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ABSTRACT
Two new algorithms are given for randomized consensus in a
shared-memory model with an oblivious adversary. Each is
based on a new construction of a conciliator, an object that
guarantees termination and validity, but that only guaran-
tees agreement with constant probability. The first concil-
iator assumes unit-cost snapshots and achieves agreement
among n processes with probability 1 − ε in O(log∗ n +
log(1/ε)) steps for each process. The second uses ordinary
multi-writer registers, and achieves agreement with proba-
bility 1− ε in O(log logn+log(1/ε)) steps. Combining these
constructions with known results gives randomized consen-
sus for arbitrarily many possible input values using unit-cost
snapshots in O(log∗ n) expected steps and randomized con-
sensus for up to O(logn log logn) possible input values using
ordinary registers in O(log logn) expected steps.

Categories and Subject Descriptors
D.1.3 [Programming Techniques]: Concurrent Program-
ming—Distributed programming; F.2.2 [Analysis of Algo-
rithms and Problem Complexity]: Nonnumerical Algo-
rithms and Problems

General Terms
Theory, Algorithms

Keywords
Consensus, randomization, shared-memory, oblivious adver-
sary

1. INTRODUCTION
In the consensus problem, a group of n processes wish to

agree on a value, which must be equal to the input of some
process. Consensus is known to be impossible to solve de-
terministically in an asynchronous message-passing [13] or
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shared-memory [17] model if even one process can fail. How-
ever, randomized algorithms can achieve wait-free consensus
in bounded expected time.
The cost of consensus is strongly affected by the power of

the adversary scheduler that chooses at each step which
process should carry out the next operation. With an adap-
tive adversary, which can base its decision on the complete
state of the system—including internal states of processes—
the cost of consensus is well understood. A lower bound of
Attiya and Censor [8] shows that Ω(n2) expected total steps
are needed even for binary consensus, where all inputs are
0 or 1, in a model that provides multi-writer multi-reader
registers. Conversely, a matching upper bound was shown
in the same paper, and subsequent work has demonstrated
that adaptive-adversary consensus can be solved with op-
timal O(n) expected individual step complexity [6], even if
only single-writer registers are available and the inputs are
arbitrary [3].
Less well understood is the complexity of randomized

shared-memory consensus with an oblivious adversary
that schedules the sequence of operations in advance with-
out being able to observe the random choices made by the
processes. Aumann [10] showed how to achieve O(logn) ex-
pected individual step complexity under a plausible weak-
adversary assumption that holds for an oblivious adversary;
and a more recent algorithm of Aspnes [4], based on a clas-
sic protocol of Chor, Israeli, and Li [12], simultaneously
achieves O(logn) expected individual step complexity and
O(n) expected total step complexity under a different weak-
adversary assumption.
It is clear that O(n) expected total step complexity is op-

timal, as each process must take at least one step. A lower
bound of Attiya and Censor [9] for oblivious-adversary con-
sensus shows that the probability of failing to terminate in
O(kn) total steps is at least 1

ck for some constant k, even
with global coins and unit-cost snapshots. This gives a lower
bound of Ω(n log(1/ε)) total steps to reach agreement with
probability at least 1 − ε. However, there is still the pos-
sibility that the expected individual step complexity even
without these assumptions could be as low as O(1).
We do not show such a surprising result here, although our

results do show that the cost of oblivious-adversary consen-
sus is much lower than might have been expected given the
lack of improvement over the previous fifteen years. We give
two algorithms for conciliators [4], weak consensus objects
that guarantee termination and validity in all executions
but guarantee agreement only with constant probability (a
more formal definition is given in Section 1.2). These can



be alternated with adopt-commit objects [2, 14, 18] to ob-
tain consensus objects that guarantee agreement always, at
an expected cost equal to the sum of the costs of the concil-
iator and the adopt-commit [4].
Our first conciliator, described in Section 2, works in the

unit-cost snapshot model, and reaches agreement with con-
stant probability afterO(log∗ n) operations per process. The
main idea is to use the nesting property of snapshots and
the properties of left-to-right maxima of random permuta-
tions to reduce an initial set of m values to O(logm) values
on average in each round by assigning a random priority
to each value and having each process take the value with
highest priority among those it observes in a snapshot. After
O(log∗m) iterations of this process, with constant probabil-
ity only one value survives.
Because adopt-commit objects can be implemented us-

ing O(1) snapshot operations [14], this immediately gives
a randomized consensus protocol with O(log∗ n) expected
individual step complexity in the unit-cost snapshot model.
Our second conciliator, described in Section 3, works in

the ordinary multi-writer register model, and uses a se-
quence of sifting rounds similar to those recently used
by Alistarh and Aspnes [1] to implement test-and-set in
O(log logn) expected steps with an oblivious adversary.
Here in each round a multi-writer register is used to elimi-
nate values quickly. Each process chooses randomly whether
to write its value to the register (and retain it for the next
round), or to read the register and replace its value with the
register value if it is not null. By choosing the probability
of a write carefully, each round reduces the number of sur-
viving values from m to O(

√
m) on average, giving a unique

survivor after O(log logn) rounds if all goes well. We give a
new analysis of the sifting mechanism that shows that this
indeed occurs with constant probability provided the write
probabilities are chosen with the needs of the conciliator in
mind.
Using this second conciliator gives O(log logn) expected

individual step complexity for randomized consensus in a
multi-writer register model with an oblivious adversary, pro-
vided the range of input values is small. When the range of
input values is large, the best currently known construction
of an adopt-commit object [7] dominates the cost.
For both conciliators, because the oblivious adversary can’t

see processes’ coin-flips or states, we can have each process
generate a sequence of random bits associated with its input
value, which then propagate along with the input value as
it is adopted by other processes; we call this combination of
an input value and random bits a persona. This allows all
copies of a persona to be treated the same way in each round
regardless of which processes hold them, making the num-
ber of surviving distinct personae– instead of the number of
surviving processes—the relevant measure of progress.
A straightforward implementation of either conciliator

leads to greater total expected step complexity than the op-
timal O(n) bound achieved in [4]. We show (in Section 4)
how to embed the O(log logn) conciliator in a conciliator
based on the consensus protocol of Chor, Israeli, and Li [12]
to get a conciliator with both expected O(log logn) indi-
vidual step complexity and expected O(n) total step com-
plexity. The same technique also works for the O(log∗ n)
snapshot-based conciliator.

1.1 Model
We consider a standard asynchronous shared-memory

model, in which n processes communicate by executing op-
erations on shared-memory objects. These objects are either
snapshot objects, which support an update operation and
a read operation that returns a vector of the values of the
most recent update operations for every process; or atomic
multi-writer multi-reader registers, which support a
write operation and a read operation that returns the value
of the most recent write. In either case we treat all opera-
tions as taking one step. We do not assume any limitation
on the size of registers.
Timing is controlled by an oblivious adversary, which

specifies a schedule consisting of a sequence of process ids.
At each step, the next process in the schedule executes one
operation of its choosing. We assume that once a process
has finished its protocol, any steps allocated to it become
no-ops; these no-ops are not included when computing the
complexity of the algorithm. Any coin-flips done by the
processes are independent of the schedule chosen by the ad-
versary.

1.2 Consensus, conciliators, and
adopt-commit objects

In a consensus protocol, each process starts with an in-
put and eventually decides on an output, subject to the re-
quirements:

• Termination. With probably 1, each nonfaulty pro-
cess decides after finitely many steps.

• Validity. The output value of each process is equal to
the input value of some process.

• Agreement. All processes choose the same output
value.

A conciliator [4] keeps the termination and validity con-
ditions, but replaces agreement with:

• Probabilistic agreement. There is a fixed agree-
ment probability δ > 0 such that, for any adver-
sary strategy, the probability that all return values are
equal is at least δ.

The idea is that a conciliator attempts to produce agree-
ment, but cannot guarantee or detect that it occurs.
An adopt-commit protocol [14] or adopt-commit ob-

ject [2, 18] detects agreement, but does not create it. Our
definition of an adopt-commit object uses the terminology
of [4, 7]: an adopt-commit object provides a single opera-
tion AdoptCommit(v) that returns (commit, v′) or (adopt, v′)
for some v′, subject to termination, validity (v′ must equal
some operation’s input) and two new conditions that replace
agreement:

• Convergence. If all operations have the same input
value v, all operations return (commit, v).

• Coherence. If any operation returns (commit, v), then
all operations return either (commit, v) or (adopt, v).

It is shown in [4] that an alternating sequence of con-
ciliators and adopt-commit objects implements consensus,
assuming each process decides immediately on v when it
sees (commit, v). The idea is that some conciliator eventu-
ally produces agreement on some common value v, and the



acceptance condition on the following adopt-commit means
that all processes decide on that value. The additional con-
ditions on conciliators and adopt-commit objects are used to
show that validity and agreement hold. The cost of consen-
sus using this technique is, on average, asymptotically equal
to the sum of the cost of a conciliator and an adopt-commit
object, because, on average, only a constant number of these
objects are accessed by each process.

1.3 Notation
We use log for base-2 logarithm and ln for base-e log-

arithm. The iterated logarithm function log∗ n is de-
fined by the recurrence log∗ n = 0 for n ≤ 1 and log∗ n =
1 + log∗ logn for larger n.

2. CHEAP CONSENSUS WITH
CHEAP SNAPSHOTS

Here we show how to solve consensus for an unbounded
range of input values in O(log∗ n) expected steps using unit-
cost atomic snapshot operations. We assume that an obliv-
ious adversary schedules the order of these snapshot opera-
tions independently of the random choices made by the algo-
rithm. Whether this is a reasonable assumption in practice
is a tricky question [16], but our algorithm does demonstrate
that any potential oblivious-adversary consensus lower bound
greater than Ω(log∗ n) will hold only in a less benevolent
model.
The basic idea of the protocol is to have a sequence of

rounds, where in each round each process writes its current
preference, takes a snapshot, and adopts the value out of
those it sees with the highest random priority for this round.
We will show that on average, if m values enter a round,
O(logm) leave; thus after O(log∗ n) rounds, the expected
number of survivors is O(1), and becomes 1 with probability
at least 1− ε after O(log(1/ε)) additional rounds. To make
this work, it is necessary for all copies of a given input value
to share the same priority in each round. This is done by
generating a vector of priorities for each process at the start
of the protocol, which is then carried along with the process’s
input value as other processes adopt it. We refer to the
combined input value and priority vector as a persona; the
goal of the algorithm is to leave all processes with the same
persona (and thus the same input value).
Pseudocode is given in Algorithm 1.

procedure conciliator(input)1
Let priority be a vector of log∗ n+ dlog(1/ε)e2
independent uniform random variables in [0, 1]
persona← 〈input, priority〉3
for i← 1 . . . log∗ n+ dlog(1/ε)e do4

Ai[myId]← persona5
S ← snapshot(Ai)6
Let j maximize S[j].priority[i] over all7
non-null S[j]
persona← S[j]8

return persona.input9

Algorithm 1: Priority-based conciliator

To simplify the analysis, we assume that the priority val-
ues are uniformly chosen from the real interval [0, 1]. This
allows us to assume that ties occur only with probability 0.

More realistically, a smaller range of priorities could be used,
at the cost of a small probability that the analysis fails.
Let Yi be the number of distinct personae remaining after

i rounds of the algorithm. Let Xi = Yi−1 be the number of
excess personae remaining after i rounds. We will show
that E[Xi] converges rapidly to 0. Markov’s inequality can
then be used to bound the probability that more than one
value survives.

Lemma 1. Let Xi be the number of excess personae re-
maining after i rounds of Algorithm 1. Then

E[Xi+1|Xi] ≤ min(ln(Xi + 1), Xi/2). (1)

Proof. For a persona to survive round i + 1, it must
be the highest-priority persona in some view obtained by
taking a snapshot of Ai+1. Recall that Yi = Xi + 1 gives
the number of distinct personae remaining after previous
rounds, and that all copies of a particular persona share the
same priority.
Define a view as the set of personae that appear in the

result of some snapshot operation. Order the personae
a1, a2, . . . , aYi written toAi+1 by increasing size of the small-
est view Vj that contains each aj , breaking ties arbitrarily.
Because each write to A can only add new personae, each
view is a subset of any larger views. Furthermore, adding
more personae to a view can only decrease the probability
that any particular persona has the highest priority. It fol-
lows that aj has the highest priority in any view (and thus
survives) if and only if it has the highest priority in the
smallest view that contains it, Vj .
We now wish to argue that each member of Vj is equally

likely to have the highest priority, so that the probabil-
ity that aj in particular has the highest priority is exactly
1/ |Vj |. We must be a little bit careful here: while the ad-
versary’s schedule determine the order in which processes
write and read the snapshot object, it does not determine
the order in which personae appear, because this depends on
the assignment of personae to processes, which in turn de-
pends on the outcome of previous rounds. But the order of
personae is fully determined by the combination of the ad-
versary’s schedule and the priorities in all rounds i′ < i+ 1.
Since the priorities in round i + 1 are independent of these
variables, the chance that aj has the highest priority in its
view is in fact 1/ |Vj | ≤ 1/j.
Summing 1/j over all j gives a harmonic series, showing

E[Yi+1|Yi] ≤ HYi ≤ lnYi + 1. So E[Xi+1|Xi] ≤ lnYi =
ln(Xi+1).1 However, because each term after the first in the
harmonic series is less than or equal to 1/2, we also have the
cruder, but more accurate for small Xi, bound E[Yi+1|Yi] ≤
1+(Yi−1)/2 = 1+Xi/2, or E[Xi+1|Xi] ≤ Xi/2. Combining
these bounds gives the claimed bound (1).

Iterating Lemma 1, plus an application of Jensen’s in-
equality, shows that the algorithm works as advertised.

Theorem 2. Algorithm 1 implements a conciliator with
agreement probability 1− ε and O(log∗ n+ log(1/ε)) individ-
ual step complexity.
1What we are doing here is very similar to counting left-
to-right maxima or outstanding values of a random
permutation. There is an extensive literature on the distri-
bution of the number left-to-right maxima, going back to a
classic paper of Rényi [19], but for our purposes a simple
linearity-of-expectation bound is enough.



Proof. Termination and validity are immediate from in-
spection of the code. So we concentrate on showing proba-
bilistic agreement, specifically that the set of surviving per-
sonae converges to a singleton with probability at least 1−ε.
Let Xi be the number of excess personae after i rounds

as in Lemma 1.
Let f(x) = min(ln(x + 1), x/2). Then (1) says that

E[Xi+1|Xi] ≤ f(Xi). Note that f is the minimum of in-
creasing concave functions over [0,∞) and is thus increasing
and concave itself. Because f is concave over [0,∞), we have
that, for any random variable X ≥ 0, E[f(X)] ≤ f(E[X])
by Jensen’s inequality.
It follows that E[Xi+1] = E[E[Xi+1|Xi]] ≤ E[f(Xi)] ≤

f(E[Xi]), and in general we have E[Xi] ≤ f (i)(X0) < f (i)(n),
where f (i) is the i-fold composition of f defined recursively
by f (0)(x) = x and f (i+1) = f ◦ f (i).
It is not hard to show that f(x) ≤ log x for x ≥ 2. Since

log(i) n ≥ 2 for i ≤ log∗ n− 1, we have f (i)(n) ≤ log(i) n for
i ≤ log∗ n, and in particular have f (log∗ n)(n) ≤ 1. Since
f(x) ≤ x/2 always, applying f an additional dlog(1/ε)e
times gives f (log∗ n+dlog(1/ε))e(n) ≤ ε for any ε > 0.
This gives E[Xlog∗ n+dlog(1/ε)e] ≤ ε. But Xlog∗ n+dlog(1/ε)e

is a non-negative integer-valued random variable, so apply-
ing Markov’s inequality we have Pr[Xlog∗ n+dlog(1/ε)e > 0] =
Pr[Xlog∗ n+dlog(1/ε)e ≥ 1] ≤ ε.

As noted in the introduction, alternating copies of Algo-
rithm 1 with adopt-commit objects immediately gives an
oblivious-adversary consensus protocol with O(log∗ n) ex-
pected individual step complexity in the unit-cost snapshot
model.

3. CHEAP CONSENSUS WITH
MULTI-WRITER REGISTERS

Algorithm 2 gives an implementation of a conciliator with
agreement probability 1 − ε in which each process takes
O(log logn+ log(1/ε)) steps.

procedure conciliator(input)1
Let chooseWrite be a vector of2
dlog logne+ dlog4/3(8/ε)e independent random
Boolean variables with
Pr[chooseWrite[i] = 1] = pi
persona← 〈input, chooseWrite〉3
for i← 1 . . . dlog logne+ dlog4/3(8/ε)e do4

if persona.chooseWrite[i] = 1 then5
ri ← persona6

else7
v ← ri8
if v 6= ⊥ then9

persona← v10

return persona.input11

Algorithm 2: Sifting conciliator

The basic mechanism is similar to the sift protocol used
to reduce the number of participants in test-and-set in [1],
where processes drop out when they see other processes that
are not dropping out. The main difference is that in the
new protocol, a process that sees another process adopts

that process’s persona (preferred value and random bits)
and continues with the algorithm instead of dropping out.
In each round i, a process carries out exactly one opera-

tion, choosing randomly whether to write or read the regis-
ter ri. If the process writes, its persona is retained in the
next round. If it reads, its persona is retained only if it sees
an empty register; otherwise, it adopts whatever persona it
sees. As in Algorithm 1, these random choices are controlled
by vectors of random bits generated at the start of the pro-
tocol that propagate along with the input values, so that all
processes with the same persona in round i take the same
action.
The probabilities of each event vary from round to round

and are carefully tuned to reduce the expected number of
excess personae as quickly as possible. The specific proba-
bilities used will be given after proving the following lemma.

Lemma 3. Let Yi be the number of distinct personae that
survive the first i rounds of Algorithm 2 and let Xi = Yi− 1
be the number of excess personae. Then

E[Xi+1|Xi] < min
{
pi+1Xi + 1

pi+1
,

(1− pi+1 + p2
i+1)Xi.

Proof. The first case of the min is more useful when
Xi is large. To obtain it, we will first compute a bound
on E[Yi+1|Yi] and then manipulate it to obtain the stated
bound on E[Xi+1|Xi].
Order the personae a1, . . . , aYi that appear as the persona

of at least one process leaving round i by the order in which
a process carrying each persona is first scheduled to write or
read ri+1. Observe that the assignment of personae to pro-
cesses in round i + 1 is determined by the chooseWrite bits
for rounds 1 through i and the schedule chosen by the adver-
sary; both are independent of the round-(i+ 1) chooseWrite
bits.
For each persona aj , it survives round i + 1 if (a) some

process sees a 1 in the corresponding chooseWrite[i + 1] bit
and writes aj ; (b) some process reads aj and adopts it; or (c)
some process sees a 0 in the corresponding chooseWrite[i+1]
bit but sees ⊥ when it reads. If case (b) occurs, so does case
(a), since some process had to first write aj to ri+1. Case (c)
occurs if persona.chooseWrite[i+ 1] is 0 for the first process
to write aj and for all process with persona aj′ for j′ < j.
The probabilities of these events are p for case (a) and

(1− p)j for case (c). Summing these probabilities over all j
gives E[Yi+1|Yi] ≤ pi+1Yi + 1/pi+1 − 1, where 1/pi+1 − 1 =∑∞

j=1(1−p)j is an upper bound on the terms from case (c).
Substituting in Xi+1 = Yi+1 − 1 and Yi = Xi + 1 gives

E[Xi+1|Xi] ≤ pi+1(Xi + 1) + 1/pi+1 − 2
= pi+1Xi + 1/pi+1 + pi+1 − 2
< pi+1Xi + 1/pi+1.

The second case of the min becomes useful when Xi is
small, where the cavalier unbounding of bounded sums and
dropping of small terms in the previous analysis causes trou-
ble. For this bound, we consider separately the cases where
the first process q reads or writes, and assume, for the sake
of obtaining a simple upper bound, that all personae survive



if q reads. Somewhat more formally, we have:

E[Xi+1|Xi] = (1− pi+1) E[Xi+1|Xi, q reads]
+ pi+1 E[Xi+1|Xi, q writes]
≤ (1− pi+1)Xi + p2

i+1Xi

= (1− pi+1 + p2
i+1)Xi.

Now let use choose the probabilities pi.
The first bound in Lemma 3 is minimized by letting p1 =

1/
√
X0; this gives E[X1] ≤ 2

√
X0 ≤

√
n− 1.

Iterating this procedure in subsequent rounds gives a re-
currence x0 = n − 1, pi+1 = 1/√xi, xi+1 = pixi + 1/pi =
2√xi, whose solution gives

xi = 22−2−i+1
(n− 1)2−i

(2)

and

pi = 21−2−i+1
(n− 1)−2−i

. (3)

We will use these values of pi for the first dlog logne itera-
tions, obtaining:

Lemma 4. Let Xi be the number of distinct personae that
survive the first i rounds of Algorithm 2 using pi as defined
above for i = 1 . . . log logn. Let xi also be defined as above.
Then E[Xi] < xi for all i in 1 . . . dlog logne.

Proof. The proof is by induction on i, using Lemma 3
and the xi recurrence at each step:

E[Xi+1] = E[E[Xi+1|Xi]]
≤ E[pi+1Xi + 1/pi+1]
= pi+1 E[Xi] + 1/pi+1

≤ pi+1xi + 1/pi+1

= 2
√
xi

= xi+1.

For i = dlog logne, this gives

xdlog logne = 22−2−dlog log ne+1
(n− 1)2−dlog log ne

< 4n1/ logn

= 8.

For i > dlog logne, we switch to pi = 1/2, which mini-
mizes the coefficient 1 − pi + p2

i in the second case of the
Lemma 3 bound. Now we have:

Lemma 5. Let Xi be the number of distinct personae
that survive the first i rounds of Algorithm 2. Let pi =
21−2−i+1

(n − 1)−2−i

for i = 1 . . . dlog logne and 1/2 for
larger i. Let j > 0. Then E[Xdlog logne+j ] ≤ 8 · (3/4)j.

Proof. We have just shown that E[Xdlog logne] ≤ 8, and
each subsequent round multiplies the bound by (1 − 1/2 +
(1/2)2) = 3/4.

Plugging in the number of iterations from the algorithm
gives:

Theorem 6. Algorithm 2 implements a conciliator with
agreement probability 1− ε and O(log logn+ log(1/ε)) indi-
vidual step complexity.

Proof. Again termination and validity are easy, so we
concentrate on probabilistic agreement.
From Lemma 5, after dlog logne + dlog4/3(8/ε)e rounds,

the expected number of excess personae X is at most

8 · (3/4)log4/3(8/ε) = 8 · (ε/8) = ε.

So the probability that X is nonzero is bounded by ε using
Markov’s inequality.

The dependence on ε in the running time is necessary, due
to the oblivious-adversary lower bound of Attiya and Cen-
sor [9]. Whether the log logn part can be further improved
is open.
To extend Algorithm 2 to an algorithm for consensus,

we can alternate it with adopt-commit objects as described
in [4]. For constant ε, this gives an expected individual
step complexity equal to O(log logn) plus the cost of the
adopt-commit. Unfortunately, the best currently-known im-
plementation of adopt-commit [7] is relatively expensive, re-
quiring Θ(logm/ log logm) steps from each process if run
with m possible input values. This means that we can only
get O(log logn)-step consensus if the number of values m is
O(logn log logn). It is possible that further improvements
in randomized adopt-commit implementations (for an obliv-
ious adversary) might increase this limit.

4. LINEAR EXPECTED TOTAL WORK
Algorithm 2 requires Θ(n log logn) additional total steps

to achieve a constant probability of agreement in the worst
case. With some tinkering, we can reduce this to O(n) while
keeping the O(log logn) individual step complexity.
The essential idea is to embed Algorithm 2 in an outer

conciliator algorithm extracted from the consensus proco-
tocol of Chor, Israeli, and Li [12]. In the outer algorithm,
there is a single register proposal that is initially ⊥. At each
step, a process reads proposal and returns its value if it is not
⊥; otherwise, it writes its input to proposal with probability

1
4n and executes a step of Algorithm 2 otherwise.
In isolation, the Chor-Israeli-Li conciliator (CIL) works

because some process writes proposal after 4n attempts on
average, and once some process writes proposal, each of the
remaining n− 1 processes has at most a 1

4n chance of over-
writing the register before reading a non-null value and leav-
ing. If no process overwrites the first value (which occurs, by
the union bound, with probability at least 1− n−1

4n > 3/4),
all processes will agree on it.
Embedding Algorithm 2 into CIL means that some pro-

cesses may return a value obtained from Algorithm 2 while
others return a value obtained from proposal. To reconcile
these two values, we use a final combining stage that in effect
implements a simple two-valued conciliator. First, an adopt-
commit object forces each process to decide on the unique
value if only one is present; in not, a shared coin chooses
between the competing values otherwise. Using the persona
technique again, we implement this shared coin by associat-
ing a random bit with each input, and having the combining
stage use this bit. We show that, with constant probabil-
ity, bit associated with the combining-stage inputs are equal
to each other and the outcome of the adopt-commit, giving
agreement on the final output value.2

2A similar technique was used in [5] to combine interleaved
shared-coin algorithms into a single shared coin, but this re-



Pseudocode for the entire procedure is given in Algo-
rithm 3.

procedure conciliator(input)1
Choose coin uniformly from {0, 1}2
Initialize an instance of Algorithm 2 with input3
〈input, coin〉 and ε = 1/4.
while proposal = ⊥ do4

with probability 1
4n do5

proposal← 〈input, coin〉6
else7

Run one step of the Algorithm 2 instance8
if Algorithm 2 returns v then9

r[0]← v.input10
return combine(0, v.coin)11

v ← proposal12
r[1]← v.input13
return combine(1, v.coin)14

procedure combine(i, coin)15
〈decide, b〉 ← AdoptCommit(i)16
if decide 6= commit then17

b← coin18

return r[b]19

Algorithm 3: CIL conciliator with embedded sifter

Theorem 7. Algorithm 3 implements a conciliator with
O(log logn) worst-case individual step complexity, O(n) ex-
pected total step complexity, and agreement probability 1/8.

Proof. Termination and the individual step complexity
bound hold because no process can execute Line 8 more than
O(log logn) times without leaving the main loop. This im-
plies that the main loop is also executed O(log logn) times,
because at most one iteration can skip Line 8 without writ-
ing proposal and causing the loop to finish anyway. The bi-
nary adopt-commit object and additional work in combine
cost at most O(1) additional steps.
For expected total steps, observe that the total expected

number of iterations of the main loop is bounded by 4n
across all processes, because each such iteration has an inde-
pendent 1

4n probability of shutting the protocol down. Ad-
ditional operations outside the main loop cost at most O(n)
more total steps.
For validity, observe that if the adopt-commit value re-

turns 〈commit, b〉, then b is the index of a register to which
some process’s input (as returned from Algorithm 2 or writ-
ten directly to proposal) has been written. If it returns
〈adopt,−〉, then both indices have appeared in inputs to
the adopt-commit (by acceptance), so both registers have
been initialized. In either case validity holds.
Probabilistic agreement is messier. We begin by arguing

that the probability that Algorithm 2 returns a unique pair
v is not affected by the embedding.
Fix a schedule S for the execution of Algorithm 3. Let

σ1, σ2, . . . , σn be the sequence of coin-flips used in Line 5 by
processes 1, 2, . . . , n. Observe that S and σ1 . . . σn between
sult depends on the output of a shared coin not always being
under the control of the adversary. Unlike the shared-coin
case, it is not clear that interleaving arbitrary conciliators
will always give a conciliator.

them determine the schedule for Algorithm 2: an easy way
to see this is that if we replace Line 8 with an operation that
emits the current process id, we compute the induced sched-
ule based only on S and σ1 . . . σn. Because S and σ1 . . . σn
are independent of the input to Algorithm 2 and any coin-
flips used inside it, the induced schedule is also independent
of these quantities.
Conditioning on some fixed induced schedule, we have

from Theorem 6 that Algorithm 2 violates probabilistic agree-
ment with probability at most 1/4. This continues to hold
when we remove the conditioning by averaging over all val-
ues of σ1 . . . σn.
A second contribution to our error budget is the proba-

bility that the outer CIL mechanism produces more than
one output. From the earlier discussion, this occurs with
probability at most n−1

4n < 1/4.
It follows that the probability that either Algorithm 2

or the proposal register yield more than one output is less
than 1/4 + 1/4 = 1/2. If both conciliators produce a unique
output, then combine produces agreement with independent
probability at least 1/4. To see this, let bAC be the unique
bit tagged with commit by the adopt-commit object (if any),
and b0 and b1 the coin bits for i = 0 and i = 1. The prob-
ability that b0 = b1 is at least 1/2 (it may be 1 if both
correspond to a random bit supplied by the same process);
if bAC exists, the probability this common bit equals it is
also 1/2, because bAC does not depend on any of the coin
values. Multiplying these probabilities gives at least a 1/4
chance that all processes choose the same b, which gives the
at least 1/8 probability of agreement for the algorithm as a
whole.

Essentially the same argument shows that replacing Al-
gorithm 2 in Algorithm 3 with Algorithm 1 similarly gives
an oblivious-adversary conciliator for the unit-cost snapshot
model with O(log∗ n) worst-case individual step complexity
and O(n) expected total step complexity. A similar argu-
ment is likely to work on any conciliator that is “oblivious”
in the sense that it only copies its input values without ex-
amining them.
As with the algorithms in previous sections, we can use Al-

gorithm 3 to obtain consensus by alternating it with adopt-
commit objects. The resulting protocol takes an expected
O(log logn) individual steps and expected O(n) total steps,
for consensus on O(1) possible inputs, with the input space
limit as before reflecting the limitations of currently-known
adopt-commit objects.

5. CONCLUSIONS
Under the assumption of an oblivious adversary, we have

shown how to reduce the expected individual step complex-
ity of consensus from O(logn) to O(log logn) in the stan-
dard multi-writer register model and O(log∗ n) in the prac-
tically irrelevant but theoretically significant unit-cost snap-
shot model. Many open problems remain.

Strength of the adversary.
Our results exploit the limitations of the oblivious ad-

versary in several ways. As in previous protocols of Chan-
dra [11] and Aumann [10], we pre-flip coins that are later
shared between many processes; this requires assuming at
minimum a content-oblivious adversary that cannot see
the contents of registers or the internal states of processes.



We also choose between different operations probabilistically
as in the protocol of Chor, Israeli, and Li [12], requiring a
weak adversary that cannot prevent this. As the obliv-
ious adversary is weaker than both these adversaries, our
algorithms work for an oblivious adversary, but it would be
interesting to examine more closely exactly what properties
of the adversary are needed for either these algorithms or
sublogarithmic consensus in general.

Gap between upper and lower bounds.
There is still a gap between our upper bounds of

O(log logn+ log(1/ε)) and O(log∗ n+ log(1/ε)) for concilia-
tors with agreement probability 1− ε and the Ω(1/ε) lower
bound of Attiya and Censor [9], leaving open the possibility
that the dependence on n could be further reduced. It may
also be the case that this dependence is necessary, and that
a lower bound could be shown that mirrors the structure
of the upper bound: showing that Ω(nc) or Ω(logn) values
remain after one layer of computation in the multi-writer
register or unit-cost snapshot models, respectively, in some
class of executions.

Gap between consensus and test-and-set.
Many of our techniques are similar to techniques recently

used for oblivious-adversary test-and-set [1, 15]. Our pro-
tocol for consensus using cheap snapshots has the same
O(log∗ n) expected individual step complexity as the best
currently known protocol for test-and-set without using
snapshots, due to Giakkoupis and Woelfel [15], which
was developed concurrently with and independently of the
present work. In the standard multi-writer register model,
our protocol follows both the structure and the O(log logn)
complexity the previous best known test-and-set protocol of
Alistarh and Aspnes [1], but this is significantly slower than
the newer O(log∗ n) protocol. Unfortunately, the specific
technique used by Giakkoupis and Woelfel for test-and-set
does not generalize immediately to consensus, because it
exploits the fact that a loser in a test-and-set protocol can
leave immediately without determining the identity of any
specific survivor, so long as it can determine that at least
one other process survives. But it may be that some similar
technique could yield further improvements for oblivious-
adversary consensus in the multi-writer register model.
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