
Fast Deterministi
 Consensus in a NoisyEnvironmentJames Aspnes�July 17, 2002Abstra
tIt is well known that the 
onsensus problem 
annot be solved de-terministi
ally in an asyn
hronous environment, but that randomizedsolutions are possible. We propose a new model, 
alled noisy s
hedul-ing, in whi
h an adversarial s
hedule is perturbed randomly, and showthat in this model randomness in the environment 
an substitute forrandomness in the algorithm. In parti
ular, we show that a simpli�ed,deterministi
 version of Chandra's wait-free shared-memory 
onsensusalgorithm (PODC, 1996, pp. 166{175) solves 
onsensus in time at mostlogarithmi
 in the number of a
tive pro
esses. The proof of terminationis based on showing that a ra
e between independent delayed renewalpro
esses produ
es a winner qui
kly. In addition, we show that theproto
ol �nishes in 
onstant time using quantum and priority-baseds
heduling on a unipro
essor, suggesting that it is robust against the
hoi
e of model over a wide range.1 Introdu
tionPerhaps the single most dramati
 result in the theory of distributed 
om-puting is Fis
her, Lyn
h, and Paterson's proof of the impossibility of deter-ministi
 
onsensus in an asyn
hronous environment with failures [22℄. Thisresult and its extensions [20,27℄ show that the 
onsensus problem, in whi
ha group of pro
esses must 
olle
tively agree on a bit, 
annot be solved deter-ministi
ally in an asyn
hronous message-passing or shared-memory model�Yale University, Department of Computer S
ien
e, 51 Prospe
t Street/P.O. Box208285, New Haven CT 06520-8285. Email: aspnes�
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if an unrestri
ted adversary 
ontrols s
heduling. Solutions to the shared-memory version of this fundamental problem have thus taken the approa
hof restri
ting the adversary, either by allowing randomization that limitsthe adversary's knowledge [1,6,8,10,12,13,15{17,30℄ or by imposing timing
onstraints that limit the adversary's 
ontrol [3, 20, 21℄. As a 
orollary togranting less power to the adversary, these solutions often involve grantingmore power to the algorithm, in the form of the ability to obtain randombits or expli
itly delay steps. By using these additional powers an algorithm
an es
ape the FLP bound and rea
h agreement.These additional powers 
ome at a 
ost. Randomization alone is notpowerful enough to allow sublinear 
onsensus proto
ols [7℄, so eÆ
ient ran-domized solutions have required additional 
onstraints on the ability of theadversary to observe the arguments to operations and the 
ontents of unreadmemory lo
ations [12, 13, 16℄. These algorithms 
arefully manage 
ommonpools of unread random bits for future use, a 
lever but odd-looking pra
-ti
e that is justi�ed primarily by the spe
i�
 details of the model. Thedelay-based algorithm of [3℄ is less 
onvoluted, but still depends on usingexpli
it delays that at the minimum require that a pro
ess has the power toinvoke them and at worst may add unne
essary delay when few pro
essesparti
ipate.As an alternative to designing an algorithm spe
i�
ally to exploit theweaknesses of a parti
ular adversary model, we 
onsider the approa
h ofusing a simple algorithm that guarantees agreement but relies on good lu
kto terminate. Our lean-
onsensus algorithm, des
ribed in Se
tion 4, isobtained by removing all of the randomized parts of a similar algorithm dueto Chandra [16℄. The essential idea (whi
h is the 
ore of many 
onsensusproto
ols in the literature) is to stage a ra
e between those pro
esses thatprefer 0 and those that prefer 1, with the rule that if a slow pro
ess seesthat faster pro
esses are all in agreement it adopts their 
ommon preferen
e.The ra
e is implemented using two arrays of atomi
 read/write bits. Thealgorithm terminates when the fastest pro
esses are all in agreement and
an de
ide on their preferred value safely, knowing that other pro
esses willadopt the same preferen
e before they 
at
h up. As shown in Se
tion 5,this me
hanism is enough to ensure that if any one pro
ess de
ides then allother pro
esses soon de
ide on the same value, no matter how the adversaryarranges the s
hedule.In e�e
t, the ra
e framework allows the pro
esses to dete
t agreementon
e it o

urs. But unlike other 
onsensus algorithms, lean-
onsensusmakes no attempt to 
ajole the pro
esses into rea
hing agreement| it reliesentirely on the hope that some pro
ess eventually pulls ahead of the others.2



In order to dash this hope, the adversary must exer
ise enough 
ontrol toensure that the fastest pro
esses run in lo
kstep. We believe that in manynatural system models it will be diÆ
ult for the adversary to exer
ise thismu
h 
ontrol.One su
h model is what we 
all the noisy s
heduling model, des
ribedin Se
tion 3.1. In this model, the adversary proposes a s
hedule that spe
-i�es the order in whi
h read and write operations o

ur, but this s
heduleis perturbed by random noise drawn from some arbitrary non-
onstant dis-tribution. This noise 
orresponds to random fa
tors in a system that mightnot be strongly 
orrelated with the algorithm's behavior, su
h as networkdelays, 
lo
k skew, or bus or memory 
ontention.We show in Se
tion 6 that, in the noisy s
heduling model, lean-
onsensusterminates with expe
ted �(log n) work per pro
ess, where n is the numberof a
tive pro
esses. This result is distribution-independent, in the sense thatthe algorithm's asymptoti
 performan
e does not depend on the noise dis-tribution in the model (though the 
onstant fa
tor does), and it holds evenif pro
esses are subje
t to random halting failures. Be
ause the algorithm'sperforman
e depends only on the number of pro
esses a
tually exe
utingthe proto
ol and not on the total number of pro
esses in the system, it isadaptive in the sense of [11℄, whi
h implies it is fast in the sense of [2, 26℄.Thus it is well-suited to situations where only one or a few pro
esses attemptto run the algorithm at the same time.Our noisy s
heduling model is similar to the model used by Gafni andMitzenma
her [23℄ in their analysis of mutual ex
lusion proto
ols with ran-dom timing, but is extended to in
lude 
onstant delays inserted by theadversary in addition to random delays. Another sour
e of inspiration isKoutsoupias and Papadimitriou's di�use adversary [25℄, whi
h 
hooses a dis-tribution over exe
utions in whi
h no bran
h at any de
ision point 
an o

urwith probability more than some �xed �. Our model is not the �rst in whi
han adversary 
hooses parameters for a sto
hasti
 pro
ess that then 
on-trols s
heduling; a sophisti
ated model of this type, based on asyn
hronousPRAMs, has been proposed by Cole and Zaji
ek [19℄.To give support to our intuition that many possible restri
tions on theadversary make lean-
onsensuswork, we also 
onsider what happens witha hybrid quantum and priority-based s
heduler on a unipro
essor, followingthe approa
h of [5℄. (The details of this model, whi
h subsumes both quan-tum s
heduling and priority-based s
heduling, are sket
hed in Se
tion 3.2.)We show in Se
tion 7 that lean-
onsensus terminates in O(1) steps inthe hybrid-s
heduling model, as long as the quantum is at least 8. Therestri
tion to a unipro
essor is ne
essary be
ause [5℄ shows that no deter-3



ministi
 algorithm 
an solve 
onsensus with multiple pro
essors, even withhybrid s
heduling, without using stronger primitives than atomi
 read/writeregisters.Our basi
 
onsensus algorithm requires in�nitely long arrays. Obviouslythis is undesirable in a real system. In order to bound the required spa
e,we adopt a te
hnique from [16℄ and 
ut o� the algorithm after 
onsumingO(log2 n) bits of spa
e, using the preferen
e ea
h unde
ided pro
ess has atthat point as input to a more expensive, bounded-memory 
onsensus algo-rithm satisfying the validity property.1 Sin
e the more expensive algorithmis only run with low probability, its higher 
osts do not in
rease the ex-pe
ted time for the algorithm as a whole by more than a small 
onstantfa
tor. Details are given in Se
tion 8.Se
tion 9 des
ribes some simulation results that show that the 
onstantfa
tors in the noisy s
heduling analysis are in fa
t quite small for plausi-ble noise distributions, suggesting that the good theoreti
al performan
eof lean-
onsensus might a
tually translate into fast exe
ution in a realsystem.In Se
tion 10, we suggest a number of dire
tions in whi
h the 
urrentwork 
ould be extended, in
luding extensions to the noisy s
heduling model.One interesting possibility is the in
lusion of adaptive 
rash failures. Weargue brie
y that be
ause lean-
onsensus re
overs qui
kly from su
h fail-ures, it terminates in at most O(f logn) work per pro
ess even if up to fpro
esses fail. However, there remains an interesting open question whethernoisy s
heduling is enough to get O(log n) performan
e even with �(n) 
rashfailures.2 The Consensus ProblemIn the binary 
onsensus problem, a group of n pro
esses, possibly subje
t tohalting failures, must agree on a bit.2 A 
onsensus proto
ol is a distributedalgorithm in whi
h ea
h non-faulty pro
ess starts with an input bit andeventually terminates by de
iding on an output bit. It must satisfy thefollowing three 
onditions with probability 1:1An early example of this approa
h is found in the bounded-rounds randomized Byzan-tine agreement proto
ol of Goldrei
h and Petrank [24℄, whi
h swit
hes from a randomizedto a deterministi
 proto
ol if the randomized proto
ol does not terminate qui
kly enough.2Some authors 
onsider the stronger problem of id 
onsensus, in whi
h the de
isionvalue is the id of some a
tive pro
ess. In many 
ases, id 
onsensus 
an be solved ina natural way using a (lg n)-depth tree of binary 
onsensus proto
ols; examples of thisapproa
h 
an be found in [12, 16℄. 4



� Agreement. All non-faulty pro
esses de
ide on the same bit.� Termination. All non-faulty pro
esses �nish the proto
ol in a �nitenumber of steps.� Validity. If all pro
esses start with the same input bit, all non-faultypro
esses de
ide on that bit.33 ModelWe assume a shared-memory system 
onsisting of an unbounded number ofpro
esses that 
ommuni
ate only through shared atomi
 read/write regis-ters. We use the usual interleaving model, in whi
h operations are assumedto o

ur in a sequen
e �1; �2; : : :, and in whi
h ea
h read operation returnsthe value of the last previous write to the same lo
ation. The order in whi
hoperations o

ur is determined by a sto
hasti
 pro
ess that is partially un-der the 
ontrol of an adversary (Se
tion 3.1), or dire
tly by the adversarysubje
t to 
ertain regularity 
onstraints (Se
tion 3.2).3.1 Noisy S
hedulingIn the noisy s
heduling model, we assume that the adversary spe
i�es whenoperations o

ur (subje
t to an upper bound on the time between su

essiveoperations by the same pro
ess), but that this spe
i�
ation is perturbed byrandom noise.Formally, the adversary 
hooses:1. An arbitrary starting time �i0 for ea
h pro
ess pi,2. A non-negative delay �ij between pro
ess pi's (j � 1)-th and j-thoperations, bounded by some �xed 
onstant M , and3. A �xed 
ommon distribution F� of the random delay added to ea
htype of operation � (e.g., read or write). If pro
ess pi's j-th operationis of type �, it su�ers an additional delay Xij whose distribution is F�.There is no restri
tion on the 
hoi
e of the F�, ex
ept that they must3Some de�nitions of 
onsensus repla
e the validity 
ondition with a weaker non-triviality 
ondition that says that there must exist exe
utions in whi
h di�erent de
isionvalues o

ur.
5



not be 
on
entrated on a point and must produ
e only non-negativevalues Xij .4The time of pro
ess pi's j-th operation is given bySij = �i0 + jXk=1 (�ik +Xik) :Sin
e we are using interleaving semanti
s, the e�e
t of exe
uting twooperations at exa
tly the same time is not well-de�ned. To avoid ill-de�nedexe
utions, we impose the additional te
hni
al 
onstraint on the adversary's
hoi
es that the probability that any two operations o

ur simultaneouslymust be zero. This is automati
 if, for example, the noise distributions F�are 
ontinuous. Alternatively, it 
an be arranged by dithering the startingtimes of ea
h pro
ess by some small epsilon. This te
hni
al 
onstraint doesnot qualitatively 
hange our results.Below we dis
uss the unfairness of noisy s
heduling and extensions toallow random failures.3.1.1 UnfairnessThe upper bound on the �ij and the 
ommon distribution on the Xij mightsuggest that the noisy s
heduling model produ
es fair s
hedules. This is notentirely true for suÆ
iently pathologi
al distributions.Theorem 1 There exists a 
hoi
e of F� and �ij su
h that for any distin
tpro
esses pi and pi0 , and any operation j, the expe
ted number of operationspi0 
ompletes between pi's j-th and (j + 1)-th operations is in�nite.Proof: Set ea
h F� so that Xij takes on the value 2k2 with probability2�k for k = 1; 2; : : :. For simpli
ity, let us suppose that �ij = 0 for j > 0.We will also assume that A and B exe
ute no operations before time 0.Let X be the number of operations 
ompleted by pi0 between Sij andSi;j+1. We will show that the expe
tation of X is in�nite 
onditioned on thevalue of t = dSije (the 
eiling is so that we have 
ountably many 
ases).The idea is this: for ea
h k we have probability 2�k that Si;j+1 �Xi;j+1 = 2k2 . Condition on this event o

urring for some parti
ular k and
onsider how many operations pi0 must exe
ute to rea
h time 2k2 . Either(a) one of these operations takes time 2k2 or more (with probability 2�k+14In fa
t, the F� distributions 
an be quite bizarre; it is not required, for example, thatthe Xij have �nite expe
tation. 6



per operation); or (b) a total of at least 22k�1 faster operations, ea
h ofwhi
h takes at most 2(k�1)2 time, must o

ur. If we wait only for event (a),we expe
t to see 2k�1 operations; to get the a
tual expe
ted number, wemust subtra
t o� the expe
ted number of operations until (a) o

urs after(b) o

urs (2k�1 again) multiplied by the probability that (b) o

urs. Thislatter probability is at most (1 � 12k�1 )2k�1, whi
h goes to e�2 in the limitas k grows; it follows that pi0 exe
utes 
(2k) operations on average beforetime 2k2 . Of these, at most t=2 
an o

ur before time Sij , so if k � lg t, wehave 
(2k) operations on average between t and 2k2 , and thus also betweenSij and Si;j+1, sin
e Sij � t < 2k2 � Si;j+1.To get the full result, we must remove two layers of 
onditioning. First
ompute the expe
tation 
onditioned only on t by summing 2�k
(2k) forea
h of the in�nitely many suÆ
iently large k. It is not diÆ
ult to see thatthis sum diverges and the expe
tation is in�nite. Summing over all valuesof t doesn't make it any less in�nite, and we are done.3.1.2 FailuresWe 
an extend the noisy s
heduling model to allow halting failures. For ea
hi and ea
h j > 0 let Hij = 1 if pro
ess pi halts before its j-th operationand 0 otherwise. De�neS0ij = �i0 + jXk=1 (�ik +Xik +Hik) ;with the usual 
onvention for the extended real line that x+1 =1+x =1for any �nite x. If S0ij =1, pi's j-th operation does not o

ur.We do not in
lude failures in the noise distributions F� be
ause thesedistributions do not depend on n, and a 
onstant probability of failure wouldmean that all pro
esses die after O(log n) steps. Instead, we assume thatfailures o

ur independently with probability h(n) per operation, where h issome fun
tion 
hosen by the adversary. The e�e
t of stronger failure modelsis dis
ussed in Se
tion 10.3.2 Quantum and Priority-Based S
hedulingOur intuition is that lean-
onsensus should perform well in any settingthat prevents lo
kstep exe
utions. One su
h setting is the hybrid-s
heduledunipro
essor model of [5℄, whi
h 
ombines the priority-based s
hedulingmodel of [29℄ with the quantum-based s
heduling model of [4℄. In this model,7



pro
esses are assumed to be time-sharing a unipro
essor under the 
ontrolof a pre-emptive s
heduler. Ea
h pro
ess has a priority, and a pro
ess maybe pre-empted at any time by a pro
ess of higher priority. A pro
ess mayonly be pre-empted by a pro
ess of the same priority if it has exhaustedits quantum, a minimum number of operations it must 
omplete betweenthe time it wakes up and the time at whi
h it be
omes vulnerable to pre-emption. There is no requirement that a pro
ess start the proto
ol at thebeginning of a quantum; it may have used up some or all of its quantumperforming other work before starting the proto
ol. We do not 
onsider fail-ures in the hybrid-s
heduling model; instead, a pro
ess may be arbitrarilydelayed subje
t to the 
onstraints on the s
heduler.4 The lean-
onsensus AlgorithmIn this se
tion, we des
ribe the lean-
onsensus algorithm. The algorithmis very simple, be
ause we are relying on randomness in the environmentto guarantee termination and thus the algorithm itself must only guarantee
orre
tness and provide the opportunity for the underlying system to qui
klyjostle it into a de
ision state. Stru
turally, it is essentially identi
al to themulti-writer register 
onsensus proto
ol of Chandra [16℄ with the shared
oins removed, leaving only the implementation from multi-writer bits ofthe \ra
ing 
ounters" te
hnique that has been used in many shared-memory
onsensus proto
ols. It also bears some similarities to the Time-AdaptiveConsensus algorithm of Alur et al. [3℄ with the delays removed.At ea
h step of the algorithm, ea
h pro
ess prefers either 0 or 1 as itsde
ision value. The 
on
i
t between the 0-preferring pro
esses and the 1-preferring pro
esses is settled by a ra
e implemented using two arrays a0 anda1 of atomi
 read/write bits, ea
h initialized to zero. Ea
h pro
ess 
arriesout a sequen
e of rounds, ea
h 
onsisting of a �xed sequen
e of operations.During round r, a pro
ess that prefers b marks lo
ation ab[r℄ with a one andlooks to see if either (a) it has fallen behind its rivals who prefer (1 � b),in whi
h 
ase it abandons its former preferen
e and joins the winning team,or (b) it and its fellows have sped far enough ahead of any rival pro
essesthat they 
an safely de
ide b knowing that those rivals will give up and jointhe b team before they 
at
h up. The algorithm �nishes fastest when thepa
k of pro
esses disperses qui
kly, so that a 
lear winner emerges as earlyas possible.Let us look more 
losely at the details of the algorithm. A pro
ess withinput b sets its preferen
e p to b and its round number r to 1. (We say that8



a pro
ess is at round r if its round number is set to r; pro
esses thus startat round 1.) It then repeatedly exe
utes the following sequen
e of steps. Tosimplify the des
ription of the algorithm, we assume that while a0 and a1 areinitialized to zeroes, they are pre�xed with (e�e
tively read-only) lo
ationsa0[0℄ and a1[0℄, both set to 1.1. Read a0[r℄ and a1[r℄. If for some b, ab[r℄ is 1 and a1�b[r℄ is 0, set p tob.2. Write 1 to ap[r℄.3. Read a1�p[r � 1℄. If this value is 0, de
ide p and exit.4. Otherwise, set r to r + 1 and repeat.Note that in ea
h round the pro
ess 
arries out exa
tly four operationsin the same sequen
e: two reads, a write, and another read. It is temptingto optimize the algorithm by eliminating the write when it is already evidentfrom the previous step that ap[r℄ is set or eliminating the last read when it
an be dedu
ed from the value of a1�p[r℄ that a1�p[r � 1℄ is set. However,this optimization redu
es the work done by slow pro
esses (whom we'd liketo have fall still further behind) while maintaining the same per-round 
ostfor fast pro
esses (whom we'd like to have pull ahead). So we must para-doxi
ally 
arry out operations that might appear to be super
uous in orderto minimize the a
tual total 
ost.5 Agreement and ValidityIf we ignore the termination requirement, the 
orre
tness of the algorithmdoes not depend on the behavior of the s
heduler. The following two lemmasshow that the validity and agreement properties hold whenever the algorithmterminates. The proofs are very similar in spirit to those of Lemmas 1-4in [16℄.Lemma 2 No pro
ess sets ab[r℄ unless (a) r = 1 and b is an input value,or (b) r > 1 and ab[r � 1℄ has already been set.Proof: Consider the �rst pro
ess P that sets ab[r℄. Then P does notread 1 from ab[r℄ at round r and does not 
hange its preferen
e during roundr. If r = 1, P 's preferen
e equals its input, establishing 
ase (a); if r > 1, Pmust have set ab[r � 1℄ at round r � 1, establishing 
ase (b).9



Lemma 3 If every pro
ess starts with the same input bit b, every pro
essde
ides b after exe
uting 8 operations.Proof: From Lemma 2, if no pro
ess has input 1 � b, no pro
ess eversets a1�b[1℄. It follows that every pro
ess sees a zero in a1�b[1℄ at round 2and de
ides b.Lemma 4 If some pro
ess de
ides b at round r, then (a) no pro
ess everwrites a1�b[r℄, and (b) every pro
ess de
ides b at or before round r + 1.Proof: Let P de
ide b at round r. We will show that this implies thatno pro
ess ever sets a1�b[r℄.Suppose some pro
ess sets a1�b[r℄; let Q be the �rst su
h pro
ess. Be-
ause Q is the �rst pro
ess to set a1�b[r℄, it must read a 0 from a1�b[r℄ atthe start of round r. Thus Q 
an only set a1�b[r℄ if it already prefers 1�b atthe start of round r, implying that it set a1�b[r� 1℄ during round r� 1; andif it reads a 0 from ab[r℄ at the start of round r, preventing it from 
hangingits preferen
e after seeing a 0 in a1�b[r℄. But Q's read of ab[r℄ o

urs afterQ's write to a1�b[r� 1℄, whi
h o

urs after P 's read of a1�b[r� 1℄ at roundr (be
ause P reads 0), whi
h in turn o

urs after P 's write to ab[r℄. ThusQ reads 1 from ab[r℄, and 
hanges its preferen
e to b at round r. This 
on-tradi
ts our assumption that Q is the �rst to set a1�b[r℄. It follows that ifany pro
ess de
ides b in round r, no pro
ess sets a1�b[r℄.Sin
e no pro
ess sets a1�b[r℄, any pro
ess that rea
hes round r+1 mustset ab[r + 1℄ (by Lemma 2), and will de
ide b after reading 0 from a1�b[r℄.Thus no pro
ess runs past round r + 1 without de
iding b.To show agreement in earlier rounds, let P 0 de
ide b0 at round r0 � r.By the pre
eding argument, if P 0 de
ides b0 at round r0, then no pro
ess setsa1�b0 [r0℄ and thus (by Lemma 2 again) no pro
ess sets a1�b0 [r℄. But sin
e Psets ab[r℄, we must have b0 = b.6 Termination with Noisy S
hedulingIn this se
tion, we show that lean-
onsensus terminates in �(logn) roundswith noisy s
heduling and random failures. (This analysis in
ludes the 
oremodel without random failures as well, sin
e the adversary 
an always 
hooseh(n) = 0.) We show that either all pro
esses die (in whi
h 
ase we treat thealgorithm as terminating in the last round in whi
h some pro
ess takes astep), or some group of pro
esses with a 
ommon preferen
e eventually gets10



two rounds ahead of the other pro
esses. To avoid analyzing the details ofhow pro
esses shift preferen
es, we will show the even stronger result thatunless all pro
esses die, a single pro
ess eventually gets two rounds aheadof the other pro
esses.To simplify the argument, we abstra
t away from the individual sequen
eof operations in ea
h round and look only at the times at whi
h rounds are
ompleted. We 
an thus assume that the adversary provides a single noisedistribution F (
orresponding to the distribution of the sum of the delays onthree reads and one write) and that the values �ij, Xij , and Hij provide thedelay not on the j-th operation but on the j-th round. Sin
e this abstra
tionmerely involves summing together the underlying variables on operations, itdoes not redu
e the adversary's 
ontrol over the proto
ol. We will s
ale Mappropriately so that it is still the 
ase that 0 � �ij �M when j > 0.Using this approa
h, the in
rement �ij + Xij + Hij is the time takenfor pro
ess i to move from the end of round j � 1 to the end round j.The 
onstant �i0 represents the pro
ess's starting time, and S0ir = �i0 +Prj=1 (�ij +Xij +Hij) gives the time at whi
h the pro
ess �nishes round r.A pro
ess i wins the ra
e with a lead of 
 rounds at round r+ 
 if it �nishesround r + 
 before any other pro
ess �nishes round r, i.e., if S0i;r+
 � S0i0;rfor all i0 6= i.We would like to show a bound on how the expe
ted round at whi
h somepro
ess wins by 
 s
ales as a fun
tion of the number of pro
esses n, keeping 
,M , and F �xed. This bound is given in Corollary 11 below. We will assumethat h(n) = o(1), as otherwise all pro
esses die after O(log n) rounds onaverage. The proof pro
eeds in two steps: �rst we show that for any rwhi
h some pro
ess �nishes with at least 
onstant probability, there existsa 
riti
al time t that gives at least a 
onstant probability that S0ir � t forexa
tly one i. We then show that if r is large enough, Pr[S0i;r+
 � tjS0ir � t℄is also at least a 
onstant. It then follows that the probability that S0i;r+
 � twhile S0i0r > t for any i0 6= i is at least the produ
t of these two 
onstantsand the 
onstant probability that pi is not killed between rounds r and r+
.Thus after a 
onstant number of phases ea
h 
onsisting of r + 
 rounds weexpe
t some pro
ess to win.6.1 Existen
e of a winnerIn this se
tion, we build up the tools needed to show that for ea
h roundthere exists a �xed time at whi
h there is likely to be a unique winner.
11



Lemma 5 Let A1; : : : ; An be independent events. If the probability that noAi o

urs is x, where x is not zero, then the probability that exa
tly one Aio

urs is at least �x lnx.Proof: Let qi be the probability that Ai does not o

ur. The probabil-ity x that no Ai o

urs is the produ
t of the qi. Sin
e x is nonzero, ea
h qimust also be nonzero. The probability that exa
tly one Ai o

urs is givenby  nYi=1 qi! nXi=1 1� qiqi = x nXi=1� 1qi � 1�= x �n+ nXi=1 1qi! : (1)Let G be the geometri
 mean of the qi and let H be their harmoni
mean. By the theorem of the means, G > H. Observe that G = x1=n andnXi=1 1qi = n=H > n=G = nx�1=n = n exp�� lnxn � � n�1� lnxn � = n� lnx:Plugging this inequality into (1) gives the result.Suppose X1; : : : ;Xn are random times. The following lemma shows thatunder 
ertain 
onditions there exists a 
onstant time t0, su
h that, with
onstant probability, at most one of the Xi is less than t0:Lemma 6 Let X1; : : : ;Xn be independent random variables su
h that forall �nite values t and all distin
t i; j, the probability that Xi = Xj = t iszero. Then either Pr[8iXi = 1℄ is greater than e�1 or there exists t0 su
hthat the probability that exa
tly one of the Xi is less than or equal to t0 isat least 1=5.Proof: For ea
h t, let qi(t) be the probability that Xi is not less thanor equal to t. Let q(t) = Qni=1 qi(t) be the probability that none of theXi are less than or equal to t. Note that ea
h qi(t) is a de
reasing right-
ontinuous left-limited fun
tion with limt!�1 qi(t) = 1 and limt!1 qi(t) =Pr[Xi = 1℄. Similarly, q(t) = Qi qi(t) is right-
ontinuous, left-limited, andhas limt!�1 q(t) = 1 and limt!1 q(t) = Pr[8iXi =1℄.Suppose that this latter quantity is less than or equal to e�1. (If not,the �rst 
ase of the lemma holds.) Then for some �nite t, q(t) � e�1. Lett0 be the least su
h t. 12



Now suppose q(t0) � e�2. Then, by Lemma 5, the probability thatexa
tly one Xi is less than or equal to t0 is at least 2e�2 � 0:27 : : :.Otherwise, we have q(t0) < e�2 but q(t0�) = limt!t0� q(t) > e�1. (Weare using the usual 
onvention that f(x�) denotes the left limit of f atx.) This dis
ontinuity must 
orrespond to a dis
ontinuity in qi for somei. At most one qi has a dis
ontinuity at t0, by the assumption that theprobability that distin
t Xi, Xj both equal t0 is zero. Hen
e, for all j 6= iwe have qj(t0�) = qj(t0) and thus qi(t0�)=qi(t0) = q(t0�)=q(t0) � e�1.Sin
e qi(t0�) � 1, it follows immediately that qi(t0) � e�1 and thusthe probability that Xi is less than or equal to t0 is at least 1 � e�1.Now the probability that no other Xj is less than or equal to t0 is atleast q(t0)=qi(t0) � q(t0�) > e�1. Sin
e the variables are independent,the probability that only Xi is less than or equal to t0 is thus at least(1� e�1)e�1 � 0:23 : : :.6.2 Size of the leadIn this se
tion, we show that if enough rounds have passed, a pro
ess that islikely to be ahead of the others is in fa
t likely to be several rounds ahead.The proof is somewhat 
ompli
ated by the la
k of restri
tions on the noisedistribution, but the following lemma shows how the Strong Law of LargeNumbers 
an be used to smooth the noise terms out a bit.Lemma 7 Let X1;X2; : : : be �nite non-negative independent identi
ally dis-tributed random variables whose 
ommon distribution is not 
on
entratedon a point. De�ne Sn = Pni=1Xi. For any 
, there exist n; t su
h thatPr[Sn < t℄ < 12 but Pr[Sn < t� 
℄ > 0.Proof: Let us �rst 
onsider the 
ase where Xi has a �nite expe
tationm. Then the Strong Law of Large Numbers says that Sn=n 
onverges to min the limit with probability 1. So for any � > 0, the probability that Sn isless than m� � goes to zero and thus drops below 1=2 for all n greater thansome n0.Let tn = n(m � �). As long as n > n0, we have Pr[Sn < t℄ < 12 . Nowsuppose that Pr[Sn < tn � 
℄ = 0 whenever n > n0. Sin
e the Xi areindependent, this event 
an only o

ur if for ea
h Xi, Xi < tn�
n = m��� 
nwith probability 0. Taking the union of 
ountably many su
h bad eventsfor ea
h rational � and ea
h n > n0 shows that the event Xi < m, alsohas probability 0. It follows that Xi � E[Xi℄ almost surely and thus thedistribution of Xi is 
on
entrated on E[Xi℄, a 
ontradi
tion.13



If Xi does not have a �nite expe
tation, then Sn=n grows without boundwith probability 1 (see the 
orollary to Theorem 22.1 in [14℄). So for anyx, there exists n0, su
h that Pr[Sn=n < x℄ < 12 for n > n0. We repeatthe above analysis for t = nx; if Pr[Sn < t � 
℄ = 0 for all su
h t, we getXi � x � 
n almost surely, implying Xi ex
eeds any �nite bound x. Again,a 
ontradi
tion.On
e the noise terms have been smoothed, it is not hard to show thatthey eventually a

umulate enough to push a winner ahead:Lemma 8 Fix 
 > 0. Let X1;X2; : : : be �nite independent identi
ally dis-tributed random variables su
h that there exists a threshold t0 for whi
hPr[X < t0℄ < 12 but Pr[X < t0 � 
℄ = Æ0 > 0. De�ne Sn =Pni=1Xi.Then for any � > 0, there exists an n = O(log(1=�)), su
h that for anyt, Pr[Sn < t℄ > � implies Pr[Sn < t� 
jSn < t℄ > 17Æ0.Proof: Set n = 8(ln(1=�) + 1). Ea
h Xi has probability at most 1=2 ofbeing less than t0, so a simple appli
ation of Cherno� bounds shows that theprobability that 3/4 or more of the Xi are less than t0 is at most e�n=8 = �=e.We will use this fa
t to argue that even when 
onditioning on Sn < t,there is nearly one 
han
e in four that Xn in parti
ular is greater than t0.In this 
ase, Sn�1 is less than t� t0 and we 
an use independen
e to repla
eXn with a new value less than t0 � 
, giving a sum Sn less than t � 
, allwithout redu
ing the probability by mu
h.Formally, we have the following sequen
e of inequalities, ea
h of whi
his implied by the previous one. Let Pr[Sn < t℄ = p and suppose p > �. Thenwe have: Pr[Sn < t℄ = pPr[Sn < t ^ at least 14 of Xi are greater than t0℄ > p� �=ePr[Sn < t ^Xn > t0℄ > 14(p� �=e)Pr[Sn�1 < t� t0℄ > 14(p� �=e)Pr[Sn�1 < t� t0 ^Xn < t0 � 
℄ > 14(p� �=e)Æ0Pr[Sn < t� 
℄ > 14(p� �=e)Æ0Pr[Sn < t� 
jSn < t℄ > 14(p� �=e)Æ0=p14



Sin
e p > �, this last quantity is at least 14(1 � 1=e)Æ0, whi
h is in turngreater than 17Æ0.We 
an now 
ombine Lemmas 7 and 8 into the following:Lemma 9 Let X1;X2; : : : be �nite non-negative independent identi
ally dis-tributed random variables whose 
ommon distribution is not 
on
entratedon a point. De�ne Sn = Pni=1Xi. Fix 
 > 0. Then there is a 
on-stant Æ, su
h that for any � > 0, there exists n = O(log(1=�)), su
h thatPr[Sn < t� 
jSn < t℄ > Æ whenever Pr[Sn < t℄ > �.Proof: Use Lemma 7 to group the Xi together into partial sumsYi = Pin0+n0j=in0+1Xj with the property that for some t Pr[Yi < t℄ < 12 butPr[Yi < t�
℄ = Æ0 > 0. (Note that n0 does not depend on �, so it disappearsinto the 
onstant fa
tor.) Then apply Lemma 8 to sums of these Yi variablesto get the full result.6.3 When the Ra
e EndsIn this se
tion, we show that a ra
e between n independent delayed renewalpro
esses with bounded added delays ends in O(logn) rounds with at least
onstant probability. In the following se
tion, we translate this result, whi
happears as Corollary 11, ba
k into terms of the lean-
onsensus algorithmto get Theorem 12.Theorem 10 Let fXijg, where i; j � 1, be a two-dimensional array of �-nite non-negative independent identi
ally distributed random variables witha 
ommon distribution fun
tion F that is not 
on
entrated on a point. Letf�ijg, where i � 1; j � 0, be a two-dimensional array of 
onstants with0 � �ij � M when j � 1. Let fHijg, where i; j � 1, be a two-dimensionalarray of independent random variables, ea
h of whi
h is equal to 1 withprobability h(n) and 0 otherwise. De�neS0ir = �i0 + rXj=1 (�ij +Xij +Hij) :Assume that for any �nite t, integer r, and i 6= j, Pr[S0ir = S0jr = t℄ = 0.Let 
 be any integer 
onstant greater than 0.Then there exists a 
onstant Æ > 0, su
h that for any n, there existsr = O(log n) and t, su
h thatPr h8i S0ir =1_ �9i � n : S0i;r+
 < t ^ 8i0 6= i; i0 � n : S0i0r > t�i > Æ:15



The 
onstant fa
tor in r = O(log n) and the 
onstant Æ may depend on
, F , M , and h; but neither 
onstant depends on n.Proof: Sin
e ea
h Xij is �nite with probability 1, there exists some
onstant 
1 su
h that Pr[Pr+
j=r+1Xij < 
1℄ > 12 . Let Tir = Prj=1Xij andlet Sir = Tir +Prj=0�ir. Apply Lemma 9 to the sequen
e Xij with 
 =
M + 
1 and � = n�2 to obtain r = O(log n) and a 
onstant Æ0 for whi
hPr[Tir < t� 
M � 
1jTir < t℄ > Æ0 whenever Pr[Tir < t℄ > n�2. Adding themissing 
onstant termsPrj=0�ij to Tir to get Sir is equivalent to subtra
tingthese same terms from ea
h o

urren
e of t, so we in fa
t have Pr[Sir <t � 
M � 
1jSir < t℄ > Æ0 whenever Pr[Sir < t℄ > n�2. This gives us ourtarget round r.Now apply Lemma 6 to S0ir, for all i � n, to show that with probabilityat least 1=5 either 8iS0ir = 1 or there exists a time t0, su
h that there is aunique winner i � n for whi
h S0ir is less than t0. Let us assume without lossof generality that n is at least 6. Throw out all 
ases where i has Pr[S0ir <t0℄ � n�2; this leaves a probability of at least 1=5�1=n � 1=30 that (a) thereis a unique winner i, and (b) i satis�es the 
ondition Pr[S0ir < t0℄ > n�2,implying Pr[Sir = S0ir < t0℄ > n�2 and thus Pr[Sir < t0 � 
M � 
1jSir <t0℄ > Æ0. So with probability at least 130Æ0, we have Sir < t0 � 
M � 
1,and thus with probability at least 160Æ0 we have Si;r+
 < Sir + 
M + 
1 =S0ir + 
M + 
1 < t0.Suppose that this event holds. It is still possible for S0i;r+
 to be in�niteif Pr+
j=r+1Hij = 1. Call this event I; if Pr[I℄ = 1 � (1 � h(n))
 > 1120Æ0,then h(n) is bounded below by a 
onstant and there exists r0 = O(log n)su
h that Pr[8iS0ir0 = 1℄ is at least a 
onstant. Alternatively, we havePr[S0i;r+
 = Si;r+
 < S0ir + 
M + 
1℄ > Æ = 1120Æ0: In either 
ase, the theoremholds.Corollary 11 Let R be the �rst round for whi
h either� There exists i, su
h that S0i;R+
 < S0i0R for all i0 6= i, or� For all i, S0i;R+
 =1.Under the 
onditions of the pre
eding theorem, E[R℄ = O(log n), and, forany k � 0, Pr[R > k℄ � e�bk=O(logn)
.Proof: Theorem 10 says that the desired event o

urs with 
onstantprobability Æ after a phase 
onsisting of r = O(logn) rounds. If it does noto

ur, we 
an apply the theorem again to the subset of the i's for whi
h16



S0i;r+
 is �nite, starting with round r+ 
+1 and setting the initial delay �i0to the value of S0i;r+
 from the previous phase.On average, at most 1=Æ = O(1) su
h phases are needed, giving E[R℄ �(1=Æ)r = O(logn). For the exponential tail bound, observe that the proba-bility that the algorithm runs for more than 
 phases of r rounds ea
h is atmost (1� Æ)
 = �(1� Æ)1=Æ�
Æ � �e�1�
Æ = e�
Æ. So the probability that thealgorithm runs for more than k rounds is at most e�bk=r
Æ � e�bk=O(log n)
.6.4 When lean-
onsensus EndsTranslating Corollary 11 ba
k into terms of the lean-
onsensus algorithmgives:Theorem 12 Under the noisy s
heduling model with random failures, start-ing from any rea
hable state in the lean-
onsensus algorithm in whi
h thelargest round number of any pro
ess is r, the algorithm running with n a
tivepro
esses terminates by round r + r0, where r0 has expe
ted value O(log n)and Pr[r0 > k℄ � e�bk=O(log n)
 for any k � 0.Proof: Apply Corollary 11 with 
 = 2 and the initial delays �i0 set tothe times at whi
h ea
h pro
ess 
ompletes round r. This shows that afterR additional rounds, where E[R℄ = O(log n) and Pr[R > k℄ � e�bk=O(log n)
,either some pro
ess P �nishes some round s before any other pro
ess �nishesround s � 2, or all pro
esses fail. In the �rst 
ase, if P prefers b, it is theonly pro
ess to have written to ab[s� 1℄ or a1�b[s� 1℄ by the time it readsa1�b[s � 1℄ as part of round s. Thus it reads a zero from a1�b[s � 1℄ andde
ides. All other pro
esses de
ide at most one round later by Lemma 4. Wethus get r0 � R+1, and the single extra round disappears into the 
onstantfa
tors.It is not hard to see that an O(logn) bound is the best possible, up to
onstant fa
tors.Theorem 13 There exists a noise distribution F and a set of delays � su
hthat the lean-
onsensus algorithm requires expe
ted 
(logn) rounds in thenoisy s
heduling model, even without failures.Proof: Let all �ij = 0 for j > 0, and let F have ea
h operation takeeither 1 or 2 time units with equal probability. Then any single pro
essor
ompletes its �rst log n operations in 1 time unit ea
h with probability 1=n.17



To avoid simultaneous operations, let �i0 be some small distin
t epsilonvalue for ea
h i.Start n=2 pro
esses with input 0 and n=2 with input 1. The probabilitythat there exists at least one 0-input pro
ess and at least one 1-input pro
essthat both 
omplete their �rst logn operations in 1 time unit ea
h is givenby  1� �1� 1n�n=2!2whi
h goes to (1 � e�1=2)2 = �(1) in the limit as n grows. So there isa 
onstant probability that at least one pro
ess with ea
h input runs forlog n operations without ever 
hanging its preferen
e to that of a fasterpro
ess with the opposite preferen
e, and we get expe
ted 
(log n) roundsof disagreement.7 Termination with Quantum and Priority-BasedS
hedulingIn this se
tion, we 
onsider the question of termination subje
t to hybridquantum and priority-based s
heduling on a unipro
essor. The requiredquantum size is 8 operations; 
uriously, this is the same size required forthe spe
ialized algorithm given in [5℄. We see this 
oin
iden
e as hinting atthe possibility that all shared-memory 
onsensus algorithms may ultimately
onverge to a single ideal algorithm (though su
h an ideal algorithm, if itexists, is probably not identi
al to lean-
onsensus).Theorem 14 When running lean-
onsensus in a hybrid-s
heduled sys-tem with a quantum of at least 8 operations, every pro
ess de
ides afterexe
uting at most 12 operations.Proof: We will show that at most one of a0[1℄ and a1[1℄ is set beforesome pro
ess �nishes round 2 and de
ides. Consider an exe
ution in whi
ha0[1℄ and a1[1℄ are ea
h set at some point. Let P0 and P1 be the �rst pro
essesto set a0[1℄ and a1[1℄, respe
tively. Neither P0 nor P1 
an have observed theround-1 write of the other, or it would have 
hanged its preferen
e. Thusboth pro
esses' round-1 reads of a0[1℄ and a1[1℄ must have o

urred beforeeither performed its round-1 write. Sin
e we are on a unipro
essor, this 
anonly o

ur if one of the pro
esses was pre-empted before its write o

urred.18



Assume without loss of generality that P0 is this unlu
ky pro
ess. Sin
eP0 is the �rst pro
ess to write to a0[1℄, if we 
an show that P0 is not res
hed-uled before some pro
ess 
ompletes round 2, then that pro
ess de
ides 1 (andby Lemma 4, all pro
esses eventually de
ide 1) as soon as it observes a zeroin a0[1℄. So we need only show that P0 is not res
heduled until some otherpro
ess 
ompletes eight operations.Let Q1 be the pro
ess that pre-empts P0. At the time of pre-emption,Q1 is at the start of a quantum; it either �nishes eight operations withoutbeing pre-empted or is pre-empted by a higher-priority pro
ess Q2. ButQ2 in turn 
an only be pre-empted before 
ompleting its quantum by somehigher-priority pro
ess Q3. After at most n su
h pre-emptions, we run out ofhigher-priority pro
esses, and the last pro
ess runs to the end of its quantumand de
ides. Note that all of the pro
esses in this 
hain (ex
ept possiblyQ1)have a higher priority than P0 and thus 
annot be equal to P0. It followsthat some pro
ess �nishes round 2 before P0 is res
heduled, and thus everypro
ess de
ides 1 by the end of round 3.8 Bounded spa
e lean-
onsensusThe lean-
onsensus algorithm as des
ribed in Se
tion 4 requires in�nitespa
e. In this se
tion, we des
ribe how to modify the algorithm to usebounded spa
e. We assume that we have available a ba
kup proto
ol, whi
his a bounded-spa
e 
onsensus proto
ol that requires polynomial work perpro
ess (for example, the O(n4) proto
ol in [6℄ works). We will build aproto
ol that 
ombines lean-
onsensus with the ba
kup proto
ol in away that only uses the ba
kup proto
ol rarely, so that its high 
ost addsonly a 
onstant to the O(log n) 
ost of the 
ombined proto
ol.Note that su
h a 
ombined proto
ol is not ne
essary in the model of Se
-tion 7, as in that model we only need spa
e for 3 rounds of lean-
onsensus.The 
ombined proto
ol operates as follows:1. Run lean-
onsensus through round rmax.2. At round rmax+1, swit
h to the ba
kup proto
ol, using the preferen
eat the end of round rmax of lean-
onsensus as input to the ba
kupproto
ol.If rmax is large enough, most of the time we will expe
t that lean-
onsensus terminates before rea
hing rmax and the ba
kup algorithm will19



not be used. But in the 
ase where rmax is rea
hed (say, be
ause the s
hed-uler is nastier than we have assumed), the ba
kup algorithm guaranteestermination using bounded spa
e and bounded (but possibly very large)expe
ted time.Theorem 15 For any polynomial-work 
onsensus proto
ol 
hosen as a ba
kupalgorithm and any noise distribution, there is a 
hoi
e of rmax = O(log2 n)su
h that the 
ombined algorithm des
ribed above is a 
onsensus proto
olthat requires O(log n) expe
ted operations per pro
ess and O(log2 n) bits inthe a0 and a1 arrays.Proof: First let us show that the 
ombined algorithm solves 
onsensus.Validity is immediate from Lemma 3; when all inputs are equal, we neverget past round 2 and the 
ombined algorithm behaves identi
ally to lean-
onsensus. For agreement, the only tri
ky 
ase is when some pro
essesde
ide during lean-
onsensus and others de
ide during the ba
kup proto-
ol. But if some pro
ess P de
ides b at or before round r, then by Lemmas 2and 4 no pro
ess writes a1�b[r℄ and every pro
ess that exe
utes the ba
kupproto
ol has b as input. Thus the validity 
ondition for the ba
kup proto
olimplies that all pro
esses de
ide b.Now let us show that there is a 
hoi
e of rmax that gives the desiredperforman
e bound. Suppose ea
h pro
ess �nishes the ba
kup proto
ol inO(n
) expe
ted operations. By Theorem 12, there is a value T = O(log n)su
h that the probability that lean-
onsensus does not �nish by round k isat most e�bk=T 
. Setting rmax = T �
 � logn = O(log2 n), the ba
kup proto
olis run with probability at most e�
 log n = n�
, and thus it 
ontributes atmost n�
O(n
) = O(1) to the expe
ted 
ost.Finally, the size of the a0 and a1 arrays is 
learly equal to rmax =O(log2 n).9 Simulation ResultsFigure 1 gives the results of simulating lean-
onsensus with various in-terarrival distributions. These simulations are of the model as des
ribed inSe
tion 3.1; in parti
ular it is assumed that all operations take zero timeand that there are no 
ontention e�e
ts or syn
hronization issues.The X axis is plotted on a logarithmi
 s
ale and represents the numberof pro
esses. The Y axis is plotted on a linear s
ale and represents the roundat whi
h the �rst pro
ess terminates (whi
h may be one less than the round20
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Figure 1: Results of simulating lean-
onsensus with various interarrivaldistributions.at whi
h the last pro
ess terminates). Ea
h point in the graph represents anaverage termination round in 10,000 trials with the given distribution andnumber of pro
esses. The starting times for all pro
esses are the same ex
eptfor a small random epsilon, generated uniformly in the range (0; 10�8). Inea
h 
ase, half the pro
esses are started with input 0 and half with input 1.There are no failures.The random number generator used was drand48. The distributionsused were:1. Normal distribution with mean 1 and standard deviation 0.2 (varian
e0.04), reje
ting points outside (0; 2).2. 2=3 or 4=3 with equal probability.3. 0:5 plus an exponential random variable with mean 0:5. This 
orre-sponds to a delayed Poisson pro
ess.4. Geometri
 with p = 0:5.5. Uniform in (0; 2). 21



6. Exponential with mean 1. This 
orresponds to a Poisson pro
ess withno initial delay; it is also equivalent to generating a s
hedule by 
hoos-ing one pro
ess uniformly at random for ea
h time unit.It is worth noting that while the expe
ted number of rounds grows log-arithmi
ally for most distributions, both the rate of growth and the initialvalue are small. These small 
onstant fa
tors may be the result of mostpro
esses adopting the values of early leaders, so that termination 
an berea
hed by agreement among leaders rather than the emergen
e of a singleleader.The inverted behavior with a normal distribution is intriguing; it sug-gests that with large numbers of pro
esses there are more 
han
es for oneparti
ularly speedy pro
ess to leap ahead of its 
ompetitors, and that forsome distributions this e�e
t overshadows the e�e
t of having more 
om-petitors to leap ahead of. It is not 
lear from the data whether this 
urveeventually turns around and starts rising again, or whether it 
onverges tosome 
onstant asymptote.10 Con
lusions, Extensions, and Future WorkWe see this paper as making two main 
ontributions. The �rst is the ex-tra
tion of the adaptive �(log n) time lean-
onsensus proto
ol from itsmore sophisti
ated prede
essors and the demonstration that this simpli�edalgorithm 
an solve 
onsensus in models that are less extreme than thoseprede
essors were designed to survive but that are perhaps 
loser to 
aptur-ing the s
heduling behavior an algorithm is likely to experien
e in pra
ti
e.Although lean-
onsensus does not really 
ontain any new ideas, we be-lieve that ripping out features that pra
titioners might balk at implementingis a valuable task in its own right.The se
ond is the noisy s
heduling model. This model limits the adver-sary not by 
overing its eyes but by making its hands shake. It allows usto express the understanding that in the real world failures and timing areusually not fully under the 
ontrol of intelligent demons, while still retain-ing a healthy respe
t for the subtlety and unpredi
tability of the world. Webelieve that this \perturbed worst-
ase analysis" approa
h is likely to haveappli
ations in many areas both in and outside of distributed 
omputing.There are still many questions left unanswered and many ways in whi
hthe noisy s
heduling model 
ould be extended. We dis
uss some of theseissues below. 22



Non-random failures. It would be ni
e to understand how lean-
onsensusfares with failures that are not random. We 
an get an upper bound in thissituation by restarting Theorem 12 whenever a pro
ess dies. Sin
e the ad-versary must kill at least one pro
ess every expe
ted O(logn) rounds, thealgorithm terminates in expe
ted O(f log n) rounds where f is the number offailures. This bound 
ompares favorably with the O(n log2 n) work per pro-
essor needed by the best known randomized algorithm that solves 
onsensuswith a fully-adaptive adversary and up to n � 1 failures [9℄, but the fully-adaptive adversary is mu
h stronger than one limited to noisy s
heduling.It seems likely that a better upper bound than O(f logn) 
ould be obtainedby a more 
areful analysis that in
ludes how pro
esses 
hange preferen
es.We 
onje
ture that the real bound is in fa
t O(logn).Statisti
al adversaries. We would also like to do away with the �xedbound M on the delay between operations under the 
ontrol of the adver-sary. The te
hni
al reason for in
luding this bound in the model is thatit provides a s
ale for the noise introdu
ed by the Xij variables; if the ad-versary 
an in
rease �ij without limit, it 
an 
onstru
t a steadily slowerand slower exe
ution in whi
h the noise, relative to the gap between rounds,never a

umulates enough to a�e
t the s
hedule. But a weaker statisti
al
onstraint, su
h as requiring Prj=1�ij � rM , might avoid su
h Zeno-likepathologies while allowing more variation in the gaps between operations.5The present proof does not work with just this statisti
al 
onstraint (theparti
ular step that breaks down is the use of Lemma 9 to show that beingahead at round r often means being ahead by 
 at round r), but we 
onje
-ture that the statisti
al 
onstraint is in fa
t enough to get termination inO(log n) rounds.Syn
hronization and 
ontention. Though the present work was moti-vated by a desire to move away from powerful theoreti
al adversaries towarda model more 
losely re
e
ting the non-mali
iousness of misbehavior in realsystems, we 
annot 
laim that the model a

urately des
ribes the behavior ofany real shared-memory system. One diÆ
ulty is that real shared-memorysystems generally do not guarantee full serializability of memory operationsin the absen
e of additional syn
hronization operations (see [28, Se
tion8.6℄). We 
an over
ome this diÆ
ulty by adding syn
hronization barriers toea
h round of lean-
onsensus; in prin
iple this does not a�e
t the analysissin
e the stru
ture of ea
h round is still the same as all other rounds. A5This is a bit like using the statisti
al adversary of [18℄.23



se
ond problem is memory 
ontention, whi
h we have not analyzed. ThediÆ
ulty with both expli
it syn
hronization and memory 
ontention is thattheir e�e
ts are unlikely to be 
onsistent with the assumption that the tim-ing of di�erent pro
esses' operations are independent. To the extent thatthis la
k of independen
e disperses pro
esses (say, by slowing down laggards�ghting over 
ongested early-round registers while allowing the speedy tosail through relatively 
lear late-round registers), it helps the algorithm.Whether su
h an e�e
t would o

ur in pra
ti
e 
annot easily be predi
tedwithout experimentation.Lower bounds. The noisy s
heduling model is friendly enough that anO(log n) running time for 
onsensus might not be the best possible. A
ounterexample like the one given in the proof of Theorem 13 might beable to show that no deterministi
 algorithm with 
ertain strong symmetryproperties (su
h as no dependen
e on pro
ess identity and a mirror-imagehandling of the di�erent inputs) 
an do better, but it not obvious where tolook for a more general lower bound. It is not out of the question that a
lever algorithm 
ould solve 
onsensus with noisy s
heduling in as little asO(1) time.Message passing. All of our results are set in a shared-memory model.It would be interesting to see whether a noisy s
heduling assumption 
an beused to solve 
onsensus qui
kly in an asyn
hronous message-passing model.Other problems. Finally, though we have 
on
entrated on a parti
ularlysimpli�ed proto
ol for solving a single fundamental problem, it would beinteresting to see how other algorithms fare in the noisy s
heduling model.It seems likely, for example, that algorithms designed for unknown-delaymodels su
h as Alur et al.'s [3℄ should 
ontinue to work in the noisy s
hedul-ing model, perhaps with some 
onstraint on the noise distribution to ex-
lude random delays with unbounded expe
tations. Similarly the line ofinquiry started by Gafni and Mitzenma
her [23℄, on analyzing the behaviorof timing-based algorithms for mutual ex
lusion and related problems withrandom s
heduling, 
ould naturally extend to the more general model ofnoisy s
heduling.
24
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