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ABSTRACTWe onsider the problem of designing an overlay net-work and routing mehanism that permits �nding re-soures eÆiently in a peer-to-peer system. We arguethat many existing approahes to this problem an bemodeled as the onstrution of a random graph embed-ded in a metri spae whose points represent resoureidenti�ers, where the probability of a onnetion be-tween two nodes depends only on the distane betweenthem in the metri spae. We study the performaneof a peer-to-peer system where nodes are embedded atgrid points in a simple metri spae: a one-dimensionalreal line. We prove upper and lower bounds on the mes-sage omplexity of loating partiular resoures in suha system, under a variety of assumptions about fail-ures of either nodes or the onnetions between them.Our lower bounds in partiular show that the use of in-verse power-law distributions in routing, as suggested byKleinberg [5℄, is lose to optimal. We also give heuris-tis to eÆiently maintain a network supporting eÆientrouting as nodes enter and leave the system. Finally, wegive some experimental results that suggest promisingdiretions for future work.
1. INTRODUCTIONPeer-to-peer systems are distributed systems withoutany entral authority and with varying omputationalpower at eah mahine. We study the problem of loat-ing resoures in suh a large network of heterogeneousmahines that are subjet to rash failures. We desribe�Supported by NSF grants CCR-9820888 and CCR-0098078.ySupported in part by ONR grant N00014-01-1-0795.zSupported by NSF grants CCR-9820888 and CCR-0098078.
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how to onstrut distributed data strutures that haveertain desirable properties and allow eÆient resoureloation.Deentralization is a ritial feature of suh a systemas any entral server is a vulnerable point of failure andalso wastes the power of the lients. Equally importantis salability: the ost borne by eah node must not de-pend too muh on the network size and should ideallybe proportional, within polylogarithmi fators, to theamount of data the node seeks or provides. Sine weexpet nodes to arrive and depart at a high rate, thesystem should be resilient to failures. Furthermore, dis-ruptions to parts of the data struture should self-healto provide self-stabilization.Our approah provides a hash table-like funtional-ity, based on keys that uniquely identify the system re-soures. To aomplish this, we map resoures to pointsin a metri spae from the keys' hash values. We on-strut and maintain a random graph linking these pointsand use greedy routing to traverse its edges to �nd dataitems. The priniple we rely on is that failures leavebehind yet another (smaller) random graph, ensuringthat the system is robust even in the fae of onsider-able damage. Another ompelling advantage of randomgraphs is that they eliminate the need for global oor-dination. Thus, we get a fully-distributed, egalitarian,salable system with no bottleneks. We measure per-formane in terms of the number of messages sent bythe system for a searh operation. Given the growingstorage apaity of mahines, we are less onerned withminimizing the storage at eah node, but the spae re-quirements are still small: the information stored at anode onsists only of a network address and loation inthe metri spae for eah neighbor.The rest of the paper is organized as follows. Setion 2explains our abstrat model in detail, and Setion 3 de-sribes some of the existing peer-to-peer systems. Weprove our results for routing in Setion 4, followed bya disussion on how to onstrut the random graph inSetion 5. We present experimental results in Setion 6and onlusions and future work in Setion 7.
2. OUR APPROACHThe idea underlying our approah onsists of threebasi parts: (1) embed resoures as points in a metrispae, (2) onstrut a random graph by appropriately
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Figure 1: An example of the metri-spae em-bedding.linking these points, and (3) eÆiently loate resouresby routing greedily along the edges of the graph. Let Rbe a set of resoures spread over a large, heterogeneousnetwork N . For eah resoure r 2 R, owner(r) denotesthe node in N that provides r and key(r) denotes theresoure's key. Let K be the set of all possible keys. Weassume a hash funtion h : K ! V suh that resoure rmaps to the point v = h(key(r)) in a metri spae (V; d),where V is the point set and d is the distane metri asshown in Figure 1. The hash funtion is assumed topopulate the metri spae evenly. Note that via thisresoure embedding, a node n is mapped onto the setVn = fv 2 V : 9r 2 R; v = h(key(r))^(owner(r) = n)g,namely the set of metri-spae points assigned to theresoures the node provides.Our next step is to arefully onstrut a direted ran-dom graph from the points embedded in V . We assumethat eah newly-arrived node n is initially onnetedto some other node in N . Eah node n generates theoutgoing edges for eah vertex v 2 Vn independently.An edge (v; u) 2 Vn � Vm simply denotes that n knowsthat m is the network node that provides the resouremapped to u; hene, we an view the graph as a vir-tual overlay network of information. Node n onstrutseah edge by exeuting the searh algorithm to loatethe resoure that is mapped to the sink of that edge. Ifthe metri spae is not populated densely enough, thehoie of a sink may result in a vertex orresponding toan absent resoure. In that ase, n hooses the neighborpresent losest to the original sink. Moving to nearbyverties will introdue some bias in the edge distributionbut the magnitude of error does not appear to be large.A more detailed desription of the graph onstrutionis given in Setion 5.Having onstruted the overlay network of informa-tion, we an now use it for resoure loation. At anytime t, let Rt � R be the set of available resoures andIt be the orresponding overlay network. A request bynode n to loate resoure r at time t is served in asimple, loalized manner: n alulates the metri-spaepoint v that orresponds to r, and a request message isthen routed over It from the vertex in Vn that is losestto v to v itself. Eah node needs only loal information,namely its set of neighbors in It, to partiipate in the re-soure loation. Routing is done greedily by forwardingthe message to the node mapped to a metri-spae pointas lose to v as possible. The problem of resoure loa-

tion is thus translated into routing on random graphsembedded in a metri spae.The advantage of using random graphs is that theyare robust against failures: a node-indued subgraph ofa random graph is generally still a random graph; there-fore, the disappearane of a vertex will still allow rout-ing over the struture. Further, embedding the graphin a metri spae has the very important property thatthe only information needed to loate a resoure is theloation of its orresponding metri-spae point. Thatloation is both permanent, in the sense of being un-a�eted by disruption of the data struture, and easilyomputable by any node that seeks the resoure. So,while the pattern of links between nodes may be dam-aged or destroyed by failure of nodes or of the underlyingommuniation network, the metri spae forms an in-vulnerable foundation over whih to build the ephemeralparts of the data struture.
3. CURRENT PEER-TO-PEER SYS-

TEMSMost peer-to-peer systems in widespread use are notsalable. Napster's [8℄ approah of using a entral serverhas the weaknesses of a vulnerable single point of fail-ure and wasted lient omputational power. Gnutella [1℄oods the network to loate a resoure. Flooding re-ates a trade-o� between overloading every node in thenetwork for eah request and utting o� searhes beforeompletion. While the use of super-peers [7℄ amelioratesthe problem somewhat in pratie, it does not improveperformane in the limit.Some of these �rst-generation systems have in-spired the development of more sophistiated ones likeCAN [11℄, Chord [12℄ and Tapestry [2℄. CAN parti-tions a d-dimensional metri spae into zones. Eah keyis mapped to a point in some zone and stored at thenode that owns the zone. Eah node stores O(d) infor-mation, and resoure loation, done by greedy routing,takes O(dn1=d) time. Chord maps nodes to identitiesof m bits plaed around a modulo 2m identi�er ir-le. Resoures are stored at existing suessor nodesof the nodes they are mapped to. Eah node maintainsa routing table of size m and uses greedy routing to givean O(m) delivery time. Tapestry uses Plaxton's algo-rithm [10℄, a form of suÆx-based, hyperube routing, asthe routing mehanism: in this algorithm, the messageis forwarded deterministially to a node whose identi�eris one digit loser to the target identi�er. To this end,eah node maintains O(lg n) piees of information anddelivery time is also O(lg n).Although these systems seem vastly di�erent, there isa reurrent underlying theme in the use of some variantof an overlayed metri spae in whih the nodes are em-bedded. The loation of a resoure in this metri spaeis determined by its key. Eah node maintains some in-formation about its neighbors in the metri spae, androuting is then simply done by forwarding pakets toneighbors loser to the target node with respet to themetri. It is this inherent ommon struture that leadsto similar results for the performane of these networks.



In this paper, we desribe a general setting for suhoverlay metri spaes, although most of our results areobtained from one-dimensional spaes.In general, the fault-tolerane properties of these sys-tems are not well-de�ned. Eah system provides a repairmehanism for failures but makes no performane guar-antees till this mehanism kiks in. For large systems,where nodes appear and leave frequently, resiliene torepeated and onurrent failures is a desirable and im-portant property. Our experiments show that with ouroverlay spae and linking strategies, the system per-forms reasonably well even with a large number of fail-ures.
4. ROUTINGIn this setion, we present our lower and upperbounds on greedy routing.
4.1 ToolsSome of our upper bounds will be proved using awell-known upper bound of Karp et al.[3℄ on probabilis-ti reurrene relations. We will restate this bound asLemma 1, and then show how a similar tehnique anbe used to get lower bounds with some additional on-ditions in Theorem 2.Lemma 1 ([3℄). The time T (X0) needed for a non-inreasing real-valued Markov hain X0; X1; X2; X3 : : :to drop to 1 is bounded byT (X0) � Z X01 1�z dz; (1)when �z = E[Xt � Xt+1 : Xt = z℄ is a nondereasingfuntion of z.This bound has a nie physial interpretation. If ittakes one seond to jump down �x meters from x, thenwe are traveling at a rate of �x meters per seond dur-ing that interval. When we zip past some position z,we are traveling at the average speed �x determined byour starting point x � z for the interval. Sine � isnondereasing, using �z as our estimated speed under-estimates our atual speed when passing z. The integralomputes the time to get all the way to zero if we use�z as our instantaneous speed when passing position z.Sine our estimate of our speed is low (on average), ourestimate of our time will be high, giving an upper boundon the atual expeted time.We would like to get lower bounds on suh proessesin addition to upper bounds, and we will not neessarilybe able to guarantee that �z, as de�ned in Lemma 1, willbe a nondereasing funtion of z. But we will still usethe same basi intuition: The average speed at whihwe pass z is at least the minimum average speed of anyjump that takes us past z. We an �nd this minimumspeed by taking the minimum over all x > z; unfortu-nately, this may give us too small an estimate. Instead,we hoose a upper bound U on \short" jumps, om-pute the minimum speed of short jumps of at most Ufor all x between z and z + U , and handle the (hope-fully rare) long jumps of more than U by onditioning

against them. Subjet to this onditioning, we an de-�ne an upper bound mz on the average speed passingz, and use essentially the same integral as in (1) to geta lower bound on the time. Some additional tinkeringto aount for the e�et of the onditioning then givesus our real lower bound, whih appears in Theorem 2below, as Inequality (8).Theorem 2. Let X0; X1; X2; : : : be Markov proesswith state spae S, where X0 is a onstant. Let f be anon-negative real-valued funtion on S suh that, for allt, Pr[f(Xt)� f(Xt+1) � 0 : Xt℄ = 1: (2)Let U and � be onstants suh that for any x > 0,Pr[f(Xt)� f(Xt+1) � U : Xt = x℄ � �: (3)Let � = minft : f(Xt) = 0g: (4)For eah x with f(x) > 0, let �x > 0 satisfy�x � E[f(Xt)�f(Xt+1) : Xt = x; f(Xt)�f(Xt+1) < U ℄:(5)Now de�nemz = sup f�x : x 2 S; f(x) 2 [z; z + U)g (6)and de�ne T (x) = Z f(x)0 1mz dz (7)Then E[� ℄ � T (X0)�T (X0) + (1� �) (8)
4.2 Lower bound on greedy routingWe will now show a lower bound on the expeted timetaken by greedy routing on a random graph embedded ina line, where eah node in the graph has expeted outde-gree at most `, and the probability that a node at posi-tion x is onneted to positions x��1; x��2; : : : ; x��kdepends only on the set � = f�1; : : : ;�kg and not onx and is independent of the hoie of outgoing edges forother nodes.1We onsider to two variants of the greedy routing al-gorithm. Without loss of generality, we assume thatthe target of the searh is labeled 0. In one-sided greedyrouting, the algorithm never traverses a link that wouldtake it past its target. So if the algorithm is urrentlyat x and is trying to reah 0, it will move to the nodex � �i with the smallest non-negative label. In two-sided greedy routing, the algorithm hooses a link thatminimizes the distane to the target, without regardto whih side of the target the other end of the linkis. In the two-sided ase the algorithm will move to anode x��i whose label has the smallest absolute value,with ties broken arbitrarily. One-sided greedy routing1We assume that nodes are labeled by integers, andidentify eah node with its label to avoid exessive no-tation.



an be thought of as modeling algorithms on a graphwith a boundary when the target lies on the boundary,or algorithms where all links point in only one diretion(as in Chord).Our results are stronger for the one-sided ase than forthe two-sided ase. With one-sided greedy routing, weshow a lower bound of 
(lnn=(` ln lnn)) on the time toreah 0 from a point hosen uniformly from the range 1to n that applies to any link distribution. For two-sidedrouting, we show a lower bound of 
(lnn=(`2 ln lnn)),with some onstraints on the distribution. We onje-ture that these onstraints are unneessary, and that
(lnn=(` ln lnn)) is the orret lower bound for bothmodels.In general, we assume that eah node is onneted toits immediate neighbors; the simplest way to model thisis to require that �1 appear in �.We will begin by developing mahinery that will beuseful in the proofs of both the one-sided and two-sidedlower bounds.
4.2.1 Link sets: notation and distributionsFirst we desribe some notation for � sets. Writeeah � asf��s; : : :��2;��1 = �1;�1 = 1;�2; : : :�tg;where �i < �j whenever i < j. Eah � is a randomvariable drawn from some distribution on �nite sets;the individual �i are thus in general not independent.Let �� onsist of the s negative elements of � and�+ onsist of the t positive elements. Formally de�ne��i = �1 when i > s and �i = +1 when i > t.For one-sided routing, we make no assumptions aboutthe distribution of � exept that j�j must have �niteexpetation and � always ontains 1. For two-sidedrouting, we assume that � is generated by inludingeah possible Æ in � with probability pÆ, where p issymmetri about the origin (i.e., pÆ = p�Æ for all Æ),p1 = p�1 = 1, and p is unimodal, i.e. noninreasing forpositive Æ and nondereasing for negative Æ.2 We alsorequire that the events [Æ 2 �℄ and [Æ0 2 �℄ are pairwiseindependent for distint Æ; Æ0.
4.2.2 The aggregate chain StFor a �xed distribution on �, the trajetory of a singleinitial point X0 is a Markov hain X0; X1; X2; : : :, withXt+1 = s(Xt;�t), where �t determines the outgoinglinks from the node reahed at time t and s is a suessorfuntion that selets the next node Xt+1 = Xt � �tiaording to the routing algorithm. Note that the hainis Markov, beause the presene of �1 links guaranteesthat no node ever appears twie in the sequene, and soeah new node orresponds to a new hoie of links.From the Xt hain we an derive an aggregate hainthat desribes the olletive behavior of all nodes insome range. Eah state of the aggregate hain is a on-tiguous sets of nodes whose labels all have the samesign; we de�ne the sign of the state to be the ommon2These onstraints imply that p0 = 1; formally, weimagine that 0 is present in eah � but is ignored bythe routing algorithm.

sign of all of its elements. For one-sided routing eahstate is either f0g or an interval of the form f1 : : : kgfor some k. For two-sided routing the states are moregeneral The aggregate states are haraterized formallyin Lemma 4.Given a ontiguous set of nodes S and a set �, de�neS�i = fx 2 S : s(x;�) = x��ig:The intuition is that S�i onsists of all those nodes forwhih the algorithm will hoose �i as the outgoing link.Note that S�i will always be a ontiguous range beauseof the greediness of the algorithm. Now de�ne, for eah� 2 f�; 0;+g:S�i� = fx 2 S�i : sgn s(x;�) = �g:Here we have simply split S�i into those nodes withnegative, zero, or positive suessors.For any set A and integer Æ write A � Æ for fx � Æ :x 2 Ag.We will now build our aggregate hain by letting thesuessors of a range S be the ranges S�i� � �i forall possible �, i, and �. As a speial ase, we de�neSt+1 = f0g when St = f0g; one we arrive at the target,we do not leave it. For all other St, we letPr �St+1 = St�i� ��i : �� = jSt�i�jjStj ; (9)and de�ne the unonditional transition probabilities byaveraging over all �.Lemma 3 shows that moving to the aggregate haindoes not misrepresent the underlying single-point hain:Lemma 3. Let X0 be drawn uniformly from the rangeS0. Let Y t be a uniformly hosen element of St. Thenfor all x and t, Pr[Xt = x℄ = Pr[Y t = x℄.Lemma 4 justi�es our earlier haraterization of theaggregate state spaes:Lemma 4. Let S0 = f1 : : : ng for some n. Then withone-sided routing, every St is either f0g or of the formf1 : : : kg for some k; and with two-sided routing, everySt is an interval of integers in whih every element hasthe same sign.The advantage of the aggregate hain over the single-point hain is that, while we annot do muh to boundthe progress of a single point with an arbitrary distri-bution on �, we an show that the size of St does notdrop too quikly given a bound ` on E[j�j℄. The in-tuition is that eah suessor set of size a�1jStj or lessours with probability at most a�1, and there are atmost 3` suh sets on average.Lemma 5. Let E[j�j℄ � `. Then for any a � 1, ineither the one-sided or two-sided model,Pr �jSt+1j � a�1jStj� � 3`a�1: (10)Another way to write (10) is to say thatPr �ln jStj � ln jSt+1j � ln a� � 3`a�1, whih will givethe bound (3) on the probability of large jumps when itomes time to apply Theorem 2.



4.2.3 Boundary pointsLemma 5 says that jStj seldom drops by too large aratio at one, but it doesn't tell us muh about howquikly jStj drops in short hops. To bound this latterquantity, we need to get a bound on how many sub-ranges St splinters into through the ation of s(�;�).We will do so by showing that only ertain points anappear as the boundaries of these subranges in the di-retion of 0.For �xed �, de�ne for eah i > 0�i = ��i +�i+12 �and ��i = ���i +��i�12 � :Let � be the set of all �nite �i and ��i.Lemma 6. Fix S and � and let � be de�ned as above.Suppose that S is positive. Let M = fmin(S�i�) :S�i� 6= ;g be the set of minimum elements of subrangesS�i� of S. Then M is a subset of S and ontains noelements other than1. min(S),2. �i for eah i > 0,3. �i + 1 for eah i > 0, and4. At most one of �i or �i + 1 for eah i > 0,where the last ase holds only with two-sided routing.If S is negative, the symmetri ondition holds forM = fmax(S�i�) : S�i� 6= ;g.Proof. Consider some subrange S�i� of S. If S�i�ontains min(S), the �rst ase holds. Otherwise: (a) ifS�i� = S�i0, the seond ase holds; (b) if S�i� = S�i+,the third ase holds; () if S�i� = S�i�, the fourth aseholds, with min(S�i�) = �i�1 if �i�1 +�i is odd, andeither �i�1 or �i�1+1 if �i�1+�i is even, depending onwhether the tie-breaking rule assigns �i�1 to S�(i�1)+or S�i�.We will all the elements of M boundary points of S.
4.2.4 Bounding changes in ln jStjNow we would like to use Lemmas 5 and Lemma 6 toget an upper bound on the rate at whih ln jStj dropsas a funtion of the � distribution.The following lemma is used to bound a sum thatarises in Lemma 8.Lemma 7. Let  � 0. Let Pni=1 xi = M where eahxi � 0 and at least one xi is greater than  Let B be theset of all i for whih xi is greater than . ThenPi2B xi lnxiPi2B xi � ln�max�; Mn �� : (11)

Proof. If Mn < , we still have xi >  for all i 2 B,so the left-hand side annot be less than ln . So theinteresting ase is when Mn > .Let B have b elements. ThenPi=2B xi < (n� b) andPi2B �M � (n� b) =M �n+ b. Beause xi lnxi isonvex, its sum over B is minimized for �xed Pi2B xiby setting all suh xi equal, in whih ase the left-handside of (11) beomes simply ln(xi) for any i 2 B.Now observe that setting all xi in B equal gives xi =M�n+bb = M�nb +  � M�nn +  = Mn .Lemma 8. Fix a > 1, and let S = St be a positiverange with jSj � a. De�ne � as in Lemma 6. LetS0 = [min(S) + �a�1jSj�� 1;max(S)� 1℄. ThenE �ln jStj � ln jSt+1j : St; ln jStj � ln jSt+1j < ln a�� ln 11�a�1 + lnE[1 + Z : St℄ (12)where Z = 2j� \ S0j with one-sided routing and Z =2j� \ S0j + j� \ S0j with two-sided routing.Proof. Call a subrange S�i� large if jS�i�j > a�1jSjand small otherwise. Observe that �a�1jSj� � 2, im-plying any large set has at least two elements.For any large S�i�, max(S�i�) � min(S)+�a�1jSj��1. Similarly min(S�i�) � max(S)�1. So any large S�i�intersets S0 in at least one point.Let T = fT1; T2; : : : ; Tkg be the set of subranges S�i�,large or small, that interset S0. It is immediate fromthis de�nition that ST � S0 and thus P jTj j � jS0j.Using Lemma 6, we an haraterize the elements ofT as follows:1. There is at most one set Tj that ontains min(Tj).2. There is at most one set Tj that has min(Tj) = �ifor eah �i in S0.3. There is at most one set Tj that has min(Tj) =�i + 1 for eah �i in S0.4. With two-sided routing, there is at most one setTj that has min(Tj) = �i or min(Tj) = �i + 1 foreah �i in S0. Note that there may be a set whoseminimum element is �i+1 where �i = min(S0)�1,but this set is already aounted for by the �rstase.Thus T has at most 1 + Z = 1 + 2j� \ S0j elementswith one-sided routing and at most 1 + Z = 1 + 2j� \S0j + j� \ S0j elements with two-sided routing.Conditioning on jSt+1j > a�1jSj, jSt+1j is equal tojS�i�j for some large S�i� and thus for some large Tj 2T . Whih large Tj is hosen is proportional to its size,so for �xed T , we haveE[lnSt+1 : T ℄ = PjT jj=1 jTj j ln jTjPjT jj=1 jTj j� ln�max�a�1jSj; jST jjT j ��� ln� jS0jjT j � ;



where the �rst inequality follows from Lemma 7.Now let us omputeE[ln jStj � ln jSt+1j : St℄� ln jStj � E[ln jS0j � ln jT j : St℄= ln jStjjS0j + E[ln jT j : St℄� ln 11� a�1 + lnE[jT j : St℄:In the last step we use E[ln jT j : St℄ � lnE[jT j : St℄,whih follows from the onavity of ln and Jensen's in-equality.
4.2.5 Putting the pieces togetherWe now have all the tools we need to prove our lowerbound.Theorem 9. Let G be a random graph whose nodesare labeled by the integers. Let �x for eah x be a set ofinteger o�sets hosen independently from some ommondistribution, subjet to the onstraint that �1 and +1are present in every �x, and let node x have an outgoingedge to x�Æ for eah Æ 2 �x. Let ` = E[j�j℄. Consider agreedy routing trajetory in G starting at a point hosenuniformly from 1 : : : n and ending at 0.With one-sided routing, the expeted time to reah 0is 
� ln2 n` ln lnn� (13)With two-sided routing, the expeted time to reah 0is 
� ln2 n`2 ln lnn� ; (14)provided � is generated by inluding eah Æ in � withprobability pÆ, where (a) p is unimodal, (b) p is sym-metri about 0, and () the hoies to inlude partiularÆ; Æ0 are pairwise independent.Proof. Let S0 = f1 : : : ng.We are going to apply Theorem 2 to the sequeneS0; S1; S2; : : : with f(S) = ln jSj. We have hosen f sothat when we reah the target, f(S) = 0; so that a lowerbound on � gives a lower bound on the expeted time ofthe routing algorithm. To apply the theorem, we needto show that (a) the probability that ln jSj drops by alarge amount is small, and (b) that the integral in (7)is large.Let a = 3` ln3 n. By Lemma 5, for all t,Pr �jSt+1j � a�1jStj� � 3`a�1 = ln�3 n, and thusPr[ln jStj � ln jSt+1j � ln a℄ � ln�3 n. This satis�es(3) with U = ln a and � = ln�3 n.For the seond step, Theorem 2 requires that webound the speed of the hange in f(S) solely as a fun-tion of f(S). For one-sided routing this is not a prob-lem, as Lemma 4 shows that f(S), whih reveals jSj,haraterizes S exatly exept when jSj = 1 and thelower bound argument is done. For two-sided routing,the situation is more ompliated; there may be some

St whih is not of the form f1 : : : jStjg or f0g, and weneed a bound on the speed at whih ln jStj drops thatapplies equally to all sets of the same size.It is here (and only here) that we use our on-ditions on � for two-sided routing. Suppose thateah Æ appears in � with probability pÆ, that theseprobabilities are pairwise-independent, and that thesequene p is symmetri and unimodal. Let �̂ =�abseil �x+y2 � : x; y 2 �; x 6= y	, where abseil (z), theabsolute eiling of z, is dze when z � 0 and bz whenz � 0. Observe that �̂ � �; in e�et, we are ounting in�̂ all midpoints of pairs of distint elements of Æ with-out regard to whether the elements are adjaent. Foreah k, the expeted number of distint pairs x, y withx+ y = z and x; y 2 � is at most bk =P1i=�1 pk�ipi;this is a onvolution of the non-negative, symmetri, andunimodal p sequene with itself and so it is also sym-metri and unimodal.It follows that for all 0 � k < k0,bk � bk0 , and similarly b�k � b�k0 .Now for the punh line: for eah Æ 6= 0, qÆ =b2Æ�sgn Æ + b2Æ is an upper bound on the expeted num-ber of distint pairs x; y that put Æ in �, whih is inturn an upper bound on Pr[Æ 2 �℄, and from the uni-modularity of b we have that qÆ � qÆ0 and q�Æ � q�Æ0whenever 0 < Æ < Æ0. Though q grossly overountsthe elements of � (in partiular, it gives a bound onE[j�j℄ of `2), its ordering property means that we anbound the expeted number of elements of � that ap-pear in some subrange of any positive St by using q tobound the expeted number of elements that appear inthe orresponding subrange of f1 : : : jStjg, and similarlyfor negative St and f�1 : : :� jStjg. Beause pi alreadysatis�es a similar ordering property, we an thus boundthe number of elements of both � and � that hit a �xedsubrange of St given only jStj.Whih we now proeed to do. For onveniene, for-mally de�ne qi = 0 for one-sided routing. For eahinteger i > 0 let Ai = fk 2 Z : ai� 1 � k < ai+1� 1g =fk 2 Z : blna k + 1 = ig. Let i = Pk2Ai 2pi + qi.Note that i � 2 E[jAi \�j℄ for one-sided routing andi � 2E[jAi \ �j℄ + E[jAi \ �j℄ for two-sided routing.Observe also that P1i=0 i is at most 2` for one-sidedrouting and by 2`+ `2 for two-sided routing.Consider some S = St. If jSj � a, then by Lemma 8we haveE �ln jStj � ln jSt+1j : St; ln jStj � ln jSt+1j < ln a�� ln 11�a�1 + lnE[1 + Z : St℄; (15)where Z = 2j� \ S0j with one-sided routing and Z =2j� \ S0j + j� \ S0j with two-sided routing, and S0 =[min(S)+�a�1jSj��1;max(S)�1℄. By the monotoniityof pi and qi for positive i, ln E[1 + Z℄ is at most�ln jSj = ln 11� a�1 + ln0B�1 + jSj�1Xi=da�1jSje�1 2pi + qi1CA ;(16)provided jSj � a. For jSj < a, set �ln jSj = ln a.Let us now ompute mz, as de�ned in (6). Forz < lna, mz = ln a. For larger z, observe that mz =



sup�mln jSj : ez � jSj < aez	. Now if ez � jSj < aez,then the bounds on the sum in (16) both lie between�a�1ez�� 1 and aez � 1, so thatmz � ln 11� a�1 + ln0B�1 + baez�1Xi=da�1eze�1 2pi + qi1CA� ln 11� a�1 + ln(1 + z0 + z0+1 + z0+2);where z0 = bz= ln a � 1.Finally, omputeT (lnn)= Z lnn0 1mz dz� Z lnnlna 1ln 11�a�1 + ln(1 + z0 + z0+1 + z0+2)dz� blnn= lna�1Xi=0 lnaln 11�a�1 + ln(1 + i + i+1 + i+2) :To get a lower bound on the sum, note thatblnn= lna�1Xi=0 (i+i+1+i+2) � 3 blnn= lna+1Xi=0 i � 3 1Xi=0 iwhih is at most L = 6` for one-sided routing and atmost L = 6`+3`2 for two-sided routing. In either ase,beause 1+ln(1+x) is onvex and dereasing, we haveT (lnn)� blnn= lna�1Xi=0 ln aln 11�a�1 + ln(1 + i + i+1 + i+2)� blnn= lna�1Xi=0 ln aln 11�a�1 + ln�1 + Lblnn= lna�= ln a blnn= ln aln 11�a�1 + ln�1 + Lblnn= lna� : (17)We will now rewrite our bound on T (lnn) in a moreonvenient asymptoti form. We will ignore the 1 andonentrate on the large fration. Reall that a =3` ln3 n, so ln a = �(ln ` + ln lnn). Unless ` is polyno-mial in n, we have lnn= ln a = !(1) and the numeratorsimpli�es to �(lnn).Now let us look at the denominator. Consider �rstthe term ln 11�a�1 . We an rewrite this term as � ln(1�a�1); sine a�1 goes to zero as ` and n grow we have� ln(1 � a�1) = �(a�1) = �(`�1 ln�3 n). It is unlikelythat this term will ontribute muh.Turning to the seond term, let us use the fat thatln(1 + x) � x for x � 0. Thusln�1 + Lblnn= ln a� � Lblnn= lna= O�L(ln l+ ln lnn)lnn � ;

and the bound in (17) simpli�es to
 �ln2 n= (L(ln `+ ln lnn))�. We an further as-sume that ` = O(ln2 n), sine otherwise thebound degenerates to 
(1), and rewrite it simplyas 
 �ln2 n= (L ln lnn)� :For large L the approximation ln(1 + x) � 1 + lnxfor x � 0:59 is more useful. In this ase (17) simpli�esto T (lnn) = 
(lnn= ln `), whih has a natural interpre-tation in terms of the tree of suessor nodes of somesingle starting node.We are not quite done with Theorem 2 yet, as westill need to plug our T and � into (8) to get a lowerbound on E[� ℄. But here we an simply observe that�T = O(ln�1 n), so the denominator in (8) goes rapidlyto 1. Our stated bounds are thus �nally obtained bysubstituting O(`) or O(`2) for L.
4.2.6 Possible strengthenings of the lower boundExamining the proof of Theorem 9, both the `2 thatappears in the bound (14) for two-sided routing andthe extra onditions imposed on the � distribution ariseonly as artifats of our need to projet eah range S ontof1 : : : jSjg and thus redue the problem to traking asingle parameter. We believe that a more sophistiatedargument that does not ollapse ranges together wouldshow a stronger result:Conjeture 10. Let G, �, and ` be as in Theo-rem 9. Consider a greedy routing trajetory starting ata point hosen uniformly from 1 : : : n and ending at 0.Then the expeted time to reah 0 is
� ln2 n` ln lnn� ;with either one-sided or two-sided routing, and no on-straints on the � distribution.We also believe that the bound ontinues to hold inhigher dimensions than 1. Unfortunately, the fat thatwe an embed the line in, say, a two-dimensional gridis not enough to justify this belief; divergene to oneside or the other of the line may hange the distributionof boundaries between segments and break the proof ofTheorem 9.
4.3 Upper BoundsIn this setion, we present our upper bounds on thedelivery time for settings that inlude failure of nodesand links. Note that we use the term node here tomean the point in the metri spae and not the phys-ial mahine as implied in earlier setions. To sim-plify the theoretial analysis, we assume an ideal plae-ment of one node at every point of the one-dimensionalline. Eah node is onneted to its immediate neigh-bors and has ` multiple long-distane links hosen in-dependently as follows: Pr[v is the ith neighbor of u℄= 1d(u;v)=Pw 6=u 1d(u;w) , where d(u; v) is the distane be-tween u and v.We �rst onsider an idealized model with no failures.Kleinberg [5℄ proved that with nd nodes embedded atgrid points in a d-dimensional grid, with eah node u



onneted to its immediate neighbors and one long-distane neighbor v hosen with probability inverselyproportional to d(u; v)d, any message an be deliveredin time polynomial in log n using greedy routing. Whilethis result an be diretly applied to our model withd = 1 and ` = 1 to give a O(log2 n) delivery time, wehave a muh simpler proof using Lemma 1, whih weomit for lak of spae.The next interesting question to ask is if the per-formane improves by adding more long-distane links.We onsider two di�erent strategies for ` 2 [1; lg n℄ and(lg n; n℄,  < 1. In [6℄, Kleinberg uses a group strutureto over the �rst ase with polylogarithmi links to getO(log n) delivery time. However, he uses a more om-pliated algorithm for routing while we obtain the samebound (for the ase of a line) using only greedy routing.We prove that with ` 2 [1; lg n℄, we get an expeteddelivery time of O(lg2 n=`). The main idea behind theproof is that the delivery of a message is divided intophases. This is an extension of the idea used in [5℄. Amessage is said to be in phase j if the distane fromthe urrent node to the destination node is between 2jand 2j+1. There are at most (lg n+1) suh phases. Weanalyze the expeted number of links present betweenany two phases and this number inreases as ` inreases.We prove that the expeted time spent in eah phase isat most O(lg n=`), thus giving a total upper bound onthe delivery time as O(lg2 n=`).For ` 2 (lg n; n℄, we use a deterministi strategy.The loation of eah node is identi�ed as a number to abase b. With O(b logb n) links per node, routing is doneby forwarding the message to a node with an identi-�er loser to the target identi�er by one digit. With atmost O(logb n) digits, we get the same delivery time.This strategy is similar in spirit to Plaxton's algorithm[10℄.Theorem 11. Choose an integer b > 1. With` = (b � 1)dlogb ne, let eah node link to nodesat distanes 1x; 2x; 3x; : : : ; (b � 1)x, for eah x 2fb0; b1; : : : ; bdlogb ne�1g. Then the expeted delivery timeT (n) = O(logb n).
4.3.1 Failure of LinksWe get reasonable performane even with link fail-ures. We assume that eah long-distane link is presentindependently with probability p, but that eah nodeis always onneted to its immediate neighbors. Thisensures that a message will always be delivered even ifit takes a long time.With ` 2 [1; lg n℄, we use the same idea of deliveringmessages in phases. Intuitively, the expeted time ineah phase inreases inversely proportional to p and weget the following result.Theorem 12. Let eah node be onneted to its im-mediate neighbors (at distane 1) and ` 2 [1; lg n℄ long-distane neighbors hosen independently with replae-ment, with probability inversely proportional to the dis-tane between the nodes. Assume that the links to theimmediate neighbors are always present. If the proba-

bility of a long-distane link being present is p, then thedelivery time is O(lg2 n=p`).A similar intuition works for ` 2 (lg n; n℄. If a linkfails, then the node has to take a shorter long-distanelink, whih will not take the message as lose to thetarget as the initial failed link. Clearly as p dereases,the message has to take shorter and shorter links whihinreases the delivery time.Theorem 13. Let eah node have ` = O(logb n),long-distane links to distanes b0; b1; b2; : : : ; bblogbn.Assume that the links to the nearest neighbors are al-ways present. If the probability of a link being present isp, then the expeted delivery time T (n) = O(b lg n=p).
4.3.2 Failure of NodesThe analysis for node failures is not as simple as thatfor link failures beause we lose the important propertyof independene between links of di�erent nodes. It isno longer the ase that if one node annot ommuniatewith some other node, it has a good hane of doing soby passing the message to its neighbor. We analyze thesituation when a node forwards a message to its nextbest neighbor after it reahes a dead neighbor.To prove our result, we again use the formulation ofa message moving between phases to reah the target.The idea is that the jumps between phases are indepen-dent so one we move from phase j to phase j�1, furtherrouting no longer depends on any nodes in phase j. Wean ondition on the number of nodes being alive in thelower phase and estimate the time spent in eah phase.Intuitively, if a node is present with probability p, wewould expet to wait for a time inversely proportionalto p in antiipation of �nding a node in the lower phaseto jump to.Theorem 14. Let the model be as in Theorem 12.and let eah node be present with probability p. Thenthe expeted delivery time T (n) = O(lg2 n=p`).In ontrast, it appears that our deterministi routingstrategy an lead to very poor performane; we have notyet analyzed this situation formally.
5. CONSTRUCTION OF GRAPHSAs the group of nodes present in the network hanges,so does the graph of the virtual overlay network. In or-der for our routing tehniques to be e�etive, the graphmust always exhibit the property that the likelihood ofany two verties v; u being onneted is 
(d(v; u)�1).We desribe briey a heuristi approah to onstrutand maintain a graph with suh an invariant.Sine the hoie of edges leaving eah vertex is inde-pendent of the hoies of other verties, we an assumethat points in the metri spae are added one at a time.Let v be the k-th point to be added. Point v hoosesthe sinks of its outgoing edges aording to the inverse-distane distribution and onnets to them by runningthe searh algorithm. If a desired sink u is not present,v onnets to u's losest, present neighbor. In e�et,



eah of the k� 1 points already present before v is sur-rounded by a basin of attration, olleting probabilitymass in proportion to its length. Sine we assume thehash funtion populates the metri spae evenly, andbeause of absolute symmetry, the basin length L hasthe same distribution for all points. It is easy to see thatwith high probability, L will not be muh smaller thanits expetation: Prob(L �  �k�1) = 1� (1� �k�1)k�1.A lower bound on the probability that the edge (v; u) ispresent is 0 � k�1 � d(v; f)�1, where f is the point in u'sbasin that is the farthest from v.3 However, the boundholds only if u is amongst the k � 1 points added be-fore v. Otherwise, the aforementioned probability is 0,whih means that we need to amend our linking strategyso as to transfer probability mass from the former aseto the latter one. We desribe next how to aomplishthis task.Let u be a new point. We give earlier points the op-portunity to obtain outgoing edges to u by having u (1)alulate the number of inoming edges it \should" havefrom points added before it arrived, and (2) hoose suhpoints aording to an appropriate distribution �.4 If` is the number of outgoing edges for eah point, then` will also be the expeted number of inoming edgesthat u has to estimate in step (1). For graphs with alarge number of points n, eah point has roughly 1=nhane of ending at u beause of symmetry. The num-ber of links ending at u is thus distributed aordingto a Poisson distribution with rate `, that is, the prob-ability that u has k inoming edges is e�llkk! , and theexpetation of the distribution is `. After step (2) isompleted by u, eah hosen point v responds to u'srequest by using a distribution � to hoose one of itsexisting outgoing edges to replae with an edge to u.It is easy to show that if � and � are proportional tothe inverse of the distane between points, the resultinggraph has the property we want. This proedure anbe repeated to allow for regeneration of links when anetwork node rashes.We believe that our method will give a distributionlose enough to the desired distribution for the rout-ing algorithm to work. Unfortunately, the onstrutionproess interats in a ompliated way with the routingalgorithm, whih makes analysis diÆult. We are ur-rently onduting simulations to assess the e�etivenessof onstruting a graph using our heuristi.There has reently been related work [9℄ on how toonstrut, with the support of a entral server, randomgraphs with many desirable properties, suh as smalldiameter and guaranteed onnetivity with high prob-ability. Although it is not lear what kind of fault-tolerane properties this approah o�ers if the entralserver rashes, or how the onstruted graph an beused for eÆient routing, it is likely that similar teh-niques ould be useful in our setting.3The onstant 0 has absorbed  and the normalizingonstant for the distribution.4All this an be easily alulated by u sine the linkprobabilities are symmetri.

6. EXPERIMENTAL RESULTSWe simulated a network at the appliation level withn = 217 nodes. Eah node has lg n = 17 links ho-sen using the randomized rule explained in Setion 4.3.Routing is done greedily by forwarding a message tothe neighbor losest to its target node. In eah sim-ulation, the network is set up afresh and a fration pof the nodes fail. We hoose random soure and des-tination nodes whih have not failed and route a mes-sage between them. For eah value of p, we ran 1000simulations delivering 100 messages in eah simulation,and averaged the number of delivery hops for suessfulsearhes and number of failed searhes.With node failures, a node may not be able to �nda live neighbor that is loser to the target node thanitself. We studied three possible strategies to overomethis problem as follows: (i) Terminate the searh. (ii)Randomly hoose another node, deliver the message tothis new node and then try to deliver the message fromthis node to the original destination node (similar to thehyperube routing strategy as explained in [13℄). (iii)Keep trak of a �xed number (in our simulations, 5)of nodes through whih the message is last routed andbaktrak. When the searh reahes a node from whereit annot proeed, it baktraks to the most reentlyvisited node from this list and hooses the next bestneighbor to route to. For all these strategies we notethat one a node hooses its best neighbor, it does notsend the message to any other link if it �nds out thatthe best neighbor has failed.
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Figure 2: Fration of failed searhesFigure 2 shows the fration of messages that fail to bedelivered versus the fration of failed nodes. Figure 3shows the number of hops for suessful searhes versusthe fration of failed nodes. It is very interesting tosee how well the system behaves even with suh a largenumber of failed nodes. In addition, baktraking givesa signi�ant improvement in reduing the number offailures as ompared to the other two methods, althoughit may take a longer time for delivery.Our results may not be diretly omparable to thoseof CAN[11℄ and Chord[12℄ sine they use di�erent sim-ulators for their results. However, we see that we getresults as good as theirs. Even if we just terminatethe searh, we get less than p fration of failed searheswith p fration of failed nodes. Chord[12℄ has roughly
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Figure 3: Delivery timethe same performane after their network stabilizes fromsome repair mehanism. Further, with baktraking wesee that with 80% failed nodes, we still get less than30% failed searhes. These results are very promisingand it would be very interesting to study baktrakinganalytially.
7. CONCLUSIONS AND FUTURE

WORKThe following table summarizes our upper and lowerbounds5:Model # Links ` Upper Bound Lower BoundNofailures 1 O(lg2 n) 
( ln2 nln lnn )[1; lg n℄ O( lg2n` ) 
( ln2 n` ln lnn )[lg n; n℄ O( lg nlg b ) 
( lgnlg ` )Pr[Linkpresent℄=p [1; lg n℄ O( lg2 np` ) -[lg n; n℄ O( b lgnp ) -Pr[Nodepresent℄=p [1; lg n℄ O( lg2 np` ) -We have shown that greedy routing in an overlay net-work organized as a random graph in a metri spae anbe a nearly optimal mehanism for searhing a peer-to-peer system with low message omplexity, even inthe presene of many faults. We see this as an im-portant �rst step in the design of eÆient algorithmsfor suh networks, but many issues still need to be ad-dressed. Our results mostly apply to one-dimensionalmetri spaes like the line or a irle. One interestingpossibility is whether similar strategies would work forhigher-dimensional spaes, partiularly ones in whihsome of the dimensions represent the atual physialdistribution of the nodes in real spae; good network-building and searh mehanisms for this model mightallow eÆient loation of nearby instanes of a resoure5In the upper bound with (lg n; n℄ links, the num-ber of links ` = O(b logb n). Also, the determinististrategy used for links ` 2 (lg n; n℄, with link failuresis slightly di�erent that the one with no failures, and` = O(logb n). In the lower bound olumn, the boundfor [1; lg n℄ links is for one-sided routing.

without having to resort to loal ooding (as in [4℄).Another promising diretion would be to study the se-urity properties of greedy routing shemes, to see howthey an be adapted to provide desirable properties likeanonymity or robustness against Byzantine failures.
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