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Randomized consensus

Want n processes to agree on one of m
values.

Validity: each output equals some
input.

Termination: all non-faulty
processes finish with probability 1.

Agreement: all non-faulty
processes get the same output.

Model: Wait-free asynchronous
shared-memory with multi-writer
registers.
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Bounds on consensus

Tight bounds for extreme cases:

Adaptive adversary, processes only have local coins: Θ(n2)
expected total operations (Attiya and Censor, 2008), Θ(n)
expected operations per process (Aspnes and Censor, 2009).
Oblivious adversary, global coin, 2 values: Ω(1) expected
operations per process with geometric distribution (Attiya and
Censor, 2008), matching upper bound (Aumann, 1997).

We want to know what happens in the middle: local coins but
weak adversary.
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Probabilistic-write model

In the probabilistic-write model, after the adversary schedules a
process to do a write, it can flip a coin to decide whether to do so
or not.

This is the strong model of (Abrahamson, 1988).

Used by (Cheung, 2005) to get O(n log log n) total and
individual work for 2-valued consensus.

We’ll get O(n logm) total and O(log n) individual work for
m-valued consensus.

O(log n) individual work is similar to bounds for other
weak-adversary models (Chandra, 1996; Aumann, 1997;
Aumann and Bender, 2005).

No lower bounds better than Ω(1).

(All bounds are in expectation.)
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Decomposing consensus

Most known consensus protocols alternate between detecting
agreement and producing agreement.

We will make this explicit by decomposing consensus into:
1 Ratifier objects, which detect agreement, and
2 Conciliator objects, which produce it with some probability.

Essentially just refactoring existing code.
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Ratifiers

Like ordinary consensus objects, except:

Output is supplemented with a decision
bit that says whether to decide on the
output (1) or adopt it for later stages of
the protocol (0).
Agreement is replaced by two new
conditions:

1 Coherence: If one process decides on
x , every other process gets x as
output (but might not decide).

2 Acceptance: If all inputs are equal,
all processes decide.

These are just Gafni’s adopt-commit
protocols (Gafni, 1998) expressed as
shared-memory objects.
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Conciliators

Like ordinary consensus objects, except
agreement is replaced by:

Probabilistic agreement: All outputs
are equal with probability at least δ, for
some fixed δ > 0.

Conciliator objects have the same role as
weak shared coins of (Aspnes and
Herlihy, 1990) (and can be built from
weak shared coins).

But can also be built other ways,
e.g. using the first-mover mechanism of
(Chor, Israeli, and Li, 1994).
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Recomposing consensus

Given infinite alternating sequence of ratifiers and conciliators:

1 Validity follows from validity of components.

2 Agreement follows from coherence + validity.

3 For termination, we go through at most (1/δ) conciliators on
average before one of them produces agreement (probabilistic
agreement); then following ratifier makes all processes decide
(acceptance).
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Building a ratifier

Basic idea:
1 Announce my input v (using mechanism to be provided later).
2 If proposal = ⊥, proposal← v ; else v ← proposal.
3 Decide v if no v ′ 6= v has been announced, else output v

without deciding.

Why it works:

If some value v is in proposal before any other v ′ is
announced, any process with v ′ sees and adopts v .

Announce-propose-check structure same as in Gafni’s
adopt-commit protocol (Gafni, 1998), but we’ll exploit
multi-writer registers to reduce cost.
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How to announce a value

Assign unique write quorum Wv of
k out of 2k registers to each value
v , where k = Θ(logm) satisfies(2k
k

)
≥ m.

Announce v by writing all registers
in Wv .

Detect v ′ 6= v by reading all
registers in W v .

I always see you if you finish
writing Wv ′ .

Cost of ratifier: O(logm) individual work and O(logm) space.
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Building a conciliator

k ← 0
while r = ⊥ do

write v to r with probability 2k

2n
k ← k + 1

end
return r

Uses Chor-Israeli-Li technique: First value written wins unless
overwritten.

Increasing probabilities means a lone process finishes quickly.

But other processes will still have low total probability of
overwriting before reading again (or they would have finished
already).

Cost: O(log n) individual work, O(n) total work, and 1
register.
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Conclusions

Ratifier + conciliator = n-process, m-valued consensus in the
probabilistic-write model with

O(log n + logm) expected individual work.
O(n logm) expected total work.
O(logm) expected space used.

This just says

Tconsensus = O (Tratifier + Tconciliator) .

But: consensus objects are both ratifiers and conciliators. So
we also have

Tconsensus = Ω (Tratifier + Tconciliator) .

These bounds hold for any additive cost measure in in any
model.
Moral: If you want upper or lower bounds for consensus, look
for bounds on ratifiers and conciliators.
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