
Object Oriented Consensus1

Yehuda Afek2

Department of Computer Science, Tel-Aviv University, Israel3

afek@tau.ac.il4

James Aspnes5

Department of Computer Science, Yale University, USA6

james.aspnes@gmail.com7

Edo Cohen8

Department of Computer Science, Tel-Aviv University, Israel9

edocohen@tau.ac.il10

Danny Vainstein11

Department of Computer Science, Tel-Aviv University, Israel12

dannyvainstein@gmail.com13

Abstract14

Our work focuses on the problem of decomposing consensus algorithms into a common frame-15

work composed of simple building blocks. We show that earlier decomposition strategies fall16

short when applied to some well known algorithms and present a new framework in order to17

tackle the problem. First we use Aspnes’ framework [2] composed of adopt-commit [5] and con-18

ciliator [2] objects in order to decompose the well known Phase-King Byzantine algorithm [4].19

We then consider two other well-known algorithms and argue that this framework is insufficient20

in these (and other) cases and offer a new framework. The framework works in rounds where21

each consists of two steps. The first step involves an object which detects agreement and the22

second involves an object that aims at achieving consensus. We denote our newly defined objects23

as vacillate-adopt-commit and reconciliator . We demonstrate our decomposition on two24

well known algorithms. Namely, Ben-Or’s Randomized algorithm [3] and the Raft algorithm [6].25

2012 ACM Subject Classification Theory of computation→ Models of computation→ Concur-26

rency → Distributed computing models27

Keywords and phrases distributed algorithms, wait-free, consensus, message-passing28

Digital Object Identifier 10.4230/LIPIcs.CVIT.2016.2329

1 Introduction30

The consensus problem introduced by Lamport, Pease and Shostak [7] resides at the heart of31

many distributed algorithms such as leader election, database transaction handling, resource32

allocation, ensuring storage replicas are mutually consistent, block chain technology and33

many more.34

In the consensus protocol between n processors, each with an input value, processors35

agree on a single common output which was the input to one of them. While consensus36

is trivial in a non-faulty synchronous environment, it is often more difficult in practice as37

most distributed networks are asynchronous and must be resilient to faults and various miss38

behaviors.39

The philosophy of software engineering asserts that decomposing complex systems into40

simple building blocks is a good thing. One reason for this being that by analyzing simpler41

objects we may deduce observations on more complex systems.42

© Y. Afek, J. Aspnes, E. Cohen, D. Vainstein;
licensed under Creative Commons License CC-BY

42nd Conference on Very Important Topics (CVIT 2016).
Editors: John Q. Open and Joan R. Access; Article No. 23; pp. 23:1–23:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:afek@tau.ac.il
mailto:james.aspnes@gmail.com
mailto:edocohen@tau.ac.il
mailto:dannyvainstein@gmail.com
http://dx.doi.org/10.4230/LIPIcs.CVIT.2016.23
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

23:2 Object Oriented Consensus

One attempt to decompose consensus was provided by Gafni [5]. Gafni proposed adopt-43

commit, an object fulfilling weaker guarantees than consensus, as a building block of consensus.44

Aspnes further provided a detailed decomposition [2] of consensus into adopt-commit and45

a complementary conciliator object which together form a generic framework describing46

consensus. In this work we extend these decompositions, into vacillate-adopt-commit and47

reconciliator objects, which describe the core of many existing consensus algorithms in which48

it is not clear how to breakdown into the previous frameworks. Our main thesis in the paper49

is that many known consensus algorithms fall into a similar pattern of a repetitive two-fold50

process in which the first step evaluates the current status and how close it is to a consensus51

and a second step which brings closer to a consensus by taking some action. Together with52

previous work, we provide a more solid interpretation of the mechanisms composing well53

known consensus algorithms.54

Our paper is structured as follows. In Section 3, the consensus template is presented. In55

section 4 we first tackle the decomposition of the well known phase-king byzantine algorithm56

[4] and show how it naturally decomposes Aspnes’ framework of adopt-commit and conciliator57

objects. Thereafter we tackle Ben-Or’s randomized algorithm [3] and the raft algorithm [6].58

We observe that Aspnes’ former framework fails to capture these algorithms naturally and59

provide our alternate decomposition using vacillate-adopt-commit and reconciliator objects.60

In section 5 we explore the relation between vacillate-adopt-commit and adopt-commit,61

showing the latter is slightly weaker. We conclude with final remarks in Section 6.62

2 Preliminaries63

We consider a network consisting of n processors, {p1, . . . , pn}, each processor p begins with64

an input value p.init. The goal of consensus protocol is to agree on a value, u, for all65

processors while satisfying the following three conditions:66

Validity - The value u must be the initial value of one of the processors involved in the67

protocol, i.e., ∃i, s.t. pi.init == u.68

Termination - Each processor decides after taking a finite number of steps.69

Agreement - The value agreed upon, u, is the same for all processors.70

In the context of distributed computation it is useful to refer to an implementation of a71

protocol as an object. We follow these notations in this paper, that is, a processor which is72

part of a network attempting to achieve consensus invokes an object, Consensus(v), with its73

initial value v ← p.init and expects to receive a value u such that the properties above are74

fulfilled.75

An adopt-commit object may be viewed as a weaker version of consensus. In adopt-76

commit the returned bit is accompanied by a confidence level. The agreement property77

is waived and two more refined properties are defined instead. Formally, adopt-commit78

receives as an argument a value v and returns a pair (confidence, u) where confidence ∈79

{adopt, commit} fulfilling the following properties:80

Validity, Termination - Same as above.81

Coherence - If some processor receives (commit,u) then all other processors receive the82

same value u (with confidence either adopt or commit).83

Convergence - If all processors invoke adopt− commit(v) with the same value v, then84

all processors receive (commit, v).85

The newly introduced object vacillate-adopt-commit adds an additional confidence86

level with respect to adopt-commit. The object expects a value v from every processor and87

Y. Afek et al. 23:3

returns a value u and one of three confidence levels, vacillate, adopt or commit. The88

following guarantees are required of the object:89

Validity, Termination, Convergence - Same as above.90

Coherence over adopt & commit - If any processor received (commit, u), then every91

other processor receives either (commit, u) or (adopt, u) (this guarantee corresponds to92

the adopt-commit’s coherence).93

Coherence over vacillate & adopt - If no processor received commit and some94

processor received (adopt, u), then every other processor receives either (adopt, u) or95

(vacillate, ∗), where * may be any value (subject to other constraints like validity).96

Our main thesis in this paper is that consensus algorithms are essentially a sequence of97

repetitive rounds of invoking an object which revises the current status of the processors and98

how close they are to an agreement followed by an action which brings the processors closer99

to an agreement. The objects adopt-commit and vacillate-adopt-commit are building blocks100

suitable to fulfill the role of the agreement detector. In order to provide all the building101

blocks necessary to compose consensus we must define objects which perform some action102

that possibly brings closer towards a consensus. In his framework [2], Aspnes defines such an103

object, Conciliator , which is required to satisfy the following properties:104

Validity, Termination - Same as above.105

Probabilistic Agreement - With probability greater than 0, the returned value is the106

same to all processors.107

Another object we define is the Reconciliator . The reconciliator is required to satisfy108

the following properties:109

Termination - Same as above.110

Weak Agreement - With probability 1, at some point all invoking processors receive111

the same value such that this value corresponds to the adopt values of the current round.1112

Despite the name similarities, these objects differ profoundly, the conciliator is essentially113

a probabilistic consensus while the reconciliator is weaker in the sense that it may be invoked114

by a subset of the network.115

Throughout the paper, we abbreviate the objects vacillate-adopt-commit as VAC and116

adopt-commit as AC. Furthermore, the returned values are denoted by the first letter of the117

confidence levels, i.e. V,A,C .118

3 The Generic Form of Consensus119

The idea behind this paper is that many well known consensus algorithms have the same120

basic structure consisting of two objects, VAC that checks whether consensus has been121

reached or not and reconciliator that shakes up the preferences of the processors in case of122

a stalemate. We do not claim that this structure is necessarily better than using AC and123

conciliators, but that it more accurately reflects the existing structure of algorithms in the124

field.125

Informally, the generic consensus algorithms work in rounds. In each round, first the126

VAC is invoked to observe the system state and inform us as to whether consensus has been127

reached. VAC returns to each processor one of three possible outputs: (1) (commit, v)128

1 if no such values were given, the returned value should be one of the inputted values

CVIT 2016

23:4 Object Oriented Consensus

which indicates that the system has reached an agreement on value v, (2) (adopt, v) which129

indicates that it is possible that some processors in the system have agreed on the value v,130

and (3) (vacillate, v) indicating that the system is in an indecisive state.131

If a processor receives (commit, v), it is guaranteed that no other processor receives a132

vacillate value and all outputs return with the same value, v. A processor receiving (adopt,133

v) is guaranteed that any other processor either received a vacillate value or received the134

same preference that the earlier processor has. Finally, if a processor receives (vacillate,135

v), the only guarantee it has is that no other processor received a commit value.136

We note the key difference between the VAC and AC objects. An adopt-commit object137

always returns a new value to be adopted by a process, but this is not consistent with the138

structure of many consensus protocols in the literature. Adding a third option, i.e., vacillate,139

accounts for situations where the algorithm does not force a process to update its preference.140

Furthermore vacillate gives the receiving processor the information that a consensus has not141

been reached. This type of information is not available using the AC infrastructure, but as142

we will see is available in existing algorithms in the literature.143

The question is how termination of the consensus can be guaranteed if the collection of144

preferences is balanced and the VAC continually returns vacillate. For that purpose, the145

reconciliator is used to give each vacillating processor a new preference with a guarantee to146

provide a deciding set of preferences with some probability. That is, whenever a processor147

receives a vacillate value from the VAC object the distributed reconciliator provides each148

processor with an alternate preference which guarantees that eventually enough processors149

will get the same preference leading to VAC eventually observing agreement. Pseudocode for150

the consensus template is given in Algorithm 1.151

Consensus(v)
m← 0
INIT ()
while true do

m← m+ 1
(X,σ)← V AC(v,m)
switch X do

case vacillate:
v ← Reconciliator(X,σ,m)
case adopt: v ← σ

case commit: v ← σ and
decide σ

endsw
end

Algorithm 1: Consensus Template

Consensus(v)
m← 0
INIT ()
while true do

m← m+ 1
(X,σ)← AC(v,m)
switch X do

case adopt:
v ← Conciliator(X,σ,m)
case commit: v ← σ and
decide σ

endsw
end

Algorithm 2: Consensus Template using
AC and Conciliator

Note that INIT is a void function unless stated otherwise. Furthermore, note that the152

operation, decide σ, is followed by a halt operation, that is, the processor will decide upon153

its value and return. The argument m is the phase of the consensus process.154

Next we prove that the template indeed achieves consensus, using the V AC and reconciliator155

properties.156

I Lemma 1. Algorithm 1 is a correct consensus algorithm.157

Y. Afek et al. 23:5

Proof. Agreement: If some processor decided on a value v we are guaranteed that it158

received (commit, v) during that round. Thus by the VAC’s coherence over adopt commit159

guarantee we are ensured that all processors complete the round with the same value.160

Thus by VAC’s convergence all remaining processors will decide on the same value in the161

next round.162

Validity: Follows from the reconcilliator’s guarantees and the fact that all inputs to the163

VAC and reconcilliator objects are clearly valid inputs.164

Termination: Follows from the reconcilliator’s guarantees.165

J166

In addition to algorithm 1, we provide here a concrete algorithm for consensus using the167

AC and conciliator objects. The algorithm correctness is proved similarly to 3.168

4 Consensus Decomposition169

We first demonstrate how the phase-king algorithm naturally decomposes using Aspnes’170

framework [2] (i.e. adopt-commit rather than vacillate-adopt-commit and concilliator rather171

than reconcilliator). Following that we decompose ben-or’s algorithm and the raft algorithm172

using our framework under the statement that Aspnes’ earlier framework is not sufficient.173

4.1 Phase-King Algorithm174

Here we show how the Phase-King consensus protocol of Berman, Garay and Perry [4]175

fits the framework given in [2]. Throughout this section we assume a message passing176

synchronous model and t byzantine processors such that 3t < n. Note that in contrast177

to the original consensus template, every algorithm continues to participate in the overall178

consensus template even after deciding upon a value, as in the original Phase-King algorithm.179

Algorithms 3 and 4 are the AC ’s and conciliator ’s implementations and lemmas 2 and 3180

prove the implementations correctness, i.e., ensuring the objects’ guarantees.181

I Lemma 2. Algorithm 3 is a correct adopt-commit implementation.182

Proof. The proof is similar to the Phase-King correctness proof given in [4].183

Validity: If all inputs are the same value v ∈ {0, 1} then at the end of the first exchange184

of the first round all C(v) values are at least n− t for all correct processors (since there185

are n − t non-byzantine processors) and C(u) ≤ t < n − t for u 6= v (since t < n/3).186

Therefore v will remain the chosen value for all non-byzantine processors after exchange 1.187

The same holds after exchange 2. Thus all correct processors will enter the if statement188

and receive a value of (commit, v) guaranteeing validity.189

Convergence: If all inputs are the same value v then but what we have shown earlier190

all processors will receive a value of (commit, v) as needed.191

Termination: Since we are in the synchronous setting clearly the protocol terminates192

within a finite amount of rounds.193

Coherence over commit and adopt: We first observe that after exchange 1 exists194

some value v ∈ {0, 1} such that all correct processors’ values are either 2 or v (this195

follows since t < n/3 meaning that otherwise we would have some correct processor that196

broadcasted different values to different processors). Next we observe that in fact this197

property holds through exchange 2 as well (again, since otherwise we would have a correct198

processor that broadcasted different values to different processors). Thus, if 2 commit199

messages were received (meaning their values are v 6= 2) then their values must coincide.200

CVIT 2016

23:6 Object Oriented Consensus

AC(v,m)
broadcast 〈v〉 // (*
Exchange 1 *)
v ← 2
for k=0 to 1 do

C(k)← # received k′s
if C(k) ≥ n− t then

v ← k

end
end
broadcast 〈v〉 // (* Exchange
2 *)
for k=2 downto 0 do

D(k)← # received k′s
if D(k)> t then

v ← k

end
end
if (v 6= 2 and D(v) ≥ n− t) then

return (commit, v)
else

return (adopt, v)
end

Algorithm 3: Phase-King’s adopt-commit
implementation

Concilliator(X,σ,m)
if id = m then

broadcast 〈MIN(1, v)〉
σm ← received message from
processor m
return (adopt, σm)

Algorithm 4: Phase-King’s conciliator im-
plementation

J201

I Lemma 3. Algorithm 4 is a correct conciliator implementation.202

Proof. Validity Follows since the phase king’s inputted value is σm.203

Termination Clearly guaranteed.204

Coherence Only adopt is returned therefore coherence holds.205

Probabilistic Agreement Since our setting are not probabilistic but rather determin-206

istic we will show eventual agreement, i.e., eventually the concilliator will cause agreement.207

Consider round m such that processor m is non-byzantine. If during this round all208

returned values from the adopt-commit object were adopt values then following this209

concilliator round all object adopt the same value from the phase-king. Otherwise some210

processor received at least n− t values that are different than 2 during exchange 2. Since211

t < n/3 this means that > t such values were broadcasted during that exchange. Since as212

we have seen there is only one value 6= 2 that is adopted during exchange 2 and since213

there are only t byzantine processors, pm will have adopted that same value and therefore214

would have broadcasted it through the concilliator as needed.215

J216

4.2 Ben-Or’s Algorithm217

In this section we consider Ben-Or’s algorithm [3]. Throughout this section the settings are218

asynchronous, message-passing model and the number of tolerated crash failures, t is strictly219

Y. Afek et al. 23:7

smaller than n/2.220

After some consideration regarding the decomposition of this algorithm we came to221

the conclusion that the use of a single adopt-commit followed by a concilliator object is222

insufficient. This is mainly due to the fact that in Ben-Or’s algorithm there are 3 unique223

types of processor per round - processors that received more than t ratify message, processors224

that received atleast 1 ratify message but less than t and processors that received no ratify225

messages. Each type of processor has some guarantee about the state of the network (e.g., if226

received more than t ratify messages one is ensured the network has achieved consensus).227

More regarding why adopt-commit is insufficient given in section 5.228

Algorithms 6 and 5 are the VAC ’s and reconciliator ’s implementations, Lemmas 4 and 5229

prove the implementations correctness, i.e., that they uphold the objects’ guarantees.230

VAC(v,m)
send 〈1, v〉 to all
wait to receive n− t 〈1, ∗〉 messages
if received more than n/2 〈1, v〉
messages then

send 〈2, v, ratify〉 to all
else

send 〈2, ?〉 to all
end
wait to receive n− t 〈2, ∗〉 messages
if received more than t 〈2, v, ratify〉
messages then

return (commit, v)
else if received a 〈2, v, ratify〉
message then

return (adopt, v)
else

return (vacillate, v)
end

Algorithm 5: Ben-Or’s vacillate-adopt-
commit implementation

Reconciliator(X,σ,m)
return CoinF lip()

Algorithm 6: Ben-Or’s reconciliator imple-
mentation

I Lemma 4. Algorithm 6 is a correct reconciliator implementation.231

Proof. Since any value has a non-zero probability of being outputted, the reconcilliator’s232

guarantee clearly follows. J233

I Lemma 5. Algorithm 5 is a correct vacillate-adopt-commit implementation.234

Proof. The proof is similar to the Ben-Or algorithm correctness proof found in the survey of235

Aspnes [1].236

Validity: Follows since all messages sent and received hold inputted values.237

Termination: Since the number of crash failures is less than half, all processors will238

terminate in a finite amount of time.239

Convergence: Assume all processors start out with the same value v. Since the number240

of crash failures is less than half all live processors will send a ratify message with the241

same value v. Thus the if statement in line 10 will clearly be satisfied and all processors242

will receive a value of (commit, v).243

CVIT 2016

23:8 Object Oriented Consensus

Coherence over adopt and commit: If some processor received more than t (ratify, v)244

messages then by the definition of t at least one live processor broadcast a (ratify, v)245

message. Thus by line 9 we are guaranteed that every processor received at least one246

ratify message. Finally the condition in line 4 we are guaranteed that if 2 ratify messages247

are sent out then they have the same value. Thus all processors received at least one248

ratify message and they all received the same value.249

Coherence over vacillate and adopt: Since the condition in line 4 insures that ratify250

messages hold the same value, v if some processor received an (adopt, v) message then251

clearly all other adopt-receiving processors received the same value v.252

J253

4.3 Raft254

In algorithm 7 we use the Raft algorithm [6] to achieve consensus. The raft algorithm is255

designed for producing a consistent log among distributed systems. Every processor maintains256

an indexed log of commands which they update continuously. Occasionally the processors257

apply the commands from their logs to their state machine. The commands applied are258

always in order and always continue from the last command applied.259

Here we describe how the raft algorithm may be used in order to achieve consensus. We260

use the raft algorithm with a single command (i.e., the logs will consist of a single type of261

command). The single command used is decide-and-stop-applying-to-state-machine which262

we denote as D&S(v). This command tells the state machine to decide on the value v and263

stop applying any further commands thereafter (i.e., not to switch its decision).264

In the raft algorithm every processor updates an indexed log continuously and occasionally265

applies the commands given in the log to its state machine. The commands applied are266

always in order and always continue from the last command applied. Therefore, once a267

processor decides to update its state machine it will apply the first command in the log, and268

decide on that given value. This results in the processor deciding upon the first value it sees269

in its log.270

The raft algorithm works as follows; there are 3 states a processor may be in, follower,271

candidate and leader. Every processor aspires to become a leader and once becoming a leader272

it tries to have the system decide upon its value. All processors start out as followers and273

employ a timer. The timer is reset every time the processor receives a message from a fellow274

processor (with the caveat of terms which will be explained next).275

Once a timer runs out the processor converts to candidate and tries to gain enough276

votes to become leader. Meaning that once becoming a candidate the processor broadcasts277

RequestVote messages and if it achieves a majority of acks it converts to leader.278

Once leader, the processor tries to have all other processors append its value to their279

log by sending them a D&S(v) command. Initially the command is sent out as a tentative280

command. If the leader receives a majority of acks for this append message (denoted by281

AppendEntries) it commits to the command and broadcasts the fact that this command282

should now be committed to.283

Since raft is log based the processors employ a commit-index mechanism in order to284

achieve the formerly described attributes. An AppendEntries message includes a commit285

index. Meaning that the receiving processor appends the entries it received from the message286

to its log, however it does not yet apply these commands to its state machine as they may be287

altered. The processor then looks at the commit index and only then applies all commands288

up to and including that index in its log. This results in two types of AppendEntries messages;289

the first does not change the commit index of the receiving processor but rather appends290

Y. Afek et al. 23:9

commands the processor’s log. The second does aim at appending entries to logs but rather291

to update the receiving processor’s commit index. Since the second type is only sent out once292

a majority of processors acknowledge the first type, we are ensured that once a command is293

committed to it will not change (denoted as the state machine safety property which will294

be formally defined later in the section).295

The main idea in the algorithm is that in order to achieve consensus we use a 2 step296

mechanism (not unlike Ben-Or’s algorithm). Each processor first tries to gain a majority297

which would result in leadership. Once leader it then tries to push its a value to decide upon.298

Only once achieving a majority of acks to that operation, it commits to that log entry and299

notifies everyone else. We note that both ’wait’ operations do not hinder the algorithm’s300

termination since in the background all non-leaders have a randomized timer which has the301

soul purpose of shaking the protocol out of a stalemate. Once a non-leader’s timer runs out302

it begins the consensus algorithm described in algorithm 7.303

The algorithm as described would work just fine in a system without failures, however304

this is never the case. In real world scenarios processors may fail unexpectedly and messages305

may be delayed or even lost. In order to maintain log consistency and ensure termination306

even under these conditions the raft algorithm introduces the notion of terms.307

Terms are defined such that leaders are leaders only of a specific (and all lower) term.308

Once a leader encounters a higher term it immediately reverts to follower and updates its309

term. Furthermore once a processor converts to candidate and tries to become leader, it310

increases its term in order to do so. This ensures us that even though some processors may311

fail ultimately consensus will still be obtained. We note that every processors log consists of312

indexed entries (indexed continuously from 1, i.e., 1,2,3,. . .) such that each entry consists of313

a command and the term in which the command was received.314

It may be the case that once a leader is elected it immediately crashes (or it is somehow315

cut off from a majority of the network). Therefore a different processor will become leader316

before the earlier one had the chance to alter the processor’s logs. This may happen over and317

over causing a cycle of leaders without any alterations in any of the logs. This would hinder318

the termination property of our consensus protocol. Therefore the following assumption is319

made (note that this assumption is made in the original raft paper as well).320

We make the assumption that the broadcast time (time it takes to convey a message)321

is much smaller than randomized timer which is in turn much smaller than the average322

time between failures of a single machine. This constraint is required in order to maintain323

a leader which in turn results in consensus termination. We refer to this property as the324

timing property.325

We again note the similarity between Ben-Or’s algorithm and the algorithm considered326

here. Both algorithms use a two step mechanism - the first step alerting some processor (the327

leader in our case) that consensus has been achieved (i.e., all processor’s chose the same328

leader) and the second step conveying that information to all other processors.329

Next we turn to formally define the algorithm. Figures 1 and 2 describe the protocol’s330

inner state variables and types of messages used. Note that arrays NextIndex and MatchIndex331

only apply once a processor is in leader state (and last only for the duration of that term).332

Furthermore they are reinitialized every time the processor converts to leader. Both these333

arrays are introduced in order to maintain consistency over the processors’ logs. When334

an AppendEntry message is received the processor may reject it (and return false) if the335

senders log does not agree with its own (up to a certain degree which will be described next),336

therefore these 2 arrays help the leader know how far back in its log it has to send to each337

processor in order to ensure a positive ack.338

CVIT 2016

23:10 Object Oriented Consensus

Algorithms 7, 8 and 9 describe the algorithm of a processor that manages to convey its339

value (algorithm 7) and the responses to the different messages (algorithms 8 and 9). Note340

that variables marked with ∗ represent the variables of the processor being described.341

We also note the behaviour of processors which receive AppendEntries messages (shown342

in algorithm 9). Once a processor wakes up from a crash it contains an outdated log. Thus343

once it receives an AppendEntries message it may be the case where the processor will have a344

large chunk of commands missing in its log. In order to prevent such situations the receiving345

processor has the option of rejecting the message (by returning a false ack). Once a leader346

receives such an ack it then uses its MatchIndex and NextIndex values in order to go back347

in its log to the place where the receiving processor crashed. It then retries sending the348

AppendEntries, however this time the message will include all entries missing in the receiving349

processor’s log (rather than just the last log entry). Therefore, the default leader behaviour350

would be to only send its last log entry and if that is not enough it continuously retries with351

an earlier log.352

RequestVote[term, candidateId, lastLogIndex, lastLogTerm], where lastLogIndex is
the index of the processor’s last log and lastLogTerm is the term of that log index.
ack_RequestVote[term, voteGranted], where voteGranted is a boolean variable.
AppendEntries[term, leaderId, prevLogIndex, prevLogTerm, D&S(v),
leaderCommit], where prevLogIndex is the index of the log preceding the D&S(v)
command and prevLogTerm is its term.
ack_AppendEntries[term, success], where success is a boolean variable.

Figure 1: Raft Consensus Messages

CurrentTerm.
VotedFor - candidateId voted for in current term.
Log[] - indexed list of commands and terms during which they were received.
CommitIndex - log index stating that all commands up and through that index are
to be applied to the state machine.
LastApplied - log index of last command applied to state machine.
State - one of follower, candidate or leader.
NextIndex[] (variable applies only while leader) - array of length n (number of
processors). Each element is the index of the next log entry to send to that processor.
Initialized after election to the leader’s last log entry + 1.
MatchIndex[](variable applies only while leader) - array of length n. Each element is
the index of highest log entry known to be replicated on that server. Initialized to 0.

Figure 2: Raft Consensus Inner State Variables

We first state a few properties of the Raft algorithm which were stated in [6]. These were353

also proven in the same paper and therefore, due to space constraints we omit their proofs.354

Leader Completeness: if a log entry is committed in a given term, then that entry355

will be present in the logs of the leaders for all higher-numbered terms.356

State Machine Safety: if a server has applied a log entry at a given index to its state357

machine, no other server will ever apply a different log entry for the same index.358

Log Matching: if two logs contain an entry with the same index and term, then the359

logs are identical in all entries up through the given index.360

Next, we turn to prove that the algorithm guarantees consensus.361

Y. Afek et al. 23:11

Consensus(v)
state ← candidate
v∗ ← log[lastLogIndex∗]
Broadcast RequestVote[t∗, id∗,
lastLogIndex∗, lastLogTerm∗]
Wait to receive > n/2
ack_RequestVote(t = t∗, granted =
true)
state ← leader
v∗ ← log[lastLogIndex∗]
Broadcast AppendEntries[t∗, id∗,
prevLogIndex∗, prevLogTerm∗,

D&S(v∗), commitIndex∗]
Wait to receive > n/2
ack_AppendEntries(t =
t∗, success = true) // commitIndex
is therefore increased, see
leader responses
Broadcast AppendEntries[t∗, id∗,
prevLogIndex∗, prevLogTerm∗,

−, commitIndex∗]

Algorithm 7: Raft Consensus Protocol

if received acks_AppendEntries(t, false)
from pi then

if t > t∗ then
state ← candidate, increase term

else
decrement NextIndex[i], resend
AppendEntries.

if received acks_AppendEntries(t, true)
from pi then

update NextIndex[i] and
MatchIndex[i]
if exists N s.t. N > commitIndex∗,
maj of MatchIndex[i] ≥ N ,
log[N].term = t∗ then

commitIndex∗ ← N

Algorithm 8: Raft Consensus Leader Re-
sponses

if received RequestVote[t, id,
lastLogIndex, lastLogTerm] then

if (t < t∗)||(t = t ∗&& votedFor 6=
null) then

return (t∗, false)
if VotedFor == null && log matches
requestor’s then

return (t∗, true), update t∗
if received AppendEntries[t, -,
prevLogIndex, prevLogTerm, D&S(v),
commitIndex] then // tentatively
log D&S(v)

if t < t∗ then
return (t∗, false)

else if log does not match
requestor’s log at prevLogIndex then

return (t∗, false)
else

append new entries, delete
conflicting ones, if deleted delete
all entries that follow as well
commitIndex∗ ←
min(leaderCommit, index of last
new entry)

if received AppendEntries[t, -,
prevLogIndex, prevLogTerm, -,
commitIndex] then // commit to last
log entry

if t < t∗ then
return (t∗, false)

else if log does not match
requestor’s log at prevLogIndex then

return (t∗, false)
else

commitIndex∗ ←
min(leaderCommit, index of last
new entry)

if commitIndex∗ > lastApplied then
increment lastApplied, apply
log[lastApplied] to state machine

if Timer T runs out then
initialize T randomly, increment
term and start algorithm 7

Algorithm 9: Raft Consensus Across-State
Responses

CVIT 2016

23:12 Object Oriented Consensus

I Lemma 6. Algorithm 7 is a correct consensus protocol.362

Proof. We note that under the definition of D&S(V ∗) a processor will decide upon a value363

as soon as it increases its commitIndex. Furthermore it will decide upon the value in its first364

log entry.365

We also note that there will never be a majority of processors which failed indefinitely (this366

assumption has been made in the original raft algorithm as well). We use this assumption in367

order to guarantee that processors will not remain indefinitely in the wait commands in the368

algorithm. We now prove that the consensus constraints hold.369

Validity: Follows from implementation since the only values proposed for consensus are370

taken from the processor’s values.371

Agreement: Assume some processor i is the first processor to decide on some value372

denoted by vi. Since the leader is always the first to decide upon a value in a given term,373

we may assume i is a leader and denote its term by ti. Now, assume some other processor374

j decided on value vj during term tj ≥ ti. By the leader completeness property, the entry375

D&S(vi) will appear in tj ’s leader’s log also in the first entry. Thus for j to increase its376

commitIndex (and decide on a value) it must have accepted tj ’s leader’s AppendEntry377

meaning that by the log matching property their logs must match on atleast the first378

entry. Therefore j’s first entry would be D&S(vi) resulting in vj = vi.379

Termination: Leader completeness insures us that if someone commits to a value then380

eventually all other processors will have that value in their first log index. By the381

timing property we are insured that eventually all processors increase their commitIndex.382

This in turn insures us that eventually all processors will decide upon the same value.383

Furthermore, by our assumption that a majority of live processors will eventually exist384

J385

We next turn to show how the consensus protocol can be naturally decomposed using386

our template. The decomposition works as follows; each term (as described in the consensus387

protocol) will now refer to a round in our template. This results in the fact that the protocol388

is unending, however eventually all processors will have committed to some value (as in the389

original raft protocol).390

As in our defined VAC the consensus protocol also results in three types of processors.391

The first being processors that did not receive a message that a leader was chosen. This392

matches the vacillate value of VAC in the sense that they have no guarantee regarding the393

state of the system.394

The second type are processors that received an AppendEntries message of the first kind,395

i.e. one that does not include a change in the commit index. This matches the adopt value396

of VAC in that these processors have the guarantee that all other processors which received397

such a message received it with the same value (this is ensured by the fact that a majority of398

acks is needed in order to send the message).399

The third and final type are processors that received an AppendEntries message of the400

second kind, i.e. one that does include a change in the commit index. This matches the401

commit value of VAC in that these processors are guaranteed that a consensus has been402

reached (even if not all processors are aware of it), i.e., that all processors receive the same403

value (being accompanied by either an adopt or commit value). This property is ensured by404

the leader completeness and state machine safety properties.405

The reconcilliator in our case is aimed at capturing the timer mechanism. In the consensus406

algorithm the timer mechanism was introduced in order to ensure no stalemate was reached,407

i.e., to eventually cause convergence. The reconcilliator object was introduced to do just that408

Y. Afek et al. 23:13

and therefore we define it to capture the timer mechanism as closely as possible. Interestingly409

enough in this case, as opposed to Ben-Or for example, it is not the returned value that causes410

the wanted behaviour (i.e., prevention of a stalemate) but rather the timing of processors411

entering the reconcilliator.412

In algoritm 10 we define our VAC protocol and in algorithm 11 we define the reconciliator413

object. We note in addition to the VAC stated we define 2 more changes to the raft consensus414

protocol. The first is that if a follower recieves an AppendEntry message of the first type415

(i.e., with an appended entry but without an increase in the commit index) and accepts the416

message, then it also sets its X and v values to adopt and the value it sees in its last log417

entry. The second is that if a follower recieves an AppendEntry message of the second type418

and accepts the message, then it sets X to commit and v to the value it sees in its last log419

entry.420

VAC(v)
(X, v∗)← (V acillate,
log[lastLogIndex∗].value)
state ← candidate
Broadcast RequestVote[t∗, id∗,
lastLogIndex∗, lastLogTerm∗]
Wait to receive > n/2
ack_RequestVote(t = t∗, granted =
true)
Freeze timer T
(X, v∗)← (Adopt,
log[lastLogIndex∗].value)
state ← leader
Broadcast AppendEntries[t∗, id∗,
prevLogIndex∗, prevLogTerm∗,

D&S(v∗), commitIndex∗]
Wait to receive > n/2
ack_AppendEntries(t =
t∗, success = true) /*commitIndex is
therefore increased, see leader
responses*/
(X, v∗)← (Commit,
log[lastLogIndex∗].value)
Broadcast AppendEntries[t∗, id∗,
prevLogIndex∗, prevLogTerm∗,

−, commitIndex∗]

Algorithm 10: VAC Protocol

Reconcilliator(v)
Reset timer and update term
D&S(v)← log[lastLogIndex]
return v

Algorithm 11: Reconcilliator Protocol

I Lemma 7. Algorithm 10 is a correct VAC protocol.421

Proof. In order to ensure that our guarantees hold we prove them for processors which422

have not failed during the term. Processors which fail during the term adopt the higher423

term once waking up anyhow and should therefore be ignored.424

Validity: Since all values written into the logs were written using received values validity425

is insured.426

CVIT 2016

23:14 Object Oriented Consensus

Convergence: We refer the reader to the note following the proof.427

Termination: By our assumption that no majority of processors will crash-fail clearly428

the process will eventually terminate.429

Coherence over adopt and commit: As discussed above this is guaranteed by the430

leader completeness and state machine safety properties.431

Coherence over vacillate and adopt: As discussed above this is ensured by the fact432

that a majority of acks is needed in order to send an adopt message.433

J434

We note that under the raft algorithm infrastructure since consensus is achieved by first435

electing a leader, convergence does not hold as is. This is indeed plausible due to the fact436

that the algorithm was made for real world log consistences rather than theoretical consensus.437

For theoretical purposes one may easily convert the algorithm such that it holds convergence438

by converting the wait steps to broadcast steps. I.e., decentralize the messages meaning439

that instead of electing a leader and having him in charge of logging commands, everyone440

broadcasts the command they want logged and once someone sees a majority it sends out a441

commit-to-that-command message. This would result in convergence since if all processors442

agree on the same value in the first place, all steps would be easily passed.443

Interestingly enough, this change results in an algorithm that highly resembles Ben-Or’s.444

The only difference is in the way it handles stalemates, or in other words, the reconciliators445

implemented are different.446

5 Adopt-Commit is Not Enough447

The concept of decomposing consensus into separate objects is by no means original and was448

formally presented in [5]. Later work by Aspnes [2] described a framework of adopt-commit449

objects that detect agreement, and conciliators that ensure agreement with some probability.450

We argue that this decomposition fails to capture the inner workings of some well-known451

algorithms. In these algorithms 3 different types of processors exist throughout the process452

of achieving coensus; the first are processors which have no guarantee regarding the state of453

the system. The second are processors that are guaranteed that they are part of a subset454

of processors that achieved consensus (all other processors are of the first type). The last455

are processors that are guaranteed that the network has achieved consensus (while not all456

processors are aware of this fact).457

In order to make our argument more concrete, we demonstrate how Ben-Or’s consensus458

algorithm cannot be described by a sequence of adopt-commit alternating with conciliator,459

while it is naturally described as a sequence of repetitive vacillate-adopt-commit followed by460

reconciliator.461

To demonstrate the problem with formulating Ben-Or’s consensus protocol using

U = A−1;A0;C1;A1;C2;A2; . . . ,

consider each round of Ben-Or’s algorithm [3]2. Let P be a processor participating in the462

agreement process. P experiences one of three possible outcomes: (1) not receiving any ratify463

message. (2) receiving up to t ratify messages. (3) receiving more than t ratify messages.464

2 We note that our description follows the presentation of Ben-Or’s algorithm given in the survey paper
of Aspnes [1]

Y. Afek et al. 23:15

These outcomes correspond to vacillate, adopt, and commit, respectively. Option 1 fits465

a processor which received vacillate as it has no guarantees about other values received466

by other processors. Option 2 corresponds to adopt under the VAC framework, since by467

coherence, any processor that received (adopt, v) is guaranteed that every other processor468

that received either vacillate or commit, also received the value v. Option 3 corresponds to469

commit, since any processor that received (commit, v) is guaranteed that all other processors470

received either (commit, v) or (adopt, v).471

However, using only adopt-commit objects is not enough in order to describe these three472

options.473

It might be tempting to assume that two consecutive adopt-commit objects might resolve474

this entanglement as we have shown that VAC may be implemented using two AC objects.475

Note that the concatenation of the AC objects (as proposed in [2]) is in a way that is different476

than our proposed VAC implementation since in their case vacillate-receiving processors are477

not represented.478

We argue this is not the case, that is, we claim that the sequence of U = A−1;A0
0;A1

0;C1;A0
1;A1

1;C2; . . .479

also fails to describe Ben-Or’s consensus protocol. In order to describe option (2) the first480

adopt-commit must return adopt while the second returns commit. However, the decomposi-481

tion framework described in [2] requires that upon receiving commit the processor immediately482

decides on the value received, whereas it is possible that in Ben-Or’s protocol such a state is483

reached with value u but a final agreement is achieved with value u′ 6= u.484

6 Conclusions485

Motivated by the desire to provide a natural decomposition of consensus into building blocks486

that describe known algorithms, we defined a more subtle object than adopt-commit, the487

vacillate-adopt-commit, which in turn simplifies the role of the reconciliator such that in some488

cases it is only a procedure that flips a coin and does not require machinery to ensure validity.489

Using these building blocks we demonstrate how well known consensus algorithms decompose490

into a unified template of a repetitive two step process. We hope a better understanding491

of the consensus object may allow research of complexity bounds of the newly introduced492

building blocks which in turn may be deduced to consensus.493

References494

1 James Aspnes. Randomized protocols for asynchronous consensus. Distributed Computing,495

16(2–3):165–175, September 2003.496

2 James Aspnes. A modular approach to shared-memory consensus, with applications to the497

probabilistic-write model. Distributed Computing, 25(2):179–188, May 2012.498

3 Michael Ben-Or. Another advantage of free choice: Completely asynchronous agreement499

protocols (extended abstract). In Proceedings of the Second Annual ACM SIGACT-SIGOPS500

Symposium on Principles of Distributed Computing, Montreal, Quebec, Canada, August501

17-19, 1983, pages 27–30, 1983. URL: http://doi.acm.org/10.1145/800221.806707,502

doi:10.1145/800221.806707.503

4 Piotr Berman, Juan A Garay, and Kenneth J Perry. Towards optimal distributed consensus.504

In Foundations of Computer Science, 1989., 30th Annual Symposium on, pages 410–415.505

IEEE.506

5 Eli Gafni. Round-by-round fault detectors (extended abstract): unifying synchrony and507

asynchrony. In Proceedings of the seventeenth annual ACM symposium on Principles of508

distributed computing, pages 143–152. ACM, 1998.509

CVIT 2016

http://doi.acm.org/10.1145/800221.806707
http://dx.doi.org/10.1145/800221.806707

23:16 Object Oriented Consensus

6 Diego Ongaro and John K. Ousterhout. In search of an understandable consensus algorithm.510

In 2014 USENIX Annual Technical Conference, USENIX ATC ’14, Philadelphia, PA, USA,511

June 19-20, 2014., pages 305–319, 2014. URL: https://www.usenix.org/conference/512

atc14/technical-sessions/presentation/ongaro.513

7 Marshall Pease, Robert Shostak, and Leslie Lamport. Reaching agreement in the presence514

of faults. Journal of the ACM (JACM), 27(2):228–234, 1980.515

https://www.usenix.org/conference/atc14/technical-sessions/presentation/ongaro
https://www.usenix.org/conference/atc14/technical-sessions/presentation/ongaro
https://www.usenix.org/conference/atc14/technical-sessions/presentation/ongaro

	Introduction
	Preliminaries
	The Generic Form of Consensus
	Consensus Decomposition
	Phase-King Algorithm
	Ben-Or's Algorithm
	Raft

	Adopt-Commit is Not Enough
	Conclusions

