
Randomized Consensus in Expected
O(n log n) Individual Work

James Aspnes∗
Department of Computer
Science, Yale University

New Haven, CT
aspnes@cs.yale.edu

Hagit Attiya†
Department of Computer

Science, Technion
Haifa, Israel

hagit@cs.technion.ac.il

Keren Censor†‡
Department of Computer

Science, Technion
Haifa, Israel

ckeren@cs.technion.ac.il

ABSTRACT
This paper presents a new randomized algorithm for achiev-
ing consensus among asynchronous processes that communi-
cate by reading and writing shared registers, in the presence
of a strong adversary. The fastest previously known algo-
rithm requires a process to perform an expected O(n log2 n)
read and write operations in the worst case. In our algo-
rithm, each process executes at most an expected O(n log n)
read and write operations. It is shown that shared-coin al-
gorithms can be combined together to yield an algorithm
with O(n log n) individual work and O(n2) total work.

Categories and Subject Descriptors
D.1.3 [Software]: Programming Techniques—Concurrent
programming ; F.2 [Theory of Computation]: Analysis of
Algorithms and Problem Complexity—Nonnumerical Algo-
rithms and Problems; G.3 [Mathematics of Computing]:
Probability and Statistics—Stochastic processes

General Terms
Algorithms, Theory

Keywords
distributed computing, shared memory, randomized algo-
rithms, consensus

1. INTRODUCTION
Coordinating the actions of processes is crucial for virtu-

ally all distributed applications, especially in asynchronous
systems. At the core of many coordination problems is the

∗Supported in part by NSF grant CNS-0435201.
†Supported in part by the Israel Science Foundation (grant
number 953/06).
‡Supported in part by the Adams Fellowship Program of the
Israel Academy of Sciences and Humanities.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PODC’08, August 18–21, 2008, Toronto, Ontario, Canada.
Copyright 2008 ACM 978-1-59593-989-0/08/08 ...$5.00.

need to reach consensus among processes, despite the pos-
sibility of process failures. A consensus algorithm is a dis-
tributed algorithm where n processes collectively arrive at a
common decision value starting from individual process in-
puts. It must satisfy agreement (all processes decide on the
same value), validity (the decision value is an input to some
process), and termination (all processes eventually decide).
Consensus is a fundamental task in asynchronous systems,
which can be employed to implement arbitrary concurrent
objects [9]; consensus is also a key component of the state-
machine approach for replicating services [10,14].

There is no deterministic consensus algorithm in an asyn-
chronous system, if one process may fail [8, 9, 11]. However,
reaching consensus becomes possible using randomization
with the termination condition relaxed to hold with prob-
ability 1. (The agreement and validity properties remain
the same.) The complexity of solving consensus is measured
by the expected number of register operations performed by
all processes (total work) or by any one process (per-process
or individual work). Many randomized consensus algorithms
have been suggested, in different communication models and
under various assumptions about the adversary (see [3]).

We study the consensus problem in the standard model of
an asynchronous shared-memory system, where n processes
communicate by reading and writing to shared multi-writer
multi-reader registers. Each step consists of some local com-
putation, including an arbitrary number of local coin flips
(possibly biased) and one shared memory event, which is
either a read or a write to some register. The interleaving
of processes’ events is governed by a strong adversary that
observes the results of the local coin flips before scheduling
the next event; in particular, it may observe a coin-flip and,
based on its outcome, choose whether or not that process
may proceed with its next shared-memory operation.

Many randomized consensus algorithms were designed for
this model, e.g., [1, 2, 4, 7, 13]. Attiya and Censor [6] have
recently presented an algorithm with O(n2) total work; they
also proved that Ω(n2) is a lower bound on the total work.
In their algorithm, however, a process running alone may
have to perform all this work by itself, meaning that the in-
dividual work is also Θ(n2). This is significantly higher than
the O(n log2 n) individual work achieved by the algorithm
of Aspnes and Waarts [5], using only single-writer registers.

We show that wait-free randomized consensus can be solved
using only atomic multi-writer multi-reader registers with
O(n log n) expected individual work and O(n2) expected to-
tal work; the last figure matches the lower bound [6], while
the first leaves a logarithmic gap.

Our upper bound is based on a new weak shared-coin al-
gorithm that requires each process to do at most O(n log n)
operations. A shared-coin algorithm with agreement param-
eter δ allows processes to collectively “flip” a shared coin
with probability at least δ for agreeing on each value. A
shared-coin algorithm with a constant agreement parameter
immediately yields a consensus algorithm with essentially
the same complexities [4].

The algorithm is based on the weighted voting approach
of the O(n log2 n) individual-work algorithm of Aspnes and
Waarts [5]. The improved complexity comes from applying
the termination bit technique from the recent O(n2) total
work algorithm [6].

While the individual work of our algorithm improves over
the algorithm of Attiya and Censor [6], the O(n2 log n) total
work of our algorithm is inferior to its O(n2) total work.

We prove, however, that shared-coin algorithms can be in-
terleaved in a way that obtains the best of their complexity
figures. Given the power of the adversary to observe both
protocols and adjust their scheduling, it is not obvious that
this is the case, and indeed recent work of Lynch et al. [12]
shows that undesired effects may follow from the interaction
of an adaptive adversary and composed probabilistic proto-
cols. Nonetheless, we can show that in the particular case
of weak shared-coin algorithms, two algorithms with agree-
ment parameter δA and δB can be composed with sufficient
independence such that the combined protocol terminates
with the minimum of the individual protocols’ complexities
in both individual and total work, while obtaining an agree-
ment parameter of δA · δB . Thus, by combining our shared
coin with the O(n2) total work shared coin of [6], we obtain
a protocol with both O(n log n) individual work and O(n2)
total work.

The next section describes some previous shared-coin al-
gorithms while Section 3 presents our new shared-coin algo-
rithm. Section 4 shows how shared-coin algorithms can be
interleaved. We conclude, in Section 5, with a discussion of
our results and directions for future research.

2. PREVIOUS SHARED-COIN
ALGORITHMS

A weak shared coin with agreement parameter δ is a dis-
tributed algorithm with the following properties:

(a) against any adversary strategy, with probability at least
δ, every process returns −1,

(b) against any adversary strategy, with probability at least
δ, every process returns +1.

The rest of the time the output of the algorithm is arbitrary;
the adversary may determine the outputs of the processes or
even arrange for them to disagree. A standard reduction [4]
shows that a weak shared-coin algorithm with agreement pa-
rameter δ, expected individual work I, and expected total
work T , yields a consensus algorithm with expected individ-
ual work O(n + I/δ) and expected total work O(n2 + T/δ).

The question is how to construct a weak shared coin with
constant agreement parameter and low cost.

All known weak shared coins for the strong-adversary model
use some variant of the following voting scheme. The par-
ticular termination rule described below appeared first in
the O(n2 log n) total work algorithm of Bracha and Rach-

man [7]. The use of non-constant weights was introduced by
Aspnes and Waarts [5].

1. Each process pi generates random votes Xi,t = ±wi,t,
where the two possible signs occur with equal probabil-
ity. We say wi,t is the weight of the t-th vote generated
by process pi. Each process writes both its cumulative
variance

P
t w2

i,t and the total vote
P

t Xi,t to a single-
writer register.

2. The algorithm starts terminating once the total vari-
ance exceeds some fixed threshold K. The votes gen-
erated (but not necessarily written) so far are called
the core votes. The role of the core votes is to produce
a large majority in favor of one value or the other.

3. Depending on the mechanism used to detect termina-
tion, there may be additional divergence between pro-
cesses due to votes generated by processes that have
not yet detected crossing the threshold, as well as votes
that are missed because the write operations recording
them are delayed by the adversary.

For example, in the Bracha-Rachman algorithm, wi,t = 1
for all i and t and K = Θ(n2). This gives a standard de-
viation of the core votes of Θ(n). The divergence among
processes is bounded by having each process collect all n
registers every O(n/ log n) steps. It follows that the max-
imum divergence observed by any process is small relative
to the core votes with at least constant probability. The
total work of the Bracha-Rachman algorithm is O(n2 log n),
with the extra log n factor coming from the need to perform
a Θ(n)-work collect operation every Θ(n/ log n) steps. The
individual work is the same as the total work in the worst
case: a single process can be forced to generate all Θ(n2)
core votes.

The recent algorithm of Attiya and Censor [6] improves
on the Bracha-Rachman algorithm by adding a single multi-
writer bit that allows any process that detects termination
to signal this to all other processes immediately. This re-
duces the divergence between processes since all check the
termination bit at each step and thus see almost the same
set of votes. In consequence, it suffices for the additional
votes to have variance O(n2), since we can now tolerate a
constant probability that the divergence exceeds the mag-
nitude of the core votes. This small but significant change
means that it is only necessary to check for termination ev-
ery Θ(n) steps. The resulting total work is thus Θ(n2); this
bound is optimal because it matches the tight lower bound
on randomized consensus proved in the same paper. As
in the Bracha-Rachman algorithm, a single process may be
forced to generate most of the votes, so the individual work
is also Θ(n2).

To reduce the individual work, Aspnes and Waarts [5]
modified the Bracha-Rachman algorithm by having processes
cast increasingly heavy votes over time. In the Aspnes-
Waarts algorithm, wi,t = ta where a = log n−1

2
; the odd-

looking exponent is chosen so that the total variance con-
tributed by a process’s first m votes is Θ

`
mlog n

´
. Termi-

nation is tested by doing an n-read collect operation every
Θ(n/ log n) steps, as in the Bracha-Rachman algorithm. A
careful analysis of the rate of increase of the weights shows
that the increased weights late in the algorithm still allow
the core votes to dominate with constant probability; the

intuition is that not many of the processes can be casting
very large votes (since otherwise the algorithm would have
terminated sooner). However, because the size of votes con-
tinue to increase after crossing the threshold, it is necessary
to increase the variance of the core votes to compensate
for possibly larger divergence; this adds an extra log factor
to the total work bound of Bracha-Rachman, raising it to
O(n2 log2 n). The payoff is that the individual work is now
bounded by only O(n log2 n), since a fast process running
alone quickly generates enough variance on its own to reach
the core-vote variance threshold.

3. A SHARED-COIN ALGORITHM WITH
O(n log n) INDIVIDUAL WORK

We combine the weighted votes mechanism of Aspnes-
Waarts with the termination bit of Attiya-Censor, in order
to reduce divergence and hence, individual work. The re-
duced divergence also simplifies the proof. Our shared-coin
algorithm provides a constant agreement parameter and re-
quires O(n log n) individual work.

In the algorithm, each process generates votes, whose vari-
ance and sums are recorded in an array of n single-writer
multi-reader registers.

The processes generate votes until the variance of votes
reaches a certain threshold, which is small enough to guar-
antee that not too many steps are taken, but large enough
to give a good probability for the votes to have a distinct
majority.

Each process reads the array and decides on the majority
of the votes it reads. In order to agree on the same majority
value, processes should read similar sets of votes; this is
achieved by bounding the total number of votes that are
generated (by any process) after some process observes that
the threshold was exceeded.

A very simple way to guarantee this property is to have
processes frequently read the array in order to quickly detect
that the threshold was reached. This, however, increases the
individual and total work. Instead, we use a multi-writer
multi-reader bit, called done, that serves as a binary termi-
nation flag; it is initialized to false. A process that detects
that enough votes were generated, sets done to true. This
allows a process to read the array only once in every O(n)
of its votes, but check the register done before each vote.

Increasing weights for the votes as in [5] are used to reduce
the individual work, i.e., if not many processes take steps,
then they generate votes with increasing weights so fewer
coins are needed to reach the threshold. The threshold is
now based on the variance of the votes, rather than on their
number.

The pseudocode appears in Algorithm 1. In addition to
the binary register done, it uses an array V of n single-writer
multi-reader registers, each with the following components
(all initially 0):

variance: the total variance of the votes generated by the
process so far.

sum: the weighted sum of votes so far.

Each process keeps a local copy v of the array V . The col-
lect in lines 6 and 8 is an abbreviation for n read operations
of the array V .

We take the weight function to be

w(t) = ta,

Algorithm 1 Shared coin algorithm: code for process pi.

local integer t, initially 0
array v[1..n]
1: while not done do
2: t + +
3: vote = random(−1,+1) · w(t) // a fair local coin
4: V [i].〈variance, sum〉=

〈V [i].variance + vote2, V [i].sum + vote〉
// atomically

5: if t = 0 mod c then // check if time to terminate
6: v = collect V // n read operations
7: if v[1].variance + ... + v[n].variance > K then

done = true // raise termination flag
end while

8: v=collect V // n read operations
9: return sign(

Pn
j=1 v[j].sum) // return +1 or −1,

// depending on the majority value of the votes

where a = 1
2
(log n− 1), and the threshold to be

K = (64n log n)log n n

log n
.

The collect operation is performed every c = n − 3 local
votes.

For convenience, we will also denote A = 2a + 1 = log n,

and define TK =
`

AK
n

´1/A
; this represents the maximum

number of votes that a process generates until the total vari-
ance first exceeds K, if the execution is synchronous. The
choice of parameters implies that

TK =

„
log n(64n log n)log n · n/ log n

n

«1/ log n

= 64n log n.

Finally, we define g = 1 + c+3
TK

= 1 + 1
64 log n

, and ∆ =

n(gTK)a.
The following lemma is used to prove that certain func-

tions are concave.

Lemma 1. Let fp,q,r,s(x) = ((rx)p + s)q, where p, q, r, s,
and x are all non-negative, pq ≤ 1 and p ≤ 1. Then
fp,q,r,s(x) is concave.

Proof. To show that fp,q,r,s(x) is concave, we show that
its second derivative is non-positive.

d2

dx2
((rx)p + s)q =

d

dx
q((rx)p + s)q−1p(rx)p−1r

= q(q − 1)((rx)p + s)q−2p2(rx)2p−2r2

+ q((rx)p + s)q−1p(p− 1)(rx)p−2r2

= [q((rx)p + s)q−2p(rx)p−2r2]

· [(q − 1)p(rx)p + ((rx)p + s)(p− 1)]

= [q((rx)p + s)q−2p(rx)p−2r2]

· [(rx)p(pq − 1) + s(p− 1)]

If p, q, r, s and x are all non-negative, then the first term
above is non-negative. If furthermore, pq ≤ 1, and p ≤ 1,
then the second term above is non-positive. In this case
the second derivative is non-positive and hence the function
fp,q,r,s(x) = ((rx)p + s)q is concave.

We denote by Ui, 1 ≤ i ≤ n, the random variable describ-
ing the maximum number of votes that process pi generates

during an execution. We will later use Lemma 1 in order to
apply the next lemma:

Lemma 2 (Lemma 5.4 from [5]). Let ψ(x) = xA/A
and let χ be any strictly increasing function such that
χ(ψ−1(x) + c + 1) is concave in x. Then,

Pn
i=1 χ(Ui) ≤

nχ(TK + c + 1).

In order to bound the individual work and the agreement
parameter, we fix an execution α of the algorithm. First, we
bound the individual work, in a manner similar to Theorem
5.10 from [5].

Lemma 3. Every process executes at most O(n log n) steps
during the execution.

Proof. Consider some process pi. After (AK)1/A votes
of pi, the total variance of its votes is:

(AK)1/AX
x=1

x2a >

Z (AK)1/A

0

x2adx =
((AK)1/A)A

A
= K.

This implies that after at most c additional votes, pi per-
forms the collect of line 6 and notices that the total variance
has exceeded K. Therefore pi generates at most (AK)1/A+c
votes. Each vote costs 1 write operation in line 4, and one
read operation in line 1, and every c votes cost n read opera-
tions in line 6. In addition there may be one write operation
in line 7, and there are n read operations in line 8. Therefore
the total number of operations that process pi performs is
at most

((AK)1/A+c)
“
1 +

ln

c

m”
+1+n ≤ (AK)1/A

“
2 +

n

c

”
+2c+3n.

Substituting the parameters, we have that the number of
operations that any process executes is at most:

(AK)1/A
`
2 + n

c

´
+ 2c + 3n =

„
log n(64n log n)log n n

log n

« 1
log n

(2+
n

n− 3
)+2(n−3)+3n =

“
n

1
log n · 64n log n

”
(2 +

n

n− 3
) + 2(n− 3) + 3n =

(2 · 64n log n) O(1) + O(n),

which is O(n log n).

We now show that all processes that terminate agree on
the value 1 with constant probability; by symmetry, the
same holds for −1, implying that the algorithm has a con-
stant agreement parameter.

We model the execution α as a stochastic process, by con-
sidering the votes that are generated during the execution as
a sequence of random variables X1, X2, · · · . The value of Xi

represents the i-th vote that is generated by some process in
line 3, or 0 if less than i votes occur during the execution α.

In order to prove a constant agreement parameter, we
need to bound the partial sums of votes during different
times in the execution. Similar to [6], we partition the exe-
cution into three phases (see Figure 1). The first phase ends
when a total variance of K is generated. The second phase
ends when the termination bit done is set for the first time.

In the third phase, each process collects the array in line 8,
and returns a value for the shared coin.

For a set of votes F , we let Sum(F) be the sum of the
votes in F . Denote by FC the set of votes that are gen-
erated by the first time that the termination bit done is
set. We further denote by Fi the set of votes read by the
collect of process pi in line 8. This is the set according to
which the process pi decides on its output, i.e., pi returns
sign(Sum(Fi)). Since each process generates at most one
more vote after the termination bit done is set, there can be
no more than n additional votes in Fi that are not in FC .
This allows us to bound the sum of these additional votes
(Lemma 4).

Since FC is the set of votes generated when done is set,
then it is exactly the set of votes generated in the first and
second phases. Let Ffirst be the first votes that are gen-
erated until the total variance reaches K, and Fsecond =
FC \ Ffirst (see Figure 1). This implies that Sum(FC) =
Sum(Ffirst) + Sum(Fsecond). We later bound Sum(FC)
by bounding Sum(Ffirst) (Lemma 5) and Sum(Fsecond)
(Lemma 7).

We begin with the next lemma, which bounds the sum of
additional votes that a process pi may observe.

Lemma 4. For every i, 1 ≤ i ≤ n,

|Sum(Fi)− Sum(FC)| ≤ ∆.

Proof. Let Xj be a vote in FC , i.e., Xj is generated by
some process pk before the termination bit done is set for
the first time.

If the vote Xj is not included in Fi, then it is not written to
the register of process pk before it is read during the collect
of pi in line 8, and therefore no other vote of pk is generated
yet, hence there can be no other vote Xj′ by process pk that
is in FC but not in Fi.

Recall that the process pk generates at most Uk votes, and
hence the vote Xj has weight of at most Ua

k , and therefore

|Sum(Fi)− Sum(FC)| ≤
nX

`=1

Ua
` .

Let χ(y) = ya and ψ(x) = xA

A
, then we have

χ(ψ−1(x) + c + 1) = ((Ax)1/A + c + 1)a.

Using Lemma 1 with p = (1/A), q = a, r = A and s =
c + 1, we have that this function is concave in x, since all

the parameters are non-negative, pq = 1/2(log n−1)
log n

≤ 1, and

p = 1
log n

≤ 1. Therefore, by Lemma 2 we have that

nX

`=1

Ua
` ≤ n(TK + c + 1)a,

and hence

|Sum(Fi)− Sum(FC)| ≤
nX

`=1

Ua
` ≤ n(TK + c + 1)a

≤ n(gTK)a = ∆.

Having bounded the sum of coins of the third phase by
∆, we now show that there is at least a constant probability

total variance
exceeds K

true is written
to done

Ffirst Fsecond

pi collects Fi

in Line 8

FC

Figure 1: Phases of the shared-coin algorithm.

that Sum(FC) ≥ ∆. In this case, by Lemma 4 all processes
that terminate have Sum(Fi) > 0, and therefore agree on
the value 1.

Recall that Sum(FC) = Sum(Ffirst) + Sum(Fsecond).
Therefore, we can provide a lower bound the probability
that Sum(FC) ≥ ∆ by bounding from above the probabili-

ties that Sum(Ffirst) ≤
√

K or Sum(Fsecond) ≤ ∆−√K.
Lemma 5.6 from [5] gives a bound on the probability that

the sum of the votes of the first phase is too small. Our pa-
rameters satisfy the conditions of this lemma, and it remains
the same:

Lemma 5 (Lemma 5.6 from [5]). If

4A2

n1/ATK
≤ 1,

then

Pr
h
Sum(Ffirst) ≤

√
K
i
≤ Φ(1) + C1 ·

„
A2

n1/ATK

«1/5

,

where C1 is a constant, and Φ(x) =
1√
2π

Z x

−∞
e−

1
2 y2

dy is

the normal distribution function.

In our case, the condition of Lemma 5.6 from [5] is satisfied
since:

4A2

n1/ATK
=

4 log2 n

n1/ log n64n log n
=

log n

32n
≤ 1,

and therefore

Pr
h
Sum(Ffirst) ≤

√
K
i

≤ Φ(1) + C1 ·
„

A2

n1/ATK

«1/5

= Φ(1) + C1 ·
„

log n

128n

«1/5

.

As n grows, this probability tends to Φ(1) = 0.841, and
therefore is at most 0.842 for large enough n.

Lemma 5.7 from [5] bounds the probability that the sum
of the votes of the second phase is too small.

Lemma 6 (Lemma 5.7 from [5]). If

ga ≤ 1

2

r
TK

nA
,

and

gA ≤ 1 +
1

8 log (10n)
,

then

Pr
h
Sum(Fsecond) ≤ ∆−

√
K
i
≤ 1

10n
.

This lemma has to be modified in order to handle the
fact that there can be more votes in the second phase than
there are in [5] since c is larger and therefore the array is
scanned less frequently. The first condition of Lemma 5.7 is

ga ≤ 1
2

q
TK
nA

, and is still satisfied by the parameters since:

ga =

„
1 +

1

64 log n

« 1
2 (log n−1)

≤ e
1/2(log n−1)

64 log n ≤ e1/128,

and

1

2

r
TK

nA
=

1

2

s
64n log n

n log n
= 4.

The second condition of Lemma 5.7 is gA ≤ 1 + 1
8 log (10n)

,

and is not satisfied since:

gA =

„
1 +

c + 3

TK

«log n

=

„
1 +

1

64 log n

«log n

,

which is not smaller than 1 + 1
8 log (10n)

, for large n.

However, once the termination bit is set, every process
notices that the threshold has been reached in at most
one more step. This allows the bound on the probability

Pr
h
Sum(Fsecond) ≤ ∆−√K

i
in this lemma to be constant

and not O(1/n). We therefore prove a new lemma which
only uses the fact that gA is bounded by a constant, and the
statement is weaker but sufficient because of the termination
bit.

For every i, we define a random variable Yi, which is equal
to Xi if Xi is a vote in Fsecond, and 0 otherwise. By defi-
nition we have that Sum(Fsecond) =

P∞
j=1 Yj , which allows

us to prove the lemma that bounds the sum of the votes of
the second phase.

Lemma 7.

Pr
h
Sum(Fsecond) ≤ ∆−

√
K
i
≤ 4(e

1
64 − 1) ≤ 0.063.

Proof. Define S′i =
Pi

j=1 Yj . In order to bound the

sums S′i, we first bound the maximum index of Yi, as follows.
The maximum index of Xi that can be generated is

Pn
i=1 Ui,

which is at most M = n(TK +c+1) by Lemma 2, when using
the identity function for χ. Specifically, M is the maximum
index of Xi that can be in FC , and therefore Sum(Fsecond) =
S′M , which is the sum of the variables Yi (i.e., for any index
i ≥ M , we have Yi = 0).

Our proof applies Chebyshev’s Inequality1 to S′M , hence
we need to bound its variance. The random variables Yi

1The sums S′i define a martingale, for which we can apply an
Azuma-type inequality [5] to get a slightly better constant.
We use Chebyshev’s Inequality in order to simplify the proof.

are not independent, since the adversary has some control
over the weight of votes by choosing the schedule. However,
they are uncorrelated because the expected value of Yi is 0,
even conditioned over values of other votes. Formally, for
every i 6= j we have E[Yi · Yj] = E[E[Yi · Yj |Yj]] = 0. Since
E[Yi] = E[Yj] = 0 this implies that

Cov[Yi, Yj] = E[(Yi − E[Yi])(Yj − E[Yj])] = E[Yi · Yj] = 0,

and therefore we have

V ar[S′M] = V ar

"
MX

i=1

Yi

#
=

MX
i=1

V ar[Yi].

Since V ar[Yi] = Y 2
i , in order to bound the variance of S′M

we show that
PM

i=1 Y 2
i ≤ K(e1/64 − 1). Notice that
X

Xi∈Ffirst

X2
i ≥ K − t2a

for some t which is no more than Ui for some process pi,
otherwise adding the next vote would still keep the variance
below the threshold and therefore should also be in Ffirst.
Therefore we have

MX
i=1

Y 2
i =

X
Xi∈Fsecond

X2
i =

X
Xi∈FC

X2
i −

X
Xi∈Ffirst

X2
i

≤
nX

i=1

UiX
j=1

j2a − (K − t2a)

≤
nX

i=1

Ui+1X
j=1

j2a −K ≤
nX

i=1

(Ui + 2)A

A
−K.

Let χ(y) = (y+2)A

A
and ψ(x) = xA

A
, then we have

χ(ψ−1(x) + c + 1) =
((Ax)1/A + c + 3)A

A
.

Using Lemma 1 with p = (1/A), q = A, r = A and s = c+3,

we have that ((Ax)1/A + c + 3)A is concave in x, since all
the parameters are non-negative, pq = 1, and p = 1

log n
≤ 1.

Hence, χ(ψ−1(x) + c + 1) = ((Ax)1/A+c+3)A

A
is also concave

in x. Therefore, by Lemma 2 we have that

nX
i=1

(Ui + 2)A

A
≤ n(TK + c + 3)A

A
,

and hence

MX
i=1

Y 2
i ≤

nX
i=1

(Ui + 2)A

A
−K ≤ n(TK + c + 3)A

A
−K

=
n(gTK)A

A
−K =

n(g((AK/n)1/A))A

A
−K

= K(gA − 1) ≤ K(e1/64 − 1),

where the last inequality holds since

gA = (1 +
c + 3

TK
)log n = (1 +

1

64 log n
)log n ≤ e1/64.

Applying Chebyshev’s Inequality to S′M gives

Pr

»
|S′M | ≥

√
K

2

–
≤ V ar[S′M]“√

K
2

”2 ≤ K(e1/64 − 1)
K
4

= 4(e1/64 − 1) ≤ 0.063.

Finally, in order to get the claimed probability, we bound
∆ in terms of K. Notice that

1

2

r
TK

nA
=

1

2

s
64n log n

n log n
= 4

and hence ga ≤ gA ≤ e1/64 ≤ 1
2

q
TK
nA

. Therefore,

∆ = n(gTK)a ≤ n

1

2

r
TK

nA

!
T

1
2 (log n−1)

K

=
n

2

1√
nA

T
1
2 log n

K =
n

2

1√
nA

r
AK

n
=

√
K

2
,

which implies that

Pr
h
Sum(Fsecond) ≤ ∆−

√
K
i
≤ Pr

»
S′M ≤ −

√
K

2

–

≤ Pr

»
|S′M | ≥

√
K

2

–
≤ 0.063.

We can now calculate the agreement parameter.

Lemma 8. Algorithm 1 is a shared-coin algorithm with a
constant agreement parameter δ = 0.095.

Proof. We show that the probability that all processes
that terminate decide upon 1 is at least δ = 0.095. The
result for -1 follows by symmetry.

By Lemmas 5 and 7 we have

Pr
h“

Sum(Ffirst) ≤
√

K
”
∨
“
Sum(Fsecond) ≤ ∆−

√
K
”i

≤ Pr
h“

Sum(Ffirst) ≤
√

K
”i

+ Pr
h“

Sum(Fsecond) ≤ ∆−
√

K
”i

≤ Φ(1) + C1 ·
„

A2

n1/ATK

«1/5

+ 0.063

≤ 0.842 + 0.063 = 0.905.

Therefore,

Pr
h“

Sum(Ffirst) >
√

K
”
∧
“
Sum(Fsecond) > ∆−√K

”i

≥ 1− 0.905 = 0.095.

If this event occurs, then

Sum(FC) = Sum(Ffirst) + Sum(Fsecond)

> ∆−
√

K +
√

K = ∆.

By Lemma 4 we have that Sum(Fi) ≥ Sum(FC) −∆, and
therefore Sum(Fi) > 0. Hence with probability at least
0.095, all the processes that terminate will decide on the
value 1.

Lemmas 3 and 8 complete the proof of the algorithm, and
we have the main theorem.

Theorem 9. Algorithm 1 is a shared-coin algorithm with
constant agreement parameter and O(n log n) individual work.

4. INTERLEAVING SHARED-COIN
ALGORITHMS

Our goal in this section is to obtain a shared-coin algo-
rithm that has both O(n2) total work and O(n log n) individ-
ual work. We do this by interleaving the algorithm from [6]
and Algorithm 1 (from Section 3).

Interleaving two algorithms A and B is done by perform-
ing a loop in which the process executes one step of each
algorithm. When one of the algorithms terminates, return-
ing a value v, the interleaved algorithm terminates as well,
returning the same value v.

Let A and B be two shared-coin algorithms. We denote
by TA(n) and IA(n) the total and individual work, respec-
tively, of algorithm A, and its agreement parameter by δA.
Similarly, we denote TB(n), IB(n) and δB for algorithm B.

We first argue that the total and individual step complex-
ities of the interleaved algorithm are the minimum between
the respective complexities of algorithms A and B.

Lemma 10. The interleaved algorithm of algorithms A and
B, has an expected total work of 2min{TA(n), TB(n)} + n,
and an expected individual work of 2min{IA(n), IB(n)}+ 1.

Proof. We begin by proving the total work. After at
most 2TA(n)+n total steps where executed by the adversary,
at least TA(n) of them where in algorithm A, and hence
all the processes have terminated Algorithm A, and have
therefore terminated the interleaved algorithm. The same
applies to Algorithm B. Therefore the interleaved algorithm
has a total work of 2min{TA(n), TB(n)}+ n.

We now prove the bound on the individual work. Consider
any process pi. After at most 2IA(n) + 1 total steps of pi

where executed by the adversary, at least IA(n) of them were
in algorithm A, and hence the process pi has terminated
Algorithm A, and has therefore terminated the interleaved
algorithm. The same applies to Algorithm B. This is true
for all the processes, therefore the interleaved algorithm has
an individual work of 2min{TA(n), TB(n)}+ 1.

The next lemma shows that the agreement parameter of
the interleaved algorithm is the product of the agreement
parameters of algorithms A and B. The idea behind the
proof is that since different processes may choose a value
for the shared coin based on any of the two algorithms, for
all process to agree on some value v we need all processes
agreeing on v in both algorithms. In order to deduce an
agreement parameter which is the product of the two given
agreement parameters, we need to show that the executions
of the two algorithms are independent, in the sense that the
adversary cannot gain any additional power out of running
two interleaved algorithms.

In general, it is not obvious that the agreement param-
eter of the interleaved algorithm is the product of the two
given agreement parameters. In each of the two algorithms
it is only promised that there is a constant probability that
the adversary cannot prevent a certain outcome, but in the
interleaved case the adversary does not have to decide in
advance which outcome it tries to prevent from a certain
algorithm, since it may depend on how the other algorithm
proceeds.

Notice that the lemma assumes that the algorithms always
terminate within some fixed bound on the number of steps,
and not only with probability 1, which is indeed the case in
Algorithm 1 and the algorithm from [6]. This assumption is

needed since there are cases that do not satisfy it in which
such a claim does not hold (see [12]).

Lemma 11. If both algorithms A and B always terminate
within some fixed bound on the number of steps, then the
interleaving of algorithms A and B has agreement parameter
δA · δB.

Proof. Since the algorithms always terminate within
some fixed bound on the number of steps, we define the
probability of reaching agreement on the value v for every
configuration C in one of the algorithms, by backwards in-
duction, as follows.

In the configurations we consider, all the processes have
flipped their local coins and are now pending to access the
shared memory.

With every configuration C, we associate a value s that
is the maximal number of steps taken by all the processes
from configuration C, over all possible adversaries and all
results of the local coin flips. Since the algorithms always
terminate within some fixed bound on the number of steps,
s is well defined.

Consider algorithm A. For clarity, we denote configura-
tions for algorithm A with a subindex A. For a configuration
CA we define the probability PrA

v [CA] for agreeing on the
value v in algorithm A by induction on s, as follows. In a
configuration CA for which s = 0, all processes terminate in
the algorithm. We define PrA

v [CA] to be 1 if all the processes
agree on the value v, and 0 otherwise. Let CA be any other
configuration, then:

PrA
v [CA] = min

pi

X

y∈Xi

Pr[y] · PrA
v [(CA, pi, y)],

where (CA, pi, y) is the resulting configuration after pi takes
one step including coin-flips (y is the random variable repre-
senting the results of the local coin flips, in the probability
space Xi). We define PrB

v [CB] similarly for algorithm B.
We now consider the interleaved algorithm. Each config-

uration C consists of the local states of all the processes,
and the values of the shared registers. We denote by C|A
the projection of the configuration C on algorithm A, i.e.,
C|A consists of the local states of all the processes regarding
algorithm A, and the values of the shared registers of algo-
rithm A. Similarly we denote by C|B the projection of C on
algorithm B, and therefore use the notation C = (C|A, C|B)
to describe the configuration C.

We define probabilities for agreeing in the interleaved algo-
rithm as follows. We extend the definitions of agreeing in Al-
gorithm A and Algorithm B by defining PrA

v [C] = PrA
v [C|A],

and PrB
v [C] = PrB

v [C|B]. We now define the probability
Prv[C] for agreeing on the value v in both algorithms in the
interleaved algorithm by induction on s, as follows.

In a configuration C for which s = 0, all processes ter-
minate in both algorithms A and B. We define Prv[C] to
be 1 if all the processes decide v in both algorithms, and 0
otherwise. Let C be any other configuration, then:

Prv[C] = min
pi

X

y∈Xi

Pr[y] · Prv[(C, pi, y)],

where (C, pi, y) is the resulting configuration after pi took
one step and its coin has been flipped. Denote

C′ = (C, pi, y) = (C′|A, C′|B),

and notice that if pi took a step in algorithm A, then C|B =
C′|B , and if pi took a step in algorithm B, then C|A = C′|A.

We now claim that for every configuration C, Prv[C] =
PrA

v [C] · PrB
v [C]; the proof is by induction on s.

Base case: If s = 0, then all processes have terminated
in both algorithms A and B. Processes agree on v if and
only if they agree on v in both algorithms, that is, Prv[C] =
PrA

v [C] · PrB
v [C].

Induction step: Assume the claim holds for any configu-
ration C′ with at most s− 1 steps remaining to termination
under any adversary. Let C be a configuration with at most
s steps until termination under any adversary. For every i,
1 ≤ i ≤ n, let Ci be a random variable representing the
configuration reached from C after process pi takes a step,
including flipping its local coins y ∈ Xi. By definition of
Prv[C], we have:

Prv[C] = min
pi

X

y∈Xi

Pr[y] · Prv[Ci]

= min

8
<
:min

pi∈A

X

y∈Xi

Pr[y] · Prv[Ci], min
pi∈B

X

y∈Xi

Pr[y] · Prv[Ci]

9
=
;

where pi ∈ A and pi ∈ B are abbreviations for a process
whose next step is taken in algorithm A or B, respectively.

By the induction hypothesis on the configuration Ci, with
one less step to termination, we get:

Prv[C] = min

8
<
:min

pi∈A

X

y∈Xi

Pr[y] · PrA
v [Ci] · PrB

v [Ci],

min
pi∈B

X

y∈Xi

Pr[y] · PrA
v [Ci] · PrB

v [Ci]

9
=
;

= min

8
<
:min

pi∈A

X

y∈Xi

Pr[y] · PrA
v [Ci|A] · PrB

v [Ci|B],

min
pi∈B

X

y∈Xi

Pr[y] · PrA
v [Ci|A] · PrB

v [Ci|B]

9
=
;

where the second equality is by definition of PrA
v [C] and

PrB
v [C]. If the step taken from C by pi is in algorithm A,

then Ci|B = C|B , and if the step taken from C by pi is in
algorithm B, then Ci|A = C|A. Thus,

Prv[C] = min

8
<
:min

pi∈A

X

y∈Xi

Pr[y] · PrA
v [Ci|A] · PrB

v [C|B],

min
pi∈B

X

y∈Xi

Pr[y] · PrA
v [C|A] · PrB

v [Ci|B]

9
=
;

= min

8
<
:PrB

v [C|B]

0
@min

pi∈A

X

y∈Xi

Pr[y] · PrA
v [Ci|A]

1
A ,

PrA
v [C|A]

0
@min

pi∈B

X

y∈Xi

Pr[y] · PrB
v [Ci|B]

1
A
9
=
;

= min
n

PrB
v [C] · PrA

v [C], PrA
v [C] · PrB

v [C]
o

= PrA
v [C] · PrB

v [C],

which completes the proof of the claim that Prv[C] =
PrA

v [C] · PrB
v [C].

The lemma follows by applying the claim to the initial
configuration, where PrA

v [C] = δA and PrB
v [C] = δB . Hence,

δ = Prv[C] = PrA
v [C] ·PrB

v [C] = δA ·δB , for every v ∈ {0, 1},
which completes the proof.

By Lemmas 10 and 11, interleaving Algorithm 1 and the
algorithm from [6], gives the following.

Theorem 12. There is a shared-coin algorithm with a
constant agreement parameter, with O(n2) total work and
O(n log n) individual work.

5. SUMMARY
We presented a shared-coin protocol with O(n log n) indi-

vidual work and O(n2) total work; this implies a random-
ized consensus protocol with the same complexities. It is an
intriguing open question whether an algorithm with linear
individual work can be designed.

Our shared-coin protocol uses multi-writer registers, while
the O(n log2 n) individual-work protocol of Aspnes and
Waarts [5] uses only single-writer registers. This is because
the absence of the multi-writer termination bit allows larger
drifts between the sets of votes that different processes ob-
serve. As in the case of the total work, the question of
whether it is possible to obtain a better bound for single-
writer registers remains open.

Acknowledgements. The authors would like to thank
Dana Angluin, David Eisenstat and Roberto Segala for use-
ful discussions.

6. REFERENCES
[1] K. Abrahamson. On achieving consensus using a

shared memory. In Proceedings of the 7th Annual
ACM Symposium on Principles of Distributed
Computing (PODC), pages 291–302, 1988.

[2] J. Aspnes. Time- and space-efficient randomized
consensus. J. Algorithms, 14(3):414–431, 1993.

[3] J. Aspnes. Randomized protocols for aynchronous
consensus. Distributed Computing, 16(2-3):165–176,
Sept. 2003.

[4] J. Aspnes and M. Herlihy. Fast randomized consensus
using shared memory. Journal of Algorithms,
11(3):441–461, 1990.

[5] J. Aspnes and O. Waarts. Randomized consensus in
expected O(n log2 n) operations per processor. SIAM
J. Comput., 25(5):1024–1044, 1996.

[6] H. Attiya and K. Censor. Tight bounds for
asynchronous randomized consensus. In Proceedings of
the 39th annual ACM symposium on Theory of
computing (STOC), pages 155–164, 2007.

[7] G. Bracha and O. Rachman. Randomized consensus in
expected O(n2 log n) operations. In Proceedings of the
5th International Workshop on Distributed Algorithms
(WDAG), pages 143–150, 1991.

[8] M. J. Fischer, N. A. Lynch, and M. S. Paterson.
Impossibility of distributed consensus with one faulty
process. J. ACM, 32(2):374–382, Apr. 1985.

[9] M. Herlihy. Wait-free synchronization. ACM Trans.
Prog. Lang. Syst., 13(1):124–149, January 1991.

[10] L. Lamport. The part-time parliament. ACM Trans.
Comput. Syst., 16(2):133–169, May 1998.

[11] M. C. Loui and H. H. Abu-Amara. Memory
requirements for agreement among unreliable
asynchronous processes. Advances in Computing
Research, pages 163–183, 1987.

[12] N. A. Lynch, R. Segala, and F. W. Vaandrager.
Observing branching structure through probabilistic
contexts. SIAM J. Comput., 37(4):977–1013, 2007.

[13] M. Saks, N. Shavit, and H. Woll. Optimal time
randomized consensus—making resilient algorithms
fast in practice. In Proceedings of the 2nd annual
ACM-SIAM symposium on Discrete algorithms, pages
351–362, 1991.

[14] F. B. Schneider. Implementing fault-tolerant services
using the state machine approach: A tutorial. ACM
Comput. Surv., 22(4):299–319, Dec. 1990.

