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ABSTRACT
We analyze the convergence of the 𝑘-opinion Undecided State Dy-

namics (USD) in the population protocol model. For 𝑘=2 opinions

it is well known that the USD reaches consensus with high proba-

bility within O(𝑛 log𝑛) interactions. Proving that the process also

quickly solves the consensus problem for 𝑘 > 2 opinions has re-

mained open, despite analogous results for larger 𝑘 in the related

parallel gossip model. In this paper we prove such convergence: un-

der mild assumptions on 𝑘 and on the initial number of undecided

agents we prove that the USD achieves plurality consensus within

O(𝑘𝑛 log𝑛) interactions with high probability, regardless of the

initial bias. Moreover, if there is an initial additive bias of at least
Ω(
√
𝑛 log𝑛) we prove that the initial plurality opinion wins with

high probability, and if there is a multiplicative bias the conver-

gence time is further improved. Note that this is the first result for

𝑘 > 2 for the USD in the population protocol model. Furthermore,

it is the first result for the unsynchronized variant of the USD with

𝑘 > 2 which does not need any initial bias.
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1 INTRODUCTION
The Undecided State Dynamics (USD) is a simple protocol designed

for distributed models of computation where 𝑛 indistinguishable

agents engage in pairwise interactions. The protocol assumes that

every agent initially supports one of 𝑘 ≥ 2 opinions, and the process
evolves according to the following transition rules: when an agent

𝑥 interacts with an agent 𝑦 and the opinions of 𝑥 and 𝑦 differ, 𝑥

transitions to an undecided state. When 𝑥 interacts with 𝑦 and 𝑥

is undecided, 𝑥 adopts the opinion of 𝑦. If 𝑦 is undecided, or if its

opinion is the same as that of 𝑥 , no updates occur.

Given its suitability as a primitive for other distributed tasks, a

substantial amount of recent work has analyzed this process as a

protocol for consensus under varying settings of two key problem

parameters: first, the exact distributed model of pairwise interac-

tion, and second, the number of opinions 𝑘 . The USD was originally

introduced by Angluin et al. [5] for 𝑘=2 opinions in the population
protocol model,

1
where at every discrete time step a single pair of

agents is chosen uniformly at random to interact. In this setting,

Angluin et al. showed that the USD reaches consensus (a config-

uration where all agents support the same opinion) in O(𝑛 log𝑛)
interactions.

2
Moreover, those authors (and later Condon et al. [20]

via a simplified analysis) also showed that the process solves the

approximate majority problem, meaning the eventual consensus

opinion is the one whose initial support was larger, so long as the

initial bias (the difference between the support of the two opinions)

is sufficiently large (specifically, of order Ω(
√︁
𝑛 log𝑛)).

1
Independently, Perron et al. [40] analyzed the two opinion USD in the asynchronous
gossip model of Boyd et al. [18], which can be viewed as the continuous time variant

of the population protocol model. For simplicity, our work focused on the latter model,

although our results extend easily to the former.

2
Throughout, all stated results hold with high probability (w.h.p.), meaning with

probability 1 − 𝑛−𝑐 for some 𝑐 > 0.
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Separately, the USD has also been analyzed in the parallel gossip
model of communication, where in each synchronous round, every
agent selects an interaction partner uniformly at random. In this

model, Clementi et al. [19] showed convergence results for the case

of 𝑘=2 opinions that are analogous to those in the population proto-

col model: the process reaches consensus in O(log𝑛) synchronous
rounds and additionally solves approximate majority when the ini-

tial bias is at least Ω(
√︁
𝑛 log𝑛). In this model, Becchetti et al. [10]

also analyzed the process in the higher-dimensional regime when

𝑘 > 2. Assuming a large enough multiplicative bias in the initial

supports of opinions, they show that the USD reaches plurality
consensus in O(𝑘 log𝑛) parallel rounds, meaning that the eventual

consensus opinion is the one whose initial support was largest.
3

Although the population protocol model can be viewed as the

asynchronous analog to the synchronous gossip model, the dif-

ferences in these interaction scheduling modes cause the USD to

exhibit significant qualitative differences when run in either setting,

even in the case when 𝑘=2. This can largely be attributed to the ob-

servation that one round of parallel interactions in the gossip model

can lead to a constant fraction of agents changing their opinion,

whereas at most a single change of opinion can result from each

interaction in the population protocol model. These differences, as

Clementi et al. [19] remark, have largely prevented any general

analysis techniques from transferring between the two models. In

particular, it has remained an open problem to analyze the con-

vergence rate of the USD in the population protocol model when

𝑘 > 2.

1.1 Our Contribution
In this work, we close the aforementioned gap and analyze the

USD in the population protocol model in the high dimensional

𝑘 > 2 regime.
4
In particular, under mild assumptions, we prove that

the USD solves the plurality consensus problem in this model in

O(𝑘 ·𝑛 log𝑛) interactions. Stated informally, we prove the following

result:

Theorem 1.1 (informal). Consider the USD in the population
protocol model, and assume a sufficiently small number of initially
undecided agents. Then for any 2 ≤ 𝑘 ≤ O(

√
𝑛/log2 𝑛)

(1) If the initial support of the plurality opinion is at least
Ω(
√
𝑛 log𝑛) larger (additively) than all other opinions, then

the process reaches plurality consensus within O(𝑘𝑛 log𝑛)
interactions,

(2) If the initial support of the plurality opinion is a constant
multiplicative factor larger than all other opinions, then the
process reaches plurality consensus within O(𝑘𝑛 + 𝑛 log𝑛)
interactions,

(3) The process reaches an arbitrary consensus configuration oth-
erwise,

where each statement holds with high probability.

The exact statement of our main result is given in Theorem 2.1,

where the convergence rates have a more precise dependence on

3
Note that when 𝑘 > 2, the initial support of largest may not be a majority, which is

why the term plurality is used.

4
Our analysis can also be applied when 𝑘=2 and recovers the existing convergence

results [5, 20] in this setting.

the magnitude of the opinion with largest initial support. Roughly

speaking, the convergence rate of our result is analogous to that of

Becchetti et al. [10] for the gossip model: in that model, plurality

consensus is reached within O(𝑘 · log𝑛) rounds, while in the popu-

lation protocol model, we show it takes O(𝑘 · 𝑛 log𝑛) interactions.
However, unlike the result of Becchetti et al., our analysis only

requires an additive bias of Ω(
√
𝑛 log𝑛) to reach plurality consen-

sus (rather than a constant multiplicative bias); it holds for larger
𝑘 = O(

√
𝑛/log2 𝑛) (compared to 𝑘 = O((𝑛/log𝑛)1/3)); and we show

the process still reaches consensus when starting from a configu-

ration with no initial bias (e.g., when the initial support of each

opinion is 𝑛/𝑘). On the other hand, when the initial configuration

does contain a constant multiplicative bias, our analysis gives a

faster convergence rate than in the additive bias regime. Moreover,

our convergence rate under a multiplicative bias is faster (when

considering its corresponding parallel time) than the rate given by

Becchetti et al. when the support of the initially largest opinion is

close to the average opinion support.
5
In this setting, our results

for the population protocol model can be viewed as improvements

to the analogous results of Becchetti et al. for the gossip model. If

there is a large multiplicative bias (larger than log𝑛) the results by

Becchetti et al. give better bounds on the convergence time.

Similar to previous analyses in both models [5, 10, 11, 20] our

analysis requires carefully defining a sequence of phases through-
out which the (qualitative and quantitative) behavior of the process

varies. The main challenge is to define appropriate potential func-

tions that allow us to track the progress of the process. In Section 2

we give an overview about the main ideas of our analysis.

1.2 Related Works
The Undecided State Dynamics. The two-opinion USD was intro-

duced independently by Angluin et al. [5] for the population proto-

col model and by Perron et al. [40] for the closely related (continu-

ous time) asynchronous gossip model. Both works show that the

process converges w.h.p. in O(𝑛 log𝑛) steps (respectively, O(log𝑛)
continuous time). Condon et al. [20] give an improved analysis for

the two-opinion case in the population model and show the pro-

cess solves the approximate majority problem assuming an initial

additive bias of Ω(
√︁
𝑛 log𝑛), which improves over the additive bias

of 𝜔 (
√
𝑛 log𝑛) needed in the analysis of Angluin et al. Similar to

our approach, both Angluin et al. and Condon et al. analyze the

process in distinct phases that depend on the number of undecided

agents and the magnitude of bias in the configuration. In particular,

after introducing a suitable structure of phases and sub-phases, the

analysis of Condon et al. reduces the convergence of the process

to analyzing a sequence of biased, one-dimensional random walks.

The boundaries imposed by the phase structure are used to control

the magnitudes of the bias, and bounds on the number of interac-

tions needed to complete each phase are derived using standard

concentration techniques.

In the parallel gossip model, the convergence of the USD for

the 𝑘 ≥ 2 opinion case was first studied by Becchetti et al. [10].

Central to their analysis is the introduction of the monochromatic
distance, which measures the uniformity (i.e., lack of bias) of a con-

figuration. Roughly speaking, this distance is the sum of squares of

5
This is shown explicitly in Section 8.
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the support of each opinion, normalized by the square of the most

popular opinion. They show convergence within O(md(x) · log𝑛)
parallel rounds, where md(x) is the monochromatic distance of the

initial configuration, which is always bounded above by 𝑘 . This

analysis only holds when the initial configuration has a multiplica-

tive bias. In the two-color case, Clementi et al. [19] later present

a tight analysis (giving convergence rates that hold for any initial

configuration) without using the monochromatic distance, but an

analysis for 𝑘 > 2 opinions, starting from any initial configuration

in the gossip model still remains open.

In a related strain of research, multiple works [6, 8, 16, 33] have

analyzed a synchronized variant of the USD where the system al-

ternates between two different phases in a synchronized fashion.

In the first phase, all agents perform one step of the USD. In the

second phase, all undecided agents adopt an opinion again. The

use of so-called phase clocks that synchronize the agents allows
for a polylogarithmic convergence time regardless of the initial

opinion configuration. This improved convergence time comes at

the price of making the protocol “less natural”: these protocols have

a significant state overhead and are typically not uniform, meaning

that the transition function or state space depend on 𝑛.

Other Consensus Dynamics. In the population protocol model, con-

sensus for the case of 𝑘=2 opinions is commonly known as the

majority problem. A large number of works [1, 3, 12, 14, 15, 29] aim

to identify the majority opinion even if the initial winning margin

is as small as only 1. The best known result [29] solves this exact
majority problem in O(𝑛 log𝑛) interactions using O(log𝑛) states,
both in expectation. For more details on algorithmic advances in

Population Protocols we refer the reader to the surveys by Elsässer

and Radzik [30] and Alistarh and Gelashvili [2].

Less is known about exact plurality consensus protocols for

𝑘 > 2 opinions. One line of research focuses on the state space

requirements to always compute the exact plurality opinion. In [39]

the authors show that always correct plurality consensus requires

Ω(𝑘2) states. The currently best known protocol requires O(𝑘6)
many states [31]. In [7] the authors relax the requirement to always
return the correct result. They present a protocol for 𝑘>2 opinions

that may fail with small probability. This negligible error probability

allows them to break the lower bound and design a protocol that

converges w.h.p. in O(𝑛 · (𝑘 log𝑛 + log2 𝑛)) interactions using O(𝑘+
log𝑛) states.

A related family of protocols are the 𝑗-Majority processes. The

idea is that every agent adopts the majority opinion among a ran-

dom sample of 𝑗 other agents (breaking ties randomly). The most

simple variant (for 𝑗=1) is also known as the so-called Voter pro-

cess [17, 21, 34, 35, 38]. Here, every agent adopts the opinion of a

single, randomly chosen agent. The protocols for 𝑗=2 and 𝑗=3 have

been analyzed under the names of TwoChoices process [22–24] and

the 3-Majority dynamics [11, 13, 32]. In the TwoChoices process,

lazy tie-breaking towards an agent’s original opinion is assumed.

Ghaffari and Lengler [32] show for the TwoChoices process with

𝑘 = O(
√︁
𝑛/log𝑛) and for 3-Majority with 𝑘 = O(𝑛1/3/log𝑛) that

consensus is reached in O(𝑘 · log𝑛) rounds w.h.p. For arbitrary 𝑘
they show that 3-Majority reaches consensus in O(𝑛2/3 log3/2 𝑛)
rounds w.h.p. Schoenebeck and Yu [41] analyze the convergence

time of a generalization of multi-sample consensus protocols for

two opinions on complete graphs and Erdős-Rényi graphs. In the

MedianRule process [28] the authors assume that opinions are or-

dered. In every step every agent then adopts the median of its own

opinion and two randomly sampled opinions. This protocol reaches

consensus in O(log𝑘 log log𝑛 + log𝑛) rounds w.h.p. We remark

that in contrast to the MedianRule the USD does not require a total

order among the opinions. For further references and additional

protocols in similar models we refer the reader to the survey of

consensus dynamics by Becchetti et al. [9].

2 BACKGROUND AND OVERVIEW OF
RESULTS

In this section, we first introduce some of the preliminaries and

notation related to the population protocols model and the USD.

We then provide a technical overview of our main result.

Population Protocols. We consider a population protocol for 𝑛 iden-

tical, anonymous agents, where each agent is modeled as a finite

state machinewith state space𝑄 . Agents interact in pairs drawn uni-

formly at random. In an interaction (𝑢, 𝑣) agent𝑢 is called responder

and agent 𝑣 is called initiator. We allow for agents to interact with

themselves. The population protocol is defined by its transition

function 𝛿 : 𝑄2 → 𝑄2
.

The undecided state dynamics (USD) is defined as follows. Each

agent has either one of 𝑘 opinions or it is undecided, i.e., 𝑄 =

{ 1, . . . 𝑘,⊥ } where ⊥ stands for undecided. The undecided state
population protocol is given by the transition function

(𝑞, 𝑞′) →


(⊥, 𝑞′) if 𝑞, 𝑞′ ≠ ⊥ ∧ 𝑞 ≠ 𝑞′

(𝑞′, 𝑞′) if 𝑞 = ⊥, 𝑞′ ≠ ⊥
(𝑞, 𝑞′) otherwise.

Observe that only the initiator 𝑞 changes its state.

A configuration x(𝑡) at time 𝑡 is a vector (𝑥1 (𝑡), . . . ,𝑥𝑘 (𝑡),𝑢 (𝑡))
of length 𝑘 + 1. For 1 ≤ 𝑖 ≤ 𝑘 , 𝑥𝑖 (𝑡) is the number of agents of

Opinion 𝑖 and 𝑢 (𝑡) = 𝑛 − ∑𝑘
𝑖=1 𝑥𝑖 (𝑡) is the number of undecided

agents. In the beginning we assume 𝑥1 (0) ≥ 𝑥2 (0) ≥ · · · ≥ 𝑥𝑘 (0).
For 𝑡 > 0 we define max(𝑡) as the index of the opinion with the

largest support at step 𝑡 (if there are several opinions with the

same maximum support we pick an arbitrary one). Furthermore we

introduce the notation 𝑥max (𝑡) = 𝑥
max(𝑡 ) (𝑡) = max𝑖∈[𝑘 ] { 𝑥𝑖 (𝑡) }

for the support of the largest opinion at time 𝑡 . Note that 𝑥max (𝑡)
can refer to the support of different opinions over time.

We call an Opinion 𝑖 significant if 𝑥𝑖 (𝑡) > 𝑥max (𝑡) − 𝛼 ·
√
𝑛 log𝑛

for some fixed constant 𝛼 . An opinion that is not significant is

called insignificant. A configuration x has an additive bias 𝛽 if there

exists an Opinion𝑚 such that for all other opinions 𝑖 ≠𝑚 we have

𝑥𝑚 ≥ 𝑥𝑖 + 𝛽 . We say that a configuration x has a multiplicative bias
𝛼 if there exists an Opinion𝑚 such that for all other opinions 𝑖 ≠𝑚

we have 𝑥𝑚 ≥ 𝛼 · 𝑥𝑖 .
In the following we use upper case letters for random variables

(for example X(𝑡) and𝑈 (𝑡)) and lower case letters (x(𝑡) and 𝑢 (𝑡))
for fixed configurations or values.

We now state our main theorem. We remark that in our anal-

ysis we bound the convergence time in terms of 𝑛/𝑥1 (0), where
𝑥max (0) = 𝑥1 (0) is the support of the initially largest opinion. Under
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the assumptions of our theorem, however, we have 𝑥1 (0) > 𝑛/(2𝑘),
which leads to the bounds in terms of 𝑘 .

Theorem 2.1. Let 𝑐 > 0 be an arbitrary constant and let x(0)
be an initial configuration with 𝑘 ≤ 𝑐 ·

√
𝑛/log2 (𝑛) opinions with

𝑢 (0) ≤ (𝑛 − 𝑥1 (0))/2 and 𝑥1 (0) ≥ 𝑥𝑖 (0) for all 𝑖 ∈ [𝑘]. Then w.h.p.
all agents agree on Opinion 1 within

(1) O

(
𝑛 log𝑛 + 𝑛2/𝑥1 (0)

)
= O(𝑛 log𝑛 + 𝑛 · 𝑘) interactions if

x(0) has a multiplicative bias of at least 1 + 𝜀 for an arbitrary
constant 𝜀.

(2) O(𝑛2 log𝑛/𝑥1 (0)) = O(𝑘 · 𝑛 log𝑛) interactions if x(0) has an
additive bias of at least Ω

(√
𝑛 log𝑛

)
.

Without any bias all agents agree on a significant opinion within
O

(
𝑛2 log𝑛/𝑥1 (0)

)
= O(𝑘 · 𝑛 log𝑛) interactions w.h.p.

Main Idea of the Analysis. The straightforward approach in the

analysis of consensus processes is to track the growth of the support

of the plurality Opinion 1 via change of the ratio 𝑥1 (𝑡)/𝑥𝑖 (𝑡) over
time 𝑡 . Unfortunately, the change of the support of a single opinion

depends on the entire configuration, that is, the support of all other

opinions and also the number of undecided agents. Let us fix two

opinions 𝑖 and 𝑗 with 𝑥𝑖 > 𝑥 𝑗 . Then it is possible for the support

of Opinion 𝑗 to grow faster than the support of Opinion 𝑖 and vice

versa, depending on the number of undecided nodes. Hence, to track

the progress of the plurality opinion one has to take a close look at

the number of undecided nodes. This, in turn, is heavily influenced

by the support of all opinions. To cope with this “nonlinearity” we

use the potential function 𝑍𝛼 (𝑡) = 𝑛−2𝑢 (𝑡) −𝛼 ·𝑥max (𝑡), where we
use different values of 𝛼 for different phases. We analyze the drift of

𝑍𝛼 (𝑡) which allows us to show that the number of undecided agents

quickly approaches an “unstable equilibrium” 𝑢∗. Whenever the

process is close to the equilibrium (which changes over time), we

can perform a “classical” analysis and show, e.g., that bias between

two agents doubles in a certain number of interactions.

Our analysis also handles the case when there is no bias at all.

For this we proceed in two steps. First we show that the support

difference between two arbitrary but fixed large opinions quickly

reaches a value of

√
𝑛 via an anti-concentration bound. From there

we bound the probability that the opinions continue to drift apart.

In our analysis we rely heavily on existing concentration bounds

for the hitting times of one-dimensional random walks with drift,

which we can use after establishing the appropriate reductions and

potential functions in each phase of the process. The analysis is

divided into five parts that correspond to different phases of the
process. The phases are listed in the following table:

Phase Section End Condition Running Time Main Lemma

1 Section 3 𝑢 ≥ (𝑛 − 𝑥max)/2 O(𝑛 log𝑛) Lemma 3.1

2 Section 4 ∀𝑖 : 𝑥max ≥ 𝑥𝑖 + Ω(
√
𝑛 log𝑛) O(𝑛2 log𝑛/𝑥max) Lemma 4.5

3 Section 5 ∀𝑖 : 𝑥max ≥ 2𝑥𝑖 O(𝑛2 log𝑛/𝑥max) Lemma 5.3

4 Section 6 𝑥max ≥ 2𝑛/3 O(𝑛2/𝑥max + 𝑛 log𝑛) Lemma 6.4

5 Section 7 𝑥max = 𝑛 O(𝑛 log𝑛) Lemma 7.1

Note that the process does not have to pass through all five

phases. For example, the second phase is not needed if there is a

large bias in the initial configuration. Our analysis shows that the

identity of the majority opinion does not change after the end of

the second phase (or not at all if a large enough additive bias is

present from the beginning).

3 RISE OF THE UNDECIDED (PHASE 1)
In this section we analyze the running time of Phase 1 which

ends as soon as we have a sufficient number of undecided agents

(Lemma 3.1). Additionally we show that 𝑥1 (0) decreases by at most

a constant fraction w.h.p. (Lemma 3.2). Furthermore, an additive

and multiplicative bias is preserved as long as x(0) is an initial con-

figuration with bias. At the end of this section we show an upper

bound on the number of undecided agents which holds during the

whole running time of the process (Lemma 3.3). This lemma will

be used to estimate the running time of the remaining phases.

In the analysis of Lemma 3.1 we use the potential function

𝑍 (𝑡) = 𝑛 − 2𝑢 (𝑡) − 𝑥max (𝑡) .

Observe that Phase 1 ends as soon as 𝑍 (𝑡) ≤ 0, since in this case

𝑢 (𝑡 ′) ≥ 𝑛/2 − 𝑥max (𝑡 ′)/2.

Lemma 3.1. Let 𝑇1 = inf{𝑡 ≥ 0 | 𝑢 (𝑡) ≥ 𝑛/2 − 𝑥max (𝑡)/2}. Then
Pr[𝑇1 ≤ ⌈7𝑛 ln𝑛⌉] ≥ 1 − 𝑛−3.

Proof. To show the lemma we calculate the expected change

in 𝑍 (𝑡) for 𝑍 (𝑡) ≥ 0 and apply a drift theorem from [36]. There

are three cases. First we consider the case 𝑈 (𝑡 + 1) = 𝑢 (𝑡) − 1.

In this case a decided agent interacts with an undecided agent,

and the latter adopts the opinion of the decided agent. Let𝑀 (𝑡) =
{ 𝑖 ∈ [𝑘] | 𝑥𝑖 (𝑡) = 𝑥max (𝑡) } be the set of all opinions with maxi-

mum support at time 𝑡 . For each Opinion 𝑖 , an undecided initiator

interacts with a responder of Opinion 𝑖 with probability 𝑥𝑖 (𝑡) ·𝑢/𝑛2.
If 𝑖 ∈ 𝑀 (𝑡), then 𝑍 (𝑡) increases by 1. Otherwise 𝑍 (𝑡) increases by
2.

Next we consider the case 𝑈 (𝑡 + 1) = 𝑢 (𝑡) + 1. In this case a

decided initiator interacts with a responder of a different opinion

and becomes undecided. For each Opinion 𝑖 , this happens with

probability 𝑥𝑖 (𝑡) · (𝑛 − 𝑢 (𝑡) − 𝑥𝑖 (𝑡))/𝑛2. If 𝑖 ∈ 𝑀 (𝑡), then 𝑍 (𝑡)
decreases by 1 or 2. Otherwise 𝑍 (𝑡) decreases by 2.

With the remaining probability a step is unproductive and 𝑍 (𝑡)
does not change. Using these cases, we bound the expected drift of

𝑍 (𝑡) as

E[𝑍 (𝑡) − 𝑍 (𝑡 + 1) | X(𝑡) = x]

≥ −
∑︁

𝑖∈𝑀 (𝑡 )

𝑥𝑖 · 𝑢
𝑛2
− 2

∑︁
𝑖∉𝑀 (𝑡 )

𝑥𝑖 · 𝑢
𝑛2
+

∑︁
𝑖∈𝑀 (𝑡 )

𝑥𝑖 (𝑛 − 𝑢 − 𝑥𝑖 )
𝑛2

+ 2
∑︁

𝑖∉𝑀 (𝑡 )

𝑥𝑖 (𝑛 − 𝑢 − 𝑥𝑖 )
𝑛2

≥
∑︁
𝑖∈[𝑘 ]

𝑥𝑖 (𝑛 − 2𝑢 − 𝑥max)
𝑛2

+
∑︁

𝑖∉𝑀 (𝑡 )

𝑥𝑖 (𝑛 − 2𝑢 − 𝑥max)
𝑛2

≥ (𝑛 − 𝑢) (𝑛 − 2𝑢 − 𝑥max)
𝑛2

≥ 𝑍 (𝑡)
2𝑛

,

where we used that 𝑥𝑖 ≤ 𝑥max, 𝑍 (𝑡) = 𝑛 − 2𝑢 − 𝑥max ≥ 0, and

𝑢 < 𝑛/2 by definition of Phase 1. We now apply the multiplicative

drift result of [36] with 𝑟 = 3 ln𝑛, 𝑠0 = 𝑛 − 2𝑢 (0) − 𝑥max (0) ≤ 𝑛,

𝑠𝑚𝑖𝑛 = 1, 𝛿 = 1/(2𝑛) and get

Pr[𝑇1 > ⌈7𝑛 ln𝑛⌉] ≤ Pr

[
𝑇1 >

⌈
6 ln𝑛 + ln(𝑛 − 2𝑢 (0) − 𝑥max (0))

1/(2𝑛)

⌉]
≤ 𝑒−3·ln(𝑛) = 𝑛−3 . □
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Given the bound on𝑇1, we proceed to show that both the support

of the most popular opinion and the bias of the initial configuration

do not decrease too much until time𝑇1. Recall that initially Opinion

1 has the largest support.

Lemma 3.2. Let 𝛼, 𝜀 > 0 be arbitrary constants. Then each of the
following statements holds with probability at least 1 − 4𝑛−3:

(1) If 𝑥1 (0) − 𝑥𝑖 (0) ≥ 𝛼 ·
√
𝑛 log𝑛, then 𝑋1 (𝑇1) −𝑋𝑖 (𝑇1) ≥ 𝛼/3 ·√

𝑛 log𝑛.
(2) If 𝑥1 (0) ≥ (1+𝜀) ·𝑥𝑖 (0), then𝑋1 (𝑇1) ≥ (1+𝜀/(6+5𝜀)) ·𝑋𝑖 (𝑇1).
(3) For the largest opinion we have 𝑋1 (𝑇1) ≥ 𝑥1 (0)/3.

Proof Sketch. For the first statement we show that

E[(𝑋1 (𝑡) − 𝑋𝑖 (𝑡))/(𝑛 −𝑈 (𝑡))] ≥ 0 and apply a Hoeffding bound.

For the second statement we show that

Pr[𝑋1 (𝑡 +1)=𝑥1+1 |X(𝑡)=x] ≤Pr[𝑋1 (𝑡 +1)=𝑥1−1 |X(𝑡)=x]
such that we can bound the development of 𝑋1 by a fair random

walk. This enables us to relate the multiplicative bias to the additive

bias. The third statement is derived from the first statement by

choosing an Opinion 𝑖 with 𝑥𝑖 (0) = 0. The full proof can be found

in the full version [4].

□

Next we prove the upper bound on the number of undecided

agents. The lemma shows that the number of undecided agents stays

close to a threshold value𝑢∗ = 𝑛 · (𝑘−1)/(2𝑘−1) ≈ 𝑛/2. Intuitively,
this threshold𝑢∗ can be regarded as an (unstable) equilibrium for the

number of undecided agents: in configurations with more than 𝑢∗

undecided agents it is more likely that an undecided agent becomes

decided than vice versa, whereas in configurations with less than

𝑢∗ undecided agents it is more likely that a decided agent becomes

undecided than vice versa.

Lemma 3.3. Assume 𝑢 (0) ≤ (𝑛 − 𝑥max (0))/2. Then

Pr

[
∀𝑡 ∈ [𝑛3] : 𝑢 (𝑡) ≤ 𝑛

2

− 1

5𝑐
·
√
𝑛 log(𝑛)

]
> 1 − 𝑛−3 .

Proof Sketch. We first prove the claim for 𝑢 (𝑡) > 𝑢∗ + 3 ·√︁
𝑛 log𝑛. At the end of the full proof we show how the lemma

statement follows out of this. We model the number of undecided

agents over time 𝑡 as a non-lazy random walk 𝑍 (𝑡) with state space

{ 0, . . . , 𝑛 − 1 }. Then we couple 𝑍 (𝑟 ) with a random walk𝑊 (𝑟 )
on the integers with a reflecting barrier at 0 and otherwise fixed

transition probabilities. For𝑊 (𝑟 ) we can derive a bound on the

probability Pr

[
∃𝑡 ∈ [𝑛3] :𝑊 (𝑡) ≥ 3 ·

√︁
𝑛 log𝑛

]
. The bound follows

since in this case 𝑍 (𝑟 ) ≤𝑊 (𝑟 ) + 𝑍 (0). To conclude the proof we

show that the lemma statement follows from our bound stated in

terms of 𝑢∗. The full proof can be found in the full version [4].

□

4 GENERATION OF AN ADDITIVE BIAS
(PHASE 2)

Recall that 𝑇1 is defined as the end of Phase 1. In this section we

consider configurations at time𝑇1 without any additive bias. These

configurations will have several significant opinions. We define 𝑇2
as the first time 𝑡 ≥ 𝑇1 where x(𝑡) has only one opinion left which

is significant.

Note that 𝑥max (𝑡) ≥ 𝑥max (0)/2 = Ω(
√
𝑛 · log2 (𝑛)) for each

interaction 𝑡 in this phase. This follows from Lemma 3.3 together

with the pigeonhole principle. In Lemma 4.5 we show that w.h.p.

the running time of this phase is O(𝑛2 · log𝑛/𝑥max (𝑇1)). To show

that result we first need a lower bound (as opposed to the upper

bound of Lemma 3.3) on the number of undecided agents. Again,

this bound holds until the end of the process.

Lemma 4.1.

Pr

[
∀𝑡 ∈ [𝑇1,𝑛3] : 𝑢 (𝑡) ≥𝑛/2−𝑥max (𝑡)/2−8

√
𝑛 · ln𝑛

]
≥ 1−𝑛−5 .

Proof Sketch. Recall that for the proof of Lemma 3.1 we de-

fined 𝑍 (𝑡) = 𝑛 − 2𝑢 (𝑡) − 𝑥max (𝑡). We then showed that we have a

drift towards zero. We use this for a drift analysis following Theo-

rem 6 in [37]. The full proof can be found in the full version [4].

□

In the following lemma we show that the support of the largest

opinion does not shrink by more than a factor of two during Phase

2.

Lemma 4.2. Let 𝑐 > 0 be an arbitrary constant and define 𝑇 =

𝑐 · 𝑛2 · log𝑛/𝑥max (𝑇1). Then
Pr[∀𝑡 ∈ [𝑇1,𝑇1 +𝑇 ] : 𝑥max (𝑡) ≥ 𝑥max (𝑇1)/2] ≥ 1 − 𝑛−5 .

In Lemma 4.3 we first show that “small opinions” remain small

(they only double their support). With small opinion we mean

opinions having a support which have support at most 20

√︁
𝑛 log𝑛

and are thus at least a polylogarithmic factor smaller compared to

𝑥max (𝑡). Then in the second part we show that insignificant opin-

ions remain insignificant. Recall that an Opinion 𝑖 is insignificant

if 𝑥max (𝑡) − 𝑥𝑖 (𝑡) = Ω(
√
𝑛 log𝑛).

Lemma 4.3. Let 𝑐, 𝑐′ > 0 be arbitrary constants and define 𝑇 =

𝑐 · 𝑛2 · log𝑛/𝑥max (𝑇1). Assume for Opinion 𝑗 there exists a time
𝑡0 ∈ [𝑇1,𝑇1 +𝑇 ] with

(1) 𝑥 𝑗 (𝑡0) ≤ 20

√︁
𝑛 log𝑛. Then

Pr

[
∀𝑡 ∈ [𝑡0,𝑇1 +𝑇 ] : 𝑥 𝑗 (𝑡) ≤ 40

√︁
𝑛 log𝑛

]
≥ 1 − 2𝑛−3 .

(2) 𝑥max (𝑡0) − 𝑥 𝑗 (𝑡0) ≥ 𝑐′ ·
√
𝑛 log𝑛. Then

Pr

[
∀𝑡 ∈ [𝑡0,𝑇1+𝑇 ] : 𝑥max (𝑡) −𝑥𝑖 (𝑡) ≥𝑐′/2 ·

√
𝑛 log𝑛

]
≤ 1−2𝑛−3 .

Proof Sketch. In the first part we bound the probability for

a small Opinion 𝑗 to grow using Lemma 4.1. This probability is

sufficiently small for Opinion 𝑗 not to double. In the second part,

we make a case distinction based on the size of 𝑥 𝑗 (𝑡0). If 𝑥 𝑗 (𝑡0) is
small, then the support of 𝑥 𝑗 does not double (see Part 1) while

𝑥1 keeps at least half of its support (Lemma 4.2). Otherwise, we

use Lemma 4.1 to show that the bias is likely to increase. Then the

second part follows from the gambler’s ruin problem. The full proof

can be found in the full version [4]. □

The following lemma constitutes the foundation of the applica-

tion of the drift result from [28] which will be used in the proof

of Lemma 4.5. In the first part of Lemma 4.4 we consider two im-

portant opinions with (almost) the same support. We use an anti-

concentration result to show that their support difference quickly

reaches Ω(
√
𝑛). In the second part we again consider two impor-

tant opinions and give precise bounds on the probability that their
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support difference increases by a constant factor. Our proof is based

on gambler’s ruin problem. The proof of this result can be found in

the full version [4].

Lemma 4.4. Fix two opinions 𝑖 and 𝑗 and assume there exists 𝑡0 ≥
𝑇1 with 𝑥𝑖 (𝑡0) ≥ 𝑥 𝑗 (𝑡0) ≥ 𝑥max (𝑡0) − 4𝛼

√
𝑛 log𝑛 . Let 𝑇 = 40 ·

𝑛2/𝑥max (𝑇1) and Δ𝑖 𝑗 (𝑡0) = 𝑥𝑖 (𝑡0) − 𝑥 𝑗 (𝑡0). Then
(1) If Δ𝑖 𝑗 (𝑡0) < 4𝛼 ·

√
𝑛 then

Pr

[
Δ𝑖 𝑗 (𝑡0 +𝑇 ) ≥ 4𝛼 ·

√
𝑛
]
≥ 𝑒−

𝛼2

16 .

(2) If Δ𝑖 𝑗 (𝑡0) ≥ 4𝛼 ·
√
𝑛 then

Pr

[
Δ𝑖 𝑗 (𝑡0+𝑇 ) ≥min{(3/2) ·Δ𝑖 𝑗 (𝑡0),4𝛼

√
𝑛 log𝑛}

]
≥ 1−𝑒−

Δ𝑖 𝑗 (𝑡0 )√
𝑛 .

Now we are ready to analyze the running time of Phase 2.

Lemma 4.5. Let

𝑇2 = inf { 𝑡 ≥ 𝑇1 | ∃𝑖 ∈ [𝑘] : ∀𝑗 ≠ 𝑖 : 𝑥𝑖 (𝑡) − 𝑥 𝑗 (𝑡) ≥ 𝛼
√
𝑛 log𝑛 } .

Then

Pr

[
𝑇2 −𝑇1 ≤ 40 · 𝑐 · 𝑛2 · log𝑛/𝑥max (𝑇1)

]
≥ 1 − 2𝑛−2 .

Proof. We define

𝑇 = inf { 𝑡 ≥𝑇1 |𝑢 (𝑡) ∉
[
𝑛−𝑥max (𝑡)

2

−8
√
𝑛 ln𝑛,

𝑛

2

]
or

𝑥max (𝑇1)
𝑥max (𝑡)

<
1

3

}

as a stopping time and (X̂)𝑡≥𝑇1 as the process with X̂(𝑡) = X(𝑡)
for all 𝑡 ≤ 𝑇 and X̂(𝑡) = X(𝑇 ) for 𝑡 > 𝑇 . From Lemma 4.1 it follows

that 𝑢 (𝑡) ≥ (𝑛 − 𝑥max (𝑡))/2 − 8 ·
√
𝑛 ln𝑛 for all 𝑡 ∈ [𝑇1, 𝑛3], w.h.p.

From Lemma 3.3 it follows that 𝑢 (𝑡) ≤ 𝑛/2 for all 𝑡 ∈ [𝑇1, 𝑛3],
w.h.p. Finally, Lemma 4.2 gives us that 𝑥max (𝑡) ≥ 𝑥max (𝑇1)/3 for
all 𝑡 ∈ [𝑇1,𝑇1 + 𝑐𝑛2 log𝑛/𝑥max (𝑇1)], w.h.p. Thus, 𝑇 − 𝑇1 = Ω(𝑛2 ·
log𝑛/𝑥max (𝑇1)) w.h.p. andwe can assume that (X)𝑡≥𝑇1 and (X̂)𝑡≥𝑇1
are identical for 𝑡 ∈ [𝑇1,𝑇1 + O(𝑛2 · log𝑛/𝑥max (𝑇1))].

Recall that anOpinion 𝑖 is significant at time 𝑡 if𝑥𝑖 (𝑡) > 𝑥max (𝑡)−
𝛼
√
𝑛 log𝑛. In the following we call an Opinion 𝑖 important at time t

if 𝑥𝑖 (𝑡) > 𝑥max (𝑡) −4 ·𝛼
√
𝑛 log𝑛. In the following we will show that

for each pair of important opinions 𝑖 and 𝑗 at time𝑇1 at least one of

them becomes unimportant. Furthermore, we show that no unim-

portant opinion ever becomes significant. From this follows that

after O(𝑛2/𝑥𝑚𝑎𝑥 (𝑇1) · log𝑛) only one significant opinion remains.

First we consider a pair of opinions 𝑖 and 𝑗 which are important

at time 𝑇1 and show that w.h.p. at least one of them becomes unim-

portant within the next 𝜏 = 40 · 𝑐𝑛2 · log𝑛/𝑥𝑚𝑎𝑥 (𝑇1) interactions.
We divide the interactions from [𝑇1,𝑇1+𝜏] into 𝑐1 log𝑛 subphases

of length 40 · 𝑛2/𝑥 (𝑇1) each. For 1 ≤ 𝑖 ≤ 𝑐 log𝑛 we define ℓ1 = 1

and ℓ𝑖 = 1 + (𝑖 − 1) · 𝑛2/𝑥 (𝑇1). Then the 𝑖th subphase contains

interactions ℓ𝑖 to (ℓ𝑖+1 − 1). Furthermore, we define 𝑡𝑖 as the first

interaction in subphase 𝑖 .

Now we fix an arbitrary subphase 𝑖 and we consider two cases.

If 𝑥𝑖 (𝑡𝑖 ) − 𝑥 𝑗 (𝑡𝑖 ) < 4𝛼
√
𝑛 then it follows from Lemma 4.4

Pr

[
𝑋𝑖 (𝑡𝑖+1) − 𝑋 𝑗 (𝑡𝑖+1) ≥ 4𝛼

√
𝑛
]
≥ 𝑒−

𝛼2

16 (1)

Otherwise, if 𝑥𝑖 (𝑡𝑖 ) − 𝑥 𝑗 (𝑡𝑖 ) ≥ 4𝛼
√
𝑛 then

Pr

[
𝑋𝑖 (𝑡𝑖+1) −𝑋 𝑗 (𝑡𝑖+1) ≥min { (3/2) · (𝑥𝑖 (𝑡𝑖 ) −𝑥 𝑗 (𝑡𝑖 )),4𝛼

√
𝑛 log𝑛 }

]
≥ 1−𝑒−(𝑥𝑖 (𝑡𝑖 )−𝑥 𝑗 (𝑡𝑖 ) )/

√
𝑛

(2)

In either case we call such subphase successful.

In the following we show that in the interval [𝑇1,𝑇1 + 𝜏] there is
a sufficient amount of consecutive successful subphases such that

at least one of the two opinions becomes unimportant. To do so,

we define a function 𝑓 : [1, 𝑐1 log𝑛] → [0, log log𝑛] which counts

the consecutive number of successful subphases.

𝑓 (𝑖)=
{
0 if |𝑥𝑖 (𝑡𝑖 ) −𝑥 𝑗 (𝑡𝑖 ) |<4𝛼

√
𝑛

𝑗 if (3/2) 𝑗−1 ·4𝛼
√
𝑛≤ |𝑥𝑖 (𝑡𝑖 ) −𝑥 𝑗 (𝑡𝑖 ) |< (3/2) 𝑗 ·4𝛼

√
𝑛

Note that either Opinion 𝑖 or Opinion 𝑗 is unimportant at the

beginning of subphase 𝑖 if 𝑓 (𝑡𝑖 ) = log log𝑛.

We define a random walk𝑊 over the state space [0, log log𝑛] as
follows.𝑊 has a reflective state 0 and an absorbing state log log𝑛.

Initially,𝑊 (1) = 0. For𝑤 ∈ [0, log log𝑛 − 1] the transition proba-

bilities are defined as follows

Pr[𝑊 (𝑡 + 1) = 1 |𝑊 (𝑡) = 0] = 𝑒−
𝛼2

16

Pr[𝑊 (𝑡 + 1) = 𝑤 + 1 |𝑊 (𝑡) = 𝑤] = 1 − 𝑒−2
𝑤

Pr[𝑊 (𝑡 + 1) = 0 |𝑊 (𝑡) = 𝑤] = 𝑒−2
𝑤

.

To show that either Opinion 𝑖 or Opinion 𝑗 becomes unimportant,

which is equivalent to our function 𝑓 taking on the value log log𝑛,

we define coupling between 𝑓 (𝑖) and𝑊 (𝑖) such that 𝑓 (𝑖) ≥𝑊 (𝑖)
for all 𝑖 ∈ [1, 𝑐1 log𝑛].

For 𝑖 = 1 the claim holds trivially since we have𝑊 (1) = 0 and

𝑓 (1) ≥ 0. Now assume for 𝑖 ≥ 1 that 𝑓 (𝑖) ≥𝑊 (𝑖). Nowwe consider

two cases. In the first case assume |𝑥𝑖 (𝑡𝑖 ) − 𝑥 𝑗 (𝑡𝑖 ) | < 4𝛼
√
𝑛. Then

we know 𝑓 (𝑖) = 0 and hence,𝑊 (𝑖) = 0. It follows from Eq. (1) and

|𝑥𝑖 (𝑡𝑖 ) − 𝑥 𝑗 (𝑡𝑖 ) | ≥ 0

Pr[𝑓 (𝑖 + 1) ≥ 𝑓 (𝑖) + 1 | 𝑓 (𝑖) = 0] ≥ 𝑒−
𝛼2

16 and

Pr[𝑓 (𝑖 + 1) ≥ 0 | 𝑓 (𝑖) = 0] < 1 − 𝑒−
𝛼2

16

Likewise, from the definition of𝑊 it follows

Pr[𝑊 (𝑖 + 1) =𝑊 (𝑖) + 1 |𝑊 (𝑖) = 0] = 𝑒−
𝛼2

16 and

Pr[𝑊 (𝑖 + 1) = 0 |𝑊 (𝑖) = 0] = 1 − 𝑒−
𝛼2

16

Hence, we can couple the to processes such that the following

holds: whenever𝑊 (𝑖) is increased by one then 𝑓 (𝑖) is increased,
too. Whenever 𝑓 (𝑖) is decreased𝑊 (𝑖) jumps back to zero.

In the second case we assume

4𝛼
√
𝑛 ≤ |𝑥𝑖 (𝑡𝑖 ) − 𝑥 𝑗 (𝑡𝑖 ) | < min { 2(𝑥𝑖 (𝑡𝑖 ) − 𝑥 𝑗 (𝑡𝑖 )), 4𝛼

√
𝑛 log𝑛 } .

Then it follows from Eq. (2) and |𝑥𝑖 (𝑡𝑖 ) − 𝑥 𝑗 (𝑡𝑖 ) | ≥ 0

Pr[𝑓 (𝑖 + 1) ≥ 𝑓 (𝑖) + 1 | 𝑓 (𝑖) = 0] ≥ 1 − 𝑒−(𝑥𝑖 (𝑡𝑖 )−𝑥 𝑗 (𝑡𝑖 ) )/
√
𝑛
and

Pr[𝑓 (𝑖 + 1) ≥ 0 | 𝑓 (𝑖) = 0] < 𝑒−(𝑥𝑖 (𝑡𝑖 )−𝑥 𝑗 (𝑡𝑖 ) )/
√
𝑛

Likewise, from the definition of𝑊 it follows

Pr[𝑊 (𝑖 + 1) =𝑊 (𝑖) + 1 |𝑊 (𝑖) =𝑚] = 1 − 𝑒−2
𝑚

and

Pr[𝑊 (𝑖 + 1) = 0 |𝑊 (ℓ) =𝑚] = 𝑒−2
𝑚

Observe that

1 − 𝑒−(𝑥𝑖 (𝑡𝑖 )−𝑥 𝑗 (𝑡𝑖 ) )/
√
𝑛 ≥ 1 − 𝑒−2

𝑓 (𝑖 )
≥ 1 − 𝑒−2

𝑚

.

Again, we can couple the to processes such that 𝑓 (𝑖) ≥𝑊 (𝑖).
Finally an application of a known drift result it follows that

w.h.p. there exists 𝑖 ∈ [1, 𝑐1 log𝑛] such that𝑊 (𝑖) = log log𝑛. From
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this follows that there exists a time 𝑡 ′ ≤ [𝑇1,𝑇1 + 𝜏] such that

𝑥𝑖 (𝑡 ′) − 𝑥 𝑗 (𝑡 ′) ≥ 4𝛼
√
𝑛 log𝑛. This implies, in turn, that at least

Opinion 𝑗 is unimportant. From Statement 2 in Lemma 4.3 it follows

that 𝑥𝑚𝑎𝑥 (𝑡)−𝑥 𝑗 (𝑡) ≥ 2𝛼
√
𝑛 log𝑛 for all 𝑡 ∈ [𝑡 ′,𝑇1+𝜏] w.h.p. Hence,

the Opinion 𝑗 does not become significant during the time interval.

Finally a union bound over all pairs of initial important opinions

at time 𝑇1 yields that all but a single opinion of those important

opinions becomes insignificant in the time interval w.h.p.

Now we show that none of the unimportant opinions at time 𝑇1
ever becomes significant during [𝑇1,𝑇1 +𝜏]. First we fix an Opinion

𝑗 which is unimportant at time 𝑇1. Again from Statement 2 in

Lemma 4.3 it follows that 𝑥𝑚𝑎𝑥 (𝑡) − 𝑥 𝑗 (𝑡) ≥ 2𝛼
√
𝑛 log𝑛 for all

𝑡 ∈ [𝑇1,𝑇1 + 𝜏] w.h.p. Hence, all unimportant opinions at time 𝑇1
does not become significant during the time interval by a union

bound. At last the statement follows because all but a single opinion

becomes insignificant and hence, 𝑇2 −𝑇1 ≤ 𝜏 . □

5 FROM ADDITIVE TO MULTIPLICATIVE
BIAS (PHASE 3)

Recall that𝑇2 is defined as the end of Phase 2, and x(𝑇2) is a config-
uration with an additive bias of Ω(

√
𝑛 log𝑛). In the following we

assume w.l.o.g. that 𝑥1 (𝑇2) ≥ 𝑥2 (𝑇2) . . . ≥ 𝑥𝑘 (𝑇2).
We start our analysis of Phase 3 with Lemma 5.1 where we show

that the support of the largest opinion does not shrink by more

than a factor of two. The lemma is the equivalent to Statement 2

of Lemma 4.3 from Phase 2. The full proof can be found in the full

version [4].

Lemma 5.1. Let 𝑐 > 0 be an arbitrary constant and define 𝑇 =

𝑐 · 𝑛2 · log𝑛/𝑥1 (𝑇2). Then

Pr[∀𝑡 ∈ [𝑇2,𝑇2 +𝑇 ] : 𝑥1 (𝑡) ≥ 𝑥1 (𝑇1)/2] ≥ 1 − 𝑛−5 .

We proceed to show that the support difference between Opin-

ion 1 and each other opinion doubles every O(𝑛2/𝑥1 (𝑇2)) inter-
actions until the ratio between the support of both opinions is

sufficiently large. This will be used in Lemma 5.3 to show that after

O(log𝑛 · 𝑛2/𝑥1 (𝑇2)) interactions we reach w.h.p. a configuration

with a constant factor multiplicative bias.

Lemma 5.2. Fix an Opinion 𝑖 ≠ 1 and assume there exists 𝑡0 ≥ 𝑇2
with 𝑥𝑖 (𝑡0) ≥ 20

√︁
𝑛 log𝑛 and 𝑥1 (𝑡0) − 𝑥𝑖 (𝑡0) ≥ 𝛼

√
𝑛 log𝑛. Let 𝑇 =

420 · 𝑛2/𝑥1 (𝑇2). Then

Pr[∃𝑡 ∈ [𝑡0, 𝑡0+𝑇 ] : 𝑥1 (𝑡) −𝑥𝑖 (𝑡) ≥min{2(𝑥1 (𝑡0) −𝑥𝑖 (𝑡0)), 3𝑥𝑖 (𝑡)}

or 𝑥𝑖 (𝑡)<20

√︁
𝑛 log𝑛] ≥ 1−2𝑛−3.

Proof Sketch. The proof follows the analysis of the classical

Gambler’s ruin problem. That is, starting with Δ = 𝑥1 (𝑡) − 𝑥𝑖 (𝑡)
we track the evolution of this quantity throughout a sequence of

O(𝑛2/𝑥1 (𝑡)) interactions and show that it reaches 2Δ before Δ/2.
Here we rely on the bounds on the number of undecided agents

(Lemma 3.3 and Lemma 4.1) and on the lower bound on Opinion

1 which holds w.h.p. during time [𝑇2,𝑇2 + 420 · 𝑛2 · log𝑛/𝑥1 (𝑇2)]
(Lemma 4.2). The full proof can be found in the full version [4].

□

Now we are ready to analyze the running time of Phase 3.

Lemma 5.3. Assume that x(𝑇2) is a configuration with 𝑥1 (𝑇2) −
𝑥𝑖 (𝑇2) ≥ 𝛼

√
𝑛 log𝑛 for all 𝑖 ≠ 1. Let

𝑇3 = inf { 𝑡 ≥ 𝑇2 | ∀𝑖 ≠ 1 : 𝑥1 (𝑡) ≥ 2𝑥𝑖 (𝑡) } .
Then

Pr

[
𝑇3 −𝑇2 ≤ 420 · 𝑛2 · log𝑛/𝑥1 (𝑇2)

]
≥ 1 − 2𝑛−2 .

Proof. The main idea of this proof is to repeatedly apply

Lemma 5.2 to each Opinion 𝑖 ≠ 1 until either the support of

Opinion 1 becomes larger than 2𝑛/3 or the support of Opinion 𝑖

becomes less than 20 ·
√︁
𝑛 log𝑛. In both cases it then follows that

the ratio between the support of Opinion 1 and Opinion 𝑖 is larger

than two, and there is a time where there is a multiplicative bias

between the first opinion and each other opinion.

Let

𝑇 = inf{𝑡 ≥ 𝑇2 | 𝑢 (𝑡) ∉ [(𝑛 − 𝑥max (𝑡))/2 − 8 ·
√
𝑛 ln𝑛, 𝑛/2]

or 𝑥1 (𝑡) < 𝑥1 (𝑇2)/2.}

be a stopping time. We define (X̂)𝑡≥𝑇2 as the process with X̂(𝑡) =
X(𝑡) for all 𝑡 ≤ 𝑇 and X̂(𝑡) = X(𝑇 ) for 𝑡 > 𝑇 . From Lemma 4.1 it

follows that 𝑢 (𝑡) ≥ (𝑛 − 𝑥max (𝑡))/2 − 8 ·
√
𝑛 ln𝑛 for all 𝑡 ∈ [𝑇2, 𝑛3],

w.h.p. From Lemma 3.3 it follows that𝑢 (𝑡) ≤ 𝑛/2 for all 𝑡 ∈ [𝑇2, 𝑛3],
w.h.p. Finally, Lemma 5.1 gives us that 𝑥max (𝑡) ≥ 𝑥max (𝑇2)/2 for
all 𝑡 ∈ [𝑇2,𝑇2 + 𝑐𝑛2 log𝑛/𝑥max (𝑇2)], w.h.p. Thus, 𝑇 − 𝑇2 = Ω(𝑛2 ·
log𝑛/𝑥1 (𝑇2)) w.h.p. and we can assume that (X)𝑡≥𝑇2 and (X̂)𝑡≥𝑇2
are identical for 𝑡 ∈ [𝑇2,𝑇2 + O(𝑛2 · log𝑛/𝑥max (𝑇2))].

Let 𝜏 = 420·𝑛2 ·log𝑛/𝑥max (𝑇2) and fix an Opinion 𝑖 ≠ 1 at time𝑇2

with 𝑥𝑖 (𝑇2) ≥ 20

√︁
𝑛 log𝑛. We divide the interactions from [𝑇2,𝑇2 +

𝜏] into log𝑛 subphases of length 420 · 𝑛2/𝑥1 (𝑇2) each. For 1 ≤ 𝑗 ≤
log𝑛 we define ℓ1 = 1 and ℓ𝑗 = 1+ ( 𝑗 − 1) · 420 ·𝑛2/𝑥1 (𝑇2). Then the

𝑗 th subphase contains interactions ℓ𝑗 to (ℓ𝑗+1 −1). Furthermore, we

define 𝑡 𝑗 is the first interaction in subphase 𝑗 . Now fix an arbitrary

subphase 𝑗 . It follows from Lemma 5.2 that there exists a time

𝑡 ′ ∈ [𝑡 𝑗 , 𝑡 𝑗+1] such that w.h.p. either 𝑥1 (𝑡)−𝑥𝑖 (𝑡) ≥ min{2·(𝑥1 (𝑡 𝑗 )−
𝑥𝑖 (𝑡 𝑗 )), 3 · 𝑥𝑖 (𝑡)} or 𝑥𝑖 (𝑡) < 20

√︁
𝑛 log𝑛.

We apply Lemma 5.2 to each subphase. From the union bound

over all subphases and all opinions it follows that after at most log𝑛

subphases w.h.p. there exists for each Opinion 𝑖 a time 𝑡 ′
𝑖
∈ [𝑇2,𝑇2 +

𝜏] with either (a) 𝑥1 (𝑡 ′𝑖 ) − 𝑥𝑖 (𝑡
′
𝑖
) ≥ 2𝑛/3 or (b) 𝑥𝑖 (𝑡 ′𝑖 ) < 20

√︁
𝑛 log𝑛

or (c) 𝑥1 (𝑡 ′𝑖 ) ≥ 4 · 𝑥𝑖 (𝑡 ′𝑖 ). In the following we consider three cases.

Case (a). There exists an Opinion 𝑖 ≠ 1 such that 𝑥1 (𝑡 ′𝑖 ) − 𝑥𝑖 (𝑡
′
𝑖
) ≥

2𝑛/3. Hence, we have at 𝑡 ′
𝑖
a constant multiplicative bias between

Opinion 1 and all other opinions 𝑖 ≠ 1. From this the statement

follows immediately with 𝑇3 = 𝑡 ′
𝑖
.

Case (b). For Opinion 𝑖 there exists a 𝑡 ′
𝑖
such that 𝑥𝑖 (𝑡 ′𝑖 ) <

20

√︁
𝑛 log𝑛. From Lemma 4.3(1) it follows that𝑥𝑖 (𝑡) ≤ 40

√︁
𝑛 log𝑛 for

all 𝑡 ∈ [𝑡 ′
𝑖
,𝑇2 + 𝜏] w.h.p. Additionally we know 𝑥1 (𝑡) ≥ 𝑥1 (𝑇2)/2 ≥

𝑐′
√
𝑛 log2 𝑛 for all 𝑡 ∈ [𝑡 ′

𝑖
,𝑇2 + 𝜏]. Hence, 𝑥1 (𝑡)/𝑥𝑖 (𝑡) ≫ 2 for all

𝑡 ∈ [𝑡 ′
𝑖
,𝑇2 + 𝜏] and, from the viewpoint of Opinion 𝑖 we have that

𝑇3 can take on an arbitrary value in [𝑡 ′
𝑖
,𝑇2 + 𝜏].

Case (c). For Opinion 𝑖 there exists a 𝑡 ′
𝑖
such that 𝑥1 (𝑡 ′𝑖 ) ≥ 4 · 𝑥𝑖 (𝑡 ′𝑖 ).

From the claim below it follows that w.h.p. 𝑥1 (𝑡) ≥ 2𝑥𝑖 (𝑡) for all
𝑡 ∈ [𝑡 ′

𝑖
,𝑇2 + 𝜏] and from the viewpoint of Opinion 𝑖 we have that

𝑇3 can take on an arbitrary value in [𝑡 ′
𝑖
,𝑇2 + 𝜏].
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Now Lemma 5.3 follows either immediately from Case (a). Or

we can apply Case (b) or Case (c) for each Opinion 𝑖 ≠ 1 and then

we can choose 𝑇3 = 𝑇2 + 𝜏 . It remains to show the following claim.

The proof can be found in the full version [4].

Claim 5.3.1. Let 𝑗 be an arbitrary subphase and let 𝑡0 ∈ [𝑡 𝑗 , 𝑡 𝑗+1].
Fix an Opinion 𝑖 and assume 𝑥𝑖 (𝑡0) ∈ [20 ·

√︁
𝑛 log𝑛, 𝑥1 (𝑡0)/4]. Then

𝑥1 (𝑡) ≥ 2 · 𝑥𝑖 (𝑡) for all 𝑡 ∈ [𝑡0,𝑇2 + 𝜏]. □

6 FROMMULTIPLICATIVE BIAS TO
ABSOLUTE MAJORITY (PHASE 4)

Recall that 𝑇3 is the end of Phase 3 and X(𝑇3) is a configuration
with multiplicative bias. In this version of the paper we assume that

the bias is at least two, the proof of the case of a (1+ 𝜀)-bias for any
constant 𝜀 is deferred to the full version of this paper [4]. It follows

from a slightly more involved calculation. In the following we

assume w.l.o.g. that 𝑥1 (𝑇3) > 𝑥2 (𝑇3) . . . ≥ 𝑥𝑘 (𝑇3). The main result

for this phase is Lemma 6.4, where we show that the multiplicative

bias is grown into a unique majority opinion with support at least

2𝑛/3 within O(𝑛 log𝑛 + 𝑛2/𝑥1 (𝑇3)) interactions, w.h.p. To do so

we first need an improved bound on the number of undecided

agents which we reach at time 𝑇3 + O(𝑛 log𝑛). Additionally we

have to show that in the meantime both 𝑥1 and the multiplicative

bias decrease only by a small constant fraction (Lemma 6.1 and

Lemma 6.2). The proofs of both lemmas are similar to the proofs of

Lemma 4.2 and Claim 5.3.1, respectively, and can be found in the

full version [4].

Lemma 6.1. Let 𝑐 > 0 be an arbitrary constant and define 𝑇 =

𝑐 · 𝑛2 log𝑛/𝑥1 (𝑇3). Then

Pr[∀𝑡 ∈ [𝑇3,𝑇3 +𝑇 ] : 𝑥1 (𝑡) ≥ 𝑥1 (𝑇3)/2] ≥ 1 − 𝑛−5 .

Lemma 6.2. Assume that x(𝑇3) is a configuration with 𝑥1 (𝑇3) ≥
2 · 𝑥𝑖 (𝑇3) for all 𝑖 ≠ 1. Then for all 𝑖 ≠ 𝑖 it holds

Pr

[
∀𝑡 ∈ [𝑇3, 111 · 𝑛2/𝑥1 (𝑇3)] : 𝑥1 (𝑡) ≥ 7/4 · 𝑥𝑖 (𝑡)

]
≥ 1 − 2𝑛−3 .

Next we improve the lower bound on the number of undecided

agents from Lemma 3.3. Recall that𝑇4 is the end of Phase 4, defined

as 𝑇4 = inf { 𝑡 ≥ 𝑇3 | 𝑥1 (𝑡) ≥ 2𝑛/3 }.

Lemma 6.3. Let 𝑇𝑢 = inf { 𝑡 ≥ 𝑇3 | 𝑢 (𝑡) ≥ 𝑛/2 − 7/8 · 𝑥1 (𝑡) }.
Then

Pr[min(𝑇4,𝑇𝑢 ) −𝑇3 ≤ ⌈7𝑛 ln𝑛⌉] ≥ 1 − 4𝑛−3 .

Proof Sketch. The proof is similar to the proof of Lemma 3.1.

The main difference is that we use a modified potential function

𝑍 (𝑡) = 𝑛−2𝑢 (𝑡)−7/8 ·𝑥1 (𝑡) instead of𝑍 (𝑡) = 𝑛−2𝑢 (𝑡)−𝑥1 (𝑡). The
expression for the expected drift of this modified potential function

becomes slightly more complicated, and to bound it we require the

multiplicative bias from Lemma 6.2. The full proof can be found in

the full version [4]. □

Now we are ready to analyze the running time of Phase 4.

Lemma 6.4. Assume that x(𝑇3) is a configuration with 𝑥1 (𝑇3) ≥
2 · 𝑥𝑖 (𝑇3) for all 𝑖 ≠ 1. Then there exists a constant 𝑐 such that

Pr

[
𝑇4 −𝑇3 ≤ 7𝑛 ln𝑛 + 444 · 𝑛2/𝑥1 (𝑇3)

]
≥ 1 − 2𝑛−2 .

Proof. To show the statement we require the following two

auxiliary results. First we establish in Claim 6.4.1 that the im-

proved bound on the undecided agents from Lemma 6.3 holds

throughout the remainder of the phase. As before, we define 𝑇𝑢 =

inf { 𝑡 ≥ 𝑇3 | 𝑢 (𝑡) ≥ 𝑛/2 − 7/8 · 𝑥1 (𝑡)/2 } and recall that𝑇4 denotes
the end of the phase. The proof follows along the lines of the proof

of Lemma 4.1 with the new 𝑍 (𝑡), and can be found in in the full

version [4].

Claim 6.4.1.

Pr

[
∀𝑡 ∈ [𝑇𝑢 ,min{𝑛3,𝑇4}] : 𝑢 (𝑡) ≥

𝑛

2

− 7

16

𝑥1 (𝑡) −8
√
𝑛 ln𝑛

]
≥ 1−4𝑛−3.

Next, in Claim 6.4.2 we bound the number of interactions until

the support of Opinion 1 has doubled. Similarly to Lemma 5.2, the

proof uses the classical gambler’s ruin problem to show that in

a sequence of 𝑐 · 𝑛2/𝑥1 (𝑡) interactions the support of Opinion 1

doubles w.h.p. before it halves. The full proof can be found in the

full version [4].

Claim 6.4.2. Let x(𝑡) be a configuration with 𝑢 (𝑡) ≥ 𝑛/2 − 7/16 ·
𝑥1 (𝑡) − 8 ·

√
𝑛 ln𝑛 and 𝑥1 (𝑡) < 2𝑛/3. We define 𝑡 ′ = 𝑐 · 𝑛2/𝑥1 (𝑡) for

a suitable chosen constant 𝑐 . Then

Pr

[
∃𝑡 ′ ∈ [𝑡, 𝑡 + 𝑡 ′] : 𝑥1 (𝑡 ′) ≥ 2𝑥1 (𝑡) or 𝑥1 (𝑡) ≥ 2𝑛/3

]
≥ 1 − 𝑛−3 .

With these two auxiliary claims we are now ready to show the

lemma. We start with a brief overview of the proof. The proof is

similar to the proof of Lemma 5.3 but we only have to consider

the analog to Case (a). We repeatedly apply Claim 6.4.2 to Opinion

1. Then the support of the largest opinion, 𝑥1 (𝑡) doubles every
O(𝑛2/𝑥1 (𝑡)) interactions until its support becomes larger than 2𝑛/3.
After doubling at most log𝑛 times, we reach a configuration where

𝑥1 (𝑡) ≥ 2𝑛/3. This will be our time 𝑇4.

To show that there exists a 𝑡 with 𝑥1 (𝑡) ≥ 2𝑛/3 we define

𝑇 = inf{𝑡 ≥ 𝑇3 + 𝑡0 |𝑢 (𝑡) ∉ [(𝑛 − 7/16 · 𝑥1 (𝑡)) − 8 ·
√
𝑛 ln𝑛, 𝑛/2]

or 𝑥1 (𝑡) < 𝑥1 (𝑇3)/2}
as a stopping time. Here 𝑡0 is defined as

𝑡0 = inf { 𝑡 : 𝑢 (𝑡0) ≥ (𝑛 − 7/16 · 𝑥1 (𝑡0)) } .
From Lemma 6.3 it follows w.h.p. that 𝑡0 ≤ 𝑇3 + 7𝑛 ln𝑛.

Let (X̂(𝑡))𝑡≥𝑇3+𝑡0 denote the process with X̂(𝑡) = X(𝑡) for all
𝑡 ≤ 𝑇 and X̂(𝑡) = X(𝑇 ) for 𝑡 > 𝑇 . From Claim 6.4.1 it follows that

𝑢 (𝑡) ≥ (𝑛 −𝑥1 (𝑇3 + 𝑡0))/2− 8 ·
√
𝑛 ln𝑛 for all 𝑡 ∈ [𝑇3 + 𝑡0, 𝑛3], w.h.p.

From Lemma 3.3 it follows that𝑢 (𝑡) ≤ 𝑛/2 for all 𝑡 ∈ [𝑇1, 𝑛3], w.h.p.
Finally, Lemma 4.2 gives us that 𝑥1 (𝑡) ≥ 𝑥1 (𝑇3)/2 for all 𝑡 ∈ [𝑇3,𝑇3+
𝑐𝑛2 log𝑛/𝑥1 (𝑇3)], w.h.p. Thus, 𝑇 − (𝑇3 + 𝑡0) = Ω(𝑛2/𝑥1 (𝑇3)) w.h.p.
and we can assume that (X)𝑡≥𝑇3+𝑡0 and (X̂)𝑡≥𝑇3+𝑡0 are identical for
𝑡 ∈ [𝑇3 + 𝑡0,𝑇3 + 𝑡0 + O(𝑛2 · log𝑛/𝑥1 (𝑇3))].

To track the progress of Opinion 1 we divide the interactions

from [𝑇3+𝑡0,𝑇3+𝑡0+𝑐 ·𝑛2/𝑥1 (𝑇3)] into subphases of varying length.
Let 𝑇(0) = 𝑇3 + 𝑡0 and define for 1 ≤ ℓ ≤ log𝑛

𝑇(ℓ ) = inf { 𝑡 ≥ 𝑇(0) | 𝑥1 (𝑡) ≥ 2
ℓ · 𝑥1 (𝑇(0) ) or 𝑥1 (𝑡) ≥ 2𝑛/3 } .

We call the interactions in the interval

[
𝑇(ℓ−1) ,𝑇(ℓ )

)
subphase ℓ .

Note that by definition of 𝑇(ℓ ) , the support of 𝑥1 doubles in every

subphase (or 𝑥1 ≥ 2/3𝑛 and Phase 4 ends). In more detail, for a fixed
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but arbitrary subphase ℓ it follows from Claim 6.4.2 that the length

of subphase ℓ is at most 𝑐 · 𝑛2/𝑥 (𝑇(ℓ−1) ) ≤ 𝑐 · 𝑛2/(2ℓ−1 · 𝑥1 (𝑇(0) ),
w.h.p. Hence, it follows that there exists a time 𝑡 ′ ∈ [𝑇(ℓ−1) ,𝑇(ℓ−1) +
𝑐 ·𝑛2/𝑥 (𝑇(ℓ−1) )] such that 𝑥1 (𝑡 ′) ≥ 2

ℓ ·𝑥1 (𝑇(0) ) or 𝑥1 (𝑡 ′) ≥ 2/3 ·𝑛,
w.h.p. From the union bound over all subphases we get that after at

most log𝑛 subphases there exists w.h.p. a time 𝑡 ′ ∈ [𝑇(0) ,𝑇(log𝑛) ]
such that 𝑥1 (𝑡 ′) ≥ 2𝑛/3. This holds since otherwise 𝑥1 (𝑡 ′) ≥ 2

log𝑛 ·
𝑥1 (𝑇(0) ) ≥ 𝑛 ·

√
𝑛 log2 𝑛 > 𝑛., a contradiction.

Summing up the length of all subphases for 𝑐 = 111 gives us

log𝑛∑︁
𝑖=1

𝑐 · 𝑛2
2
𝑖−1 · 𝑥1 (𝑇(0) )

=
𝑐 · 𝑛2

𝑥1 (𝑇(0) )
·
log𝑛∑︁
𝑖=1

1

2
𝑖−1 ≤ 2 · 𝑐 · 𝑛2

𝑥1 (𝑇(0) )

and hence, 𝑇4 −𝑇3 ≤ 7𝑛 ln𝑛 + 4 · 𝑐 · 𝑛2/𝑥1 (𝑇3) as claimed. □

7 FROM ABSOLUTE MAJORITY TO
CONSENSUS (PHASE 5)

Recall that 𝑇4 is the end of Phase 4 and X(𝑇4) is a configuration
where the support of the largest opinion, 𝑥max (𝑇4) is at least 2𝑛/3.
The fifth phase ends when all agents agree on the Opinion max(𝑇4).
In the following we assume w.l.o.g. that 𝑥1 (𝑇4) ≥ 𝑥2 (𝑇4) ≥ . . . ≥
𝑥𝑘 (𝑇4). In Lemma 7.1 we show that the running time of this phase

is O(𝑛 log𝑛). This result is shown via a coupling where we couple

the USD on configuration X(𝑇4) with the USD on a configuration

X̃ with two opinions only. We show that the time until all agents

agree starting from configuration X(𝑇4) is majorized by the time

starting from configuration X̃ (see Lemma 7.2).

Lemma 7.1. Assume that x(𝑇4) is a configuration with 𝑥1 (𝑇4) ≥
2𝑛/3. Let 𝑇5= inf { 𝑡 ≥𝑇4 |𝑥1 (𝑡)=𝑛 }.

Pr[𝑇5 −𝑇4 ≤ 𝑐 · 𝑛 log𝑛] ≥ 1 − 𝑛−3 .Then

W.l.o.g. we assume that 𝑇4 = 0. To show this lemma we couple

our process (X(𝑡))𝑡 ∈N with 𝑘 opinions with a process (X̃(𝑡))𝑡 ∈N
with 2-opinions. x̃ is defined as follows. 𝑥1 (0) = 𝑥1 (0), 𝑥2 (0) =∑𝑘

𝑖=2 𝑥𝑖 (0) and 𝑢̃ (0) = 𝑢 (0). We will show in Lemma 7.2 that there

exists a coupling such that for all 𝑡 ≥ 0 we have 𝑥1 (𝑡) ≥ 𝑥1 (𝑡). From
this follows that for all 𝑡 ≥ 1 we have Pr[𝑥1 (𝑡) = 𝑛] ≥ Pr[𝑥1 = 𝑛].

Since 𝑥1 (0) ≥ 2𝑛/3, we have 𝑥1 (0) − 𝑥2 (0) ≥ 𝑛/3. For 𝑘 = 2 it

follows from [5] that (X̃(𝑡))𝑡 ∈N converges w.h.p. to 𝑥1 (𝑡) = 𝑛 in

O(𝑛 log𝑛) interaction.
For technical reasons, we show the stronger invariant 𝑥1 (𝑡) ≥

𝑥1 (𝑡) and 𝑥1 (𝑡) +𝑢 (𝑡) ≥ 𝑥1 (𝑡) + 𝑢̃ (𝑡) using a step-by-step coupling.

Lemma 7.2. Consider the two processes (X(𝑡))𝑡 ∈N with 𝑘 opin-
ions and (X̃(𝑡))𝑡 ∈N with 2-opinions where 𝑥1 (0) = 𝑥1 (0), 𝑥 (2) =∑𝑘
𝑖=2 𝑥𝑖 (0) and 𝑢̃ (0) = 𝑢 (0). Then there exists a coupling between the

two processes such that ∀𝑡 ≥ 0:

𝑥1 (𝑡) ≥ 𝑥1 (𝑡) and 𝑥1 (𝑡) + 𝑢 (𝑡) ≥ 𝑥1 (𝑡) + 𝑢̃ (𝑡) (3)

Proof. We prove the lemma by induction over 𝑡 . Obviously, the

claim holds for 𝑡 = 0. Fix a time step 𝑡 where (3) holds. We show

that (3) holds for time 𝑡 + 1. In the following, we omit 𝑡 if clear from

the context. We represent the 𝑛 agents of the configurations x(𝑡)
and

˜x(𝑡) by 𝑛-dimensional vectors v(𝑡) and ṽ(𝑡) which are sorted

as follows.

𝑣𝑖 (𝑡) =



1 if 𝑖 ∈ [𝑥1]
⊥ if 𝑖 − 𝑥1 ∈ [𝑢]
2 if 𝑖 − 𝑥1 − 𝑢 ∈

[∑𝑘
𝑗=2 𝑥 𝑗

]
⊥ if 𝑖 − 𝑥1 − 𝑥2 ∈ [𝑢 + 1, 𝑢̃]
2 otherwise

𝑣𝑖 (𝑡) =



1 if 𝑖 ∈ [𝑥1]
⊥ if 𝑖 − 𝑥1 ∈ [𝑢]
2, . . . , 𝑘 if 𝑖 − 𝑥1 − 𝑢 ∈

[∑𝑘
𝑗=2 𝑥 𝑗

]
1 if 𝑖 − 𝑥1 − 𝑢 − 𝑥2 ∈ [𝑥1 − 𝑥1]
⊥ otherwise

The definition results in the following two cases.

Case 1: 𝑢̃ (𝑡) ≥ 𝑢 (𝑡). In this case the vectors are sorted as follows.

ṽ = 1 . . . 1 ⊥ . . .⊥ 2 . . . 2 2 . . . 2 . . . 2 . . . 2 ⊥ . . .⊥ 2 . . . 2

v = 1 . . . 1 ⊥ . . .⊥ 2 . . . 2 3 . . . 3 . . . k . . . k 1 . . . 1 1 . . . 1

| ← a → |

Case 2: 𝑢̃ (𝑡) < 𝑢 (𝑡). In this case the vectors are sorted as follows.

ṽ = 1 . . . 1 ⊥ . . .⊥ 2 . . . 2 2 . . . 2 . . . 2 . . . 2 2 . . . 2 2 . . . 2

v = 1 . . . 1 ⊥ . . .⊥ 2 . . . 2 3 . . . 3 . . . k . . . k 1 . . . 1 ⊥ . . .⊥
| ← a → |

Wewill use the identity coupling, both processes choose the same

pair (𝑖, 𝑗) ∈ [𝑛]2 uniformly at random. Hence, the next interaction

is (𝑣𝑖 (𝑡), 𝑣 𝑗 (𝑡)) in the 𝑘-opinion process and (𝑣𝑖 (𝑡), 𝑣 𝑗 (𝑡)) in the

two-opinion process. Let 𝑎 = 𝑥1 (𝑡) +min(𝑢 (𝑡), 𝑢̃ (𝑡)) +∑𝑘
𝑗=2 𝑥 𝑗 (𝑡).

We split the analysis into four cases and exemplify the proof on the

first case 𝑖, 𝑗 ≤ 𝑎.

Case 1: 𝑖, 𝑗 ≤ 𝑎. If 𝑣𝑖 (𝑡) = 𝑣𝑖 (𝑡) and 𝑣 𝑗 (𝑡) = 𝑣 𝑗 (𝑡) both processes

perform the same transition and the inductive step is trivially ful-

filled. If 𝑣𝑖 (𝑡) ≠ 𝑣𝑖 (𝑡) and 𝑣 𝑗 (𝑡) ≠ 𝑣 𝑗 (𝑡) we have that 𝑣𝑖 (𝑡), 𝑣 𝑗 (𝑡) = 2

and 𝑣𝑖 (𝑡), 𝑣 𝑗 (𝑡) > 2. Then 𝑣𝑖 (𝑡 + 1) = ⊥ and 𝑣𝑖 (𝑡 + 1) = 2 resulting

in 𝑢 (𝑡 + 1) ≥ 𝑢 (𝑡). We have two cases.

If 𝑣𝑖 (𝑡) = 𝑣𝑖 but 𝑣 𝑗 (𝑡) ≠ 𝑣 𝑗 (𝑡) the following transitions are possible.

𝑣𝑖 (𝑡) 𝑣𝑖 (𝑡) 𝑣 𝑗 (𝑡) 𝑣 𝑗 (𝑡) 𝑣𝑖 (𝑡 + 1) 𝑣𝑖 (𝑡 + 1)
1 1 >2 2 ⊥ ⊥
⊥ ⊥ >2 2 >2 2

2 2 >2 2 ⊥ 2

If 𝑣𝑖 (𝑡) ≠ 𝑣𝑖 (𝑡) and 𝑣 𝑗 (𝑡) = 𝑣 𝑗 (𝑡) the following transitions are

possible.

𝑣𝑖 (𝑡) 𝑣𝑖 (𝑡) 𝑣 𝑗 (𝑡) 𝑣 𝑗 (𝑡) 𝑣𝑖 (𝑡 + 1) 𝑣𝑖 (𝑡 + 1)
>2 2 1 1 ⊥ ⊥
>2 2 ⊥ ⊥ >2 2

>2 2 2 2 ⊥ 2

The inductive step now follows in both cases since in all cases

𝑢 (𝑡) ≥ 𝑢̃ (𝑡). The remaining cases follow analogously and can be

found in the full version [4]. □
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8 COMPARISON OF CONVERGENCE RATES
WITH BECCHETTI ET AL. [10]

We show that given an initial configuration with a multiplicative

bias, our convergence rate from Theorem 2.1 improves over the

analogous rate from Becchetti et al. [10] whenever the initial sup-

port of the largest opinion 𝑥1 is close to the average opinion size,

that is, 𝑥1 ≤ 𝑛/𝑘 · log𝑛.
In the regime of an initial multiplicative bias, the analysis of

Becchetti et al. of the USD in the gossip model shows the process

achieves plurality consensus in O(md(x(0)) · log𝑛) rounds, where
(assuming 𝑥1 has largest initial support)

md(x(0)) =
∑︁
𝑖∈[𝑘 ]

( 𝑥𝑖 (0)
𝑥1 (0)

)
2

.

On the other hand, recall our result from Theorem 2.1, which shows

convergence towards plurality consensus in the population protocol

model in O(𝑛 log𝑛 + 𝑛2/𝑥1 (0)) interactions, which is equivalent to

O(log𝑛 + 𝑛/𝑥1 (0)) parallel time.

Considering the range of 𝑘 for which their result holds, our

convergence rate improves the one of Becchetti et al. when 𝑥1 ≤
𝑛/𝑘 ·log𝑛. To see this, consider an initial configuration x and assume

that w.l.o.g. 𝑥1 ≥ 𝑥𝑖 for all 2 ≤ 𝑖 ≤ 𝑛. We calculate

md(x) log𝑛 =

𝑘∑︁
𝑖=1

𝑥2𝑖 /𝑥
2

1
log𝑛 ≥ 𝑘 · (𝑛/𝑘)2

𝑥2
1

log𝑛 =
𝑛2

𝑘 · 𝑥2
1

log𝑛

=
𝑛 · log𝑛
𝑘 · 𝑥1

· 𝑛
𝑥1

.

Hence, md(x) log𝑛 gives the better running time when

𝑥1 >
𝑛 · log𝑛

𝑘
.

9 CONCLUSIONS AND OPEN PROBLEMS
We show fast convergence of the USD in the population model,

where the exact convergence rates depend on the magnitude of

support of the initial plurality opinion and the type of bias (if any)

in the initial configuration. Although our result can be viewed as an

improvement over the existing, analogous convergence rates for the

process in the gossip model [10], our analysis does not readily trans-

fer to that model. Thus it remains open to prove convergence of

the 𝑘 > 2 opinion USD with no initial bias in the gossip model, and

moreover to understand whether there exists a unified framework

for analyzing the process in both models simultaneously. Addition-

ally, analyzing the process for 𝑘 = 𝜔 (
√
𝑛/log2 𝑛) opinions is left for

future work.

Separately, we leave as future work analyzing the 𝑘-state USD in

the presence of adversarial nodes or communication noise. Recent

results of d’Amore et al. [26, 27] and of Cruciani et al. [25], which

analyze the 2-state USD process (as well as other majority dynamics

for 𝑘 > 2) under such settings, suggest that the 𝑘 opinion USD

process is also robust to these noise models. Quantifying the effect

of such noise on the convergence rate of the 𝑘 opinion USD process

(for 𝑘 > 2) is thus an interesting open question.
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