
Fast Deterministi Consensus in a NoisyEnvironmentJames Aspnes�July 17, 2002AbstratIt is well known that the onsensus problem annot be solved de-terministially in an asynhronous environment, but that randomizedsolutions are possible. We propose a new model, alled noisy shedul-ing, in whih an adversarial shedule is perturbed randomly, and showthat in this model randomness in the environment an substitute forrandomness in the algorithm. In partiular, we show that a simpli�ed,deterministi version of Chandra's wait-free shared-memory onsensusalgorithm (PODC, 1996, pp. 166{175) solves onsensus in time at mostlogarithmi in the number of ative proesses. The proof of terminationis based on showing that a rae between independent delayed renewalproesses produes a winner quikly. In addition, we show that theprotool �nishes in onstant time using quantum and priority-basedsheduling on a uniproessor, suggesting that it is robust against thehoie of model over a wide range.1 IntrodutionPerhaps the single most dramati result in the theory of distributed om-puting is Fisher, Lynh, and Paterson's proof of the impossibility of deter-ministi onsensus in an asynhronous environment with failures [22℄. Thisresult and its extensions [20,27℄ show that the onsensus problem, in whiha group of proesses must olletively agree on a bit, annot be solved deter-ministially in an asynhronous message-passing or shared-memory model�Yale University, Department of Computer Siene, 51 Prospet Street/P.O. Box208285, New Haven CT 06520-8285. Email: aspnes�s.yale.edu. This work was sup-ported in part by NSF grants CCR-9820888 and CCR-0098078.1

if an unrestrited adversary ontrols sheduling. Solutions to the shared-memory version of this fundamental problem have thus taken the approahof restriting the adversary, either by allowing randomization that limitsthe adversary's knowledge [1,6,8,10,12,13,15{17,30℄ or by imposing timingonstraints that limit the adversary's ontrol [3, 20, 21℄. As a orollary togranting less power to the adversary, these solutions often involve grantingmore power to the algorithm, in the form of the ability to obtain randombits or expliitly delay steps. By using these additional powers an algorithman esape the FLP bound and reah agreement.These additional powers ome at a ost. Randomization alone is notpowerful enough to allow sublinear onsensus protools [7℄, so eÆient ran-domized solutions have required additional onstraints on the ability of theadversary to observe the arguments to operations and the ontents of unreadmemory loations [12, 13, 16℄. These algorithms arefully manage ommonpools of unread random bits for future use, a lever but odd-looking pra-tie that is justi�ed primarily by the spei� details of the model. Thedelay-based algorithm of [3℄ is less onvoluted, but still depends on usingexpliit delays that at the minimum require that a proess has the power toinvoke them and at worst may add unneessary delay when few proessespartiipate.As an alternative to designing an algorithm spei�ally to exploit theweaknesses of a partiular adversary model, we onsider the approah ofusing a simple algorithm that guarantees agreement but relies on good lukto terminate. Our lean-onsensus algorithm, desribed in Setion 4, isobtained by removing all of the randomized parts of a similar algorithm dueto Chandra [16℄. The essential idea (whih is the ore of many onsensusprotools in the literature) is to stage a rae between those proesses thatprefer 0 and those that prefer 1, with the rule that if a slow proess seesthat faster proesses are all in agreement it adopts their ommon preferene.The rae is implemented using two arrays of atomi read/write bits. Thealgorithm terminates when the fastest proesses are all in agreement andan deide on their preferred value safely, knowing that other proesses willadopt the same preferene before they ath up. As shown in Setion 5,this mehanism is enough to ensure that if any one proess deides then allother proesses soon deide on the same value, no matter how the adversaryarranges the shedule.In e�et, the rae framework allows the proesses to detet agreementone it ours. But unlike other onsensus algorithms, lean-onsensusmakes no attempt to ajole the proesses into reahing agreement| it reliesentirely on the hope that some proess eventually pulls ahead of the others.2

In order to dash this hope, the adversary must exerise enough ontrol toensure that the fastest proesses run in lokstep. We believe that in manynatural system models it will be diÆult for the adversary to exerise thismuh ontrol.One suh model is what we all the noisy sheduling model, desribedin Setion 3.1. In this model, the adversary proposes a shedule that spe-i�es the order in whih read and write operations our, but this sheduleis perturbed by random noise drawn from some arbitrary non-onstant dis-tribution. This noise orresponds to random fators in a system that mightnot be strongly orrelated with the algorithm's behavior, suh as networkdelays, lok skew, or bus or memory ontention.We show in Setion 6 that, in the noisy sheduling model, lean-onsensusterminates with expeted �(log n) work per proess, where n is the numberof ative proesses. This result is distribution-independent, in the sense thatthe algorithm's asymptoti performane does not depend on the noise dis-tribution in the model (though the onstant fator does), and it holds evenif proesses are subjet to random halting failures. Beause the algorithm'sperformane depends only on the number of proesses atually exeutingthe protool and not on the total number of proesses in the system, it isadaptive in the sense of [11℄, whih implies it is fast in the sense of [2, 26℄.Thus it is well-suited to situations where only one or a few proesses attemptto run the algorithm at the same time.Our noisy sheduling model is similar to the model used by Gafni andMitzenmaher [23℄ in their analysis of mutual exlusion protools with ran-dom timing, but is extended to inlude onstant delays inserted by theadversary in addition to random delays. Another soure of inspiration isKoutsoupias and Papadimitriou's di�use adversary [25℄, whih hooses a dis-tribution over exeutions in whih no branh at any deision point an ourwith probability more than some �xed �. Our model is not the �rst in whihan adversary hooses parameters for a stohasti proess that then on-trols sheduling; a sophistiated model of this type, based on asynhronousPRAMs, has been proposed by Cole and Zajiek [19℄.To give support to our intuition that many possible restritions on theadversary make lean-onsensuswork, we also onsider what happens witha hybrid quantum and priority-based sheduler on a uniproessor, followingthe approah of [5℄. (The details of this model, whih subsumes both quan-tum sheduling and priority-based sheduling, are skethed in Setion 3.2.)We show in Setion 7 that lean-onsensus terminates in O(1) steps inthe hybrid-sheduling model, as long as the quantum is at least 8. Therestrition to a uniproessor is neessary beause [5℄ shows that no deter-3

ministi algorithm an solve onsensus with multiple proessors, even withhybrid sheduling, without using stronger primitives than atomi read/writeregisters.Our basi onsensus algorithm requires in�nitely long arrays. Obviouslythis is undesirable in a real system. In order to bound the required spae,we adopt a tehnique from [16℄ and ut o� the algorithm after onsumingO(log2 n) bits of spae, using the preferene eah undeided proess has atthat point as input to a more expensive, bounded-memory onsensus algo-rithm satisfying the validity property.1 Sine the more expensive algorithmis only run with low probability, its higher osts do not inrease the ex-peted time for the algorithm as a whole by more than a small onstantfator. Details are given in Setion 8.Setion 9 desribes some simulation results that show that the onstantfators in the noisy sheduling analysis are in fat quite small for plausi-ble noise distributions, suggesting that the good theoretial performaneof lean-onsensus might atually translate into fast exeution in a realsystem.In Setion 10, we suggest a number of diretions in whih the urrentwork ould be extended, inluding extensions to the noisy sheduling model.One interesting possibility is the inlusion of adaptive rash failures. Weargue briey that beause lean-onsensus reovers quikly from suh fail-ures, it terminates in at most O(f logn) work per proess even if up to fproesses fail. However, there remains an interesting open question whethernoisy sheduling is enough to get O(log n) performane even with �(n) rashfailures.2 The Consensus ProblemIn the binary onsensus problem, a group of n proesses, possibly subjet tohalting failures, must agree on a bit.2 A onsensus protool is a distributedalgorithm in whih eah non-faulty proess starts with an input bit andeventually terminates by deiding on an output bit. It must satisfy thefollowing three onditions with probability 1:1An early example of this approah is found in the bounded-rounds randomized Byzan-tine agreement protool of Goldreih and Petrank [24℄, whih swithes from a randomizedto a deterministi protool if the randomized protool does not terminate quikly enough.2Some authors onsider the stronger problem of id onsensus, in whih the deisionvalue is the id of some ative proess. In many ases, id onsensus an be solved ina natural way using a (lg n)-depth tree of binary onsensus protools; examples of thisapproah an be found in [12, 16℄. 4

� Agreement. All non-faulty proesses deide on the same bit.� Termination. All non-faulty proesses �nish the protool in a �nitenumber of steps.� Validity. If all proesses start with the same input bit, all non-faultyproesses deide on that bit.33 ModelWe assume a shared-memory system onsisting of an unbounded number ofproesses that ommuniate only through shared atomi read/write regis-ters. We use the usual interleaving model, in whih operations are assumedto our in a sequene �1; �2; : : :, and in whih eah read operation returnsthe value of the last previous write to the same loation. The order in whihoperations our is determined by a stohasti proess that is partially un-der the ontrol of an adversary (Setion 3.1), or diretly by the adversarysubjet to ertain regularity onstraints (Setion 3.2).3.1 Noisy ShedulingIn the noisy sheduling model, we assume that the adversary spei�es whenoperations our (subjet to an upper bound on the time between suessiveoperations by the same proess), but that this spei�ation is perturbed byrandom noise.Formally, the adversary hooses:1. An arbitrary starting time �i0 for eah proess pi,2. A non-negative delay �ij between proess pi's (j � 1)-th and j-thoperations, bounded by some �xed onstant M , and3. A �xed ommon distribution F� of the random delay added to eahtype of operation � (e.g., read or write). If proess pi's j-th operationis of type �, it su�ers an additional delay Xij whose distribution is F�.There is no restrition on the hoie of the F�, exept that they must3Some de�nitions of onsensus replae the validity ondition with a weaker non-triviality ondition that says that there must exist exeutions in whih di�erent deisionvalues our.
5

not be onentrated on a point and must produe only non-negativevalues Xij .4The time of proess pi's j-th operation is given bySij = �i0 + jXk=1 (�ik +Xik) :Sine we are using interleaving semantis, the e�et of exeuting twooperations at exatly the same time is not well-de�ned. To avoid ill-de�nedexeutions, we impose the additional tehnial onstraint on the adversary'shoies that the probability that any two operations our simultaneouslymust be zero. This is automati if, for example, the noise distributions F�are ontinuous. Alternatively, it an be arranged by dithering the startingtimes of eah proess by some small epsilon. This tehnial onstraint doesnot qualitatively hange our results.Below we disuss the unfairness of noisy sheduling and extensions toallow random failures.3.1.1 UnfairnessThe upper bound on the �ij and the ommon distribution on the Xij mightsuggest that the noisy sheduling model produes fair shedules. This is notentirely true for suÆiently pathologial distributions.Theorem 1 There exists a hoie of F� and �ij suh that for any distintproesses pi and pi0 , and any operation j, the expeted number of operationspi0 ompletes between pi's j-th and (j + 1)-th operations is in�nite.Proof: Set eah F� so that Xij takes on the value 2k2 with probability2�k for k = 1; 2; : : :. For simpliity, let us suppose that �ij = 0 for j > 0.We will also assume that A and B exeute no operations before time 0.Let X be the number of operations ompleted by pi0 between Sij andSi;j+1. We will show that the expetation of X is in�nite onditioned on thevalue of t = dSije (the eiling is so that we have ountably many ases).The idea is this: for eah k we have probability 2�k that Si;j+1 �Xi;j+1 = 2k2 . Condition on this event ourring for some partiular k andonsider how many operations pi0 must exeute to reah time 2k2 . Either(a) one of these operations takes time 2k2 or more (with probability 2�k+14In fat, the F� distributions an be quite bizarre; it is not required, for example, thatthe Xij have �nite expetation. 6

per operation); or (b) a total of at least 22k�1 faster operations, eah ofwhih takes at most 2(k�1)2 time, must our. If we wait only for event (a),we expet to see 2k�1 operations; to get the atual expeted number, wemust subtrat o� the expeted number of operations until (a) ours after(b) ours (2k�1 again) multiplied by the probability that (b) ours. Thislatter probability is at most (1 � 12k�1)2k�1, whih goes to e�2 in the limitas k grows; it follows that pi0 exeutes
(2k) operations on average beforetime 2k2 . Of these, at most t=2 an our before time Sij , so if k � lg t, wehave
(2k) operations on average between t and 2k2 , and thus also betweenSij and Si;j+1, sine Sij � t < 2k2 � Si;j+1.To get the full result, we must remove two layers of onditioning. Firstompute the expetation onditioned only on t by summing 2�k
(2k) foreah of the in�nitely many suÆiently large k. It is not diÆult to see thatthis sum diverges and the expetation is in�nite. Summing over all valuesof t doesn't make it any less in�nite, and we are done.3.1.2 FailuresWe an extend the noisy sheduling model to allow halting failures. For eahi and eah j > 0 let Hij = 1 if proess pi halts before its j-th operationand 0 otherwise. De�neS0ij = �i0 + jXk=1 (�ik +Xik +Hik) ;with the usual onvention for the extended real line that x+1 =1+x =1for any �nite x. If S0ij =1, pi's j-th operation does not our.We do not inlude failures in the noise distributions F� beause thesedistributions do not depend on n, and a onstant probability of failure wouldmean that all proesses die after O(log n) steps. Instead, we assume thatfailures our independently with probability h(n) per operation, where h issome funtion hosen by the adversary. The e�et of stronger failure modelsis disussed in Setion 10.3.2 Quantum and Priority-Based ShedulingOur intuition is that lean-onsensus should perform well in any settingthat prevents lokstep exeutions. One suh setting is the hybrid-sheduleduniproessor model of [5℄, whih ombines the priority-based shedulingmodel of [29℄ with the quantum-based sheduling model of [4℄. In this model,7

proesses are assumed to be time-sharing a uniproessor under the ontrolof a pre-emptive sheduler. Eah proess has a priority, and a proess maybe pre-empted at any time by a proess of higher priority. A proess mayonly be pre-empted by a proess of the same priority if it has exhaustedits quantum, a minimum number of operations it must omplete betweenthe time it wakes up and the time at whih it beomes vulnerable to pre-emption. There is no requirement that a proess start the protool at thebeginning of a quantum; it may have used up some or all of its quantumperforming other work before starting the protool. We do not onsider fail-ures in the hybrid-sheduling model; instead, a proess may be arbitrarilydelayed subjet to the onstraints on the sheduler.4 The lean-onsensus AlgorithmIn this setion, we desribe the lean-onsensus algorithm. The algorithmis very simple, beause we are relying on randomness in the environmentto guarantee termination and thus the algorithm itself must only guaranteeorretness and provide the opportunity for the underlying system to quiklyjostle it into a deision state. Struturally, it is essentially idential to themulti-writer register onsensus protool of Chandra [16℄ with the sharedoins removed, leaving only the implementation from multi-writer bits ofthe \raing ounters" tehnique that has been used in many shared-memoryonsensus protools. It also bears some similarities to the Time-AdaptiveConsensus algorithm of Alur et al. [3℄ with the delays removed.At eah step of the algorithm, eah proess prefers either 0 or 1 as itsdeision value. The onit between the 0-preferring proesses and the 1-preferring proesses is settled by a rae implemented using two arrays a0 anda1 of atomi read/write bits, eah initialized to zero. Eah proess arriesout a sequene of rounds, eah onsisting of a �xed sequene of operations.During round r, a proess that prefers b marks loation ab[r℄ with a one andlooks to see if either (a) it has fallen behind its rivals who prefer (1 � b),in whih ase it abandons its former preferene and joins the winning team,or (b) it and its fellows have sped far enough ahead of any rival proessesthat they an safely deide b knowing that those rivals will give up and jointhe b team before they ath up. The algorithm �nishes fastest when thepak of proesses disperses quikly, so that a lear winner emerges as earlyas possible.Let us look more losely at the details of the algorithm. A proess withinput b sets its preferene p to b and its round number r to 1. (We say that8

a proess is at round r if its round number is set to r; proesses thus startat round 1.) It then repeatedly exeutes the following sequene of steps. Tosimplify the desription of the algorithm, we assume that while a0 and a1 areinitialized to zeroes, they are pre�xed with (e�etively read-only) loationsa0[0℄ and a1[0℄, both set to 1.1. Read a0[r℄ and a1[r℄. If for some b, ab[r℄ is 1 and a1�b[r℄ is 0, set p tob.2. Write 1 to ap[r℄.3. Read a1�p[r � 1℄. If this value is 0, deide p and exit.4. Otherwise, set r to r + 1 and repeat.Note that in eah round the proess arries out exatly four operationsin the same sequene: two reads, a write, and another read. It is temptingto optimize the algorithm by eliminating the write when it is already evidentfrom the previous step that ap[r℄ is set or eliminating the last read when itan be dedued from the value of a1�p[r℄ that a1�p[r � 1℄ is set. However,this optimization redues the work done by slow proesses (whom we'd liketo have fall still further behind) while maintaining the same per-round ostfor fast proesses (whom we'd like to have pull ahead). So we must para-doxially arry out operations that might appear to be superuous in orderto minimize the atual total ost.5 Agreement and ValidityIf we ignore the termination requirement, the orretness of the algorithmdoes not depend on the behavior of the sheduler. The following two lemmasshow that the validity and agreement properties hold whenever the algorithmterminates. The proofs are very similar in spirit to those of Lemmas 1-4in [16℄.Lemma 2 No proess sets ab[r℄ unless (a) r = 1 and b is an input value,or (b) r > 1 and ab[r � 1℄ has already been set.Proof: Consider the �rst proess P that sets ab[r℄. Then P does notread 1 from ab[r℄ at round r and does not hange its preferene during roundr. If r = 1, P 's preferene equals its input, establishing ase (a); if r > 1, Pmust have set ab[r � 1℄ at round r � 1, establishing ase (b).9

Lemma 3 If every proess starts with the same input bit b, every proessdeides b after exeuting 8 operations.Proof: From Lemma 2, if no proess has input 1 � b, no proess eversets a1�b[1℄. It follows that every proess sees a zero in a1�b[1℄ at round 2and deides b.Lemma 4 If some proess deides b at round r, then (a) no proess everwrites a1�b[r℄, and (b) every proess deides b at or before round r + 1.Proof: Let P deide b at round r. We will show that this implies thatno proess ever sets a1�b[r℄.Suppose some proess sets a1�b[r℄; let Q be the �rst suh proess. Be-ause Q is the �rst proess to set a1�b[r℄, it must read a 0 from a1�b[r℄ atthe start of round r. Thus Q an only set a1�b[r℄ if it already prefers 1�b atthe start of round r, implying that it set a1�b[r� 1℄ during round r� 1; andif it reads a 0 from ab[r℄ at the start of round r, preventing it from hangingits preferene after seeing a 0 in a1�b[r℄. But Q's read of ab[r℄ ours afterQ's write to a1�b[r� 1℄, whih ours after P 's read of a1�b[r� 1℄ at roundr (beause P reads 0), whih in turn ours after P 's write to ab[r℄. ThusQ reads 1 from ab[r℄, and hanges its preferene to b at round r. This on-tradits our assumption that Q is the �rst to set a1�b[r℄. It follows that ifany proess deides b in round r, no proess sets a1�b[r℄.Sine no proess sets a1�b[r℄, any proess that reahes round r+1 mustset ab[r + 1℄ (by Lemma 2), and will deide b after reading 0 from a1�b[r℄.Thus no proess runs past round r + 1 without deiding b.To show agreement in earlier rounds, let P 0 deide b0 at round r0 � r.By the preeding argument, if P 0 deides b0 at round r0, then no proess setsa1�b0 [r0℄ and thus (by Lemma 2 again) no proess sets a1�b0 [r℄. But sine Psets ab[r℄, we must have b0 = b.6 Termination with Noisy ShedulingIn this setion, we show that lean-onsensus terminates in �(logn) roundswith noisy sheduling and random failures. (This analysis inludes the oremodel without random failures as well, sine the adversary an always hooseh(n) = 0.) We show that either all proesses die (in whih ase we treat thealgorithm as terminating in the last round in whih some proess takes astep), or some group of proesses with a ommon preferene eventually gets10

two rounds ahead of the other proesses. To avoid analyzing the details ofhow proesses shift preferenes, we will show the even stronger result thatunless all proesses die, a single proess eventually gets two rounds aheadof the other proesses.To simplify the argument, we abstrat away from the individual sequeneof operations in eah round and look only at the times at whih rounds areompleted. We an thus assume that the adversary provides a single noisedistribution F (orresponding to the distribution of the sum of the delays onthree reads and one write) and that the values �ij, Xij , and Hij provide thedelay not on the j-th operation but on the j-th round. Sine this abstrationmerely involves summing together the underlying variables on operations, itdoes not redue the adversary's ontrol over the protool. We will sale Mappropriately so that it is still the ase that 0 � �ij �M when j > 0.Using this approah, the inrement �ij + Xij + Hij is the time takenfor proess i to move from the end of round j � 1 to the end round j.The onstant �i0 represents the proess's starting time, and S0ir = �i0 +Prj=1 (�ij +Xij +Hij) gives the time at whih the proess �nishes round r.A proess i wins the rae with a lead of rounds at round r+ if it �nishesround r + before any other proess �nishes round r, i.e., if S0i;r+ � S0i0;rfor all i0 6= i.We would like to show a bound on how the expeted round at whih someproess wins by sales as a funtion of the number of proesses n, keeping ,M , and F �xed. This bound is given in Corollary 11 below. We will assumethat h(n) = o(1), as otherwise all proesses die after O(log n) rounds onaverage. The proof proeeds in two steps: �rst we show that for any rwhih some proess �nishes with at least onstant probability, there existsa ritial time t that gives at least a onstant probability that S0ir � t forexatly one i. We then show that if r is large enough, Pr[S0i;r+ � tjS0ir � t℄is also at least a onstant. It then follows that the probability that S0i;r+ � twhile S0i0r > t for any i0 6= i is at least the produt of these two onstantsand the onstant probability that pi is not killed between rounds r and r+.Thus after a onstant number of phases eah onsisting of r + rounds weexpet some proess to win.6.1 Existene of a winnerIn this setion, we build up the tools needed to show that for eah roundthere exists a �xed time at whih there is likely to be a unique winner.
11

Lemma 5 Let A1; : : : ; An be independent events. If the probability that noAi ours is x, where x is not zero, then the probability that exatly one Aiours is at least �x lnx.Proof: Let qi be the probability that Ai does not our. The probabil-ity x that no Ai ours is the produt of the qi. Sine x is nonzero, eah qimust also be nonzero. The probability that exatly one Ai ours is givenby nYi=1 qi! nXi=1 1� qiqi = x nXi=1� 1qi � 1�= x �n+ nXi=1 1qi! : (1)Let G be the geometri mean of the qi and let H be their harmonimean. By the theorem of the means, G > H. Observe that G = x1=n andnXi=1 1qi = n=H > n=G = nx�1=n = n exp�� lnxn � � n�1� lnxn � = n� lnx:Plugging this inequality into (1) gives the result.Suppose X1; : : : ;Xn are random times. The following lemma shows thatunder ertain onditions there exists a onstant time t0, suh that, withonstant probability, at most one of the Xi is less than t0:Lemma 6 Let X1; : : : ;Xn be independent random variables suh that forall �nite values t and all distint i; j, the probability that Xi = Xj = t iszero. Then either Pr[8iXi = 1℄ is greater than e�1 or there exists t0 suhthat the probability that exatly one of the Xi is less than or equal to t0 isat least 1=5.Proof: For eah t, let qi(t) be the probability that Xi is not less thanor equal to t. Let q(t) = Qni=1 qi(t) be the probability that none of theXi are less than or equal to t. Note that eah qi(t) is a dereasing right-ontinuous left-limited funtion with limt!�1 qi(t) = 1 and limt!1 qi(t) =Pr[Xi = 1℄. Similarly, q(t) = Qi qi(t) is right-ontinuous, left-limited, andhas limt!�1 q(t) = 1 and limt!1 q(t) = Pr[8iXi =1℄.Suppose that this latter quantity is less than or equal to e�1. (If not,the �rst ase of the lemma holds.) Then for some �nite t, q(t) � e�1. Lett0 be the least suh t. 12

Now suppose q(t0) � e�2. Then, by Lemma 5, the probability thatexatly one Xi is less than or equal to t0 is at least 2e�2 � 0:27 : : :.Otherwise, we have q(t0) < e�2 but q(t0�) = limt!t0� q(t) > e�1. (Weare using the usual onvention that f(x�) denotes the left limit of f atx.) This disontinuity must orrespond to a disontinuity in qi for somei. At most one qi has a disontinuity at t0, by the assumption that theprobability that distint Xi, Xj both equal t0 is zero. Hene, for all j 6= iwe have qj(t0�) = qj(t0) and thus qi(t0�)=qi(t0) = q(t0�)=q(t0) � e�1.Sine qi(t0�) � 1, it follows immediately that qi(t0) � e�1 and thusthe probability that Xi is less than or equal to t0 is at least 1 � e�1.Now the probability that no other Xj is less than or equal to t0 is atleast q(t0)=qi(t0) � q(t0�) > e�1. Sine the variables are independent,the probability that only Xi is less than or equal to t0 is thus at least(1� e�1)e�1 � 0:23 : : :.6.2 Size of the leadIn this setion, we show that if enough rounds have passed, a proess that islikely to be ahead of the others is in fat likely to be several rounds ahead.The proof is somewhat ompliated by the lak of restritions on the noisedistribution, but the following lemma shows how the Strong Law of LargeNumbers an be used to smooth the noise terms out a bit.Lemma 7 Let X1;X2; : : : be �nite non-negative independent identially dis-tributed random variables whose ommon distribution is not onentratedon a point. De�ne Sn = Pni=1Xi. For any , there exist n; t suh thatPr[Sn < t℄ < 12 but Pr[Sn < t� ℄ > 0.Proof: Let us �rst onsider the ase where Xi has a �nite expetationm. Then the Strong Law of Large Numbers says that Sn=n onverges to min the limit with probability 1. So for any � > 0, the probability that Sn isless than m� � goes to zero and thus drops below 1=2 for all n greater thansome n0.Let tn = n(m � �). As long as n > n0, we have Pr[Sn < t℄ < 12 . Nowsuppose that Pr[Sn < tn � ℄ = 0 whenever n > n0. Sine the Xi areindependent, this event an only our if for eah Xi, Xi < tn�n = m��� nwith probability 0. Taking the union of ountably many suh bad eventsfor eah rational � and eah n > n0 shows that the event Xi < m, alsohas probability 0. It follows that Xi � E[Xi℄ almost surely and thus thedistribution of Xi is onentrated on E[Xi℄, a ontradition.13

If Xi does not have a �nite expetation, then Sn=n grows without boundwith probability 1 (see the orollary to Theorem 22.1 in [14℄). So for anyx, there exists n0, suh that Pr[Sn=n < x℄ < 12 for n > n0. We repeatthe above analysis for t = nx; if Pr[Sn < t � ℄ = 0 for all suh t, we getXi � x � n almost surely, implying Xi exeeds any �nite bound x. Again,a ontradition.One the noise terms have been smoothed, it is not hard to show thatthey eventually aumulate enough to push a winner ahead:Lemma 8 Fix > 0. Let X1;X2; : : : be �nite independent identially dis-tributed random variables suh that there exists a threshold t0 for whihPr[X < t0℄ < 12 but Pr[X < t0 � ℄ = Æ0 > 0. De�ne Sn =Pni=1Xi.Then for any � > 0, there exists an n = O(log(1=�)), suh that for anyt, Pr[Sn < t℄ > � implies Pr[Sn < t� jSn < t℄ > 17Æ0.Proof: Set n = 8(ln(1=�) + 1). Eah Xi has probability at most 1=2 ofbeing less than t0, so a simple appliation of Cherno� bounds shows that theprobability that 3/4 or more of the Xi are less than t0 is at most e�n=8 = �=e.We will use this fat to argue that even when onditioning on Sn < t,there is nearly one hane in four that Xn in partiular is greater than t0.In this ase, Sn�1 is less than t� t0 and we an use independene to replaeXn with a new value less than t0 � , giving a sum Sn less than t � , allwithout reduing the probability by muh.Formally, we have the following sequene of inequalities, eah of whihis implied by the previous one. Let Pr[Sn < t℄ = p and suppose p > �. Thenwe have: Pr[Sn < t℄ = pPr[Sn < t ^ at least 14 of Xi are greater than t0℄ > p� �=ePr[Sn < t ^Xn > t0℄ > 14(p� �=e)Pr[Sn�1 < t� t0℄ > 14(p� �=e)Pr[Sn�1 < t� t0 ^Xn < t0 � ℄ > 14(p� �=e)Æ0Pr[Sn < t� ℄ > 14(p� �=e)Æ0Pr[Sn < t� jSn < t℄ > 14(p� �=e)Æ0=p14

Sine p > �, this last quantity is at least 14(1 � 1=e)Æ0, whih is in turngreater than 17Æ0.We an now ombine Lemmas 7 and 8 into the following:Lemma 9 Let X1;X2; : : : be �nite non-negative independent identially dis-tributed random variables whose ommon distribution is not onentratedon a point. De�ne Sn = Pni=1Xi. Fix > 0. Then there is a on-stant Æ, suh that for any � > 0, there exists n = O(log(1=�)), suh thatPr[Sn < t� jSn < t℄ > Æ whenever Pr[Sn < t℄ > �.Proof: Use Lemma 7 to group the Xi together into partial sumsYi = Pin0+n0j=in0+1Xj with the property that for some t Pr[Yi < t℄ < 12 butPr[Yi < t�℄ = Æ0 > 0. (Note that n0 does not depend on �, so it disappearsinto the onstant fator.) Then apply Lemma 8 to sums of these Yi variablesto get the full result.6.3 When the Rae EndsIn this setion, we show that a rae between n independent delayed renewalproesses with bounded added delays ends in O(logn) rounds with at leastonstant probability. In the following setion, we translate this result, whihappears as Corollary 11, bak into terms of the lean-onsensus algorithmto get Theorem 12.Theorem 10 Let fXijg, where i; j � 1, be a two-dimensional array of �-nite non-negative independent identially distributed random variables witha ommon distribution funtion F that is not onentrated on a point. Letf�ijg, where i � 1; j � 0, be a two-dimensional array of onstants with0 � �ij � M when j � 1. Let fHijg, where i; j � 1, be a two-dimensionalarray of independent random variables, eah of whih is equal to 1 withprobability h(n) and 0 otherwise. De�neS0ir = �i0 + rXj=1 (�ij +Xij +Hij) :Assume that for any �nite t, integer r, and i 6= j, Pr[S0ir = S0jr = t℄ = 0.Let be any integer onstant greater than 0.Then there exists a onstant Æ > 0, suh that for any n, there existsr = O(log n) and t, suh thatPr h8i S0ir =1_ �9i � n : S0i;r+ < t ^ 8i0 6= i; i0 � n : S0i0r > t�i > Æ:15

The onstant fator in r = O(log n) and the onstant Æ may depend on, F , M , and h; but neither onstant depends on n.Proof: Sine eah Xij is �nite with probability 1, there exists someonstant 1 suh that Pr[Pr+j=r+1Xij < 1℄ > 12 . Let Tir = Prj=1Xij andlet Sir = Tir +Prj=0�ir. Apply Lemma 9 to the sequene Xij with =M + 1 and � = n�2 to obtain r = O(log n) and a onstant Æ0 for whihPr[Tir < t� M � 1jTir < t℄ > Æ0 whenever Pr[Tir < t℄ > n�2. Adding themissing onstant termsPrj=0�ij to Tir to get Sir is equivalent to subtratingthese same terms from eah ourrene of t, so we in fat have Pr[Sir <t � M � 1jSir < t℄ > Æ0 whenever Pr[Sir < t℄ > n�2. This gives us ourtarget round r.Now apply Lemma 6 to S0ir, for all i � n, to show that with probabilityat least 1=5 either 8iS0ir = 1 or there exists a time t0, suh that there is aunique winner i � n for whih S0ir is less than t0. Let us assume without lossof generality that n is at least 6. Throw out all ases where i has Pr[S0ir <t0℄ � n�2; this leaves a probability of at least 1=5�1=n � 1=30 that (a) thereis a unique winner i, and (b) i satis�es the ondition Pr[S0ir < t0℄ > n�2,implying Pr[Sir = S0ir < t0℄ > n�2 and thus Pr[Sir < t0 � M � 1jSir <t0℄ > Æ0. So with probability at least 130Æ0, we have Sir < t0 � M � 1,and thus with probability at least 160Æ0 we have Si;r+ < Sir + M + 1 =S0ir + M + 1 < t0.Suppose that this event holds. It is still possible for S0i;r+ to be in�niteif Pr+j=r+1Hij = 1. Call this event I; if Pr[I℄ = 1 � (1 � h(n)) > 1120Æ0,then h(n) is bounded below by a onstant and there exists r0 = O(log n)suh that Pr[8iS0ir0 = 1℄ is at least a onstant. Alternatively, we havePr[S0i;r+ = Si;r+ < S0ir + M + 1℄ > Æ = 1120Æ0: In either ase, the theoremholds.Corollary 11 Let R be the �rst round for whih either� There exists i, suh that S0i;R+ < S0i0R for all i0 6= i, or� For all i, S0i;R+ =1.Under the onditions of the preeding theorem, E[R℄ = O(log n), and, forany k � 0, Pr[R > k℄ � e�bk=O(logn).Proof: Theorem 10 says that the desired event ours with onstantprobability Æ after a phase onsisting of r = O(logn) rounds. If it does notour, we an apply the theorem again to the subset of the i's for whih16

S0i;r+ is �nite, starting with round r+ +1 and setting the initial delay �i0to the value of S0i;r+ from the previous phase.On average, at most 1=Æ = O(1) suh phases are needed, giving E[R℄ �(1=Æ)r = O(logn). For the exponential tail bound, observe that the proba-bility that the algorithm runs for more than phases of r rounds eah is atmost (1� Æ) = �(1� Æ)1=Æ�Æ � �e�1�Æ = e�Æ. So the probability that thealgorithm runs for more than k rounds is at most e�bk=rÆ � e�bk=O(log n).6.4 When lean-onsensus EndsTranslating Corollary 11 bak into terms of the lean-onsensus algorithmgives:Theorem 12 Under the noisy sheduling model with random failures, start-ing from any reahable state in the lean-onsensus algorithm in whih thelargest round number of any proess is r, the algorithm running with n ativeproesses terminates by round r + r0, where r0 has expeted value O(log n)and Pr[r0 > k℄ � e�bk=O(log n) for any k � 0.Proof: Apply Corollary 11 with = 2 and the initial delays �i0 set tothe times at whih eah proess ompletes round r. This shows that afterR additional rounds, where E[R℄ = O(log n) and Pr[R > k℄ � e�bk=O(log n),either some proess P �nishes some round s before any other proess �nishesround s � 2, or all proesses fail. In the �rst ase, if P prefers b, it is theonly proess to have written to ab[s� 1℄ or a1�b[s� 1℄ by the time it readsa1�b[s � 1℄ as part of round s. Thus it reads a zero from a1�b[s � 1℄ anddeides. All other proesses deide at most one round later by Lemma 4. Wethus get r0 � R+1, and the single extra round disappears into the onstantfators.It is not hard to see that an O(logn) bound is the best possible, up toonstant fators.Theorem 13 There exists a noise distribution F and a set of delays � suhthat the lean-onsensus algorithm requires expeted
(logn) rounds in thenoisy sheduling model, even without failures.Proof: Let all �ij = 0 for j > 0, and let F have eah operation takeeither 1 or 2 time units with equal probability. Then any single proessorompletes its �rst log n operations in 1 time unit eah with probability 1=n.17

To avoid simultaneous operations, let �i0 be some small distint epsilonvalue for eah i.Start n=2 proesses with input 0 and n=2 with input 1. The probabilitythat there exists at least one 0-input proess and at least one 1-input proessthat both omplete their �rst logn operations in 1 time unit eah is givenby 1� �1� 1n�n=2!2whih goes to (1 � e�1=2)2 = �(1) in the limit as n grows. So there isa onstant probability that at least one proess with eah input runs forlog n operations without ever hanging its preferene to that of a fasterproess with the opposite preferene, and we get expeted
(log n) roundsof disagreement.7 Termination with Quantum and Priority-BasedShedulingIn this setion, we onsider the question of termination subjet to hybridquantum and priority-based sheduling on a uniproessor. The requiredquantum size is 8 operations; uriously, this is the same size required forthe speialized algorithm given in [5℄. We see this oinidene as hinting atthe possibility that all shared-memory onsensus algorithms may ultimatelyonverge to a single ideal algorithm (though suh an ideal algorithm, if itexists, is probably not idential to lean-onsensus).Theorem 14 When running lean-onsensus in a hybrid-sheduled sys-tem with a quantum of at least 8 operations, every proess deides afterexeuting at most 12 operations.Proof: We will show that at most one of a0[1℄ and a1[1℄ is set beforesome proess �nishes round 2 and deides. Consider an exeution in whiha0[1℄ and a1[1℄ are eah set at some point. Let P0 and P1 be the �rst proessesto set a0[1℄ and a1[1℄, respetively. Neither P0 nor P1 an have observed theround-1 write of the other, or it would have hanged its preferene. Thusboth proesses' round-1 reads of a0[1℄ and a1[1℄ must have ourred beforeeither performed its round-1 write. Sine we are on a uniproessor, this anonly our if one of the proesses was pre-empted before its write ourred.18

Assume without loss of generality that P0 is this unluky proess. SineP0 is the �rst proess to write to a0[1℄, if we an show that P0 is not reshed-uled before some proess ompletes round 2, then that proess deides 1 (andby Lemma 4, all proesses eventually deide 1) as soon as it observes a zeroin a0[1℄. So we need only show that P0 is not resheduled until some otherproess ompletes eight operations.Let Q1 be the proess that pre-empts P0. At the time of pre-emption,Q1 is at the start of a quantum; it either �nishes eight operations withoutbeing pre-empted or is pre-empted by a higher-priority proess Q2. ButQ2 in turn an only be pre-empted before ompleting its quantum by somehigher-priority proess Q3. After at most n suh pre-emptions, we run out ofhigher-priority proesses, and the last proess runs to the end of its quantumand deides. Note that all of the proesses in this hain (exept possiblyQ1)have a higher priority than P0 and thus annot be equal to P0. It followsthat some proess �nishes round 2 before P0 is resheduled, and thus everyproess deides 1 by the end of round 3.8 Bounded spae lean-onsensusThe lean-onsensus algorithm as desribed in Setion 4 requires in�nitespae. In this setion, we desribe how to modify the algorithm to usebounded spae. We assume that we have available a bakup protool, whihis a bounded-spae onsensus protool that requires polynomial work perproess (for example, the O(n4) protool in [6℄ works). We will build aprotool that ombines lean-onsensus with the bakup protool in away that only uses the bakup protool rarely, so that its high ost addsonly a onstant to the O(log n) ost of the ombined protool.Note that suh a ombined protool is not neessary in the model of Se-tion 7, as in that model we only need spae for 3 rounds of lean-onsensus.The ombined protool operates as follows:1. Run lean-onsensus through round rmax.2. At round rmax+1, swith to the bakup protool, using the prefereneat the end of round rmax of lean-onsensus as input to the bakupprotool.If rmax is large enough, most of the time we will expet that lean-onsensus terminates before reahing rmax and the bakup algorithm will19

not be used. But in the ase where rmax is reahed (say, beause the shed-uler is nastier than we have assumed), the bakup algorithm guaranteestermination using bounded spae and bounded (but possibly very large)expeted time.Theorem 15 For any polynomial-work onsensus protool hosen as a bakupalgorithm and any noise distribution, there is a hoie of rmax = O(log2 n)suh that the ombined algorithm desribed above is a onsensus protoolthat requires O(log n) expeted operations per proess and O(log2 n) bits inthe a0 and a1 arrays.Proof: First let us show that the ombined algorithm solves onsensus.Validity is immediate from Lemma 3; when all inputs are equal, we neverget past round 2 and the ombined algorithm behaves identially to lean-onsensus. For agreement, the only triky ase is when some proessesdeide during lean-onsensus and others deide during the bakup proto-ol. But if some proess P deides b at or before round r, then by Lemmas 2and 4 no proess writes a1�b[r℄ and every proess that exeutes the bakupprotool has b as input. Thus the validity ondition for the bakup protoolimplies that all proesses deide b.Now let us show that there is a hoie of rmax that gives the desiredperformane bound. Suppose eah proess �nishes the bakup protool inO(n) expeted operations. By Theorem 12, there is a value T = O(log n)suh that the probability that lean-onsensus does not �nish by round k isat most e�bk=T . Setting rmax = T � � logn = O(log2 n), the bakup protoolis run with probability at most e� log n = n�, and thus it ontributes atmost n�O(n) = O(1) to the expeted ost.Finally, the size of the a0 and a1 arrays is learly equal to rmax =O(log2 n).9 Simulation ResultsFigure 1 gives the results of simulating lean-onsensus with various in-terarrival distributions. These simulations are of the model as desribed inSetion 3.1; in partiular it is assumed that all operations take zero timeand that there are no ontention e�ets or synhronization issues.The X axis is plotted on a logarithmi sale and represents the numberof proesses. The Y axis is plotted on a linear sale and represents the roundat whih the �rst proess terminates (whih may be one less than the round20

exponential(1)uniform [0,2℄geometri(0.5)0.5 + exponential(0.5)2/3,4/3normal(1,0.04)

Mean round of �rst termination

100000100001000100101
1412108642

Figure 1: Results of simulating lean-onsensus with various interarrivaldistributions.at whih the last proess terminates). Eah point in the graph represents anaverage termination round in 10,000 trials with the given distribution andnumber of proesses. The starting times for all proesses are the same exeptfor a small random epsilon, generated uniformly in the range (0; 10�8). Ineah ase, half the proesses are started with input 0 and half with input 1.There are no failures.The random number generator used was drand48. The distributionsused were:1. Normal distribution with mean 1 and standard deviation 0.2 (variane0.04), rejeting points outside (0; 2).2. 2=3 or 4=3 with equal probability.3. 0:5 plus an exponential random variable with mean 0:5. This orre-sponds to a delayed Poisson proess.4. Geometri with p = 0:5.5. Uniform in (0; 2). 21

6. Exponential with mean 1. This orresponds to a Poisson proess withno initial delay; it is also equivalent to generating a shedule by hoos-ing one proess uniformly at random for eah time unit.It is worth noting that while the expeted number of rounds grows log-arithmially for most distributions, both the rate of growth and the initialvalue are small. These small onstant fators may be the result of mostproesses adopting the values of early leaders, so that termination an bereahed by agreement among leaders rather than the emergene of a singleleader.The inverted behavior with a normal distribution is intriguing; it sug-gests that with large numbers of proesses there are more hanes for onepartiularly speedy proess to leap ahead of its ompetitors, and that forsome distributions this e�et overshadows the e�et of having more om-petitors to leap ahead of. It is not lear from the data whether this urveeventually turns around and starts rising again, or whether it onverges tosome onstant asymptote.10 Conlusions, Extensions, and Future WorkWe see this paper as making two main ontributions. The �rst is the ex-tration of the adaptive �(log n) time lean-onsensus protool from itsmore sophistiated predeessors and the demonstration that this simpli�edalgorithm an solve onsensus in models that are less extreme than thosepredeessors were designed to survive but that are perhaps loser to aptur-ing the sheduling behavior an algorithm is likely to experiene in pratie.Although lean-onsensus does not really ontain any new ideas, we be-lieve that ripping out features that pratitioners might balk at implementingis a valuable task in its own right.The seond is the noisy sheduling model. This model limits the adver-sary not by overing its eyes but by making its hands shake. It allows usto express the understanding that in the real world failures and timing areusually not fully under the ontrol of intelligent demons, while still retain-ing a healthy respet for the subtlety and unpreditability of the world. Webelieve that this \perturbed worst-ase analysis" approah is likely to haveappliations in many areas both in and outside of distributed omputing.There are still many questions left unanswered and many ways in whihthe noisy sheduling model ould be extended. We disuss some of theseissues below. 22

Non-random failures. It would be nie to understand how lean-onsensusfares with failures that are not random. We an get an upper bound in thissituation by restarting Theorem 12 whenever a proess dies. Sine the ad-versary must kill at least one proess every expeted O(logn) rounds, thealgorithm terminates in expeted O(f log n) rounds where f is the number offailures. This bound ompares favorably with the O(n log2 n) work per pro-essor needed by the best known randomized algorithm that solves onsensuswith a fully-adaptive adversary and up to n � 1 failures [9℄, but the fully-adaptive adversary is muh stronger than one limited to noisy sheduling.It seems likely that a better upper bound than O(f logn) ould be obtainedby a more areful analysis that inludes how proesses hange preferenes.We onjeture that the real bound is in fat O(logn).Statistial adversaries. We would also like to do away with the �xedbound M on the delay between operations under the ontrol of the adver-sary. The tehnial reason for inluding this bound in the model is thatit provides a sale for the noise introdued by the Xij variables; if the ad-versary an inrease �ij without limit, it an onstrut a steadily slowerand slower exeution in whih the noise, relative to the gap between rounds,never aumulates enough to a�et the shedule. But a weaker statistialonstraint, suh as requiring Prj=1�ij � rM , might avoid suh Zeno-likepathologies while allowing more variation in the gaps between operations.5The present proof does not work with just this statistial onstraint (thepartiular step that breaks down is the use of Lemma 9 to show that beingahead at round r often means being ahead by at round r), but we onje-ture that the statistial onstraint is in fat enough to get termination inO(log n) rounds.Synhronization and ontention. Though the present work was moti-vated by a desire to move away from powerful theoretial adversaries towarda model more losely reeting the non-maliiousness of misbehavior in realsystems, we annot laim that the model aurately desribes the behavior ofany real shared-memory system. One diÆulty is that real shared-memorysystems generally do not guarantee full serializability of memory operationsin the absene of additional synhronization operations (see [28, Setion8.6℄). We an overome this diÆulty by adding synhronization barriers toeah round of lean-onsensus; in priniple this does not a�et the analysissine the struture of eah round is still the same as all other rounds. A5This is a bit like using the statistial adversary of [18℄.23

seond problem is memory ontention, whih we have not analyzed. ThediÆulty with both expliit synhronization and memory ontention is thattheir e�ets are unlikely to be onsistent with the assumption that the tim-ing of di�erent proesses' operations are independent. To the extent thatthis lak of independene disperses proesses (say, by slowing down laggards�ghting over ongested early-round registers while allowing the speedy tosail through relatively lear late-round registers), it helps the algorithm.Whether suh an e�et would our in pratie annot easily be preditedwithout experimentation.Lower bounds. The noisy sheduling model is friendly enough that anO(log n) running time for onsensus might not be the best possible. Aounterexample like the one given in the proof of Theorem 13 might beable to show that no deterministi algorithm with ertain strong symmetryproperties (suh as no dependene on proess identity and a mirror-imagehandling of the di�erent inputs) an do better, but it not obvious where tolook for a more general lower bound. It is not out of the question that alever algorithm ould solve onsensus with noisy sheduling in as little asO(1) time.Message passing. All of our results are set in a shared-memory model.It would be interesting to see whether a noisy sheduling assumption an beused to solve onsensus quikly in an asynhronous message-passing model.Other problems. Finally, though we have onentrated on a partiularlysimpli�ed protool for solving a single fundamental problem, it would beinteresting to see how other algorithms fare in the noisy sheduling model.It seems likely, for example, that algorithms designed for unknown-delaymodels suh as Alur et al.'s [3℄ should ontinue to work in the noisy shedul-ing model, perhaps with some onstraint on the noise distribution to ex-lude random delays with unbounded expetations. Similarly the line ofinquiry started by Gafni and Mitzenmaher [23℄, on analyzing the behaviorof timing-based algorithms for mutual exlusion and related problems withrandom sheduling, ould naturally extend to the more general model ofnoisy sheduling.
24

11 AknowledgmentsI would like to thank Faith Fih and Maurie Herlihy for insightful ommentson the plausibility of an early version of the noisy sheduling model; theremaining implausibility is my fault and not theirs. I am also indebted toRobbert van Renesse for pointing out the \narrowness" of the bad exeutionpaths needed to prevent onsensus as a reason for the relative lak of onernfor asynhronous impossibility results among pratitioners.Referenes[1℄ Karl R. Abrahamson. On ahieving onsensus using a shared memory.In Proeedings of the Seventh Annual ACM Symposium on Priniplesof Distributed Computing, pages 291{302, Toronto, Ontario, Canada,15{17 August 1988.[2℄ Yehuda Afek, Dalia Dauber, and Dan Touitou. Wait-free made fast (ex-tended abstrat). In Proeedings of the Twenty-Seventh Annual ACMSymposium on the Theory of Computing, pages 538{547, Las Vegas,Nevada, 29 May{1 June 1995.[3℄ Rajeev Alur, Hagit Attiya, and Gadi Taubenfeld. Time-adaptive algo-rithms for synronization. SIAM Journal on Computing, 26(2):539{556,April 1997.[4℄ J. H. Anderson, R. Jain, and D. Ott. Wait-free synhronization inquantum-based multiprogrammed systems. In Distributed Computing;12th International Symposium; Proeedings, volume 1499 of LetureNotes in Computer Siene, pages 34{45, Andros, Greee, September1998. Springer-Verlag.[5℄ James H. Anderson and Mark Moir. Wait-free synronization in mul-tiprogrammed systems: Integrating priority-based and quantum-basedsheduling. In Proeedings of the Eighteenth Annual ACM Symposiumon Priniples of Distributed Computing, pages 123{132, Atlanta, Geor-gia, USA, 3{6 May 1999.[6℄ James Aspnes. Time- and spae-eÆient randomized onsensus. Jour-nal of Algorithms, 14(3):414{431, May 1993.[7℄ James Aspnes. Lower bounds for distributed oin-ipping and random-ized onsensus. Journal of the ACM, 45(3):415{450, May 1998.25

[8℄ James Aspnes and Maurie Herlihy. Fast randomized onsensus usingshared memory. Journal of Algorithms, 11(3):441{461, September 1990.[9℄ James Aspnes and Orli Waarts. Randomized onsensus in expetedO(N log2N) operations per proessor. SIAM Journal on Computing,25(5):1024{1044, Otober 1996.[10℄ Hagit Attiya, Danny Dolev, and Nir Shavit. Bounded polynomial ran-domized onsensus. In Proeedings of the Eighth Annual ACM Sympo-sium on Priniples of Distributed Computing, pages 281{293, Edmon-ton, Alberta, Canada, 14{16 August 1989.[11℄ Hagit Attiya and Arie Fouren. Adaptive wait-free algorithms for lat-tie agreement and renaming (extended abstrat). In Proeedings ofthe Seventeenth Annual ACM Symposium on Priniples of DistributedComputing, pages 277{286, Puerto Vallarta, Mexio, 28 June{2 July1998.[12℄ Yonatan Aumann. EÆient asynhronous onsensus with the weak ad-versary sheduler. In Proeedings of the Sixteenth Annual ACM Sym-posium on Priniples of Distributed Computing, pages 209{218, SantaBarbara, California, 21{24 August 1997.[13℄ Yonatan Aumann and Mihael A. Bender. EÆient asynhronous on-sensus with the value-oblivious adversary sheduler. In FriedhelmMeyer auf der Heide and Burkhard Monien, editors, Automata, Lan-guages and Programming, 23rd International Colloquium, volume 1099of Leture Notes in Computer Siene, pages 622{633, Paderborn, Ger-many, 8{12 July 1996. Springer-Verlag.[14℄ Patrik Billingsley. Probability and Measure. John Wiley and Sons,seond edition, 1986.[15℄ Gabriel Braha and Ophir Rahman. Randomized onsensus in ex-peted O(n2 log n) operations. In Sam Toueg, Paul G. Spirakis, andLefteris M. Kirousis, editors, Distributed Algorithms, 5th InternationalWorkshop, volume 579 of Leture Notes in Computer Siene, pages143{150, Delphi, Greee, 7{9 Otober 1991. Springer, 1992.[16℄ Tushar Deepak Chandra. Polylog randomized wait-free onsensus. InProeedings of the Fifteenth Annual ACM Symposium on Priniplesof Distributed Computing, pages 166{175, Philadelphia, Pennsylvania,USA, 23{26 May 1996. 26

[17℄ Benny Chor, Amos Israeli, and Ming Li. Wait-free onsensus usingasynhronous hardware. SIAM Journal on Computing, 23(4):701{712,August 1994.[18℄ Andrew Chou, Jeremy Cooperstok, Ran El-Yaniv, Mihael Kluger-man, and Tom Leighton. The statistial adversary allows optimalmoney-making trading strategies. In Proeedings of the Sixth AnnualACM-SIAM Symposium on Disrete Algorithms, pages 467{476, SanFraniso, California, 22{24 January 1995.[19℄ Rihard Cole and Ofer Zajiek. The expeted advantage of asynhrony.Journal of Computer and System Sienes, 51(2):286{300, Otober1995.[20℄ Danny Dolev, Cynthia Dwork, and Larry Stokmeyer. On the minimalsynhronism needed for distributed onsensus. Journal of the ACM,34(1):77{97, January 1987.[21℄ Cynthia Dwork, Nany Lynh, and Larry Stokmeyer. Consensus inthe presene of partial synhrony. Journal of the ACM, 35(2):288{323,April 1988.[22℄ Mihael J. Fisher, Nany A. Lynh, and Mihael S. Paterson. Impos-sibility of distributed onsensus with one faulty proess. Journal of theACM, 32(2):374{382, April 1985.[23℄ Eli Gafni and Mihael Mitzenmaher. Analysis of timing-based mutualexlusion with random times. In Proeedings of the Eighteenth AnnualACM Symposium on Priniples of Distributed Computing, pages 13{21,Atlanta, Georgia, USA, 3{6 May 1999.[24℄ Oded Goldreih and Erez Petrank. The best of both worlds: Guaran-teeing termination in fast randomized byzantine agreement protools.Information Proessing Letters, 36(1):45{49, 1990.[25℄ Elias Koutsoupias and Christos H. Papadimitriou. Beyond ompeti-tive analysis. In 35th Annual Symposium on Foundations of ComputerSiene, pages 394{400, Santa Fe, New Mexio, 20{22 November 1994.IEEE.[26℄ Leslie Lamport. A fast mutual exlusion algorithm. ACM Transationson Computer Systems, 5(1):1{11, February 1987.27

[27℄ Mihael C. Loui and Hosame H. Abu-Amara. Memory requirementsfor agreement among unreliable asynhronous proesses. In Frano P.Preparata, editor, Advanes in Computing Researh, volume 4. JAIPress, 1987.[28℄ David A. Patterson, John L. Hennessy, and David Goldberg. ComputerArhiteture: A Quantitative Approah. Morgan Kaufmann Publishers,2nd edition, 1996.[29℄ Srikanth Ramamurthy, Mark Moir, and James H. Anderson. Real-timeobjet sharing with minimal system support (extended abstrat). InProeedings of the Fifteenth Annual ACM Symposium on Priniplesof Distributed Computing, pages 233{242, Philadelphia, Pennsylvania,USA, 23{26 May 1996.[30℄ Mihael Saks, Nir Shavit, and Heather Woll. Optimal time randomizedonsensus|making resilient algorithms fast in pratie. In Proeedingsof the Seond Annual ACM-SIAM Symposium on Disrete Algorithms,pages 351{362, San Franiso, California, 28{30 January 1991.

28

