
Clocked Population Protocols∗

James Aspnes†

May 12, 2021

Abstract

We define an extension to the standard population protocol that
provides each agent with a clock signal that indicates when the agent
has waited long enough for the protocol to have converged. We repre-
sent “long enough” as an infinite time interval, and treat the protocol
as operating over transfinite time. Over finite time intervals, the pro-
tocol behaves as in the standard model. At nonzero limit ordinals,
corresponding to clock ticks, the protocol switches to a limit of pre-
vious configurations supplemented by a clock signal appearing as an
extra component in some of the agents’ states. Fairness generalizes to
transfinite executions straightforwardly. We show that a clocked pop-
ulation protocol running in less than ωk time for any fixed k ≥ 2 is
equivalent in power to a nondeterministic Turing machine with space
complexity logarithmic in the population size, and can be simulated
using only finitely many clock ticks.

1 Introduction

A population protocol [AAD+06] consists of a collection of finite-state
agents that interact in pairs. If the scheduling of these interactions is ran-
dom, population protocols or the closely-related model of chemical reaction
networks can, with high probability, perform computations limited only by
the number of distinct configurations of the population as a whole [AAE08,
SCWB08]. But in the standard model, scheduling is adversarial, and as a
result standard population protocols with a complete interaction graph can
only compute predicates definable in first-order Presburger arithmetic [AAER07],
∗An earlier version of this paper appeared as [Asp17].
†Yale University, Department of Computer Science. Supported in part by NSF grants

CCF-1637385 and CCF-1650596.

1



a restriction that allows addition, parity, and majority, but that removes
even such basic operations as multiplication.

The fundamental limitation of population protocols that yields this re-
sult is that while a population protocol is only required to converge to the
correct answer in the limit, individual agents cannot determine when this
convergence occurs. This makes it difficult to compose population protocols
sequentially, and puts even such basic programming tools as nested loops
out of reach. One of the key tools in showing that randomized population
protocols can perform more sophisticated computations is a phase clock
that allows the population to detect, with high probability, when enough
time has elapsed that its current task is complete.

An explicit mechanism used to detect termination is the absence de-
tector of Michail and Spirakis [MS15]. The absence detector acts like an
extra agent in the population, that provides a bit-vector indicating the pres-
ence or absence of each other state in the population. Michail and Spirakis
show that an absence detector can be implemented by a weaker object called
a cover-time service, which provides an upper bound on the cover time
of a random walk, allowing an agent to deduce when it has successfully
encountered every other agent in the system. They show that with a cover-
time service, the power of a population protocol with n agents lies between
SPACE(logn) and NSPACE(logn), when both are restricted to symmet-
ric inputs. We can think of this cover-time service, like the internal clocks
of randomized population protocols and chemical reaction networks, as in-
stances of a family of possible clock mechanisms whose function is to tell a
protocol when it has waited long enough to converge.

We propose an extension to the population protocol model that makes
such clocks explicit without committing to any specific implementation: a
clock oracle that signals to one or more agents when the population has ei-
ther converged or started looping, a condition formally modeled by reaching
a configuration that will recur infinitely often in the future. Such clocked
population protocols are capable of carrying out any computation that is
feasible for a Turing machine with equivalent storage capacity: specifically,
with a population of size n, whose state can be represented in Θ(logn)
space, a clocked population protocol can compute any symmetric predicate
on the agents’ initial states that can be computed by a nondeterministic
Turing machine that also uses Θ(logn) space (Theorem 4.1), and vice versa
(Corollary 3.4).

An advantage of showing that clocked population protocols have power
equivalent to NL is that we can use closure results on NL to program
clocked population protocols. For example, the Immerman-Szelepcsényi

2



Theorem [Imm88, Sze88] and the resulting collapse of the logspace hier-
archy mean that clocked population protocols can not only compute NL
predicates, but can effectively use NL computations as subroutines. We
use this fact to demonstrate that many natural extensions of the clocked
population protocol model turn out to be equivalent in power.

An issue that arises in clocked population protocols is how to keep track
of time. At the lowest level, we still have protocol transitions in which
individual pairs of agents encounter one another and update their state as
defined by the standard transition relation. But at a higher level, we have
clock transitions where some of the agents in a configuration receive ticks
that indicate that a clock cycle has completed. We would like to have a
method for indexing events in a protocol that clearly distinguishes between
protocol transitions and clock ticks. The method we use is to assign each
event to an ordinal number, a generalization of the natural numbers that
includes transfinite elements.

In this representation, the ordinary passage of time is represented by
finite intervals, while clock ticks occur at limit ordinals ω, ω · 2, ω · 3, etc.
A typical time for an event might be something like ω · 3 + 28. This is an
event that follows 3 clock ticks—each arriving after what might a very long
sequence of ordinary protocol transitions—followed by 28 ordinary protocol
transitions. By using ordinals, we allow for the possibility of introducing
“higher-order” clock ticks, indicating longer intervals ω2, ω3, and so forth,
during which even infinitely many lower-order clock ticks still leave the pro-
tocol stuck. The use of ordinal arithmetic for this purpose allows us to
define a consistent rule for what configurations are eligible to appear at
these times (essentially any configuration that occurs without bound in the
interval leading up to the limit ordinal), as well as a straightforward exten-
sion of the usual global fairness condition for standard population protocols
to clocked population protocols.

Though the transfinite-execution model is not something one could rea-
sonably expect to implement in practice, we show that it is equivalent to
a finite-execution model where clock ticks are delivered once the protocol
reaches a terminal strongly-connected component in the graph of configura-
tions reachable without any agent receiving a clock tick. We can thus think
of the transfinite-execution model as the limit behavior of finite-execution
protocols in which the clock ticks are delivered after a long enough inter-
val for this event to occur. Alternatively, the characterization in terms of
terminal strongly-connected components gives an algorithmic method for
determining when to send a clock tick, showing that the result of an output-
stable clocked population protocols can be simulated in polynomial time.

3



We show in particular that output-stable clocked population protocols
compute symmetric functions in P, and that output-stable clocked popula-
tion protocols that finish in less than ωk time, for any fixed, finite k, compute
symmetric functions in NL. Together with the converse result on simulating
NL, this in fact shows that a transfinite clock hierarchy based on counting
layers of increasingly patient clocks never gets off the ground: any protocol
that finishes in less than ωk time computes the same function as a protocol
that finishes after receiving finitely many first-order clock ticks.

The goal of this work is to explore the effect of adding clocks to popu-
lation protocols, and to this end we consider primarily the simplest model
with a complete interaction graph and a generic clock. We consider some
variants on the clock mechanism and show that for the most part they com-
pute the same functions. In the conclusion, we briefly discuss additional
possible extensions of the model.

1.1 Other related work

Adding a clock is not the only way to increase the power of the standard
population protocol model. The community protocol model of Guer-
raoui and Ruppert [GR09], which allows agents to remember the identities
of a constant number of other agents, boosts the power of a system with
n agents to decide any language in NSPACE(n logn). The still stronger
mediated population protocol model of Michail et al. [MCS11], which
stores information on edges between agents, boosts this power still fur-
ther to NSPACE(n2) [CMN+10]. It is also possible to expand the space
in each agent, which is O(1) in the standard model. Chatzigiannakis et
al. [CMN+11] have shown that even a modest extension to Θ(logn) bits per
agent allows computations of symmetric predicates in NSPACE(n logn) (as
in the community protocol model), while smaller extensions up to o(log logn)
still limit population protocols to the semilinear predicates computable in
the standard model.

The clocked population protocol is an attempt to generalize previous
work on absence detectors and cover-time oracles to allow a protocol to de-
tect convergence. An alternative approach, recently suggested by Blondin et
al. [BEJ19], is to add a reliable broadcast mechanism. They show that this
also gives a population power the ability to compute symmetric predicates
in NL, and may have a more practical implementation in models where
convergence times are not predictable enough to rely on waiting.

The idea of modeling computation over transfinite time has precedent in
work on transfinite Turing machines [HL00] as a model for supertasks [Tho54],

4



a concept extensively studied in the philosophical literature. A supertask
is a task that involves an infinite number of steps (often taken as occurring
over decreasing time intervals whose sum converges to a finite bound), and
the problem of characterizing sensible outcomes of supertasks goes as far
back as Zeno’s Paradox. In a sense, clocked population protocols are carry-
ing out supertasks, but our choice for the behavior of these systems in the
limit is less open to controversy, because it is implied by the goals of the
model. Our purpose is only to represent waiting long enough that further
waiting will have no effect on the possible outcomes of a protocol. Were
we actually modeling infinite computations, a different limit definition (for
example, taking the limit of each agent’s state separately) might be more
appropriate.

1.2 Ordinals and ordinal arithmetic

In this section, we give a brief overview of the ordinal numbers, a gener-
alization of the natural numbers that include infinite values. More details
on the ordinals can be found in any textbook on set theory, for example in
Chapter 2 of Jech [Jec02].

Formally, an ordinal number is an equivalence class over totally-ordered
sets (S,≤) that are well-ordered, meaning that every subset T of S has a
least element. A standard construction due to von Neumann [vN23] repre-
sents each ordinal as the set of all smaller ordinals, so that 0 is represented
by the empty set ∅, 1 = {0}, 2 = {0, 1}. The finite ordinals 0, 1, 2, . . . are
the natural numbers. The first infinite ordinal, denoted ω, is just the set
of all finite ordinals {0, 1, 2, . . .}.

In this representation, α ≤ β if α is a subset of β, α < β if α is an element
of β, the minimum of a set of ordinals is just their common intersection, the
successor α+1 of an ordinal α is represented by α∪{α}, and the supremum
of a set of ordinals is their union. For example, ω + 1 is represented by
{0, 1, 2, . . . ;ω}, ω+ 2 by {0, 1, 2, . . . ;ω, ω + 1}, and so on. Not every ordinal
is a successor. An ordinal (like 0 or ω) that is not a successor of any other
ordinal is called a limit ordinal.

We adopt the usual convention that arbitrary ordinals are denoted by
lowercase Greek letters, while finite ordinals are denoted by lowercase Latin
letters.

Ordinal arithmetic is defined using operations on the corresponding or-
dered sets. Addition corresponds to concatenation: the ordinal ω + ω con-
sists of two copies of ω laid end-to-end, and is represented in set form by
{0, 1, 2, . . . ;ω, ω + 1, ω + 2, . . .}. Addition involving infinite ordinals is not

5



commutative in general: 1 + ω = ω, since there is a one-to-one map that
preserves the order type, but ω+ 1 6= ω. Note that if β 6= 0, α+ β is a limit
ordinal if and only if β is.

Multiplication is defined recursively by the rule that α·0 = 0, α·(β+1) =
α · β + α, and, when γ is a limit ordinal, α · γ = supβ<γ α · β, which can
be represented in set form by

⋃
β∈γ α · β.1 It is also possible to define

multiplication using order types by applying lexicographic order to α × β,
with the least-significant value provided first. Like addition, multiplication
is generally not commutative when one or both operands are infinite: for
example, ω · 2 consists of two copies of ω laid end-to-end, and is equal to
ω + ω, but 2 · ω consists of ω copies of 2 laid end-to-end, and is equal to ω.

Exponentiation is defined similarly to multiplication, with α0 = 1, αβ+1 =
αβ · α, and αγ = supβ<γ αβ. Note that exponentiation involving infinite or-
dinals can produce results that look strange compared to what happens with
natural numbers: for example, 2ω = ω < ω2 and ωω is order-isomorphic to
the set of all finite sequences of natural numbers ordered first by increasing
size and then lexicographically (or to the set of all infinite sequences that
are eventually all 0). Both 2ω and ωω are countable.

As with finite ordinals, division by nonzero ordinals is possible. Specif-
ically, if α and β are ordinals, and β 6= 0, then there are unique ordinals γ
and ρ such that α = β · γ + ρ and ρ < β [Jec02, Lemma 2.25(iv)].

Cantor’s Normal Form Theorem (see [Jec02, Theorem 2.26]) says
that any ordinal α has a unique representation α = ωβ1 · k1 + · · ·+ . . . ωβn ·
kn, where n is finite, α ≥ β1 > β2 > · · · > βn are ordinal numbers, and
k1, . . . , kn are nonzero natural numbers. In effect, the normal form theorem
says that any ordinal number can be represented as a sequence of finite
coefficients indexed by larger and larger powers of ω, which for our purposes
will represent increasing durations of waiting for convergence. Most of the
ordinal numbers we will be dealing with in this work will be small, with
representations typically of the form ω · k + `. But occasionally it will be
useful to consider larger ordinals.

2 Model

We use a variant of the standard population protocol model that extends
the state of each agent to include an extra flag to signal a clock tick.

1This is an example of transfinite recursion, which generalizes ordinary recursion
by requiring a rule for handling limit ordinals. Typically a recursively-defined value at a
limit ordinals will itself be a limit (supremum in this case) of values at smaller ordinals.

6



In the standard model [AAD+06], a population protocol is described by a
tuple 〈X,Y,Q, I,O, δ〉, where X and Y are the input and output alphabets,
Q is the state space for agents, I : X → Q and O : Q → Y are functions
translating inputs to states and extracting outputs from states, and δ :
Q×Q→ Q×Q is a transition function used to update the states of two
agents that interact with each other. A population consists of n agents
organized as the nodes of a directed interaction graph. A configuration
specifies the state of each agent. A step consists of taking two agents u and
v such that uv is an edge in the interaction graph, and updating their states
according to δ. It is assumed that which pair of agents interact at each
step is controlled by an adversary, but the adversary is restricted by the
global fairness condition that if some configuration C1 occurs infinitely
often, and there is a step that transforms C1 into C2, then C2 also occurs
infinitely often.

An initial configuration is obtained from an input word by establishing
a bijection between positions in the input word and agents in the population,
and applying the input function I to map the symbol in each position to
the initial state of the corresponding agent. Note that because populations
are generally unstructured, this may lose information about the order of the
symbols in the input.

A configuration C is output-stable if any configuration reachable from
C has the same output as C, where the usual convention is that the output
is a common output value found at every agent by applying O to the agent’s
state. A population protocol computes a predicate on input configurations if
every fair execution eventually reaches an output-stable configuration with
the correct output. To enable comparison with more traditional computa-
tional models, we also adopt the usual convention of saying that a population
protocol decides a language L if it is output-stable and the set of strings in
L are precisely those that map to input configurations for which the output
of the language is true.

In the present work, we will assume that the interaction graph is com-
plete: any agent may interact with any other agent at any time. But our
extension to the standard model applies equally well to a more restricted
interaction graph.

2.1 Adding the clock

We would like to add a mechanism for detecting the passage of time to this
model, in the form of an oracle that provides extra information to the agents.
We do so by extending the state of each agent to include a clock bit that

7



is provided as input to δ and that may be set to 1 by the external clock.
By convention, we will not allow a protocol to use the clock bits for its own
purposes. We enforce this by requiring that both the input function I and
the transition function δ always produce states in which the clock bits are
set to 0.

This gives δ the type Q× {0, 1} ×Q× {0, 1} → Q×Q, where the extra
bits in the input represent the clock bit at each agent. This is similar to
the approach taken by Fischer and Jiang in their work on self-stabilizing
leader election with the Ω? oracle [FJ06]. However, changes to the clock
bits are more restricted than in this and subsequent work applying oracles
to population protocols (e.g., [BBB13, BBBD16]). The role of the clock
bit on an agent is to act as a inbox for clock ticks, set by special clock
transitions that occur only when the protocol is looping or stuck, and reset
only by subsequent protocol transitions involving the agent.

To save space, we represent a state in which a clock bit is set typograph-
ically using a prime (or “tick”) symbol. So a state A does not have the clock
bit set, but the corresponding state A′ does.

2.2 Clocked executions

The idea of the clock is that the system only delivers a clock tick when
the protocol has run long enough that anything that could still happen has
already happened.

Applying a simple induction to the global fairness condition shows that if
C1 is a configuration that occurs infinitely often, then any configuration C2
that is reachable from C1 by zero or more transitions also occurs infinitely
often. Because the number of configurations is finite, this means that any
execution of a standard population protocol eventually converges to some
terminal strongly-connected component (SCC): a set of configurations S
such that all configurations in the set are reachable from all of the others,
and no transition leaves the set. Once a protocol has reached such a set,
no further progress is possible. The standard model says that a protocol
stably computes a predicate if, in this terminal SCC, all configurations
produce the correct output at all agents.

We would like to define the clock to fire only once we have reached a set
that is a terminal SCC with respect to protocol transitions. For executions
indexed by the natural numbers, this corresponds to reaching a configuration
that occurs infinitely often in fair executions. With a transfinite timescale,
this generalizes to configurations that occur at unboundedly large times over
an interval, a property known as cofinality. We allow a configuration to

8



appear at a limit time if it occurs at arbitrarily large times up to that time,
and allow clock bits to be set in this limit configuration arbitrarily. This is
combined with an extended fairness condition, which also generalizes con-
figurations occurring infinitely often to configurations occurring at arbitrary
large times within some infinite interval. The extended fairness condition
enforces that clock bits are eventually set, effectively allowing the protocol
the ability to identify its own limit behavior when it observes them. (Later,
we will recover a graph-theoretic interpretation of this definition, to make
the behavior of clocked population protocols easier to reason about.)

Let α be a limit ordinal. A set of times T is cofinal in α if, for any
β < α, there is some γ in T such that β ≤ γ < α. For example, the times
2, 4, 8, 16, . . . are cofinal in ω. We will use this concept to define the set of
configurations that may occur (possibly with clock bits set) at time α.

We say that configurations C1 and C2 are equivalent, written C1 ∼ C2,
if the only difference between them is in the clock bits. We refer to the part
of a configuration that omits the clock bits as the protocol configuration;
two configurations are equivalent if and only if they have the same protocol
configurations.

For any ordinal α, an execution Ξ of length α consists of a sequence
of configurations Cβ, indexed by the ordinals β < α, that satisfies certain
consistency constraints that we now define. A configuration C is enabled
following a sequence Ξ of configurations if:

1. α = 0 and C is the initial configuration,

2. α = γ+ 1 and C follows from an application of the transition function
to two agents in the configuration Cγ that appears at time γ, or

3. α is a nonzero limit ordinal, and the set of times at which configura-
tions equivalent to C occur is cofinal in α.

An execution is a sequence of configurations Ξ such that each configuration
Cβ is enabled following the prefix of Ξ of length β.

We will refer to transitions between a configuration Cα and its successor
configuration Cα+1 as an ordinary transition. For symmetry, when α is
a nonzero limit ordinal, we will refer to Cα as being produced by a limit
transition, even though in this case the “transition” depends on the entire
sequence of configurations leading up to α and not any single configuration.

Because the transition function δ does not output clock bits, an inter-
action between two agents in an ordinary transition resets any clock bits
that they might be carrying. The only way to set clock bits is at a limit

9



transition, where allowing any configuration that is equivalent to a cofinally-
occurring configuration means that any combination of clock bits (or none)
is possible. We will need the fairness condition (defined in §2.4) to enforce
that in any fair execution, some clock bits are eventually set.

Note that we only consider executions that have a length. This avoids
complications that would arise from executions indexed over all of the or-
dinals (for example, such executions would not be definable as sets in the
usual Zermelo-Fraenkel set theory).

The definition of enabled configurations at successor ordinals matches
the standard model. The definition at nonzero limit ordinals captures the
intuition of waiting long enough to converge to some subset of configurations,
at least for ordinals of the form α + ω, because the only configurations
enabled at time α + ω are those that appear infinitely often since the last
clock tick during the preceding standard execution, which are precisely those
in the set to which the protocol converges.

Which of the enabled configurations occurs at each nonzero limit ordinal
α is chosen by the adversary, the same as at successor ordinals. At limit
ordinals, in addition to choosing from all configurations cofinal in α, the
equivalence condition allows the adversary to apply clock bits to any subset
of the agents, including the empty subset. To make the clock bits useful
requires imposing restrictions on this choice, which will we do below in §2.4
by extending the standard global fairness condition to transfinite intervals.
But first we give an example of a simple clocked population protocol to
illustrate how clocked executions work.

2.3 Example: leader election

We will use leader election to illustrate application of the clock bits.
Standard population protocols support leader election from an initially

uniform state by fratricide: initially, each agent starts in a leader state L,
and the transition rule (L,L) → (L,F ) eventually turns all but one leader
into a follower. But the winning leader cannot detect that this condition
has occurred, and previous protocols that have used leader election as an
initial stage have had to include a mechanism for restarting the computation
after each remaining candidate is eliminated.

With a clock, the eventual leader can detect that it has won, because
it can only receive a clock tick in a terminal SCC of the transition graph,
and the only terminal SCCs are the one-leader configurations. But we can
do even better than this. Fischer and Jiang [FJ06] demonstrated that a
standard population protocol cannot elect a leader starting from an arbitrary

10



initial state, and proposed an Ω? oracle that eventually signals when there is
no leader in the current configuration. We can get the same effect by using
clock ticks.

Consider a protocol with three states: leader L, candidate C, and
follower F . We use the following transition table:

L,L→ L,F

L,C → L,F

C,C → C,F

F ′, x→ C, x

C ′, x→ L, x

As usual, we assume that the initial configuration does not have any
clock bits set. But we place no other restriction on the initial states of the
agents. For example, it is possible that every agent starts in state F . Note
that we are using the convention defined earlier that F ′ (for example) is the
state F with the clock bit set.

What we would like this protocol to do is proceed through the follow-
ing sequence of intermediate configurations (some of which may be skipped
depending on the initial configuration):

1. Starting from an all-F configuration, eventually at least one F receives
a clock tick and promotes itself to C.

2. Starting from a configuration with at least one C agent and no L
agents, eventually it reaches a configuration with only one C agent
and the rest F agents.

3. Starting from a configuration with one C and the rest F , eventually
the C receives a clock tick which eventually promotes it to L.

4. Starting from a configuration with at least one L agent, eventually it
reaches a configuration with exactly one L agent and the rest F .

5. Starting from a configuration with one L and the rest F , eventually
the L receives a clock tick.

It is not hard to show that each of these steps can occur. For (1), since
the all-F configuration is inescapable through ordinary transitions, so it will

11



occur cofinally up to the next limit ordinal. So we can deliver a tick to
some F at the next limit ordinal step, then apply the F ′, x → C, x rule to
generate a candidate. For (2), we can just apply the rule C,C → C,F until
only one C remains. Similar arguments apply to the remaining steps. But
we cannot yet show that each step must occur. Doing so requires extending
the fairness condition.

2.4 Fairness in clocked executions

We define an execution to be fair if, for any ordinal α, if the set of times at
which a configuration C is enabled is cofinal in α, then the set of times at
which C occurs is also cofinal in α. We define an execution prefix to be fair
if the same condition holds for any α less than or equal to the length of the
execution prefix.

A standard execution consists of times less than ω, and restricting at-
tention to this interval yields the standard fairness condition, since on ω,
occurring infinitely often and occurring cofinally coincide. But over longer
intervals, having C occur infinitely often when it is enabled infinitely often
is not enough.

For example, suppose that C1 → C2, and C1 occurs infinitely often over
both the intervals [0, ω) and [ω, ω ·2). We do not wish the clock tick at time
ω to change the effect of the fairness condition, but if we only require C2
to occur infinitely often in the entire execution, it is possible for it to do
so only in [0, ω) (or only in [ω, ω · 2)), yielding an execution that is unfair
by the standard definition within this interval. Cofinality prevents this,
and indeed we can show that the extended definition is equivalent to the
standard definition over all intervals of length ω:

Lemma 2.1. Let Ξ be a fair execution. Then if C1 → C2, and C1 occurs
infinitely often in some interval [α, α+ω), C2 also occurs infinitely often in
[α, α+ ω).

Proof. Let α+ k1 < α+ k2 < . . . enumerate the times at which C1 appears
in [α, α+ ω). Because the sequence k1, k2, . . . is infinite, it is unbounded in
ω, thus α + k1, α + k2, . . . is cofinal with α + ω. So C2 is enabled at times
a + ki + 1, which are also cofinal in α + ω. Fairness then implies that C2
occurs at times cofinal in α+ ω.

Suppose that only finitely many of those times occur in [α, α+ω). Then
there is some largest time α+k < α+ω at which C2 occurs. But then there
is no time β with α + k < β < α + ω at which C2 occurs, and C2 does not

12



occur cofinally in α + ω, a contradiction. So C2 occurs infinitely often in
[α, α+ ω).

In addition to generalizing the standard definition, our definition also
forces the adversary to eventually set the clock bits. Consider an adversary
that never sets a clock bit. In the interval [0, ω2), at each time ω, ω · 2, ω ·
3, . . . , there is some enabled configuration C ′ω·k that includes clock bits.
Since there are only finitely many possible such configurations, there is some
specific configuration C ′ that is enabled at infinitely many times of the form
ω · k. These times are cofinal in ω2, so C ′ must also occur cofinally in ω2.
It follows that in ω2, the clock ticks infinitely often.

Note that this does not provide any particular guarantee on when the
clock bits arrive: just as the adversary may delay a protocol transition for
any finite amount of steps, the adversary may similarly delay a particular
limit configuration over any finite number of limit times. But it cannot do
so forever.

It is worth noting that this definition of fairness respects concatenation
of executions:

Lemma 2.2. Let Ξ1, Ξ2, . . .Ξk be a finite sequence of fair execution prefixes
such that the initial configuration in Ξi+1 is enabled following Ξi. Then the
concatenation Ξ1Ξ2 . . .Ξk is a fair execution.

Proof. For each i, let αi be the length of Ξi, and let α =
∑k
i=1 αi be the total

length of the combined execution. If β ≤ α, there exists some minimum j
such that β ≤

∑j
i=1 αj . Now if C is enabled cofinally in β, then C is enabled

cofinally in some prefix of Ξj of length γ, where β =
∑j−1
i=1 αi + γ. But then

fairness of Ξj says that C occurs cofinally in γ, which means that it occurs
cofinally in β.

2.5 Leader election in fair executions

We can now justify the claim that the example protocol from §2.3 does in
fact elect a leader.

Theorem 2.3. Starting from any initial configuration with no clock bits
set, the above protocol produces in time bounded by ω2 an agent in state L′.
Furthermore, if the protocol reaches a configuration with an agent in state
L′, this will be the only agent in the configuration in state L′ or L, with all
other agents in state F ′ or F .

13



Proof. The proof follows the informal argument from §2.3. We will make
heavy use of Lemma 2.1 to show convergence to desirable configurations
within intervals of length ω, then apply the fairness condition to longer
intervals to show that clock ticks eventually allow further progress.

Let Cα be the configuration at time α, where α is an arbitrary ordinal
bounded by ω2. There are several possible cases:

1. Cα is an all-F configuration. Because all transitions are no-ops, Cα
is cofinal in the interval [α, α + ω). It follows that a configuration in
which at least one agent is in state F ′ is enabled at time α+ω; if this
configuration occurs as Cα+ω, then (applying Lemma 2.1) either (a)
at least one such F ′ agent participates in an F ′, x → C, x transition
in the interval [α + ω, α + ω · 2), or (b) all clock ticks are lost during
this interval, leaving the protocol again in the all-F configuration.
If we get a C, fall through to the next case. Otherwise, repeat the
same argument starting at the first configuration Cα+ω+k that is all-
F . Iterating this process eventually either generates a C, or it produces
an execution over [α, α + ω2) in which some configuration CF ′ with
at least one F ′ is enabled at every time α + ω · k (where k ∈ N),
meaning that CF ′ is enabled cofinally in α+ω2. But then the fairness
condition requires that CF ′ occurs cofinally in α + ω2. For each time
α+ω · k+ ` at which CF ′ occurs, a configuration CC with at least one
C is enabled at time α + ω · k + ` + 1. This sequence of times is also
cofinal in α+ ω2, so CC must occur cofinally (and thus at least once)
in α + w2. In particular there is some first time α′ < α + ω2 = ω2

at which CC occurs. So we can always fall through to the next case
(with a new value of α).

2. Cα contains at least one C, with all other agents F . Suppose Cα
containsm > 1 copies of C. Then by Lemma 2.1, if Cα occurs infinitely
often in [α, α+ω), so does some configuration C ′ with onlym−1 copies
of C. But there are no transitions that can increase the number of C
agents, so this in fact implies that a configuration with m−1 C agents
is reached after some finite interval [α, α+k). Repeating this argument
yields a configuration Cα+k′ with exactly one C (and all other agents
F ) at some time α + k′, where k′ is finite. No transitions will change
this configuration, making Cα+k′ cofinal in [α, α+ ω). This enables a
configuration where the unique C agent gets a clock bit at time α+ω.
As in the previous case, we can argue that such a C ′-containing con-
figuration is in fact enabled at every time α+ω · k for which a config-

14



uration with at least one C occurs in [α+ ω · (k− 1), α+ ω · k). From
a C ′-containing configuration, we can transition to an L-containing
configuration via the C ′, x → L, x rule. If this transition occurs, we
reach the next case, where there is one L agent and the rest F . If
not, C ′-containing configurations are enabled cofinally in [α, α + ω2),
implying that C ′-containing configurations occur cofinally in [α, α +
ω2); but then L-containing configurations are also enabled cofinally
in [α, α + ω2), which means that some such configuration eventually
occurs. Either way, we fall through to the next case.

3. Cα contains at least one L and the rest of the agents C or F . From
Lemma 2.1, at some point α+k in [α, α+ω) we reach a configuration
where one L consumes all other L and C agents. Then for each time
α+ ω · k, where 0 < k < ω, a configuration in which this L agent gets
a clock tick is enabled. This sequence of times is cofinal in [α, α+ω2),
so eventually one of these configurations is reached.

Each of the above cases takes a time βi < ω2. Writing each time as
βi = ω ·ki, where ki is finite, we get a total time of ω · (k1 +k2 +k+3) < ω2.
This shows that we reach a configuration with at least one L′ in strictly less
than ω2 time.

For the second part, observe that we can generate L′ only in a configura-
tion indexed by a nonzero limit ordinal α < ω2, which must be of the form
ω · k for k > 0. For this to occur, a configuration containing at least one L
must be cofinal in [ω · (k − 1), ω · k). But then Lemma 2.1 implies that all
other L or C agents are removed in this interval, so that only configurations
with at most one L and no C’s are cofinal in [ω · (k − 1), ω · k). So the L′
appearing at time ω · k is unique, and all other agents must be in state F or
F ′.

2.6 Output-stability and predicate computation

The notion of output-stable configurations carries over directly to transfi-
nite executions: an output-stable configuration C has the property that no
configuration C ′ that occurs later within the same execution has a different
output. A clocked population protocol computes a predicate if it eventually
reaches an output-stable configuration with the correct output in all execu-
tions. The time at which the protocol computes the predicate in a particular
execution is the first time at which it reaches such a configuration.

15



3 Transition graphs

Working directly with transfinite executions is awkward. In this section,
we give an alternative characterization of a clocked population protocol’s
executions based on paths through a directed transition graph, where
each node in the graph represents a configuration and each edge represents
either a transition between configurations or the delivery of a clock tick
taking some configuration to an equivalent configuration.

The transition graph is constructed recursively, where each layer Gk of
the recursion adds transitions that can occur at times that are a multiple of
ωk. The bottom layer G0 contains an edge for all transitions that can occur
in one time unit, as the result of applying the protocol’s transition relation
δ to two agents. We write C1 →0 C2 if such an edge appears in G0, and
write C1 →∗0 C2 if there is a nonempty directed path from C1 to C2 in G0.
Similarly, we will write C1 →k C2 or C1 →∗k C2 if there is a single edge or
nonempty directed path, respectively, from C1 to C2 in Gk.

To construct Gk+1 from Gk, we add edges representing the arrival of
clock ticks at multiples of ωk. To do so, we need to detect when some
configuration in C1 in Gk might occur cofinally in an interval [α, α+ ωk) in
a fair execution.

At a minimum, we need C1 →∗k C1, so that C1 can occur infinitely often.
But this is not enough: we also need it to be the case that the fairness
condition does not drive us to a state C2 from which we cannot return to
C1. This essentially means that no such state C2 can be reachable from C1 at
all, or in other words that C1 is an element of a terminal strongly-connected
component in Gk.

Formally, define Gk+1 = (Vk+1, Ek+1), where Vk+1 = Vk is the set of
all configurations of the protocol (including clocked configurations), and
Ek+1 = Ek ∪ {(C1, C2) | C1 ∼ C2 and C1 is in a terminal SCC in Gk}. We
will refer to the edges in Ek+1 \ Ek as level k + 1 edges.

The full transition graph Gω is just the union of all Gk for k ∈ N. Note
that if we restrict ourselves to configurations of a fixed size, all but a finite
number of these graphs are identical, because at some point we run out of
edges to add. But for simplicity we will imagine each Gk is an infinite graph
that represents all possible population sizes, so Gω will in general be a limit⋃∞
k=0Gk. Fortunately, we do not have to go past ω to compute Gω, since

we only consider protocols with finite populations.

Theorem 3.1. Given a clocked population protocol, let G0, G1, . . . be the
family of transition graphs defined as above, and consider some fair execution

16



Ξ.
The following hold for any configurations C and D:

1. If C occurs at time α, and D occurs at time β ∈ [α, α+ω), then there
is a path from C to D in Gk.

2. If C occurs cofinally in Ξ over some interval [α, α + ωk + 1), then D
occurs cofinally over the same interval if and only if there is a path
from C to D in Gk.

3. If D occurs in [α, α+ ωk+1), then D occurs cofinally in [α, α+ ωk+1)
if and only if D is in a terminal strongly-connected component of Gk.

Proof. By simultaneous induction on k.
When k = 0, G0 consists only of transitions that do not involve clock

bits, and the interval [α, α+ωk+1) contains only successor ordinals. We can
show:

1. There is a path in G0 from C to each configuration Cβ with α ≤ β <
α + ωk+1 = α + ω. The proof is by induction on β. The base case
is β = α; use the empty path. For the induction step, go from β to
β + 1 by extending the path from C = Cα to Cβ by the edge from Cβ
to Cβ+1.

2. If there is no path from C to D in G0, then let β be some time at
which C occurs in [α, α+ ω). Then from the preceding claim, D does
not occur in [β, β + ω) = [β, α+ ω) and in particular there is no time
γ such that β < γ < α + ω at which D occurs. So D does not occur
cofinally in [α, α+ ω).
Alternatively, suppose there is a path from C to D in G0. We will
show that D occurs cofinally in [α, α + ω) by induction on d(C,D),
the length of the shortest path from C to D in G0. If d(C,D) = 0,
then D = C and the result holds trivially. If d(C,D) > 0, let B be
the last configuration on a shortest path from C to D in G0. Then by
the induction hypothesis, B occurs cofinally in [α, α + ω). For each
time γ at which B occurs, D is enabled at time γ+ 1, so D is enabled
cofinally in [α, α+ω), and because the execution is fair, it must occur
cofinally as well.

3. Let S be the strongly-connected component ofG0 that containsD. If S
is not terminal, there is an outgoing edge from S to some configuration
B, such that there is no path from B to D (since B is not in the same

17



strongly-connected component). By the preceding claim, if D occurs
cofinally in [α, α+ω), then so does B. But then, since there is no path
from B to D, D cannot occur cofinally in [α, α+ ω).
Conversely, suppose there is no outgoing edge from S. From (1), once
D occurs at some time β ∈ [α, α+ω), only configurations B reachable
fromD can occur in [β, α+ω) = [β, β+ω). Since there are only finitely
many such B, one of them occurs infinitely often and thus cofinally in
[β, β +ω). But since B is in the same SCC as D, there is a path from
B to D, and so D occurs cofinally in [β, β + ω) (and thus [α, α + ω)
by (2).

For larger k, suppose that the claim holds for k − 1. We will essentialy
repeat the argument for the base case G0, but now we must deal with limit
ordinals and edges corresponding to limit transitions. Fortunately we can
refer to the preceding arguments to handle the successor ordinal cases.

1. For the first claim, we will again show by induction on β ∈ [α, α+ωk+1)
that there is a path in Gk from C = Cα to Cβ. The base case β = α
and the induction step for successor ordinals β+ 1 are the same as for
k = 0. This leaves the case where β is a limit ordinal.
Rewrite β as α + β′, where β′ < ωk+1, and use ordinal division to
rewrite β′ = ωk ·q+ρ, where the quotient q is finite (because otherwise
β′ ≥ ωk · q ≥ ωk · ω = ωk+1) and the remainder ρ < ωk. This gives
an expansion of β as α + ωk · q + ρ, where q is finite and ρ < ωk.
We will first argue by induction on q that there is a path in Gk from
Cα to Cα+ωk·q. If q = 0, this is trivial. Otherwise, by the induction
hypothesis on q there exists a path in Gk from Cα to Cα+ωk·(q−1). For
Cα+ωk·q to be enabled at α + ωk · q, there must be a configuration
C∗ ∼ Cα+ωk·q that occurs cofinally in [α + ωk · (q − 1), α + ωk · q).
From part (3) of the induction hypothesis on Gk−1, this can only be
the case if C∗ appears in a terminal SCC of Gk−1, in which case there
is an edge in Gk from C∗ to Cα+ωk·q. In addition, the occurrence of
C∗ in this interval also implies that there is a path in Gk−1 form Cα
to C∗. Stitching this path and edge onto the previous path gets us the
claimed path in Gk to Cα+ωk·q.
We still have to deal with finding an extension from Cα+ωk·q to Cβ =
Cα+ωk·q+ρ, but as ρ < ωk, β ∈ [α + ωk · q, α + ωk · q + ωk), and the
induction hypothesis on Gk implies that such a path exists.

18



2. If there is no path from C to D in Gk, the argument reduces to the
preceding claim as in the G0 case.
If there is a path from C to D in Gk, we again use induction on the
length ` of the path to show that every configuration on the path
occurs cofinally in [α, α + ωk+1). This holds trivially when ` = 0.
for larger `, let B be the last configuration on the path before D.
From the induction hypothesis on ` we have that B occurs cofinally
in [α, α+ ωk+1). Let m ≤ k be the smallest value such that a B → D
edge appears in Gm.
If m = 0, then there is a protocol transition from B to D, and fairness
gives that D occurs cofinally in [α, α + ωk+1), since it is enabled in
every successor to a time at which B occurs. For larger m, we have
from the definition of Gm that B ∼ D, and B appears in a terminal
SCC in Gm−1. Now apply part (3) to show that B occurs cofinally in
any interval [γ, γ + ωm−1] such that B occurs at time γ. Each such
interval enables D at time γ + ωm, and because the set of times γ is
cofinal in [α, α + ωk+1), so is the set of times γ + ωm at which D is
enabled. So fairness says D occurs cofinally in [α, α+ ωk+1).

3. If the SCC S of Gk containing D is not terminal, then there is some
path from D to a configuration B not in S, so from (1) we reach B
and can’t return.
Alternatively, if S is terminal, then some state B ∈ S occurs in in-
finitely many intervals [α+ωk · `, α+ωk · (`+ 1)). It is not necessarily
the case that B is in a terminal SCC in Gk−1, but there is some con-
figuration reachable from B that is, and since there are only finitely
many possible configurations, one of these configurations A must be
cofinal in [α + ωk · `, α + ωk · (`+ 1)). That configuration A is in the
same SCC S in Gk as D, because there is a path to it from D in Gk
and S is terminal. So for each interval [α + ωk · `, α + ωk · (`+ 1)) in
which A occurs, D is enabled at α+ωk · (`+ 1), and since these times
occur cofinally in [α, α+ ωk+1), by fairness, so does D.

Transition graphs give a translation between transfinite executions and
the finite executions they represent. In this translation, transitions along
edges not in G0 correspond to clock interrupts that cut off a looping compu-
tation and advance it to some future limit configuration. Each “phantom”
sequence of transitions that is omitted when this occurs in effect acts as

19



a certification that when a clock signal of a given level arrives, the current
configuration could have recurred forever. By recognizing terminal SCCs di-
rectly, the transition graph approach gives an alternative certification that
can be implemented in finite time on a conventional computer. We can also
imagine implementing these clock ticks in practice by delivering a tick from
some external source after a sufficiently long time interval, on the assump-
tion that any reasonable physical implementation of a population protocol
would converge with high probability in a bounded number of transitions.

3.1 Computation of transition graphs

Because population protocols preserve the number of agents, each graph
Gk is made up of disconnected subgraphs Gnk for each population size n.
Assuming the interaction graph of a population is complete (so that we
can represent configurations with the same population counts as a single
vertex), we can compute these subgraphs efficiently, and use them to answer
questions about population protocols running on particular inputs or input
sizes.
Theorem 3.2. For any population protocol with m agent states and a com-
plete interaction graph, the transition graphs Gn0 , . . . Gnn4m = Gnω can be com-
puted in time polynomial in n.
Proof. Given m different agent states, there are fewer than n2m vertices
in each Gnk , where the 2 comes from the clock bit. For fixed m, this is
polynomial in n.

Computing the edges in Gn0 can easily be done in polynomial time by
examining the transition function. Computing the added edges in Gnk+1
requires finding the terminal SCCs of Gnk , a linear-time operation using
standard graph algorithms. Since Gnk+1 = Gnk implies Gn` = Gnk for all
` ≥ k, we must add at least one edge to Gnk+1 at each step to keep going;
after fewer than n4m steps we will have either added all possible edges or
reached the limit; in either case, Gnn4m = Gnω.

It follows that, in polynomial time, we can answer any questions about
reachability, output-stability, and so forth that can be determined by apply-
ing standard graph algorithms to Gnω. In particular, given an output-stable
clocked population protocol, we can compute Gnω, and for any input con-
figuration determine the output in any terminal SCC reachable from some
initial configuration C. This puts computation by clocked population pro-
tocols firmly in P, even if we allow unbounded transfinite time (in practical
terms, arbitrarily deep layers of clocks) for them to complete.

20



But we can say more than this. The same argument that shows that
computing Gnk can be done in time polynomial in n also shows:

Theorem 3.3. For any population protocol with a complete interaction
graph and any fixed k, whether there is a path from C to D in the tran-
sition graph Gnk can be computed in nondeterministic O(logn) space.

Proof. Because of the nondeterminism, this problem reduces to testing if
there is an edge from C to D in Gnk . Internally, we represent C and D as a
list of agent counts, which takes O(logn) space to store each.

For k = 0, this just involves checking if the counts of each state in C and
D differ by an amount that is consistent with some transition in δ, which is
easily done in space O(logn).

For larger k, we make heavy use of the Immerman-Szelepcsényi Theorem
[Imm88, Sze88], which says that NL = coNL and more generally implies
that NLNL = coNLNL = NL [Imm88]. This means that as long as we
recurse only to bounded depth, we can use NL subroutines in a NL or
coNL computation and stay in NL.

In particular, to determine if C → D appears in Gnk , we must check (a)
if it is already in Gnk−1, and if not, check (b) if C ∼ D and C is in a terminal
SCC of Gnk . Testing if C ∼ D is trivial. Testing if C is in a terminal SCC
requires testing for all B for which there is a path from C to B in Gnk−1, if
there is also a path from B to C in Gnk−1.

Fortunately, checking if there is a path from C to B in Gnk−1 is easily
done in NLNL = NL (guess each step of the path nondeterministically, and
call the NL oracle for edges in Gnk−1 to verify that each step is an edge),
and similarly testing for the non-existence of a path from B to C is easily
done in coNLNL = NL. This leaves the universal quantifier over B, which
puts the problem of detecting if C is in a terminal SCC in coNLNL, which
is again equal to NL.

Just as Theorem 3.2 puts all languages computed by clocked population
protocols in P, Theorem 4.1 puts all languages computed by clocked pop-
ulation protocols using at most ωk time in NL. The proof is essentially
the same as for P, as NL can determine whether there exists a path from
the initial configruation to some (nondeterministically guessed) state in Gnk
with a particular output using Theorem 4.1, and verify that there are in fact
no states with different outputs by using Theorem 4.1 again together with
the closure of NL under complement given by the Immerman-Szelepcsényi
theorem. For reference, we state this as an explicit corollary:

21



Corollary 3.4. Any language computed by a clocked population protocol in
at most ωk time, for any fixed k, is in NL.

In §4.1, we will apply this result to show that for any fixed k, a clocked
population protocol that runs in time ωk can be replaced by a clocked pop-
ulation protocol that runs in time ω2: one level of clock ticks is always
enough.

4 Programming a clocked population protocol

Clocked population protocols are more powerful than standard population
protocols, as we have already seen with Theorem 2.3. In this section, we
give further applications of this power.

4.1 Computing symmetric predicates in NL

Because agents with the same state are indistinguishable, the configuration
of a population protocol with a complete interaction graph can be summa-
rized by giving counts of the numbers of agents in each state. This effectively
limits the population to storing data in unary, in the form of counters, which
means that a configuration of a population protocol can be written down
in a more traditional computational model in space only logarithmic in the
size of the population. Following the general approach of the universal ran-
domized population protocol with a leader of Angluin et al. [AAE08], we
can represent a counter machine in the style of Minsky [Min61] by using the
unique leader L remaining from the preceding construction as a finite-state
controller, and expressing counter values up to n as the sum of bits scattered
across all n agents. But where Angluin et al. were limited by the need to
build a randomized phase clock internally out of the agents themselves, by
using an external clock we can eliminate the possibility of failure and com-
pute any symmetric predicate in NL on the initial agent states correctly in
all executions.

As this is now a standard construction in the population protocol lit-
erature (see, for example, [MS15, BEJ19]), we concentrate on the central
question of implementing a counter holding values up to O(n) that supports
increment, decrement, and test for zero. Multiple instances of this counter
stored in parallel can the then be used to implement counters of polynomial
size [FMR68, Lemma 3.2], which can in turn simulate a Turing machine
tape of size O(logn) [FMR68, Theorem 3.1].

22



We assume that we start with a leader, which can be elected using the
protocol given in §2.3. Each agent stores its original input; in addition, the
leader holds the finite-state control for the counter machine, while the other
agents store a vector of k bits, each representing part of a unary counter.

Incrementing a counter that is not already at its maximum value consists
of executing a transition (L1, 0) → (L2, 1), where L1 and L2 are different
states of the leader and we omit extraneous parts of the states from the
description. Decrementing a counter consists of execution (L1, 1)→ (L2, 0).
In both cases, if there is no agent with the appropriate value 0 or 1, the
operation never happens.

This is a problem for standard population protocols, because they have
no mechanism to detect when they have stalled. But it is not a problem with
clocks: a protocol that converges to a fixed configuration will remain in that
configuration at the next clock tick, and the fairness condition enforces that
a clock tick is eventually delivered to the leader. So the leader can test for 0
by attempting to decrement a counter and waiting until it either succeeds or
fails. (If it succeeds, an increment will restore the previous state, allowing
non-destructive tests.)

A transition relation that uses clock ticks to support a decrement op-
eration that moves the leader from state L1 to L2 if successful and to L3
otherwise can be as simple as this:

L1, 1→ L2, 0
L′1, x→ L3, x

(Here x represents an arbitrary state, and transitions involving pairs not
described are assumed to have no effect.)

Each such counter can count up to n, where increments and decrements
that do not hit the bounds take < ω time and those that hit the bounds
(including those used in zero tests) take < ω2 time. Since any finite number
of operations that take < ω2 time also finish in < ω2 time, this means that
we can implement any finite counter machine execution in < ω2 time. Using
the results of [FMR68], this gives the ability to compute any symmetric
predicate in L in < ω2 time.

To get NL, we allow the leader to both make nondeterministic choices
and to reset the computation to the beginning after reaching a rejecting
state. Nondeterminism does not require modifying the transition function
to be nondeterministic; instead, we can use the nondeterministic scheduling
of which agent the leader meets next as a supply of nondeterministic bits,
and observe that fairness implies that if there exists an accepting computa-
tion path, we will eventually find it. By mapping all other states that the

23



accepting state to a rejecting output, we get an output-stable simulation of
a nondeterministic logspace machine.

Since each step of this machine involves a finite number of counter-
machine steps, the time per step of this machine is < ω2. Because we
converge to a terminal SCC (either an accepting state or an endless loop of
rejecting computation paths) in finitely many steps, the total time to reach
an output-stable configuration is also < ω2. It follows that:

Theorem 4.1. For any symmetric predicate P in NL, there is a clocked
population protocol that stably computes P .

In the next section, we show that it is possible not only to reach an
output-stable configuration, but to detect when an output-stable configura-
tion occurs.

4.2 Detecting stable outputs

The ability to simulate NL predicates means that we can detect when a
clocked population protocol has reached an output-stable configuration, pro-
vided it does so in time < ωk for some fixed k. This means that unlike stan-
dard population protocols, we can compose clocked population protocols
sequentially, using the output of one protocol as the input to the next.

Recall that a configuration C is output-stable if there is no configuration
C ′ reachable from C with a different output. In our model, this includes both
configurations reachable by ordinary transitions and by clock transitions.
We first observe that if an output-stable configuration is always reached in
time < ωk, then testing output-stability for some configuration C requires
only testing that C has the same output as every configuration C ′ that is
reachable from C in time < ωk.

The reason for this is that for any configuration C ′′ that is eventually
reachable from C (possibly at time ωk or later), then between C and C ′′

must come some output-stable configuration C ′ at time < ωk. If all such C ′
have the same output as C, then output-stability of each C ′ implies that all
such C ′′ also have the same output as C: so in this case, C itself is output-
stable. So we just need a mechanism to test if some configuration with a
different output is reachable from C in time < ωk.

Here is the idea: At any time, the leader may nondeterministically choose
to test for an output-stable configuration. To do so, the leader switches to
transitions of the form (L, x)→ (L, x̂), where x̂ represents a “frozen” version
of state x. Eventually, no more unfrozen agents remain, and the protocol
enters a configuration that is stable until the next clock tick.

24



Upon receiving a clock tick, the leader can tell that it has successfully
frozen all the agents, and proceeds to the verification step. Since it is given
that the simulated protocol reaches an output-stable configuration within ωk
time, the frozen configuration C will be output-stable if every configuration
reachable from it in < ωk time has the same uniform output on all agents.
We now observe that the NL simulation of the preceding section allows the
leader to perform an NL computation of its choosing on the frozen state in <
ω2 time, so we need only find a way to test output-stability in NL. Using an
NL machine, we can nondeterministically guess the common output x. The
question then becomes, is there a sequence of transitions starting from the
frozen state that gives some agent a different output y 6= x? The existence of
such a sequence is testable in NL by Theorem 4.1: we nondeterministically
guess a bad configuration D and then apply the theorem to check if D is
reachable from C in < ωk time. But what we want to know is that no
such sequence exists. This question is in coNL, which puts output-stability
in NLcoNL. But this class is equal to NL by the Immerman-Szelepcsényi
Theorem.

This means that whenever the leader freezes the configuration, it can use
the procedure of the preceding section to try one branch of the NL com-
putation that tests output-stability (note that this will require additional
state in the agents separate from the frozen states). If the configuration is
in fact output-stable and the protocol picks the right branch, we are done.
If not, the leader reverses the freezing process and restarts the underlying
protocol.

4.3 Reduction to < ω2 time

We can also apply Theorem 4.1 to not only detect convergence of a popula-
tion protocol that runs in < ωk time but to reduce its time to < ω2. Given
a protocol that runs in < ωk time, we know that it computes a symmetric
function in NL. We can thus ignore the original protocol and simulate the
protocol using Theorem 4.1 to compute the same predicate, output-stably,
in time < ω2. Adding the convergence detector of §4.2 gives us the ability to
detect when the output has stabilized: if we structure the transition relation
so that the convergence detector starts only in a configuration with a clock
tick, we can guarantee that it runs only finitely many times using < ω2 time
each, for a total cost that is still < ω2. So we can in fact compute any
predicate that is stably computable by a clocked population protocol that
runs in < ωk time for any fixed k in < ω2 time.

We summarize this result as:

25



Theorem 4.2. Any predicate computable by a clocked population protocol
in < ωk time, for fixed k, is computable in < ω2 time.

4.4 Alternation

Alternation [CKS81] extends a complexity model by allowing branching
computations that include both existential (∃) branches and universal (∀)
branches. This replaces the usual single-threaded computation with a tree
of hypothetical computations, with the value of the computation computed
from the values reported at the leaves by applying OR at ∃ nodes and AND
at ∀ nodes.

The branching nodes are organized into alternating layers consisting en-
tirely of ∃ or ∀ branches. The output of an alternating computation can be
expressed by a Σk formula of the form ∃w1∀w2∃w3 . . . Qwk : Φ(w1, . . . , wk, x)
or a Πk formula of the form ∀w1∃w2∀w3 . . . Qwk : Φ(w1, . . . , wk, x). In both
cases, Q is ∃ or ∀ as appropriate, the wi variables represent which branch the
computation takes at each branching node, and the predicate Φ represents
the output of the computation on input x for these particular choices.

Note that the wi may encode more information than the computational
model is capable for storing; for example, the class NL = Σ1

L can detect s–t
paths by branching over all possible paths of length at most n, while storing
only the most recent nodes on the path. In effect, each wi can be represented
by a configuration Ci representing the final configuration resulting from the
choice made in wi—like the final node in the path, in the s–t connectivity
example.

Population protocols, clocked or not, include inherent nondeterminism
in their schedules, so in the context of a clocked population protocol, the
natural interpretation of a branching node is a choice between possible next
steps. Here wi represents some sequence of nondeterministic choices made
during an executing and the corresponding Ci will be the resulting configu-
ration. So we get nondeterminism for free. The question is whether we can
evaluate the sequence of alternating ∃ and ∀ quantifiers.

We can implement bounded alternation directly in a clocked population
protocol using essentially the same technique used to implement NL =
Σ1

L. Suppose we wish to compute a predicate of the form ∃w1 : Φ(w1, C0),
where Φ(w1, C0) represents the result of a clocked population protocol that
runs starting in some configuration C1 resulting from applying the schedule
determined by w1 starting in configuration C0.

Elect a leader, and have the leader make a spare copy of C0. Run the
protocol using the copy to reach C1, then run the remainder of the protocol,

26



detecting termination if necessary using the technique in §4.2. If the leader
sees 1 as the output of this remainder, terminate with 1 as the output;
otherwise, restart from the saved C0.

Because all output-0 configurations can reach the restart configuration
and vice versa, the output-0 configurations form a strongly-connected com-
ponent. This component is terminal only if there is no output-1 configu-
ration, so if there is no output-1 configuration, the leader will eventually
receive a clock tick while in an output-0 configuration. In this case the
leader can decide 0.

By inverting the leader’s output, we can equally well compute predicates
of the form ∀w1 : Φ(w1, C0). Iterating the construction gives arbitrary Σk

and Πk formulas, for any fixed k.
It is not clear that this gives clocked population protocols any addi-

tional power, because all of the predicates that we know how to compute
using such a protocol are contained in NL, and Σk

NL = Πk
NL = NL for any

fixed k due to the Immerman-Szelepcsényi theorem. However, there is an
intriguing possibility if we could remove the need to store a stack of k inter-
mediate configurations: unbounded alternation would allow us to compute
any predicate on initial configurations in P, since unbounded alternation
over log space gives the class AL = P [CKS81]. Because we already know
that any such predicates can be computed in P (Theorem 3.2), this would
make the class of predicates computable by clocked population protocols
precisely equal to the symmetric predicates in P. But it is not clear how to
implement unbounded alternation without requiring unbounded space.2

2There are other ways clocked population protocols might turn out to have the power
of P. One is that NL might in fact equal P, an open question at this time. Another is
that it might be possible to implement the class FO(LFP) of first-order formulas with a
least-fixed-point operator implicitly using the transition graphs defined in §3, which is
known to be equivalent to P by the Immerman-Vardi Theorem [Imm86, Var82].
The idea is that a least-fixed-point operator LFP(Φ(P, x)) constructs a predicate from

a first-order formula Φ in an unspecified predicate P , by starting with an empty predicate
P0 and defining Pi+1(y) = Pi(y) ∨ Φ(Pi, y), stopping when Pi+1 = Pi. The family of
transition graphs G0, G1, . . . computed in the proof of Theorem 3.2 match this structure
exactly. The question then is whether a particular predicate Φ needed for the Immerman-
Vardi Theorem could be encoded using the terminal strongly-connected components of
some population protocol. This seems unlikely, but the existence of multiple paths to
P makes the possibility that clocked population protocols might have this power not as
absurd as it might appear at first glance.

27



5 Relation to other oracles

The clock ticks added in the clocked population protocol model are a kind
of oracle, providing the protocol with information (“you are stuck”) that
it cannot obtain for itself. We have seen that for the purposes of leader
election, clock ticks are at least as powerful as the Ω? oracle of Fischer and
Jiang. A natural question is whether other kinds of oracles can be simulated
using clock ticks or vice versa.

5.1 Higher-order clock ticks

We think of the multiples of ω as the smallest clock interval in the system,
while multiples of larger ordinals like ω2 represent longer intervals. The
clock mechanism by itself does not allow the agents to distinguish between
a tick that arrives at a multiple of ω that is not a multiple of ω2 from one
that arrives at a multiple of ω2. An obvious extension is to add 2, 3, . . . , k
values to the existing 0 and 1 clock values so that a clock tick i is delivered
only at times that are multiple of ωi.

But this is not necessary. Having elected a unique leader, we can use
it together with a counter implemented across the other agents to simulate
such higher-order clock ticks for multiples of ωk up to the maximum value
of the counter.

Let x represent the value in the counter. Initially, x is 0. When the
leader receives a clock tick, it increments x and then resets it to zero. (As
part of the reset operation, it may also copy the counter value somewhere
else for later use.)

Theorem 5.1. Using the above mechanism, the leader increments the counter
to k following a clock tick only at times that are multiples of ωk.

Proof. By induction on k. The base case is k = 0; all limit ordinals are
multiples of ω0+1 = ω, so the hypothesis holds trivially.

For larger k, observe that x = k can occur at α if and only if configura-
tions with x = k are cofinal in α. Each such configuration must occur at a
time that is a multiple of ωk. Expand α as ωk+1 · β + ωk · q + ρ, where q is
finite and ρ < ωk. If either γ or ρ is nonzero, there there exists a time ν less
than α such that no multiples of ωk occur after ν. But then configurations
with x = k are not cofinal in α. It follows that q = ρ = 0 and α is a multiple
of ωk+1.

Note that these higher-order clock ticks are not the strongest we can
imagine: for example, when the leader sees x = 2, it may be that the current

28



time is ω3 or some even larger power of ω. It is not clear whether providing
an exact measure of the exponent would give a protocol more power directly,
although if k is bounded by a constant, we can extend the transition graph
construction from §3 to enforce this constraint within the transition graph
model, and compute the same predicates as a clocked population-protocol
with these stronger higher-order ticks using the same approach as in Theo-
rem 4.2.

5.2 Absence detectors

The absence detector of Michail and Spirakis [MS15] allows agents to
determine precisely which states are present in the population at the time
of encountering the detector. This allows construction of counters as in §4.1,
and generally allows computation of symmetric predicates in NL.

Clock ticks are weaker than absence detectors in the sense that delivery
of a clock tick can only indicate that no progress can be made. This can
be used to test for the absence of a particular state q by a leader that
changes state if it encounters a q, but only if no other activity is ongoing
in the population. This suggests simulating an absence detector directly
by applying the same freezing-and-unfreezing method used in §4.2, but the
cost of triggering this mechanism routinely during the execution of a larger
protocol might be high.

On the other hand, it is straightforward to modify the transition graph
construction of §3 to include an absence detector, and an NL machine that
has access to the entire population count can easily implement an absence
detector while simulating a population protocol. So the fact that clocked
population protocols can compute functions in NL gives them the same
computational power as a population protocol with an absence detector.

6 Conclusions

We have shown that allowing an external clock to deliver ticks to a stuck
population protocol extends its power dramatically, giving it the ability
to compute any symmetric predicate in NL. This generalizes previous re-
sults [AAD+06, SCWB08, MS15] that obtained similar power using more
specialized mechanisms to detect convergence.

By using a model of transfinite executions over time intervals repre-
sented using ordinal arithmetic, we showed that the transition rules and
fairness condition of the standard model extend in a straightforward way to
these clocked population protocols. We also gave a representation of these

29



transfinite executions using paths over finite transition graphs, demonstrat-
ing that this model both corresponds to a clock mechanism that could be
implemented in practice in finite time, that the added power still remains
plausibly within P, and that clocked population protocols have a capability
for introspection, allowing clocked population protocols to compute prop-
erties of the executions of other clocked population protocols and related
models by applying NL computations to their transition graphs.

We do not really expect a system to wait for an infinite amount of time
before delivering a clock tick, any more than we expect a scheduler that
must satisfy a fairness condition eventually to delay this beyond the lifetime
of the universe. Instead, in both cases, we think of an unbounded delay
as representing a time that is long enough, and clock ticks simply give a
protocol the ability to outwait the potentially unbounded delays imposed
by the scheduler. A practical question that we have not addressed is how to
identify how long is long enough to wait to deliver a clock tick for a specific
protocol running under a specific scheduling rule. The answer to this ques-
tion will depend very much on the details of the protocol and scheduler, and
in particular on the way in which the global fairness condition is enforced.
In the case where global fairness is imposed through a known bound on
the time that the adversary can delay reaching a particular configuration, it
may be possible to compute a fixed, deterministic time at which a clock tick
may be delivered safely. If the global fairness condition is less predictable,
as in the case of randomized scheduling where it holds only with probability
1 in the limit, then it may only be possible to make weaker, probabilistic
guarantees of correctness. The general question of predicting the running
time of a given protocol under a given scheduling regime, even in special
cases, is an interesting open problem that is sadly beyond the scope of this
paper.

Our results apply to population protocols with complete interaction
graphs, the weakest form of the standard model. An interesting question is
how clock bits and their representation in terms of transfinite fair executions
would interact with population protocols with less symmetric interaction
graphs, or even with other distributed computing models providing by their
own eventual progress guarantees.

Acknowledgments

I would like to thank the anonymous referees for their many helpful com-
ments and suggestions of related work.

30



References

[AAD+06] Dana Angluin, James Aspnes, Zoë Diamadi, Michael J. Fischer,
and René Peralta. Computation in networks of passively mo-
bile finite-state sensors. Distributed Computing, pages 235–253,
March 2006.

[AAE08] Dana Angluin, James Aspnes, and David Eisenstat. Fast compu-
tation by population protocols with a leader. Distributed Com-
puting, 21(3):183–199, September 2008.

[AAER07] Dana Angluin, James Aspnes, David Eisenstat, and Eric Rup-
pert. The computational power of population protocols. Dis-
tributed Computing, 20(4):279–304, November 2007.

[Asp17] James Aspnes. Clocked population protocols. In Elad Michael
Schiller and Alexander A. Schwarzmann, editors, Proceedings of
the ACM Symposium on Principles of Distributed Computing,
PODC 2017, Washington, DC, USA, July 25-27, 2017, pages
431–440. ACM, 2017.

[BBB13] Joffroy Beauquier, Peva Blanchard, and Janna Burman. Self-
stabilizing leader election in population protocols over arbitrary
communication graphs. In International Conference On Princi-
ples Of Distributed Systems, pages 38–52. Springer, 2013.

[BBBD16] Joffroy Beauquier, Peva Blanchard, Janna Burman, and Oksana
Denysyuk. On the power of oracle Ω? for self-stabilizing leader
election in population protocols. In International Symposium on
Stabilization, Safety, and Security of Distributed Systems, pages
20–35. Springer, 2016.

[BEJ19] Michael Blondin, Javier Esparza, and Stefan Jaax. Expressive
power of broadcast consensus protocols. In Wan J. Fokkink and
Rob van Glabbeek, editors, 30th International Conference on
Concurrency Theory, CONCUR 2019, August 27-30, 2019, Am-
sterdam, the Netherlands, volume 140 of LIPIcs, pages 31:1–
31:16. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019.

[CKS81] Ashok K. Chandra, Dexter C. Kozen, and Larry J. Stockmeyer.
Alternation. Journal of the ACM, 28(1):114–133, January 1981.

31



[CMN+10] Ioannis Chatzigiannakis, Othon Michail, Stavros Nikolaou, An-
dreas Pavlogiannis, and Paul G Spirakis. All symmetric predi-
cates in NSPACE(n2) are stably computable by the mediated
population protocol model. In International Symposium on
Mathematical Foundations of Computer Science, pages 270–281.
Springer, 2010.

[CMN+11] Ioannis Chatzigiannakis, Othon Michail, Stavros Nikolaou, An-
dreas Pavlogiannis, and Paul G. Spirakis. Passively mobile com-
municating machines that use restricted space. Theor. Comput.
Sci., 412(46):6469–6483, 2011.

[FJ06] Michael Fischer and Hong Jiang. Self-stabilizing leader election
in networks of finite-state anonymous agents. In International
Conference On Principles Of Distributed Systems, pages 395–
409. Springer, 2006.

[FMR68] Patrick C. Fischer, Albert R. Meyer, and Arnold L. Rosenberg.
Counter machines and counter languages. Mathematical systems
theory, 2:265–283, 1968.

[GR09] Rachid Guerraoui and Eric Ruppert. Names trump malice: Tiny
mobile agents can tolerate Byzantine failures. In International
Colloquium on Automata, Languages, and Programming, pages
484–495. Springer, 2009.

[HL00] Joel David Hamkins and Andy Lewis. Infinite time turing ma-
chines. The Journal of Symbolic Logic, 65(02):567–604, 2000.

[Imm86] Neil Immerman. Relational queries computable in polynomial
time. Information and Control, 68(1):86 – 104, 1986.

[Imm88] Neil Immerman. Nondeterministic space is closed under comple-
mentation. SIAM J. Comput., 17(5):935–938, 1988.

[Jec02] Thomas Jech. Set Theory: The Third Millenium Edition: revised
and expanded. Springer Monographs in Mathematics. Springer,
2002.

[MCS11] Othon Michail, Ioannis Chatzigiannakis, and Paul G. Spirakis.
Mediated population protocols. Theoretical Computer Science,
412(22):2434 – 2450, 2011.

32



[Min61] Marvin L. Minsky. Recursive unsolvability of Post’s problem of
“Tag” and other topics in theory of Turing machines. Annals of
Mathematics, 74(3):437–455, November 1961.

[MS15] Othon Michail and Paul G Spirakis. Terminating population
protocols via some minimal global knowledge assumptions. Jour-
nal of Parallel and Distributed Computing, 81:1–10, 2015.

[SCWB08] David Soloveichik, Matthew Cook, Erik Winfree, and Jehoshua
Bruck. Computation with finite stochastic chemical reaction
networks. natural computing, 7(4):615–633, 2008.

[Sze88] Róbert Szelepcsényi. The method of forced enumeration for non-
deterministic automata. Acta Informatica, 26(3):279–284, 1988.

[Tho54] James F. Thomson. Tasks and super-tasks. Analysis, 15(1):1–13,
1954.

[Var82] Moshe Y. Vardi. The complexity of relational query languages
(extended abstract). In Proceedings of the Fourteenth Annual
ACM Symposium on Theory of Computing, STOC ’82, page
137146, New York, NY, USA, 1982. Association for Computing
Machinery.

[vN23] Johann v. Neumann. Zur Einfűhrung der transfiniten Zahlen.
Acta Universitatis Szegediensis, 1:199–208, 1923.

33


