
Noname manuscript No.
(will be inserted by the editor)

Faster Randomized Consensus With an Oblivious
Adversary

James Aspnes

Received: date / Accepted: date

Abstract Two new algorithms are given for randomized consensus in a shared-
memory model with an oblivious adversary. Each is based on a new construction
of a conciliator, an object that guarantees termination and validity, but that only
guarantees agreement with constant probability. The first conciliator assumes unit-
cost snapshots and achieves agreement among n processes with probability 1− ε in
O(log∗ n + log(1/ε)) steps for each process. The second uses ordinary multi-writer
registers, and achieves agreement with probability 1 − ε in O(log logn + log(1/ε))
steps. Combining these constructions with known results gives randomized consensus
for arbitrarily many possible input values using unit-cost snapshots in O(log∗ n)
expected steps and randomized consensus for up to (logn)O(log log logn) possible input
values using ordinary registers in O(log logn) expected steps.

Keywords consensus, conciliators, randomization, oblivious adversary

1 Introduction

In the consensus problem, a group of n processes wish to agree on a value, which
must be equal to the input of some process. Consensus is known to be impossi-
ble to solve deterministically in an asynchronous message-passing [15] or shared-
memory [19] model if even one process can fail. However, randomized algorithms
can achieve wait-free consensus in bounded expected time.

The cost of consensus is strongly affected by the power of the adversary sched-
uler that chooses at each step which process should carry out the next operation.
With an adaptive adversary, which can base its decision on the complete state
of the system—including internal states of processes—the cost of consensus is well
understood. A lower bound of Attiya and Censor [10] shows that Ω(n2) expected

An earlier version of this work appeared in the 2012 ACM Symposium on Principles of Dis-
tributed Computing [4]. The author was supported in part by NSF grant CCF-0916389.

James Aspnes
Yale University, Department of Computer Science
E-mail: aspnes@cs.yale.edu

2 James Aspnes

total steps are needed even for binary consensus, where all inputs are 0 or 1, in a
model that provides multi-writer multi-reader registers. Conversely, a matching up-
per bound was shown in the same paper, and subsequent work has demonstrated
that adaptive-adversary consensus can be solved with optimal O(n) expected indi-
vidual step complexity [8], even if only single-writer registers are available and the
inputs are arbitrary [3].

Less well understood is the complexity of randomized shared-memory consensus
with an oblivious adversary that schedules the sequence of operations in ad-
vance without being able to observe the random choices made by the processes.
Aumann [12] showed how to achieve O(logn) expected individual step complexity
under a plausible weak-adversary assumption that holds for an oblivious adversary;
and a more recent algorithm of Aspnes [5], based on a classic protocol of Chor,
Israeli, and Li [14], simultaneously achieves O(logn) expected individual step com-
plexity and O(n) expected total step complexity under a different weak-adversary
assumption.

It is clear that O(n) expected total step complexity is optimal, as each process
must take at least one step. A lower bound of Attiya and Censor [11] for oblivious-
adversary consensus shows that the probability of failing to terminate in O(kn)
total steps is at least 1

ck for some constant k, even with global coins and unit-cost
snapshots. This gives a lower bound of Ω(n log(1/ε)) total steps to reach agreement
with probability at least 1−ε. However, there is still the possibility that the expected
individual step complexity even without these assumptions could be as low as O(1).

We do not show such a surprising result here, although our results do show
that the cost of oblivious-adversary consensus is much lower than might have been
expected given the lack of improvement over the previous fifteen years. We give two
algorithms for conciliators [5], weak consensus objects that guarantee termination
and validity in all executions but guarantee agreement only with constant probability
(a more formal definition is given in Section 1.2). These can be alternated with
adopt-commit objects [2,16,20] to obtain consensus objects that guarantee agreement
always, at an expected cost equal to the sum of the costs of the conciliator and the
adopt-commit [5].

Our first conciliator, described in Section 2, works in the unit-cost snapshot
model, and reaches agreement with 1 − ε probability after O(log∗ n + log(1/ε)) op-
erations per process. The main idea is to use the nesting property of snapshots and
the properties of left-to-right maxima of random permutations to reduce an initial
set of m values to O(logm) values on average in each round, by assigning a random
priority to each value and having each process take the value with highest priority
among those it observes in a snapshot. After O(log∗m) iterations of this process,
with constant probability only one value survives.

Because adopt-commit objects can be implemented using O(1) snapshot opera-
tions [16], this immediately gives a randomized consensus protocol with O(log∗ n)
expected individual step complexity in the unit-cost snapshot model.

Our second conciliator, described in Section 3, works in the ordinary multi-writer
register model, and uses a sequence of sifting rounds similar to those recently used
by Alistarh and Aspnes [1] to implement test-and-set in O(log logn) expected steps
with an oblivious adversary. Here in each round a multi-writer register is used to
eliminate values quickly. Each process chooses randomly whether to write its value
to the register (and retain it for the next round), or to read the register and replace
its value with the register value if it is not null. By choosing the probability of a write

Faster Randomized Consensus With an Oblivious Adversary 3

carefully, each round reduces the number of surviving values from m to O(
√
m) on

average, giving a unique survivor after O(log logn) rounds if all goes well. We give
a new analysis of this process that includes further sifting after the first O(log logn)
rounds; with appropriate probabilities in each round, this uses O(log logn+log(1/ε))
total rounds to get a probability of agreement at least 1− ε.

Using this second conciliator gives O(log logn) expected individual step com-
plexity for randomized consensus in a multi-writer register model with an oblivious
adversary for up to (logn)O(log log logn possible input values. When the number of
possible input values is larger (as in the id-consensus case, when it is n), the best
currently known construction of an adopt-commit object [9] dominates the cost.

For both conciliators, because the oblivious adversary can’t see processes’ coin-
flips or states, we can have each process generate a sequence of random bits associated
with its input value, which then propagate along with the input value as it is adopted
by other processes; we call this combination of an input value and random bits a
persona. This allows all copies of a persona to be treated the same way in each round
regardless of which processes hold them, making the number of surviving distinct
personae– instead of the number of surviving processes—the relevant measure of
progress.

A straightforward implementation of either conciliator leads to greater total ex-
pected step complexity than the optimal O(n) bound achieved in [5]. We show (in
Section 4) how to embed the O(log logn) register-based conciliator in a conciliator
based on the consensus protocol of Chor, Israeli, and Li [14] to get a conciliator with
constant agreement probability, worst-case O(log logn) individual step complexity
and expected O(n) total step complexity. The same technique also works for the
O(log∗ n) snapshot-based conciliator.

1.1 Model

We work in a standard asynchronous shared-memory model, in which n processes
communicate by executing operations on shared-memory objects. These objects are
either snapshot objects, which support an update operation and a read operation
that returns a vector of the values of the most recent update operations for every
process; or atomic multi-writer multi-reader registers, which support a write
operation and a read operation that returns the value of the most recent write.
In either case, we treat all operations as taking one step. We do not assume any
limitation on the size of registers.

Timing is controlled by an oblivious adversary, which specifies a schedule
consisting of a sequence of process ids. At each step, the next process in the schedule
executes one operation of its choosing. We assume that once a process has finished its
protocol, any steps allocated to it become no-ops; these no-ops are not included when
computing the complexity of the algorithm. Any coin-flips done by the processes are
independent of the schedule chosen by the adversary.

1.2 Consensus, conciliators, and adopt-commit objects

In a consensus protocol, each process starts with an input and eventually decides
on an output, subject to the requirements:

4 James Aspnes

– Termination. With probability 1, each nonfaulty process decides after finitely
many steps.

– Validity. The output value of each process is equal to the input value of some
process.

– Agreement. All processes choose the same output value.

A conciliator [5] keeps the termination and validity conditions, but replaces
agreement with:

– Probabilistic agreement. There is a fixed agreement probability δ > 0
such that, for any adversary strategy, the probability that all return values are
equal is at least δ.

The idea is that a conciliator attempts to produce agreement, but cannot guarantee
or detect that it occurs.

An adopt-commit protocol [16] or adopt-commit object [2, 20] detects
agreement, but does not create it. Our definition of an adopt-commit object uses
the terminology of [5, 9]: an adopt-commit object provides a single operation
AdoptCommit(v) that returns (commit, v′) or (adopt, v′) for some v′, subject to ter-
mination, validity (v′ must equal some operation’s input), and two new conditions
that replace agreement:

– Convergence. If all operations have the same input value v, all operations return
(commit, v).

– Coherence. If any operation returns (commit, v), then all operations return
either (commit, v) or (adopt, v).

It is shown in [5] that an alternating sequence of conciliators and adopt-commit
objects implements consensus, assuming each process decides immediately on v when
it sees (commit, v). The idea is that some conciliator eventually produces agreement
on some common value v, and the acceptance condition on the following adopt-
commit means that all processes decide on that value. The additional conditions on
conciliators and adopt-commit objects are used to show that validity and agreement
hold. When the conciliators have constant agreement probability ε, the expected cost
of consensus using this technique is asymptotically equal to the sum of the cost of a
conciliator and an adopt-commit object, because, on average, only a constant number
of these objects are accessed by each process. This gives an expected individual step
complexity of O(log∗ n) in the unit-cost snapshot model, for any number of possible
inputs (see Corollary 1) and O(log logn+logm/ log logm) in the multi-writer register
model, for m possible inputs, using the adopt-commit implementation of [9], which
is the best currently known implementation of adopt-commit in this model (see
Corollary 2).

1.3 Notation

We use log for base-2 logarithm and ln for base-e logarithm. The iterated logarithm
function log∗ n is defined by the recurrence log∗ n = 0 for n ≤ 1 and log∗ n =
1 + log∗ logn for larger n.

Faster Randomized Consensus With an Oblivious Adversary 5

2 Consensus with snapshots

Here we show how to solve consensus for an unbounded range of input values in
O(log∗ n) expected steps using unit-cost atomic snapshot operations.1 Because the
input values are unrestricted, no limit is placed on the size of the components of
a snapshot, and we assume that a process can read all n of these components as a
single atomic operation.2

We assume that an oblivious adversary schedules the order of the snapshot oper-
ations independently of the random choices made by the algorithm. Whether this is
a reasonable assumption in practice is a tricky question [18], but our algorithm does
demonstrate that any potential oblivious-adversary consensus lower bound greater
than Ω(log∗ n) will hold only in a less benevolent model.

The basic idea of the protocol is to have a sequence of rounds, where in each
round each process writes its current preference, takes a snapshot, and adopts the
value out of those it sees with the highest random priority for this round. We will
show that if m values enter a round, an expected O(logm) leave. It follows that after
O(log∗ n) rounds, the expected number of survivors is O(1), and it drops to 1 with
probability at least 1− ε after O(log(1/ε)) additional rounds.

To make this work, it is necessary for all copies of a given input value to share the
same priority in each round. This is done by generating a vector of priorities for each
process at the start of the protocol, which is then carried along with the process’s
input value as other processes adopt it. We refer to the combined input value and
priority vector as a persona; the goal of the algorithm is to leave all processes with
the same persona (and thus the same input value).

Pseudocode is given in Algorithm 1.

procedure conciliator(input)1
Let R = log∗ n+ dlog(1/ε)e+ 12
Let priority be a vector of R independent random values drawn uniformly from3
the range {1 . . .

⌈
Rn2/ε

⌉
}

persona← 〈input, priority〉4
for i← 1 . . . R do5

Ai[myId]← persona6
S ← snapshot(Ai)7
Let j maximize S[j].priority[i] over all non-null S[j]8
persona← S[j]9

return persona.input10

Algorithm 1: Priority-based conciliator

The range of priority values is chosen so that the probability that two particular
personae have the same value in a given round is at most ε/Rn2. Since there are
R rounds and

(
n
2
)
< n2/2 pairs of personae in each round, the expected number

of duplicate priorities over all rounds is at most ε/2, and so the probability of the
1 As observed by an anonymous referee, because Algorithm 1 only uses the snapshot to

obtain the maximum current value in the array, max registers [7] would work as well.
2 If bounded space is important, adding a layer of indirection by replacing each input with

the id of the process that holds it reduces the size of each snapshot component to O(logn log∗ n)
bits, although this still requires reading O(n logn log∗ n) bits in a single atomic operation.

6 James Aspnes

event D that the protocol ever encounters a duplicate priority is at most ε/2. We
will assume that if D occurs, the protocol fails. This is overly pessimistic, but it
simplifies the analysis.

Conditioned on the event that D does not occur, the priorities of the n personae
within a given round are drawn uniformly without replacement, and thus ordering
the personae by priority gives a uniform random permutation. Because the priorities
for different rounds are chosen independently, permutations for different rounds are
independent of each other, again conditioned on D̄.

Let Yi be the number of distinct personae remaining after i rounds of the algo-
rithm. Let Xi = Yi−1 be the number of excess personae remaining after i rounds.
We will show that E[Xi|D̄] converges rapidly to 0. Markov’s inequality can then be
used to bound the probability that more than one value survives.

Lemma 1 Let Xi be the number of excess personae remaining after i rounds of
Algorithm 1. Then

E[Xi+1|Xi, D̄] ≤ min(ln(Xi + 1), Xi/2). (1)

Proof For a persona to survive round i+ 1, it must be the highest-priority persona
in some view obtained by taking a snapshot of Ai+1. Recall that Yi = Xi + 1 gives
the number of distinct personae remaining after previous rounds, and that all copies
of a particular persona share the same priority.

Define a view as the set of personae that appear in the result of some snapshot
operation. Order the personae a1, a2, . . . , aYi written to Ai+1 by increasing size of
the smallest view Vj that contains each aj , breaking ties arbitrarily. Because each
write to Ai+1 can only add new personae, each view is a subset of any larger views.
Furthermore, adding more personae to a view can only decrease the probability that
any particular persona has the highest priority. It follows that aj has the highest
priority in any view (and thus survives the round) if and only if it has the highest
priority in the smallest view that contains it, Vj .

We now wish to argue that each member of Vj is equally likely to have the highest
priority, so that the probability that aj in particular has the highest priority is exactly
1/ |Vj |. We must be a little bit careful here: while the adversary’s schedule determines
the order in which processes write and read the snapshot object, it does not determine
the order in which personae appear, because this depends on the assignment of
personae to processes, which in turn depends on the outcome of previous rounds.
But the order of personae is fully determined by the combination of the adversary’s
schedule and the priorities in all rounds i′ < i+ 1. Since the priorities in round i+ 1
are independent of these variables, the chance that aj has the highest priority in its
view is in fact 1/ |Vj | ≤ 1/j.

Summing 1/j over all j gives a harmonic series, showing E[Yi+1|Yi, D̄] ≤ HYi ≤
lnYi + 1. So E[Xi+1|Xi, D̄] ≤ lnYi = ln(Xi + 1).3 However, because each term after
the first in the harmonic series is less than or equal to 1/2, we also have the cruder,
but more accurate for small Xi, bound E[Yi+1|Yi, D̄] ≤ 1 + (Yi − 1)/2 = 1 + Xi/2,
or E[Xi+1|Xi, D̄] ≤ Xi/2. Combining these bounds gives the claimed bound (1). ut

3 What we are doing here is very similar to counting left-to-right maxima or outstanding
values of a random permutation. There is an extensive literature on the distribution of the
number left-to-right maxima, going back to a classic paper of Rényi [21], but for our purposes
a simple linearity-of-expectation bound is enough.

Faster Randomized Consensus With an Oblivious Adversary 7

Iterating Lemma 1, plus an application of Jensen’s inequality, shows that the
algorithm works as advertised.

Theorem 1 Algorithm 1 implements a conciliator with agreement probability 1− ε
and O(log∗ n+ log(1/ε)) individual step complexity.

Proof Termination and validity are immediate from inspection of the code. So we
concentrate on showing probabilistic agreement, specifically that the set of surviving
personae converges to a singleton with probability at least 1− ε.

Let Xi be the number of excess personae after i rounds as in Lemma 1, and
similarly let D be the event that two personae have the same priority in some round.

Let f(x) = min(ln(x + 1), x/2). Then (1) says that E[Xi+1|Xi, D̄] ≤ f(Xi).
Note that f is the minimum of increasing concave functions over [0,∞) and is thus
increasing and concave itself. Because f is concave over [0,∞), we have that, for any
random variable X ≥ 0, E[f(X)] ≤ f(E[X]) by Jensen’s inequality.

It follows that E[Xi+1|D̄] = E[E[Xi+1|Xi, D̄]|D̄] ≤ E[f(Xi)|D̄] ≤ f(E[Xi|D̄]),
and in general we have E[Xi|D̄] ≤ f (i)(X0) < f (i)(n), where f (i) is the i-fold com-
position of f defined recursively by f (0)(x) = x and f (i+1) = f ◦ f (i).

It is not hard to show that f(x) ≤ log x for x ≥ 2. Since log(i) n ≥ 2 for
i ≤ log∗ n − 1, we have f (i)(n) ≤ log(i) n for i ≤ log∗ n, and in particular have
f (log∗ n)(n) ≤ 1. Since f(x) ≤ x/2 always, applying f an additional dlog(1/ε)e + 1
times gives f (log∗ n+dlog(1/ε)e)(n) ≤ ε/2 for any ε > 0.

Letting t = log∗ n + dlog(1/ε)e + 1, we thus have E[Xt|D̄] ≤ ε/2. But Xt is a
non-negative integer-valued random variable, so applying Markov’s inequality gives

Pr[Xt > 0|D̄] = Pr[Xt ≥ 1|D̄] ≤ ε/2.

But then the unconditioned probability is

Pr[Xt > 0] = Pr[Xt > 0|D̄] Pr[D̄] + Pr[Xt > 0|D] Pr[D]
≤ ε/2 + ε/2
= ε.

ut

Corollary 1 There is a randomized oblivious-adversary consensus protocol with
O(log∗ n) expected individual step complexity in the unit-cost snapshot model.

Proof Let ε = 1/2, and alternate Algorithm 1 with adopt-commit objects imple-
mented using snapshots as in [16]. ut

3 Consensus with multi-writer registers

Algorithm 2 gives an implementation of a conciliator with agreement probability
1 − ε, in which each process takes O(log logn + log(1/ε)) steps. The protocol is
organized as a sequence of asynchronous rounds. For each round i, there is a single
shared multi-writer, multi-reader atomic register ri used for communication between
the processes.

8 James Aspnes

procedure conciliator(input)1
Let R = dlog logne+

⌈
log4/3(8/ε)

⌉
2

Let chooseWrite be a vector of R independent random Boolean variables with3

Pr[chooseWrite[i] = 1] = pi, where pi = 21−2−i+1 (n− 1)−2−i for i ≤ dlog logne
and pi = 1/2 for larger i.
persona← 〈input, chooseWrite, pid〉4
for i← 1 . . . R do5

if persona.chooseWrite[i] = 1 then6
ri ← persona7

else8
v ← ri9
if v 6= ⊥ then10

persona← v11

return persona.input12

Algorithm 2: Sifting conciliator

The basic mechanism is similar to the sift protocol used to reduce the number
of participants in the test-and-set implementation in [1], where processes drop out
when they see other processes that are not dropping out. The main difference is
that in the new protocol, a process that sees another process adopts that process’s
persona (preferred value and random bits) and continues with the algorithm instead
of dropping out. To simplify the analysis of the algorithm, the id of the originating
process is also included with each persona. This ensures that personae whose coin-
flips are generated independently appear distinct. However, the id value is not used
by the algorithm and can be omitted in an actual implementation. This optimization
reduces the size of the registers for n processes and m possible input values from
O(logn+ logm) to O(log logn+ logm) bits.

In each round i, a process carries out exactly one operation, choosing randomly
whether to write or read the register ri. If the process writes, its persona is retained
in the next round. If it reads, its persona is retained only if it sees an empty register;
otherwise, it adopts whatever persona it sees. As in Algorithm 1, these random
choices are controlled by vectors of random bits generated at the start of the protocol
that propagate along with the input values, so that all processes with the same
persona in round i take the same action.

The probabilities of each event vary from round to round and are carefully tuned
to reduce the expected number of excess personae as quickly as possible. Justification
for the specific probabilities used will be given after proving the following lemma,
which holds for any choice of pi.

Lemma 2 Let Yi be the number of distinct personae that survive the first i rounds
of Algorithm 2 and let Xi = Yi − 1 be the number of excess personae. Then for any
choice of pi,

E[Xi+1|Xi] ≤ min

{
pi+1Xi + 1

pi+1
,

(1− pi+1 + p2
i+1)Xi.

Proof The first case of the min is more useful when Xi is large. To obtain it, we
will first compute a bound on E[Yi+1|Yi] and then manipulate it to obtain the stated
bound on E[Xi+1|Xi].

Faster Randomized Consensus With an Oblivious Adversary 9

Order the personae a1, . . . , aYi that are carried by at least one process leaving
round i by the order in which a process carrying each persona is first scheduled to
write or read ri+1. Observe that the assignment of personae to processes in round
i+ 1 is determined by the chooseWrite bits for rounds 1 through i and the schedule
chosen by the adversary. Both are independent of the round-(i+ 1) chooseWrite bits.

For each persona aj , it survives round i + 1 if (a) some process sees a 1 in the
chooseWrite[i+ 1] bit for aj and writes aj ; (b) some process reads aj and adopts it;
or (c) some process sees a 0 in the chooseWrite[i + 1] bit for aj but sees ⊥ when it
reads. If case (b) occurs, so does case (a), since some process had to first write aj to
ri+1. Case (c) occurs if persona.chooseWrite[i + 1] is 0 for the first process to write
aj and for all processes with persona aj′ for j′ < j.

The probabilities of these events are pi+1 for case (a) and (1 − pi+1)j for case
(c). Summing these probabilities over all j gives E[Yi+1|Yi] ≤ pi+1Yi + (1/pi+1 − 1),
where 1/pi+1 − 1 =

∑∞
j=1(1− pi+1)j is an upper bound on the terms from case (c).

Substituting in Xi+1 = Yi+1 − 1 and Yi = Xi + 1 gives

E[Xi+1|Xi] ≤ pi+1(Xi + 1) + 1/pi+1 − 2
= pi+1Xi + 1/pi+1 + pi+1 − 2
< pi+1Xi + 1/pi+1.

The second case of the min becomes useful when Xi is small, where the cavalier
unbounding of bounded sums and dropping of small terms in the preceding analysis
causes trouble. For this bound, we consider two cases depending on whether the
first process q reads or writes, and assume, for the sake of obtaining a simple upper
bound, that all remaining personae survive if q reads. More formally, we have:

E[Xi+1|Xi] = (1− pi+1) E[Xi+1|Xi, q reads]
+ pi+1 E[Xi+1|Xi, q writes]
≤ (1− pi+1)Xi + p2

i+1Xi

= (1− pi+1 + p2
i+1)Xi.

ut

Now let us explain the choice of the probabilities pi.
The first bound in Lemma 2 is minimized by letting p1 = 1/

√
X0; this gives

E[X1] ≤ 2
√
X0 ≤

√
n− 1.

Iterating this procedure in subsequent rounds gives a recurrence x0 = n − 1,
pi+1 = 1/√xi, xi+1 = pixi + 1/pi = 2√xi, whose solution is

xi = 22−2−i+1
(n− 1)2−i

(2)

and

pi = 21−2−i+1
(n− 1)−2−i

. (3)

We will use these values of pi for the first dlog logne iterations, obtaining:

Lemma 3 Let Xi be the number of distinct personae that survive the first i rounds
of Algorithm 2 using pi as defined in (3) for i = 1 . . . dlog logne. Let xi be defined as
in (2). Then E[Xi] ≤ xi for all i in 1 . . . dlog logne.

10 James Aspnes

Proof The proof is by induction on i. The base case is E[X0] = n−1 = x0. For larger
i, apply Lemma 2 and the xi recurrence:

E[Xi+1] = E[E[Xi+1|Xi]]
≤ E[pi+1Xi + 1/pi+1]
= pi+1 E[Xi] + 1/pi+1

≤ pi+1xi + 1/pi+1

= 2
√
xi

= xi+1.

ut

For i = dlog logne, this gives

xdlog logne = 22−2−dlog log ne+1
(n− 1)2−dlog log ne

< 4n1/ logn

= 8.

For i > dlog logne, we switch to pi = 1/2, which minimizes the coefficient 1 −
pi + p2

i in the second case of the Lemma 2 bound. Now we have:

Lemma 4 Let Xi be the number of distinct personae that survive the first i rounds
of Algorithm 2. Let pi = 21−2−i+1 (n − 1)−2−i for i = 1 . . . dlog logne and 1/2 for
larger i. Let j > 0. Then E[Xdlog logne+j] ≤ 8 · (3/4)j .

Proof We have just shown that E[Xdlog logne] ≤ 8, and each subsequent round mul-
tiplies the bound by (1− 1/2 + (1/2)2) = 3/4. ut

Plugging in the number of iterations from the algorithm gives:

Theorem 2 Algorithm 2 implements a conciliator with agreement probability 1− ε
and O(log logn+ log(1/ε)) individual step complexity.

Proof Again termination and validity are easy, so we concentrate on probabilistic
agreement.

From Lemma 4, after R = dlog logne+dlog4/3(8/ε)e rounds, the expected number
of excess personae X is at most

8 · (3/4)log4/3(8/ε) = 8 · (ε/8) = ε.

So the probability that X is nonzero is bounded by ε using Markov’s inequality. ut

The dependence on ε in the running time is necessary, due to the oblivious-
adversary lower bound of Attiya and Censor-Hillel [11]. Whether the log logn part
can be further improved is open.

Corollary 2 There is a randomized oblivious-adversary consensus protocol with
O(log logn+logm/ log logm) expected individual step complexity in the multi-writer
register model, where m is the number of possible input values.

Proof Fix ε = 1/2, and alternate Algorithm 2 with the O(logm/ log logm) adopt-
commit object of Aspnes and Ellen [9]. ut

Faster Randomized Consensus With an Oblivious Adversary 11

For large m, the cost of the adopt-commit dominates. The break-even point is
at m = (logn)O(log log logn); for this bound on m, the cost of the adopt-commit is

O (log logn log log logn/ (log log logn+ log log log logn+Θ(1))) = O(log logn).

It is possible that further improvements in randomized adopt-commit implementa-
tions (assuming an oblivious adversary) might increase the range of values of m that
allow O(log logn) consensus.

4 Linear expected total work

Algorithm 2 requires Θ(n log logn) total steps in all executions to achieve a constant
probability of agreement. With some tinkering, we can reduce the total expected steps
to O(n), while keeping the O(log logn) individual step complexity.

The essential idea is to embed Algorithm 2 in an outer conciliator algorithm
extracted from the consensus protocol of Chor, Israeli, and Li [14]. In the outer
algorithm, there is a single register proposal that is initially ⊥. At each step, a
process reads proposal and returns its value if it is not ⊥; otherwise, it writes its
input to proposal with probability 1

4n , and executes a step of Algorithm 2 otherwise.
In isolation, the Chor-Israeli-Li conciliator (CIL) works because some process

writes to proposal after 4n attempts on average, and once some process writes to
proposal, each of the remaining n−1 processes has at most a 1

4n chance of overwriting
the register before reading a non-null value and leaving. If no process overwrites the
first value (which occurs, by the union bound, with probability at least 1 − n−1

4n >
3/4), all processes will agree on it.

Embedding Algorithm 2 into CIL means that some processes may return a value
obtained from Algorithm 2 while others return a value obtained from proposal. To
reconcile these two values, we use a final combining stage that in effect implements a
simple two-valued conciliator. First, an adopt-commit object forces each process to
decide on the unique value if only one is present; if not, a shared coin chooses between
the two competing values. Using the persona technique again, we implement this
shared coin by associating a random bit with each input, and having the combining
stage use this bit. We show that, with constant probability, the bits associated with
the combining-stage inputs are equal to each other and the outcome of the adopt-
commit, giving agreement on the final output value.4

Pseudocode for the entire procedure is given in Algorithm 3. Aside from the
shared data used to implement Algorithm 2, the algorithm uses a single shared
multi-writer, multi-reader atomic register proposal, initialized to ⊥.

Theorem 3 Algorithm 3 implements a conciliator with O(log logn) worst-case indi-
vidual step complexity, O(n) expected total step complexity, and agreement probability
1/8.

Proof Termination and the individual step complexity bound hold because no pro-
cess can execute Line 8 more than O(log logn) times without leaving the main loop.

4 A similar technique was used in [6] to combine interleaved shared-coin algorithms into a
single shared coin, but this result depends on the output of a shared coin not always being
under the control of the adversary. Unlike the shared-coin case, it is not clear that interleaving
arbitrary conciliators will always give a conciliator.

12 James Aspnes

procedure conciliator(input)1
Choose coin uniformly from {0, 1}2
Initialize an instance of Algorithm 2 with input 〈input, coin〉 and ε = 1/4.3
while proposal = ⊥ do4

with probability 1
4n

do5
proposal← 〈input, coin〉6

else7
Run one step of the Algorithm 2 instance8
if Algorithm 2 returns v then9

r[0]← v.input10
return combine(0, v.coin)11

v ← proposal12
r[1]← v.input13
return combine(1, v.coin)14

procedure combine(i, coin)15
〈decide, b〉 ← AdoptCommit(i)16
if decide 6= commit then17

b← coin18

return r[b]19

Algorithm 3: CIL conciliator with embedded sifter

This implies that the main loop is also executed O(log logn) times, because at most
one iteration can skip Line 8 without writing proposal and causing the loop to finish
anyway. The binary adopt-commit object and additional work in combine cost at
most O(1) additional steps.

For expected total steps, observe that the total expected number of iterations of
the main loop is bounded by 4n across all processes, because each such iteration has
an independent 1

4n probability of shutting the protocol down. Additional operations
outside the main loop cost at most O(n) more total steps.

For validity, observe that if the adopt-commit value returns 〈commit, b〉, then
b is the index of a register to which some process’s input (as returned from Algo-
rithm 2 or written directly to proposal) has been written. If it returns 〈adopt, b〉, then
both indices have appeared in inputs to the adopt-commit (by acceptance), so both
registers have been initialized. In either case validity holds.

Probabilistic agreement is messier. We begin by arguing that the probability that
Algorithm 2 returns a unique pair v is not affected by the embedding.

Fix a schedule S for the execution of Algorithm 3. Let σ1, σ2, . . . , σn be the
sequence of coin-flips used in Line 5 by processes 1, 2, . . . , n. To show that S and
σ1 . . . σn between them determine the schedule for Algorithm 2, consider the effect
of replacing the embedded Algorithm 2 with a dummy version that prints the cur-
rent process id instead of executing the if statement that appears in Lines 6–11 of
the original. This modified algorithm will then compute the induced schedule for
Algorithm 2 using only S and σ1, . . . , σn. Because S and σ1, . . . , σn are independent
of the input to Algorithm 2 and any coin-flips used inside it, the induced schedule is
also independent of these quantities.

Conditioning on some fixed induced schedule, we have from Theorem 2 that
Algorithm 2 violates probabilistic agreement with probability at most 1/4. This
continues to hold when we remove the conditioning by averaging over all values of
σ1, . . . , σn.

Faster Randomized Consensus With an Oblivious Adversary 13

A second contribution to our error budget is the probability that the outer CIL
mechanism produces more than one output. From the earlier discussion, this occurs
with probability at most n−1

4n < 1/4.
It follows that the probability that either Algorithm 2 or the proposal register

yield more than one output is less than 1/4+1/4 = 1/2. If both conciliators produce
a unique output, then combine produces agreement with independent probability at
least 1/4. To see this, let bAC be the unique bit tagged with commit by the adopt-
commit object (if any), and b0 and b1 the coin bits for i = 0 and i = 1. The probability
that b0 = b1 is at least 1/2 (it may be 1 if both correspond to a random bit supplied
by the same process); if bAC exists, the probability this common bit equals bAC is
also 1/2, because bAC does not depend on any of the coin values. Multiplying these
probabilities gives at least a 1/4 chance that all processes choose the same b, which
gives at least a 1/8 probability of agreement for the algorithm as a whole. ut

We’ve presented Algorithm 3 using the sifting conciliator from Algorithm 2.
Essentially the same argument shows that replacing Algorithm 2 with the snapshot-
based conciliator of Algorithm 1 gives an oblivious-adversary conciliator for the unit-
cost snapshot model with O(log∗ n) worst-case individual step complexity and O(n)
expected total step complexity. A similar argument is likely to work on any conciliator
that is “oblivious” in the sense that it only copies its input values without examining
them.

As with the algorithms in previous sections, we can use Algorithm 3 to obtain
consensus by alternating it with adopt-commit objects from [9]. This gives the fol-
lowing corollary:

Corollary 3 There is a randomized protocol for the multi-writer register model with
an oblivious adversary, that achieves consensus among n processes with m possible
distinct input values in O(log logn+ logm/ log logm) expected individual steps and
O(n) total steps.

As before, an O(log logn) individual-step bound requires that m be
(logn)O(log log logn), given the limitations of currently-known adopt-commit objects.

5 Conclusions

Under the assumption of an oblivious adversary, we have shown how to reduce the
expected individual step complexity of consensus from O(logn) to O(log logn) in
the standard multi-writer register model and O(log∗ n) in the practically irrelevant
but theoretically significant unit-cost snapshot model. Many open problems remain.

Strength of the adversary Our results exploit the limitations of the oblivious adver-
sary in several ways. As in previous protocols of Chandra [13] and Aumann [12], we
pre-flip coins that are later shared between many processes; this requires assuming
at minimum a content-oblivious adversary that cannot see the contents of regis-
ters or the internal states of processes. We also choose between different operations
probabilistically as in the protocol of Chor, Israeli, and Li [14], requiring a weak
adversary that cannot prevent this. As the oblivious adversary is weaker than both
of these adversaries, our algorithms work for an oblivious adversary, but it would
be interesting to examine more closely exactly what properties of the adversary are
needed for either these algorithms or sub-logarithmic consensus in general.

14 James Aspnes

Gap between upper and lower bounds There is still a gap between our upper bounds
of O(log∗ n + log(1/ε)) and O(log logn + log(1/ε)) for conciliators with agreement
probability 1− ε and the Ω(1/ε) lower bound of Attiya and Censor-Hillel [11]. This
leaves open the possibility that the dependence on n could be further reduced. It
may also be the case that this dependence is necessary, and that a lower bound could
be shown that mirrors the structure of the upper bound: showing that Ω(logn) or
Ω(nc) values remain after one layer of computation in the unit-cost snapshot or
multi-writer register models, respectively, in some class of executions.

Gap between consensus and test-and-set Many of our techniques are similar to tech-
niques recently used for oblivious-adversary test-and-set [1,17]. Our protocol for con-
sensus using cheap snapshots has the same O(log∗ n) expected individual step com-
plexity as the best currently known protocol for test-and-set without using snapshots,
due to Giakkoupis and Woelfel [17], which was developed concurrently with and in-
dependently of the present work. In the standard multi-writer register model, our
protocol follows both the structure and the O(log logn) complexity of the previous
best known test-and-set protocol of Alistarh and Aspnes [1], but this is significantly
slower than the newer O(log∗ n) protocol. Unfortunately, the specific technique used
by Giakkoupis and Woelfel for test-and-set does not generalize immediately to con-
sensus, because it exploits the fact that a loser in a test-and-set protocol can leave
immediately without determining the identity of any specific process that remains
in the protocol, so long as it can determine that at least one potential winner re-
mains. But it may be that some similar technique could yield further improvements
for oblivious-adversary consensus in the multi-writer register model.

References

1. Alistarh, D., Aspnes, J.: Sub-logarithmic test-and-set against a weak adversary. In: Dis-
tributed Computing: 25th International Symposium, DISC 2011, Lecture Notes in Com-
puter Science, vol. 6950, pp. 97–109. Springer-Verlag (2011)

2. Alistarh, D., Gilbert, S., Guerraoui, R., Travers, C.: Of choices, failures and asynchrony:
The many faces of set agreement. In: Y. Dong, D.Z. Du, O.H. Ibarra (eds.) ISAAC, Lecture
Notes in Computer Science, vol. 5878, pp. 943–953. Springer (2009)

3. Aspnes, J.: Randomized consensus in expected O(n2) total work using single-writer reg-
isters. In: Distributed Computing: 25th International Symposium, DISC 2011, Lecture
Notes in Computer Science, vol. 6950, pp. 363–373. Springer-Verlag (2011)

4. Aspnes, J.: Faster randomized consensus with an oblivious adversary. In: 2012 ACM
Symposium on Principles of Distributed Computing, pp. 1–8 (2012)

5. Aspnes, J.: A modular approach to shared-memory consensus, with applications to the
probabilistic-write model. Distributed Computing 25(2), 179–188 (2012)

6. Aspnes, J., Attiya, H., Censor, K.: Combining shared coin algorithms. Journal of Parallel
and Distributed Computing 70(3), 317–322 (2010)

7. Aspnes, J., Attiya, H., Censor-Hillel, K.: Polylogarithmic concurrent data structures from
monotone circuits. J. ACM 59(1), 2:1–2:24 (2012)

8. Aspnes, J., Censor, K.: Approximate shared-memory counting despite a strong adversary.
In: SODA ’09: Proceedings of the Nineteenth Annual ACM-SIAM Symposium on Discrete
Algorithms, pp. 441–450. Society for Industrial and Applied Mathematics, Philadelphia,
PA, USA (2009)

9. Aspnes, J., Ellen, F.: Tight bounds for anonymous adopt-commit objects. In: 23rd Annual
ACM Symposium on Parallelism in Algorithms and Architectures, pp. 317–324 (2011)

10. Attiya, H., Censor, K.: Tight bounds for asynchronous randomized consensus. J. ACM
55(5), 20 (2008)

11. Attiya, H., Censor-Hillel, K.: Lower bounds for randomized consensus under a weak ad-
versary. SIAM J. Comput. 39(8), 3885–3904 (2010)

Faster Randomized Consensus With an Oblivious Adversary 15

12. Aumann, Y.: Efficient asynchronous consensus with the weak adversary scheduler. In:
PODC ’97: Proceedings of the Sixteenth Annual ACM Symposium on Principles of Dis-
tributed Computing, pp. 209–218. ACM, New York, NY, USA (1997)

13. Chandra, T.D.: Polylog randomized wait-free consensus. In: Proceedings of the Fifteenth
Annual ACM Symposium on Principles of Distributed Computing, pp. 166–175. Philadel-
phia, Pennsylvania, USA (1996)

14. Chor, B., Israeli, A., Li, M.: Wait-free consensus using asynchronous hardware. SIAM J.
Comput. 23(4), 701–712 (1994)

15. Fischer, M.J., Lynch, N.A., Paterson, M.S.: Impossibility of distributed consensus with
one faulty process. J. ACM 32(2), 374–382 (1985)

16. Gafni, E.: Round-by-round fault detectors: Unifying synchrony and asynchrony (extended
abstract). In: Proceedings of the Seventeenth Annual ACM Symposium on Principles of
Distributed Computing, pp. 143–152 (1998)

17. Giakkoupis, G., Woelfel, P.: On the time and space complexity of randomized test-and-set.
In: 2012 ACM symposium on Principles of Distributed Computing, pp. 19–28. ACM, New
York, NY, USA (2012)

18. Golab, W.M., Higham, L., Woelfel, P.: Linearizable implementations do not suffice for
randomized distributed computation. In: L. Fortnow, S.P. Vadhan (eds.) STOC, pp. 373–
382. ACM (2011)

19. Loui, M.C., Abu-Amara, H.H.: Memory requirements for agreement among unreliable
asynchronous processes. In: F.P. Preparata (ed.) Parallel and Distributed Computing,
Advances in Computing Research, vol. 4, pp. 163–183. JAI Press (1987)

20. Mostefaoui, A., Rajsbaum, S., Raynal, M., Travers, C.: The combined power of conditions
and information on failures to solve asynchronous set agreement. SIAM J. Comput. 38(4),
1574–1601 (2008)

21. Rényi, A.: Théorie des éléments saillants d’une suite d’observations. Annales scientifiques
de l’Université de Clermont-Ferrand 2, série Mathématiques 8(2), 7–13 (1962)

