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Abstract. We describe a new data structure, the Skip B-Tree that combines the advantages of
skip graphs with features of traditional B-trees. A skip B-Tree provides efficient search, insertion and
deletion operations. The data structure is highly fault tolerant even to adversarial failures, and allows
for particularly simple repair mechanisms. Related resource keys are kept in blocks near each other
enabling efficient range queries.
Using this data structure, we describe a new distributed peer-to-peer network, the Distributed Skip
B-Tree. Given m data items stored in a system with n nodes, the network allows to perform a range
search operation for r consecutive keys that costs only O(logb m+r/b) where b = Θ(m/n). In addition,
our distributed Skip B-tree search network has provable polylogarithmic costs for all its other basic
operations like insert, delete, and node join. To the best of our knowledge, all previous distributed
search networks either provide a range search operation whose cost is worse than ours or may require
a linear cost for some basic operation like insert, delete, and node join.
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1 Introduction

Peer-to-peer systems provide a decentralized way to share resources among machines. An ideal peer-to-peer
network should have such properties as decentralization, scalability, fault-tolerance, self-stabilization, load-
balancing, dynamic addition and deletion of nodes, efficient query searching and exploiting spatial as well as
temporal locality in searches.

Much of academic work on peer-to-peer systems has concentrated on building distributed hash tables
or DHTs. In a DHT, the hash value of the key of resource is used to determine which node it will be stored at
(typically the node whose own hashed identity is closest), and the use of random-looking hash values roughly
balances out the load on the nodes in the system. An overlay graph is then constructed on top of the nodes
in order to allow efficient searches for the nearest node to a target hash using some sort of routing algorithm.
The major form of variation between these DHTs is the routing algorithm used to locate resources; however,
in each case the underlying structure is built on pointers between nodes, so the resulting mechanism typically
looks like some sort of tree search.

Even though traditional DHT systems effectively construct balanced search trees in order to find nodes,
they generally do not support range queries since hashing destroys the ordering on keys. They also typically
lack load balancing mechanisms other than the limited randomized balancing provided by hashing. For
example, in Chord it is likely that some machine will own Ω(log N/N log log N) fraction of the key space.
There are some recent extensions of DHT systems which try to mitigate this problem. An extension of Chord
called a p-tree [CLGS04] supports O(logb N) search as well as providing efficient range query. However, there
is no analysis on deletion and insertion, and the addition and removal of nodes are based on a complicated
self-stabilization mechanism whose performance is based on empirical data only. Karger and Ruhl [KR04]
propose algorithms to do address space balancing and item balancing in Chord, which ensures with high
probability no node will be responsible for more than O(1/N) of the key space. The item balancing algorithm
is dependent on nodes being able to move freely in the key space and is incompatible with the address space
balancing algorithm though. Ratnasamy etc. [RRHS04] proposes a new data structure called Prefix Hash
Tree (PHT) that could be put on top of existing DHT. PHT is essentially a binary trie built over data sets
being indexed. The system supports range queries and is load balanced, but it suffers from hot spots since
the top-level trie nodes tend to be accessed more frequently than bottom-level trie nodes.

Though continued research on DHTs is likely to lead to further improvements, some of the difficulties with
reconciling range queries and DHT structures is inherent in the use of hashing to perform load balancing.
Another line of research has focused on providing searchable concurrent data structures by applying the tree
structure in order to support efficient range queries using mechanisms similar to those in traditional balanced
binary trees. For example, Skipnet, developed by Harvey etc. [HJS+03], is a trie of circular, singly-linked
skip lists that link the machines in the system. It provides path locality and content locality, and its hashing
provides some form of load balancing. However, transparent remapping of resources to other domains is not
possible. Aspnes and Shah [AS02] concurrently devised a data structure called a skip graph which applies
skip lists in a similar way to support O(log N) search, insertion and deletion operations, while maintaining
the inherent tree structure in the network so that range queries are also supported. Skip graphs are also
tolerant to node failures, including both adversarial failures and random failures.

The original skip graph construction in [AS02] was marred by the lack of any policy for assigning re-
sources to nodes, excessive internode pointers, and a cumbersome self-repair mechanism. Recently Aspnes
et al.[AKK04] have proposed a mechanism to do global load balancing by pairing heavily loaded machines
with lightly loaded ones, while using sampling to reduce the number of pointers in the data structure from
O(log N) per resource to O(log N) per machine. However, search times in such binned skip graphs still suffer
from large constants, and exploiting the large memory capacity of typical machines may allow much faster
searching.

1.1 Our contribution

We describe a new data structure, the Skip B-Tree, which has the following features:

2



1. By combining skip graphs with features of traditional B-trees, the skip B-Tree avoids the drawbacks of
traditional skip graphs while providing O(logb N) search, insertion and deletion operations, where b is
the block size. When b = N1/k for some constant k, then for any set of N items, all operations take
constant time, O(k).

2. The high connectivity of our data structure makes it highly fault tolerant even to adversarial failures,
and allows for particularly simple repair mechanisms.

3. Related resource keys are kept in blocks near each other, which may enhance the performance of appli-
cations such as web page prefetching which utilize the locality of resources.

Using this data structure, we describe a new distributed network, the Distributed Skip B-Tree. We
show that our distributed Skip B-tree is the first distributed search network with provable polylogarithmic
costs for all its basic operations4. It employs balancing techniques from [AAA+03] to locally update system
parameters and hence avoids costly global re-balancing. Moreover, given m data items stored in a system
with n nodes, a range search for r consecutive keys costs only O(logb m + r/b) where b = Θ(m/n). To the
best of our knowledge, all previous distributed search networks may require a linear cost for some operation
or do not provide cost efficient range queries. Aspnes et al.[AKK04] has a load balancing scheme that may
cause an insert operation to trigger a global re-balancing that costs Ω(n). Awerbuch and Scheideler [AS03]
have a scheme for which a range search for r consecutive keys costs O(r log n). Hence their solution obtains
no locality of resources and incurs a high cost relative to our solution.

1.2 Distributed Search Trees vs Distributed Hash Tables

Skip B-trees are instances of the general concept of Distributed Search Trees (DSTs), which we now
define. Essentially, DSTs are to search trees what DHTs are to hash tables. We begin by defining the
interface to a Distributed Hash Table (DHT). A DHT is a distributed network on n nodes storing m
(key,value) pairs with the following operations.

1. Add : Add a node to the system.
2. Remove: Gracefully remove a node from the system.
3. Insert : add a (key,value) pair.
4. Delete: remove a (key, value) pair.
5. Search: Given a key, find the corresponding value(s).

The typical cost measures of a DHT are to achieve worst case guarantees for the following:

1. Network change cost: Message complexity of Add or Remove operations. For example O(log2 n) in
Chord [SMLN+03] and O(log n/

√
log log n) in [KM05].

2. Data change cost: Message complexity of Insert, Delete, and Search operations. For example, O(log n)
in [SMLN+03] and O(log n/ log log n) in Koorde [KK03].

3. Data load: The maximal fraction of data items stored in one machine. For example O(log n/n) in
[SMLN+03] and O(1/n) in [KR04].

4. Network load: The maximal fraction of traffic a node receives given that random nodes search for random
data. For example O(log n/n) in [SMLN+03].

The interface of a DST contains all the operations of a DHT and includes one new operation, the Range
search. This search operation gets two parameters (k, r) and must return the r minimal keys whose value is
larger than the search key k (one can also require a search for the r keys that are smaller than k). The cost
metrics for DSTs are the same as for DHTs with the only difference being that the complexity of a range
search operation is measured as a function of the required range r. Ideally, an efficient distributed search
tree that stores m data items over a network with n nodes should store the index sorted with each node
storing a consecutive block of size b = Θ(m/n) of the index. In such a case a range search operation for r

4 See Section 1.2 for a formal definition of the operations and their cost measures
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keys should ideally require only O(logb m+r/b) messages. Indeed we will show that our solution obtains this
asymptotic bound while keeping all other operations at a polylogarithmic cost.

Finally we mention that handling faulty nodes (non-graceful node removals) is also an important issue
both for DHTs and for DSTs. This usually requires data replication and techniques that are out of the scope
of this short paper.

2 Skip B-trees

The B-tree was originally introduced by Bayer [Bay72]. The B-tree algorithms utilized the locality of data
and were designed to minimize the cost of sequential search/insert/delete operations. There has been a lot of
research on building a distributed B-tree that supports concurrency and parallelism. Gilon and Peleg [GP91]
proposed several structures for implementing a distributed dictionary, with the focus on reducing complexity
of message passing as well as data balancing. Colbrook etc. [CBDW91] have proposed a pipelined distributed
B-tree. Johnson etc. [JC94] describe a data structure called a dB-tree which permits concurrent updates on
a replicated tree node, and rarely blocks operations.

A skip graph, introduced by Aspnes and Shah [AS02], is organized as a tower of increasing sparse linked
lists, much like a skip list [Pug90]. Level 0 of a skip graph is just a doubly linked list of all nodes in increasing
order by key. For each i greater than 0, each node appears randomly in one of the many link lists in level
i (unlike a skip list where there is only one linked list per level), with two constraints. First, if node x is a
singleton at level i − 1, it doesn’t appear in any of the linked list at levels higher than i − 1. Second, for
every linked list L at level i, there must be another linked list L′ at level i− 1 where the elements in L are
a subset of the elements in L′.

Our skip B-tree can be viewed as a non-trivial extension of the skip graph, combined with the idea of a
distributed B-tree. We specify a block size b, and for every linked list on any level we divide it into blocks
where the expected size of each block is O(b) (we will explain how to do this later). The division into blocks
is independent of the skip graph structure.

As in a skip graph, each element x is assigned a membership vector m(x), where the characters in m(x)
are taken from a finite alphabet set Σ. The cardinality of the alphabet, |Σ|, is typically taken to be the same
as the block size b. Every doubly-linked list in the skip B-tree is labeled by some finite word w. An element
x is in the list labeled by w if and only if w is a prefix of m(x). Each element in the block keeps two pointers,
one to the corresponding element in the upper level (called “parent”) and one to the corresponding element
in the lower level (called “child”). The block itself keeps two pointers to its two neighbors at the same level.
It also keeps a count of how many elements there are in the block. According to Lemma 1, the expected
height of the skip B-tree is O(logb N). By making b large enough (say b = 107), in practice the height of a
skip B-tree can be a very small constant (say, 2 or 3 for any data set).

We adopt much of the notation of [AS02]. In particular, for any element w, write w � i for the prefix
of w of length i. Write ε for the empty word. For each block b at level `, write mell(b) to denote the `-th
character of the membership vector of any element in b. In the implementation of the algorithm we actually
store a number in each block indicating the `-th element in the membership vector of all elements belonging
to it instead of storing a membership vector in each element.

As in a skip graph, the bottom level of a skip B-tree is always a doubly-linked list Sε consisting of all the
nodes in order, divided into blocks with size of O(b). In general, for each w in Σ∗, the doubly-linked list Sw

contains all x for which w is a prefix of m(x), in increasing order, divided into blocks with size of O(b). We
say that a particular list Sw is part of level i if |w| = i. This gives an infinite family of doubly-linked lists;
in an actual implementation, only those Sw with at least two nodes are represented.

Lemma 1. With high probability, the height of a skip B-tree is O(logb N).

Proof. For any element x and a level i, there are bi possible membership vectors since all characters of the
membership vector are picked randomly from an alphabet set of size b. Thus the probability that an element
x becomes a singleton at level i is (1− 1/bi)N−1 which is at least 1− (N − 1)/bi for i ≥ logb N .
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Fig. 1. A skip B-tree with n = 10 nodes and dlogb ne = 3 levels. The block size b = 3.

For i = 3 logb N the probability that x is not a singleton is at most 1/N2 and the Lemma follows by
using the union bound on all nodes.

3 Algorithms for a skip B-tree

Here we describe the search, insert and delete operation for a skip B-tree. We summarize the variables stored
at each node in Table 1. For simplicity, our description assumes a supply of blocks that can hold many data
items. The question of how these blocks are mapped to actual physical machines is deferred to Section 6.

Variable Meaning
MaxKey the maximum resource key in a block
MinKey the minimum resource key in a block

currentBlock the block receiving the message
Right the right neighbor of the current block
Left the left neighbor of the current block
Level the level of the block

m Membership vector
[key] the element in the block indexed by key

Parent pointer to the block one level higher which contains the same resource key as the element
Child pointer to the block one level lower which contains the same resource key as the element
Group indicates the grouping of the block

Table 1. List of all the variables stored at each node.

In this section, we will give the algorithms and analyze their performance.

3.1 The search operation

The search operation (Algorithm 1) is basically the same as that of a skip list, except that our unit of search
is now a block. The search is initiated by a top level block seeking a key and it proceeds down the same
level without overshooting, continuing at a lower level if required, until it reaches level 0. Either the block
at level 0 which contains the key, if it exists, or the block at level 0 storing the key closest to the search key
is returned. The algorithm is described below:
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Algorithm 1: search for the file indexed by searchKey

upon receiving 〈searchOp, startBlock, searchKey, level〉:
if (searchKey exists in unmarked elements of currentBlock) then

if (level = 0) then
send 〈foundOp, currentBlock〉 to startBlock

else
send 〈searchOp, startBlock, searchKey, level − 1〉 to currentBlock[searchKey].Child

if (searchKey > currentBlock.MaxKey) then
while (level ≥ 0) do

if (currentBlock.Right.MinKey < searchKey) then
send 〈searchOp, startBlock, searchKey, level〉 to currentBlock.Right
break

else if (level > 0) then
send 〈searchOp, startBlock, searchKey, level − 1〉 to currentBlock[currentBlock.MaxKey].Child

else
while (level ≥ 0) do

if (currentBlock.Left.MaxKey > searchKey) then
send 〈searchOp, startBlock, searchKey, level〉 to currentBlock.Left
break

else if (level > 0) then
send 〈searchOp, startBlock, searchKey, level − 1〉 to currentBlock[currentBlock.MinKey].Child

if (level = 0) then
send 〈notFoundOp, currentBlock〉 to startBlock
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Lemma 2. The search operation in a skip B-tree S with N nodes and block size b takes O(logb N) time and
O(logb N) messages with high probability.

Proof. If we view the elements in a block as a linked list, then the skip B-tree looks exactly as a skip graph
with alphabet size b. Any membership vector m that is a singleton induces a skip list structure on the
network. Specifically, all elements x whose member ship vector prefix equals a prefix of m form a base b skip
list. The skip B-tree search algorithm from element m performs a search which is equivalent to the search
on the skip list induced by m. Hence analysis similar to skip lists [Pug90] gives high probability guarantees.
Finally a union bound over all O(N) membership vectors results in high probability O(logb N) time and
O(logb N) messages from any initial element to any search destination.

Skip graphs can support range queries in which one is asked to find a key within a specified range. For
most of these queries, the procedure is an obvious modification of Algorithm 1 and runs in O(logb N) time
with O(logb N) messages. For finding all nodes in an interval, we can use a modified Algorithm 1 to find the
closest element to the upper (or lower) bound. We then walk from this element in level 0 list until we hit
the lower (or upper) bound, and return all the elements we have encountered. If there are r elements in the
interval, the running time is O(logbN + r).

3.2 The insert operation

A new element n knows some introducing block introducer which helps it to join the network. n inserts itself
in one list at each level until it finds itself a singleton list at top level. At level 0, n will be added to the block
which contains a key closest to n.Key. At each level i, i >= 1, n will try to find the closest element x in level
i− 1 with x � i = n � i and add to the block x belongs to at level i. To ensure load balancing, we adopt the
approach described in [AKK04]. Specifically, we call a block “closed” if it has more than b/2 elements, and
we call it “open” if it has no more than b/2 elements. We group the blocks into groups of 2 or 3, with each
group having the following property: it must either contain one closed block followed by one open block, or
it may contain 2 closed blocks and 1 open block while the open block is in the middle. This is the invariant
we try to keep for our insertion and deletion algorithm. When we insert a new element, if we insert it into a
closed block we always move the largest element to the adjacent open block in the same group. If the open
block is still open after insertion, nothing happens. If it is in a group of 2 and it becomes closed, we add a
new empty block in the middle of these two blocks and mark it “open”. We move the element to this new
block instead. If the open block is in a group of 3, we create a new block, link it to the right of the rightmost
closed block, and move the largest element in the open block in the middle to its neighbor to the right, which
in turn causes the movement of the largest element in the rightest closed block to the new block. We also
split it into two groups of size 2 since we have 4 blocks now. Notice that in this way we guarantee that the
average block size of any group is no smaller than b/4. To simplify analysis, we do not allow duplicates here,
but it is quite easy to extend the algorithm so that duplicates are allowed. Also when we create a new block,
we assume that there exists a routine which allocates the space for the block and distribute it to a random
machine in the network.

3.3 The delete operation

Deletion works as follows: we recursively delete the element from each level it belongs to in a bottom-up
fashion. When we delete an element, we check the block’s size. If it remains closed/open after deletion, we
simply remove the element from it. Notice that we allow an empty block to be in the group here. If it changes
from closed to open and the open block in the group is not empty, we move the largest/smallest in the open
block to the current block. If the open block in the group is empty, we then check the group size. If it is a
group of size 3, we simply remove the empty block in the middle and form a group of size 2 since the block is
open now. If it is a group of size 2, we check the size of the group to the left. If it is also a group of size 2, we
move the largest key in the open block of the left neighbor to the current block, delete the empty open block
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Algorithm 2: insert a new element n

if (introducer = ⊥) then
create a new block and add n to the block
block.Left ← ⊥
block.Right ← ⊥
block.Group ← 2

else
send 〈searchOp, currentBlock, n.Key, introducer.Level〉 to introducer
wait until foundOp or notFoundOp is received
upon receiving 〈foundOp, clone〉:

terminate insert
upon receiving 〈notFoundOp, block〉:
childblock ← ⊥
while true do

level← block.Level
send 〈buddyOp, currentBlock, n, n.level, ⊥〉 to block
wait until receipt of 〈setLinkOp, newblock〉:
send 〈linkOp, n, childblock, newblock〉 to block
if (newblock 6= ⊥) then

childblock ← block
block ← newblock

else
newBlock ← create a new block
m(newBlock)← uniformly chosen random element of Σ
add n to newBlock
n.Child ← block
n.Parent ← ⊥
break
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Algorithm 3: block’s message handler for physically inserting new element n.

upon receiving 〈linkOp, n, childBlock, parentBlock〉:
add n to currentBlock
n.Child ← childBlock
n.Parent ← parentBlock
currentBlock.Count++
//the block is open
if (currentBlock.Count <= b/2) then

return
//this is the first block on this level and it is closed
if (currentBlock.Left = currentBlock.Right = ⊥) then

block ← create a new block
block.Group ← 2
insert block to the right of currentBlock
m← largest element in currentBlock
send 〈linkOp, m, m.Child, m.Parent〉 to block
remove m from currentBlock
return

//if the block was closed before, swap element with the open block in the group
if (currentBlock.Count > b/2 + 1) then

if (currentBlock.Left.Count <= b/2 and currentBlock.Group = 3) then
block ← create a new block
block.Group ← 2
insert block to the right of currentBlock
currentBlock.Left.Left.Group ← 2
currentBlock.Left.Group ← 2
currentBlock.Group ← 2
m← largest element in currentBlock
send 〈linkOp, m, m.Child, m.Parent〉 to currentBlock.Right
remove m from currentBlock
return

else
m← largest element in currentBlock
send 〈linkOp, m, m.Child, m.Parent〉 to currentBlock.Right
remove m from currentBlock

return

//currentBlock must have b/2 + 1 elements now
if (currentBlock.Group = 2) then

currentBlock.Left.Group ← 3
currentBlock.Group ← 3
block ← create a new block
block.Group ← 3
insert block to the left of currentBlock
m← smallest element in currentBlock
send 〈linkOp, m, m.Child, m.Parent〉 to currentBlock.Right
remove m from currentBlock
return

else
m← largest element in currentBlock
send 〈linkOp, m, m.Child, m.Parent〉 to currentBlock.Right
remove m from currentBlock
return
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Algorithm 4: block’s message handler for finding the closest block one level higher to insert new element n, whose
b.Level-th component of membership vector is val.

upon receiving 〈buddyOp, startBlock, n, val, side〉:
foreach (element x in currentBlock)
if (m(x.Parent) = val) then

send 〈setLinkOp, x.Parent〉 to startBlock
return

if (side = ⊥) then
if (currentBlock.Left 6= ⊥) then

send 〈buddyOp, startBlock, n, val, Left〉 to currentBlock.Left
if (currentBlock.Right 6= ⊥) then

send 〈buddyOp, startBlock, n, val, Right〉 to currentBlock.Right
if (currentBlock.Left = ⊥ and currentBlock.Right = ⊥) then

send 〈setLinkOp, ⊥〉 to startBlock

else
if (currentBlock.side 6= ⊥) then

send 〈buddyOp, startBlock, val, side〉
to currentBlock.side

else
send 〈setLinkOp, ⊥〉 to startBlock

and form a group of 3. If it is a group of size 3, we delete the empty block, and form 2 groups of size 2 with
the left neighbor. Notice that the invariant of group structure is still preserved by our deletion algorithm.

The proof of the correctness of this mechanism is essentially the same as the proof of Theorem 4
in [AKK04].

Lemma 3. The insertion and deletion operations in a skip B-tree S with N nodes and block size b take
O(logb N) messages and O(logb N) time with high probability.

Proof. From Lemma 2, it takes O(logb N) time and O(logb N) messages to find the place to insert the new
element at level 0. Since for each block the probability that none of the elements’ parent has membership
vector component val as in Algorithm 4 is O(( b−1

b )b), with high probability the Algorithm 4 will finish in
constant time. Obviously Algorithm 3 takes only constant time, and the while loop in Algorithm 2 runs
O(logb N) times, which according to Lemma 1 is the height of the skip B-tree with high probability. Thus
the total running time is O(logb N), and there are O(logb N) messages sent.

3.4 Concurrency issues

In order to ensure the correctness of the algorithm under concurrent updates, we need a lock-free dou-
bly linked list in a distributed setting. Shasha and Goodman [SG88] provide a framework for proving the
correctness of non-replicated concurrent data structures. For example, we could use the underlying doubly
linked list of dB-tree [JC94] as our doubly linked list. Since our insertion and deletion operations all work
in a bottom-up fashion, as long as each level is consistent the whole data structure must be intact, and a
lock-free doubly-linked list ensures the consistency of each level. The only thing that could be missing during
updates is the pointers between different levels, but this will only slow down the search operation and has
no effect on the consistency of the data structure.
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Algorithm 5: delete for existing element with key key

send 〈searchOp, currentBlock, key, 0〉 to introducer
upon receiving 〈foundOp, block〉:
send 〈deleteOp, key〉 to block
upon receiving 〈notFoundOp, block〉:

terminate delete

upon receiving 〈deleteOp, key〉:
n← the element in currentBlock with key as searchKey
remove n from currentBlock
currentBlock.Count–
//the openness/closedness of the block is not changed if (currentBlock.Count ! = b/2) then

return
//currentBlock changed from closed to open, but the open block in the group is not empty if
(currentBlock.Right.Count <= b/2 and currentBlock.Right.Count ! = 0) then

m← the smallest element in currentBlock.Right
send 〈linkOp, m, m.Parent, m.Child〉 to currentBlock
send 〈deleteOp, m.Key〉 to currentBlock.Right
//we are in a group of 3, and the rightmost block is closed even if we remove an element if (currentBlock.Group
= 3 and currentBlock.Right.Right.Count > b/2 + 1) then

m← the smallest element in currentBlock.Right.Right
send 〈linkOp, m, m.Parent, m.Child〉 to currentBlock.Right
send 〈deleteOp, m.Key〉 to currentBlock.Right.Right

return

if (currentBlock.Left.Count <= b/2 and currentBlock.Left.Count ! = 0) then
m← the largest element in currentBlock.Left
send 〈linkOp, m, m.Parent, m.Child〉 to currentBlock
send 〈deleteOp, m.Key〉 to block
return

//now we need to merge with the group to the left if (currentBlock.Group = 3) then
if (currentBlock.Left.Count = 0) then

remove currentBlock.Left from the list
currentBlock.Left.Group ← 2
currentBlock.Group ← 2
return

else
remove currentBlock.Right from the list
currentBlock.Right.Group ← 2
currentBlock.Group ← 2
//notice the rightmost block must have b/2 + 1 elements now since we always delete from it first m← the
smallest element in currentBlock.Right
send 〈linkOp, m, m.Parent, m.Child〉 to currentBlock
send 〈deleteOp, m.Key〉 to currentBlock.Right
return

else
if (currentBlock.Left.Group = 2) then

//forms one group of size 3 remove currentBlock.Right from the list
currentBlock.Left.Left.Group ← 3
currentBlock.Left.Group ← 3
currentBlock.Group ← 3
return

else
//forms two groups of size 2 each remove currentBlock.Right from the list
currentBlock.Left.Left.Left.Group ← 2
currentBlock.Left.Left.Group ← 2
currentBlock.Left.Group ← 2
currentBlock.Group ← 2
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4 Fault tolerance

In this section, we describe some of the fault tolerance properties of a skip B-tree. Fault tolerance of related
data structures, such as augmented versions of linked lists and binary trees, has been well-studied and some
results can be seen in [MP84,AB96]. Section 5 gives a repair mechanism that detects node failures and
initiates actions to repair these failures. Before we explain the repair mechanism, we are interested in the
number of blocks that can be separated from the primary component by the failure of other blocks, as this
determines the size of the surviving skip B-tree after the repair mechanism finishes.

Notice that if multiple blocks are stored on a single machine, if that machine crashes all of its blocks are
lost. Our results are stated in terms of the fraction of blocks that are lost; if the blocks are roughly balanced
across machines, this will be proportional to the fraction of machine failures. Nonetheless, it would be useful
to have a better understanding of fault tolerance when the mapping of resources to machines is taken into
account; this may in fact dramatically improve fault tolerance, as blocks stored on surviving machines can
always find other blocks stored on the same machine, and so need not be lost even if all of their neighbors
in the skip B-tree are lost.

We give analysis of adversarial failures here, as this will be the worst case failure pattern. In this section
we look at the expansion ratio of a skip B-tree, which gives the number of nodes that can be separated from
the primary component even with adversarial failures.

Let G be a graph. Recall that the expansion ratio of a set of nodes A in G is |δA|/|A|, where |δA| is the
number of nodes that are not in A but are adjacent to some node in A. The expansion ratio of the graph
G is the minimum expansion ratio for any set A, for which 1 ≤ |A| ≤ n/2. The expansion ratio determines
the resilience of a graph in the presence of adversarial failures, because separating a set A from the primary
component requires all nodes in δA to fail. We will show that skip B-trees have Ω( 1

b ) expansion ratio with
high probability, implying that only O(f · b) nodes can be separated by f failures, even if the failures are
carefully targeted.

Since all the real data is stored on level 0 blocks, we only need to consider the case when A consists
entirely of level 0 blocks. The probability for a level 1 block to have no neighbor in A is (m0−|A|

m0
)b since

none of its pointers to level 0 blocks can point to any block in A, where m0 is the total number of blocks on
level 0. Thus the expected number of neighbors at level 1 is m1(1− (1− |A|

m0
)b), which is greater than b|A|m1

m0
.

Since m1 = Θ(m0), the expansion ratio is Ω( 1
b ), which is pretty good since there are only O(|A|b) links from

A to level 1 blocks. It is comparable to the guarantee provided by data structures based on explicit use of
expanders such as censor-resistant networks [FS02,SFG+02,Dat02].

5 Repair mechanism

In this section we describe a self-stabilization mechanism that repairs our skip B-tree in case of block failure.
We assume that a block either works or fails in its entirety. The repair mechanism is quite simple: each block
sends message to its neighbors periodically to see if they are alive. If one of the neighbors is dead, we try
to fix the link to the next live neighbor. Without loss of generality, we assume that the right neighbor fails,
and the block resides on level 0.

Lemma 4. For any two adjacent blocks b1 and b2 on level 0, the probability that there is an element x1 from
b1 and an element x2 from b2 such that x1 � 1 = x2 � 1 is at least 1− e−b/4

Proof. Suppose |b1| = k1, |b2| = k2, then for any two elements x1 from b1 and x2 from b2 respectively, the
probability that x1 � 1 6= x2 � 1 is 1− 1

b . Thus the probability that no two elements from b1 and b2 share the
same prefix is (1− 1

b )k1∗k2 , which is less than (1− 1
b )b2/4, which in turn is less than e−b/4.

Thus we can see that the repair mechanism would finish in expected O(1) time if we assume the node
can process O(b) messages simultaneously, and sends expected O(b) messages with high probability.
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Algorithm 6: Algorithm for repairing right neighbor for block block at level 0.

send 〈repairOp, block.maxKey, block〉 to block
upon receiving 〈repairOp, key, block〉:
minKey ←∞
foreach element x in block
send message to x.Parent and x.Parent.Right asking for the smallest key greater than key
if (the reply is not ⊥ and the key returned is < minKey) then

minKey ← the key returned
newBlock ← the block containing the key

//make sure that newBlock’s left neighbor is indeed missing if (newBlock.Left = ⊥) then
newBlock.Left ← block
block.Right ← newBlock

else
send 〈repairOp, key, block〉 to the left neighbor of current block

6 Distributed Skip B-Trees

In this section, we detail how to map skip B-trees to machines and build an efficient DST. Consider a network
with n machines that stores m data items, we would like to have a skip B-tree with block size b ≈ m/n. We
use the load balancing strategy of [AAA+03] in order to label nodes with Θ(log n) identifiers. This can be
done so that all nodes have unique binary identifiers that form a prefix code whose size is between log n−C
and log n + C for a predetermined constant C. The add node and remove node operations maintain this
invariant with cost O(log2 n) [AAA+03].

In order to map a skip B-Tree to nodes we must map nodes to blocks in a manner that balances load
between nodes and maintains low degree (an edge is formed between any two nodes that store two consecutive
blocks of any of the linked lists of the skip B-Tree structure). The idea is that each node estimates b to be
about m/n, the estimation of b will always be always a power of two.

We now explain how to maintain the base linked list Sε that is maintained by all the network nodes.
However, the same techniques are used to store all the linked lists. Specifically, for any binary word w, the
nodes whose identifiers are a prefix of w maintain the linked list Sw in the same fashion.

Insertion of a block into a linked list is performed in the following manner. A sample of Θ(log n) random
nodes are queried, and the least loaded node gets to store the block. The nodes that store the previous and
next blocks now store a network link to this new location and the chosen node adds links to them. If the
adversary is oblivious to the random choices then with high probability [MRS01,ABKU00] all machines will
have the same load (number of blocks) up to a constant factor. If b = Θ(m/n) and n nodes maintain the list
then the number of blocks per node is O(1) and hence the number of links of each node is also O(1).

We now analyze the number of network links each node needs to maintain for all the lists it belongs to.
Fix a node u with id id(u), it participates in maintaining all the linked lists Sw such that w is a prefix of
id(u) or id(u) is a prefix of w. Hence there are O(log m) such lists. Each such list Sw with |w| = i contains
Θ(2−im) elements and since node identifiers are balanced there are O(2−in) nodes whose prefix is a prefix
of w. Since b = Θ(m/n) then each such list requires O(1) links for each node maintaining it. Therefore, for
maintaining all lists of the skip B-Tree the degree of each node is O(log m). Hence the cost of adding a new
node and setting up its connections is O(log n log m).

Finally, we need a mechanism to update b as the size of n and m dynamically change over time. We want
to avoid global pitfalls that would require the whole system to do a global update as such operations are not
scalable. Each node maintains b at a power of two, for a node v let b = 2B(v) be its local estimate. Several
events described below may case B(v) to change. Whenever B(v) changes this effects the open or closed
status of the nodes blocks. We use the bucket compression technique of [AKK04] (section 3.3) and a similar
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bucket expansion algorithm to locally adjust the nodes blocks to the new value of b = 2B(v). The details will
appear in the full paper.

When a node joins the system, we use the node split mechanism of [AAA+03]. When node v splits,
it decreases its B(v) by one and the new node also takes the updated value of B(v). Similarly, when a
node leaves, we use the merge mechanism of [AAA+03]. The two merged nodes decrease their B(v) by one.
Changes in B(v) also occur due to change in the number of blocks stored. Once a node stores more that a
given constant number of blocks, it locally increase its value of B(v) by one. Similarly, when a node has less
than a given constant number of blocks, it locally decreases B(v) by one. The estimation of b is adequate
since the load balancing algorithms give each node an estimate of n and m up to constant factors with high
probability. In the full paper, we prove that using this strategy the nodes’ estimates of b are all within a
constant factor of each other. Moreover, locally updating b has low cost as only O(log n log m) messages are
sent.

One remaining obstacle is that the skip B-tree now has different members having slightly different esti-
mates of b. As long as estimates are bounded by a constant factor it is easy to see that insert, delete, and
search operations can still be carried out using O(logb m) messages. The resulting distributed data structure
is a DST with the following costs.

Lemma 5. Given a network on n nodes that is storing m items, both the network change cost and the data
change cost is O(log n logb m). A range search for r consecutive keys costs only O(logb m + r/b). Both the
data load and network load are O(log n/n).

7 Conclusion

In this paper we defined a new data structure called skip B-tree which has several desirable properties.
Insertion, deletion and search in skip B-tree all take O(logb N) time for any set of elements that be arbitrarily
unbalanced. In practice just as in B-trees, our cost is a very small constant (2-3) for reasonably large b (say,
107). Also under the condition of no additional node failures, the skip B-tree can repair itself in a very
efficient way. Finally, skip B-tree also supports range queries, and it exploits the geographical proximity in
location of resources. We use skip B-trees to build a distributed peer-to-peer network that provides the first
polylogarithmic cost DST that allows to perform efficient range search operations.

One problem with the skip B-tree is the creation of “hot spot” for popular resources. If there are 100
copies of a popular resource, they are likely to all be located in one or two nodes and a lot of traffic will
be directed to these nodes. It is an open question whether there is a data structure that supports efficient
search, insert, delete, and range query operations while at the same time keeping similar resources scattered.
Also, while the theoretical properties and relative simplicity of skip B-tree make them a good candidate for
implementation, the ultimate test of its usefulness will be their performance in practice.

More generally, it is an interesting open question to come up with DST designs that have better costs
for all or some of the parameters. Another interesting question is whether there are inherent lower bound
for DSTs that make them inherently more costly than DHTs.
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