
Clocked Population Protocols

James Aspnes

PODC 2017

Population protocols (Angluin et al., PODC 2004)

, → ,
, → ,
, → ,
, → ,

I Interaction updates state of both agents.
I Interactions happen one at a time.
I Who chooses which interaction happens next?
I The adversary, subject to a fairness condition.

Fairness

I If C → C ′, and C occurs ∞ often, so does C ′.
I Equivalent: If C ′ is enabled ∞ often, C ′ occurs ∞ often.
I ⇒ Any continuously reachable state is eventually reached.
I ⇒ Any execution converges to some terminal SCC.
I Ideal case: unique terminal SCC with stable output.

Computation with population protocols

0
,

0 → 0
,

0
,

1 → 1
,

1
,

0 → 1
,

1
,

1 → 0
,

I Represent input as counts of agents in each state.
I Coalesce values along with leader election.

I Gets parity, mod 3, etc.
I Cancellation gets <, =.

I Run protocols in parallel for f ∧ g , f ∨ g , etc.
I Result: Can stably compute all semilinear predicates, those

definable in first-order Presburger arithmetic.

What population protocols can’t do

I Anything that requires nested iteration:
I Multiplication (by non-constants).
I Division.
I Many other operations.
I Anything not definable in first-order Presburger arithmetic

(Angluin et al., PODC 2006).

I Why not? Because we can’t detect convergence.
I To avoid this result, we need to change the model.

Randomized pop. protocols (Angluin et al., DISC 2007)

I Assume random scheduling instead of adversarial scheduling.
I Still fair (with probability 1).
I But now we can predict how long operations take:

I Use epidemics to propagate information.
I Use phase clock to measure passage of time.
I Use a leader agent to act as controller.

I Simulates register machine (whp) with polylog overhead.

⇒ Can compute any predicate in RL.

Absence detectors (Michail and Spirakis, JPDC 2015)

I Detect when no agents in a particular state exist.
I Implemented using cover time oracle that signals when an

agent has encountered every other agent.
I Also simulates register machine.

⇒ Can compute any predicate in NL.

Putting a clock in the model

I Phase clock signals when a register operation converges.
I Cover time oracle signals when absence detector converges.

Why not just put in an oracle that signals convergence?

Clocked population protocol

′

In a clocked population protocol, each agent has a tick bit that
signals convergence to a terminal SCC.

I Clock transition sets tick bit on one or more agents.
I Enabled in terminal SCC.
I Equivalently: Enabled in limit configuration of computation.

Limit configurations

, , , , , , , , , . . .
I If we wait long enough, we reach terminal SCC.
I How about waiting forever?
I Terminal SCC configurations = limit configurations.
I But who chooses which limit configuration?
I The adversary, subject to a fairness condition.

Measuring time with transfinite ordinals

0, 1, 2, . . . ;ω, ω + 1, ω + 2, . . . ;ω · 2, ω · 2 + 1, . . . ;ω2, ω2 + 1, . . .

Successor ordinals represent standard transitions.

→
t t + 1

Limit ordinals represent clock transitions.

, , , , . . . ; ′ ′

ω ω + 1 ω + 2 ω + 3 ω · 2

I Configuration at limit α can be any configuration that is
cofinal in α, with ticks added to any subset of the agents.

I Cofinal in α = occurs at unbounded times up to α.
I Cofinal generalizes infinitely often.

Fairness over transfinite intervals

, , , , . . .; ′, , , . . . ; ′

, , , , . . .; ′, , , . . . ; ′

I Old definition: If C is enabled ∞ often, C occurs ∞ often.
I New definition: If C is enabled cofinally in α, C occurs

cofinally in α (for all limit ordinals α).
I Equivalent for standard transitions.
I Enforces delivering ticks eventually for clock transitions.

Is the model realistic?

Computation over infinite intervals with magical convergence
detection seems pretty implausible!

I Not really infinite:
I Replace ω, ω · 2, . . . with D, 2D, . . ., where D is some finite

bound.

I Not really detecting convergence:
I Any physically realizable system should converge whp in a fixed

amount of time D.

So the clock mechanism can just be a clock.

Application: Counter machines

qinc, 0 → qnext, 1 qdec, 0 → qdec, 0
qinc, 1 → qinc, 1 qdec, 1 → qsuccess, 0

q′
dec, 0 → qfailure, 0

I Supports operations INCREMENT and
DECREMENT-IF-NONZERO.

I Represent counter values in unary.
I Special leader agent represents finite-state controller.
I Use clock ticks to detect zero during decrement.
I Equivalent to O(log n)-bit Turing machine (Minsky 1967).

⇒ Clocked population protocols can simulate NL in < ω2 time.

Application: Tracking tick levels

0, 0, . . . ; 0′, 1, 0, . . . ; 0′, 1, 0, ; 1′, 2, 0, . . .

0 → 0 0′ → 1
1 → 0 1′ → 2
2 → 0 2′ → 3

I 0′ can only occur at multiples of ω.
I 1′ can only occur at multiples of ω2

I In general, t ′ occurs at multiples of ωt+1.

⇒ Model doesn’t need to signal “higher-order” ticks.

Configuration graphs

G0 = standard transitions.
Gk+1 = Gk plus clock transitions leaving terminal SCCs in Gk .

Gω = lim
k→∞

Gk .

I Gk represents all computations in time < ωk+1.
I For fixed population size, only finitely many configurations, so

Gω = Gi for some k.
I Can construct G0,G1, . . . ,Gi in polynomial time.

⇒ Clocked population protocols can be simulated in P.

< ωk time in NL

I L can represent configurations of a clocked population protocol.
I L can compute standard transitions between configurations.
I NL can detect paths.
I coNL = NL (Immerman-Szelepcsényi 1988) can detect no

paths.
I Paths + no paths + NLNL = NL means NL can recognize

terminal SCCs.

⇒ Can compute Gk for any fixed k in NL.
⇒ < ωk -time clocked population protocol in NL.
⇒ < ωk -time protocol simulated by < ω2-time protocol.

Summary

′

I Clocked population protocols add clocks for detecting
convergence.

I Convergence as limits over transfinite intervals allows
generalizing standard fairness.

I Allows composing and iterating population protocols.
I Can compute precisely NL in < ωk time (and < ω2 is enough).
I Can be simulated by P even for unbounded time.

Open problem

′

Can an ωω-time clocked population protocol simulate P?
I No? Implies NL 6= P.
I Yes? True if clocked pop. protocol can simulate AL = P.

