-passing model.

Other problems. Finally, though we have concentrated on a particularly
simplified protocol for solving a single fundamental problem, it would be
interesting to see how other algorithms fare in the noisy scheduling model.
It seems likely, for example, that algorithms designed for unknown-delay
models such as Alur et al.’s [3] should continue to work in the noisy schedul-
ing model, perhaps with some constraint on the noise distribution to ex-
clude random delays with unbounded expectations. Similarly the line of
inquiry started by Gafni and Mitzenmacher [23], on analyzing the behavior
of timing-based algorithms for mutual exclusion and related problems with
random scheduling, could naturally extend to the more general model of
noisy scheduling.
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