A modular approach to shared-memory consensus, with applications to the probabilistic-write model

James Aspnes Yale University

July 28th, 2010

PODC 2010 A modular approach to consensus

A B > A B >

Problem definition Known bounds Probabilistic-write model

Randomized consensus

Want n processes to agree on one of m values.

- Validity: each output equals some input.
- **Termination**: all non-faulty processes finish with probability 1.
- Agreement: all non-faulty processes get the same output.

Model: **Wait-free** asynchronous shared-memory with **multi-writer registers**.

Problem definition Known bounds Probabilistic-write model

Bounds on consensus

- Tight bounds for extreme cases:
 - Adaptive adversary, processes only have local coins: Θ(n²) expected total operations (Attiya and Censor, 2008), Θ(n) expected operations per process (Aspnes and Censor, 2009).
 - Oblivious adversary, global coin, 2 values: $\Omega(1)$ expected operations per process with geometric distribution (Attiya and Censor, 2008), matching upper bound (Aumann, 1997).
- We want to know what happens in the middle: local coins but weak adversary.

イロト イポト イヨト イヨト

Problem definition Known bounds Probabilistic-write model

Probabilistic-write model

In the **probabilistic-write model**, after the adversary schedules a process to do a write, it can flip a coin to decide whether to do so or not.

- This is the strong model of (Abrahamson, 1988).
- Used by (Cheung, 2005) to get $O(n \log \log n)$ total and individual work for 2-valued consensus.
- We'll get $O(n \log m)$ total and $O(\log n)$ individual work for *m*-valued consensus.
- $O(\log n)$ individual work is similar to bounds for other weak-adversary models (Chandra, 1996; Aumann, 1997; Aumann and Bender, 2005).
- No lower bounds better than $\Omega(1)$.

(All bounds are in expectation.)

イロト イポト イヨト イヨト

Ratifiers (adopt-commit objects) Conciliators Recomposing consensus

Decomposing consensus

- Most known consensus protocols alternate between detecting agreement and producing agreement.
- We will make this explicit by decomposing consensus into:
 - Ratifier objects, which detect agreement, and
 - Onciliator objects, which produce it with some probability.
- Essentially just refactoring existing code.

Ratifiers (adopt-commit objects) Conciliators Recomposing consensus

Ratifiers

- Like ordinary consensus objects, except:
 - Output is supplemented with a **decision bit** that says whether to decide on the output (1) or adopt it for later stages of the protocol (0).
 - Agreement is replaced by two new conditions:
 - Coherence: If one process decides on x, every other process gets x as output (but might not decide).
 - Acceptance: If all inputs are equal, all processes decide.
- These are just Gafni's **adopt-commit protocols** (Gafni, 1998) expressed as shared-memory objects.

Ratifiers (adopt-commit objects) Conciliators Recomposing consensus

Ratifiers

- Like ordinary consensus objects, except:
 - Output is supplemented with a **decision bit** that says whether to decide on the output (1) or adopt it for later stages of the protocol (0).
 - Agreement is replaced by two new conditions:
 - Coherence: If one process decides on x, every other process gets x as output (but might not decide).
 - Acceptance: If all inputs are equal, all processes decide.
- These are just Gafni's **adopt-commit protocols** (Gafni, 1998) expressed as shared-memory objects.

A (1) > < 3</p>

Ratifiers (adopt-commit objects) Conciliators Recomposing consensus

Conciliators

- Like ordinary consensus objects, except agreement is replaced by:
 - Probabilistic agreement: All outputs are equal with probability at least δ, for some fixed δ > 0.
- Conciliator objects have the same role as weak shared coins of (Aspnes and Herlihy, 1990) (and can be built from weak shared coins).
- But can also be built other ways,
 e.g. using the first-mover mechanism of (Chor, Israeli, and Li, 1994).

Ratifiers (adopt-commit objects) Conciliators Recomposing consensus

Conciliators

- Like ordinary consensus objects, except agreement is replaced by:
 - Probabilistic agreement: All outputs are equal with probability at least δ, for some fixed δ > 0.
- Conciliator objects have the same role as weak shared coins of (Aspnes and Herlihy, 1990) (and can be built from weak shared coins).
- But can also be built other ways,
 e.g. using the first-mover mechanism of (Chor, Israeli, and Li, 1994).

Ratifiers (adopt-commit objects) Conciliators Recomposing consensus

Recomposing consensus

Given infinite alternating sequence of ratifiers and conciliators:

- Validity follows from validity of components.
- Agreement follows from coherence + validity.
- So For termination, we go through at most (1/δ) conciliators on average before one of them produces agreement (probabilistic agreement); then following ratifier makes all processes decide (acceptance).

Building a ratifier Building a conciliator

Building a ratifier

• Basic idea:

- **O** Announce my input v (using mechanism to be provided later).
- 2 If proposal = \perp , proposal $\leftarrow v$; else $v \leftarrow$ proposal.
- Occide v if no v' ≠ v has been announced, else output v without deciding.
- Why it works:
 - If some value v is in proposal before any other v' is announced, any process with v' sees and adopts v.
- Announce-propose-check structure same as in Gafni's adopt-commit protocol (Gafni, 1998), but we'll exploit multi-writer registers to reduce cost.

イロト イポト イヨト イヨト

Building a ratifier Building a conciliator

How to announce a value

- Assign unique write quorum W_v of k out of 2k registers to each value v, where $k = \Theta(\log m)$ satisfies $\binom{2k}{k} \ge m$.
- Announce v by writing all registers in W_v.
- Detect $v' \neq v$ by reading all registers in \overline{W}_v .
- I always see you if you finish writing W_{v'}.

Cost of ratifier: $O(\log m)$ individual work and $O(\log m)$ space.

Building a ratifier Building a conciliator

How to announce a value

- Assign unique write quorum W_v of k out of 2k registers to each value v, where $k = \Theta(\log m)$ satisfies $\binom{2k}{k} \ge m$.
- Announce v by writing all registers in W_v.
- Detect $v' \neq v$ by reading all registers in \overline{W}_v .
- I always see you if you finish writing $W_{v'}$.

Cost of ratifier: $O(\log m)$ individual work and $O(\log m)$ space.

Building a ratifier Building a conciliator

Building a conciliator

```
k \leftarrow 0
while r = \perp do
     write v to r with probability \frac{2^k}{2n}
     k \leftarrow k + 1
end
```


- return r
 - Uses Chor-Israeli-Li technique: First value written wins unless overwritten.
 - Increasing probabilities means a lone process finishes quickly.
 - But other processes will still have low total probability of overwriting before reading again (or they would have finished already).
 - Cost: $O(\log n)$ individual work, O(n) total work, and 1 register. ・ロン ・回と ・ヨン・

Building a ratifier Building a conciliator

Building a conciliator

```
k \leftarrow 0
while r = \perp do
     write v to r with probability \frac{2^k}{2n}
     k \leftarrow k + 1
end
```


return r

- Uses Chor-Israeli-Li technique: First value written wins unless overwritten.
- Increasing probabilities means a lone process finishes quickly.
- But other processes will still have low total probability of overwriting before reading again (or they would have finished already).
- Cost: $O(\log n)$ individual work, O(n) total work, and 1 register. ・ロン ・回と ・ヨン・

Conclusions

- Ratifier + conciliator = *n*-process, *m*-valued consensus in the probabilistic-write model with
 - $O(\log n + \log m)$ expected individual work.
 - $O(n \log m)$ expected total work.
 - $O(\log m)$ expected space used.
- This just says

$$T_{\text{consensus}} = O(T_{\text{ratifier}} + T_{\text{conciliator}}).$$

• But: consensus objects are both ratifiers and conciliators. So we also have

$$T_{\text{consensus}} = \Omega \left(T_{\text{ratifier}} + T_{\text{conciliator}} \right).$$

- These bounds hold for *any* additive cost measure in in *any* model.
- Moral: If you want upper or lower bounds for consensus, look for bounds on ratifiers and conciliators.