
Spreading Rumors Rapidly Despite an AdversaryJames Aspnes � William HurwoodyAbstractIn the collect problem [32], n processors in a shared-memorysystem must each learn the values of n registers. We givea randomized algorithm that solves the collect problem inO(n log3 n) total read and write operations with high prob-ability, even if timing is under the control of a content-oblivious adversary (a slight weakening of the usual adap-tive adversary). This improves on both the trivial upperbound of O(n2) steps and the best previously known boundof O(n3=2 log n) steps, and is close to the lower bound of
(n log n) steps. Furthermore, we show how this algorithmcan be used to obtain a multi-use cooperative collect proto-col that is O(log3 n)-competitive in the latency model of Aj-tai et al.[3] and O(n1=2 log3=2 n)-competitive in the through-put model of Aspnes and Waarts [10]; in both cases we showthat the competitive ratios are within a polylogarithmic fac-tor of optimal.1 IntroductionRumor spreading. The simplest problem we will consideris the following: each of n people knows a rumor. At eachpoint in time, an adversary chooses one of the n peopleand hands him or her a telephone. The only restrictionon the adversary's choice is that he cannot choose a personwho already knows all n rumors (intuitively, we assume thatsuch a person goes o� to do something else). The personchosen by the adversary may call up any one other person(possibly choosing the other person using randomization)and will learn all the rumors that the other person currentlyknows. The process continues until all participants know allof the rumors. Our goal is to minimize the total number ofsteps (i.e., the total number of telephone calls).One can think of this problem as an asynchronous versionof the well-known gossip problem [24]. In the gossip problem,�Yale University, Department of Computer Science, 51 ProspectStreet/P.O. Box 208285, New Haven, CT 06520-8285. Sup-ported by NSF grants CCR-9410228 and CCR-9415410. E-mail:aspnes@cs.yale.edu.yYale University, Department of Mathematics, P.O. Box 208283,New Haven CT, 06520-8283. Supported by NSF grants CCR-8958528and CCR-9415410. E-mail: will@math.yale.edu.

n persons wish to distribute n rumors among themselves;however, which persons communicate at each time is �xedin advance by the designer of the algorithm. By contrast, inour problem, the choice of who receives information at eachtime is under the control of an adversary. Furthermore, thealgorithm used by each process to choose where it will lookfor more information can only make that choice based onthe information obtained so far.The collect problem. The rumor-spreading problem aboveis closely related to the collect problem [32]. In the collectproblem, each of n processes in a shared-memory systempossesses some piece of information, which it stores in oneof a set of single-writer multi-reader atomic registers. Wewould like each of the processes to learn the values of all ofthe others while performing as few total read and write op-erations as possible. Again, we assume that timing is underthe control of an adversary scheduler, which has near-totalknowledge of all events in the system, and which may startand stop processes at will. The essential di�erence betweenthe rumor-spreading problem above and the collect prob-lem is that in the collect problem the operations of choosingsomeone to read, reading his or her values, and adding themto one's own register do not take place as a single atomicaction.The description above is of the simplest version of thecollect problem, in which all values are present at the startand each process gathers the values only once. For this ver-sion of the problem, the naive solution is to have each of then processors read each of the n registers directly, for a totalcost of n2 operations. However, the naive solution is notthe best possible, as processors can learn values indirectlyfrom other processors, thus sharing the work of reading theregisters. Indeed, Ajtai et al. [3] observed that the Certi-�ed Write-All algorithm of Anderson and Woll [5] could bemodi�ed in a straightforward way to solve the collect prob-lem in O(n3=2 log n) total operations. This is a substantialimprovement on an upper bound of n2, but still far from thebest known lower bound of 
(n log n). [3].Repeated collects. The collect problem is motivated by itsfrequent appearance in other algorithms. Many algorithmsin the wait-free shared-memory model [1, 2, 4, 6, 7, 8, 9, 12,13, 15, 16, 17, 19, 20, 21, 22, 23, 27, 25, 26, 28, 29, 30, 34]have an underlying structure in which processes repeatedlycollect values using the cooperative collect primitive. Inthe cooperative collect primitive, �rst abstracted by Saks,Shavit, and Woll [32], processes perform the collect opera-



tion { an operation in which each process learns the valuesof a set of n registers, with the guarantee that each valuelearned is fresh: it was present in the register at some pointduring the collect. In a sense the cooperative collect primi-tive is a multi-use version of the simple collect problem, withthe added di�culty of guaranteeing freshness.Interestingly, most of these algorithms (which includenearly all algorithms in the wait-free shared-memory litera-ture for consensus, snapshots, coin 
ipping, bounded roundnumbers, timestamps, and multi-writer registers) use thenaive algorithm for performing collects in which each pro-cessor reads every register directly, at a cost of n reads percollect.1 One reason (beyond the simplicity of the naive al-gorithm) may be that if one considers the performance ofcollect algorithms in traditional worst-case terms, the naivealgorithm appears to be optimal: since the adversary canalways choose to halt all but one of the processors, thatlone processor running in isolation cannot carry out a col-lect without reading all the other processor's registers.Competitive collect algorithms The apparent optimality ofthe naive algorithm for repeated collects is surprising giventhe superior performance of other algorithms for the one-time collect problem. Indeed, one would expect that analgorithm that solved the one-time problem quickly couldbe extended to an algorithm that would give better perfor-mances in many circumstances. Ajtai et al. [3] provided atool, known as latency competitiveness, that can be used toshow the superiority of more sophisticated algorithms. Intheir model the performance of a distributed algorithm isnot measured in absolute terms against the worst possibleschedule, but instead is measured on each schedule relativeto the performance of another distributed algorithm chosento be optimal for that schedule. In order to have good la-tency competitiveness, an algorithm must not only performacceptably in hard situations (for collect, this is generallywhen there is little or no concurrency) but must also per-form well in easy situations. More details of the latencycompetitiveness measure, and of the related throughput com-petitiveness measure [10], can be found in Sections 4.1 and4.2.1.1 Our resultsWe describe (Section 2) an algorithm for the rumor-spreading game which requires only O(n log2 n) steps withhigh probability, slightly more than the lower bound of
(n log n). Based on this algorithm, we construct (Sec-tion 3) a randomized algorithm for the collect problem thatruns in O(n log3 n) work with high probability; the extraO(log n) factor comes from the technique we use to sim-ulate an atomic transfer of information from one proces-sor's register to another's. This is the �rst solution to theproblem that comes within a polylogarithmic factor of thelower bound of 
(n log n). Furthermore, we show (Section4) that our algorithm can be extended in a natural way toyield an implementation of the cooperative collect primi-tive that is O(log3 n)-competitive in the latency model [3]and O(pn log3=2 n)-competitive in the throughput model.1[32, 31] present collect algorithms that do not follow the patternof the naive algorithm. Both works, however, consider models thatinvolve considerably stronger assumptions that either the standardwait-free shared memory model or the slightly weaker model consid-ered here.

Both of these ratios are also within a polylogarithmic fac-tor of the best known lower bounds, and substantially im-prove on the best previously known ratios of O(pn log n)and O(n3=4 log n).1.2 The modelAll of our results are carried out in a model where the al-gorithm is allowed to generate a random value and writeit out as a single atomic operation. This assumption ap-pears frequently in early work on consensus; it is the \weakmodel" of Abrahamson [1] and was used in the consensus pa-per of Chor, Israeli, and Li [19]. In general, the weak modelin its various incarnations permits much better algorithms(e.g., [11, 18]) for such problems as consensus than the bestknown algorithms in the more traditional \strong model".The assumption that the adversary cannot see coin-
ips be-fore they are written is justi�ed by an assumption that in areal system failures, page faults, and similar disastrous formsof asynchrony are likely to be a�ected by where each pro-cessor is reading and writing values but not by what valuesare being read or written.It is not clear whether this assumption can be removedwhile still permitting an O(n logc n) solution to the collectproblem.2 Spreading rumorsRecall from the introduction that in the rumor-spreadingproblem a processor may choose what processor it will read,read that processor's state, and add the information thusobtained to its own visible state as a single atomic operation.The algorithm we analyze in this case is deceptively simple:when a processor a is chosen to move by the adversary, itreads from a processor b chosen uniformly at random fromthe set of all n processors. (It is possible that b = a.) Wewill refer to one of these atomic operations as a move.Intuitively it seems unlikely that this is the best algo-rithm. For example, if a has obtained the information fromn � 1 processors, it is clear that a should examine the soleprocessor whose information a does not already possess.Also if b = a then no information can possibly be gained.But this algorithm has the great advantage that it is impos-sible for the adversary to bias a's selection of b. This makesit much easier to analyze the performance of this algorithmthan it otherwise might be.Some notation: in the following, we will use KPt for theset of rumors possessed by processor P at time t. We willsay that a processor P knows a set of rumors S at time twhen S � KPt . The e�ect of P reading Q at time t is to setKPt+1 to KPt [KQt .Let us look at some set of rumors S and consider howthey spread through the processors. For each S, we willdivide moves into two classes:� Moves by processors that already know S. We will callthese moves unproductive (with respect to S).� Moves by processors that do not already know S. Wewill call these moves productive (again, with respect toS).Where it will not cause confusion we will omit a speci�creference to S. Note however that a move might be unpro-ductive with respect to some S but productive with respectto a di�erent S0.



The following lemma shows that, with high probability,the information known by any single processor spreads toall of the processors after only O(n log n) productive moves:Lemma 1 Fix a starting time s and let S = KPs . Let T bethe number of productivemoves after s before every processorknows S and let k be a positive constant. ThenPr [T � kn ln n] � 1nk�3Proof: If k processors know S prior to a productive move,then the probability that k + 1 processors know S afterthe move is k=n. Thus the total waiting time T is givenby the sum of a set of independent, geometrically dis-tributed random variables T1; T2; : : : ; Tn�1; Tn with expec-tations n;n=2; : : : ; n=(n � 1); 1. This gives a total expectedtime of nHn or approximately n ln n. However, we wish toshow a stronger claim, by bounding the tail of this sum'sdistribution.We do so using moment generating functions. We haveby Markov's inequality that for c > 0Pr [T � t] = Pr �ecT � ect� � E �ecT �ect :Since the Ti are independentE �ecT � = E"n�1Yi=1 ecTi# = n�1Yi=1 E �ecTi� :We can evaluate E �ecTi� directly. Let p = i=n and q =1� i=n. Then assuming that qec < 1 we getE �ecTi� = p 1Xj=1 qj�1ecj = pec 1Xj=0(qec)j = pec1� qec :So if we let d = ec we getPr [T � t] � 1ect n�1Yi=1 inec1� (1� in )ec= 1dt n�1Yi=1 idid + n � dn= (n � 1)!dt�n+1 n�1Yi=1 1id + n � dnSince we want qd < 1 for all possible values of q, we havethat 1 < d < n=(n � 1). For d in this range and 1 < i < nwe have 1id + n � dn � n � 1in+ n(n� 1)� n2 � 1i� 1 :HencePr [T � t] � (n � 1)!dt�n+1 � 1d + n � dn � 1(n � 2)!= n � 1dt�n+1(d + n � dn) :

Now set d = nn�1 � ss+1 where s = t � n + 1. De�ne l bys = ln ln n. ThenPr [T � t] � (n � 1)d�sn + d(n � 1)= n � 1n �n� 1n �ln ln n �s+ 1s �s (s + 1)� n�le(ln ln n + 1):Now let t = kn ln n for k some positive constant. Thenk � l � k � 1. Assuming that n is large enough that n2 �e(kn ln n + 1) we concludePr [T � kn ln n] � 1nk�3 (1)What Lemma 1 tells us is that with high probability, af-ter kn ln n productive moves KPs will spread to all of theprocessors. Thereafter any further moves must be unpro-ductive moves. So if 3kn ln n moves are performed, at least23 of them are unproductive| in other words, most of these3kn ln n moves are made by processors that know KPs . Thatthis intuition is true simultaneously for all P with high prob-ability is captured in the following lemma:Lemma 2 Let s be a time and let t = s+3kn ln n. For eachprocessor P and time t0, let V Pt0 be the set of processorsQ forwhich KQt0 � KPs . (Thus V Pt will consist of all processorsthat know after an interval of 3kn ln n steps everything thatP knew at the beginning.) For any set of processorsA, de�new(A) to be the number of moves made by processors in Abetween s and t. ThenPr �9P w(V Pt ) < 2kn ln n� � 1nk�4Proof: The proof works by showing an upper bound onthe number of moves not done by processors in V Pt . LetV Pt be the complement of V Pt . Since any processor in V Ptdoes not know KPs at time t, it cannot have known KPs atany time before t, and thus all of its moves prior to t areproductive moves with respect to KPs . Using lemma 1 weget Pr hw(V Pt ) � kn ln ni � 1=nk�3. Thus:Pr �9P w(V Pt ) < 2kn ln n� � nXi=0 Pr �w(V Pt ) < 2kn ln n�= nPr hw(V Pt ) � kn ln ni� 1nk�4Because it is likely that V Pt and V Qt both do at least 23of the work, it is likely that these sets overlap for any P andQ, i.e. that the information known by any pair of processorsat time s is known to a single processor at time s+3kn ln n:Corollary 3 Using the notation of Lemma 2,Pr �9P;Q V Pt \ V Qt = ;� � 1=nk�4.



Proof: Suppose w(V Pt ) � 2kn ln n and w(V Qt ) � 2kn ln nThen w(V Qt ) < kn ln n and so V Pt 6� V Qt implying that V Pt \V Qt 6= ;. By Lemma 2 the probability that the suppositiondoes not hold is at most 1=nk�4. The result follows.In particular, if at time s there is some set A of rprocessors that between them know all the rumors (i.e.,SP2AKPs � SP KP0 ), then at time s + 3kn ln n there willbe a set of dr=2e processors that between them know all therumors. Initially there are n processors that between themknow all the rumors. Therefore after at most 1 + log2 nintervals of length 3kn ln n there will be a single processorthat knows all of the rumors, i.e. one that has completedits task.The adversary cannot move a processor that knows ev-erything, so all moves made after a processor has completedare necessarily made by processors that have not completed.So applying Lemma 1 shows that after kn ln n additionalmoves every processor will know everything with high prob-ability. In summary we have the following:Theorem 4 Let k be some constant, and let the adversaryand processors behave as described earlier in this section.Let c = 3(log2 e + 1) = 7:32 � � �. Then the probability thatevery processor knows every rumor after ckn ln2 n moves isat most 1nk�5 .3 The collect problemIn the rumor-spreading problem we assumed that all of theknowledge of any particular processor was available to anyother processor that wished to read it. In collect problemthis is not the case; the adversary can stop a processor inbetween reading new information from another processor'sregister and writing that information to its own register.Furthermore, we allow the adversary to stop a processorbetween making a random choice of which register to readand the actual read operation. (This rule corresponds to anassumption that not all reads are equal; some might involvecache misses, network delays, and so forth.) However, asmentioned in Section 1.2, we will permit a processor to makea random choice and write the result of this choice to its ownregister as an atomic operation. (This rule corresponds toan assumption that the timing of a write is not a�ected bythe value being written.)Overall, the approach will be similar to that taken forthe rumor-spreading problem. But it is no longer enoughfor each processor to simply keep reading randomly selectedregisters. An adversary strategy that defeats this simplealgorithm is to choose one of the registers to be a \poi-son pill"; any processor that attempts to read this registerwill be halted. Since on average only one read out of ev-ery n would attempt to read the poisonous register, closeto n2 reads would be made before the adversary would beforced to let some processor actually swallow the poison pill.We will avoid this problem by having each processor usethe following algorithm. The essential idea is that beforeattempting to read a register, a processor will leave a notesaying where it is going;2 poison pills can thus be detectedeasily by the trail of corpses leading in their direction. Thedistance that a processor will pursue this trail will be � ln n,2It is here that we use the assumption that we can 
ip a coin andwrite the outcome atomically.

where � is constant chosen to guarantee that the processorreaches its target with high probability.In the following algorithm, we assume that each proces-sor stores in its output register both the set of values S it hascollected so far and its successor, the processor it selectedto read from most recently.� While some values are unknown:{ Set p to be a random processor, and write out pas our successor. (We will call this the selectionstep).{ Repeat � ln n times:� Read the register of p. Set S to be the unionof S and the values �eld. Set p to the succes-sor �eld.� Write out the new S.We would like to prove an analogue of Lemma 2 for thismore sophisticated algorithm. Let us �x a starting time s.For each processor P and time t � s, de�ne UPt recursivelyas follows. Let UPs = fPg. If at time t, a processor Qchooses a processor in UPt , then UPt+1 = UPt [ fQg; other-wise UPt+1 = UPt . Note that the sets UPt are built up byexactly the same random process as the sets V Pt de�nedin Lemma 1, and so we can use Lemma 1 to show a high-probability bound on how many times the selection step canbe executed by a processor not already in UP . This boundtranslates into a bound on the number of operations be-cause the number of operations executed by any processoris at most 2� ln n+ 1 times the number of times it executesthe body of the outer loop, i.e., the number of times theselection step is executed.However, it is not enough to show that many proces-sors will be in UP ; we must also show that these processorswill eventually follow the trail of successor �elds to obtainKPs . To show this fact we view UPt as a rooted tree, whoseroot is the original node P . As each new node a is addedto UP it must select one of the processors b already in UP ;in this case we draw an edge between a and b. Notice that(conditioning on the fact that a selects a processor alreadyin UP ) the processor b is chosen uniformly from the nodesalready in UP . In Section 3.1 we investigate the randomvariable Mx, which is de�ned to be the depth of a tree con-taining x+ 1 nodes generated in precisely this fashion. Weprove (equation (10)):Lemma 5 Let � � 2, thenPr [Mx�1 � � ln x] � 1x� ln ����1Intuitively, the depth of the tree is likely to be boundedby the logarithm of its size because on average the i-th nodeto be added to the tree will choose as a parent the (i=2)-thnode. The importance of bounding the depth of the tree isthat it gives an immediate bound on the length of a trailthat any processor in UP must follow to learn KPs :Lemma 6 Suppose that the depth of the UP tree does notexceed � ln n. Let Q be a processor that has completed theinner loop following its �rst selection of a processor in UP .Then Q knows KPs .



Proof: The result follows by induction on the size of UP .If Q is a processor newly added to UP , either Q successfullyfollows a chain of successor edges until it reaches P , or atsome point it follows an edge leaving some processor R thatis not an edge in UP . But then R must have chosen a newsuccessor after its entry into UP and thus must have com-pleted its inner loop following its entry into UP . It followsby the induction hypothesis that R knows KPs , and thus Qlearns it when it reads R's register.Now we have the following extension of lemma 2.Lemma 7 Let the powers of the adversary, and the algo-rithms of the processors be as de�ned earlier in this section.Fix a starting time s, let t = s+3(kn ln n+ n)(2� ln n+ 1),and de�ne V Pt as the set of processors that know KPs at timet and w(A) to be the total number of operations executed byprocessors in A between s and t. ThenPr �9P w(V Pt ) � 2(kn ln n + n)(2� ln n + 1)�� 1nk�4 + 1n� ln ����2Proof: We use an argument similar to that used forLemma 2. Suppose that w(V Pt ) � (kn ln n+n)(2� ln n+1).Then by Lemma 1 after (kn ln n)(2� ln n+1) operations ev-ery processor in V Pt is in UP . So by Lemmas 5 and 6 afterthe remaining n(2� ln n + 1) operations all n of them willhave followed their trails back and read the information.The probability of these events not occuring for some P isthe value given in the statement of the lemma.This lemma can be used in exactly the same way as insection 2 to prove the following theorem:Theorem 8 Let k; � be constants, k � 1, � � 2, and letthe adversary and processors behave as described earlier inthis section. Assume that n � 3 and let c = 37. Thenthe probability that the cooperative collect is incomplete afterc�kn ln3 n moves is at most 1nk�5 + 1n� ln����3 .Proof: The argument is essentially the same as used forTheorem 4. The resulting cost is given by3(kn ln +n)(2� ln n + 1)(log2 n+ 1)which is at most 37k�n ln3 n under the assumptions (neededfor the lemmas) that k � 1 and � � 2, and the furtherassumption that n � 3 > e (implying ln3 n > ln2 n > ln n).In particular if we take k = � � 9 we can combine theterms in the probability bound to get as a special case thatthe probability that the cooperative collect is incompleteafter ck2n ln3 n moves is at most 2nk�5 (where c = 37 as inthe theorem).3.1 Proof of Lemma 5In this section we investigate the expected depth of a rootedtree which is built be adjoining each new vertex to one ofthe existing vertices chosen at random. We will show thatwith high probability the depth of the tree of i vertices is atmost O(log i).Let Ti be a random variable whose value is a rooted treewith i+1 vertices, including the root vertex. So T0 consists

of the root vertex only. Let Ti+1 be de�ned by uniformlyselecting one of the i+ 1 vertices in Ti and attaching a newvertex to the selected vertex.De�ne random variables Di to be the depth of the ithvertex, where the root has depth �1, a vertex adjacent tothe root has depth 0 and so on. Let Mi be the depth of thetree Ti, so Mi = maxj�i Dj:Now de�ne indicator variables for i � 0, d � �1,Xi d = � 1 if Di = d0 otherwiseLet xi d = Pr [Di = d] = Pr [Xi d = 1] = E [Xi d].From the construction of the tree we havePr [Xi d = 1] = 1i i�1Xj=0 Xj d�1:Taking expectations we getE [Xi d] = 1i i�1Xj=0 E [Xj d�1] :So the xi d are de�ned by the recurrence equationxi d = ( 1i Pi�1j=0 xj d�1 if i � 1 and d � 01 if i = 0 and d = �10 otherwise. (2)From (2) we can derive two further recurrence equations, fori � 1, d � 0 xi d = i� 1i xi�1 d + 1i xi�1 d�1 (3)and xi d = 1i X0<i1<i2<:::<id<i dYj=1 1ij : (4)Now we can use (3) to �nd the expectation of Di, sinceE [Di] = 1Xd=0 dxi d = 1X0 � i � 1i xi�1 d + 1i xi�1 d�1�= i � 1i 1X0 dxi�1 d + 1i 1X1 (d� 1)xi�1 d�1+1i 1X1 xi�1 d�1= E [Di�1] + 1iSince E [D0] = �1 we getE [Di] = iXj=2 1j � ln i (5)This shows that in a tree with r vertices the expected depthof any particular vertex is at most ln r, which suggests thatthe expected depth of the entire tree is also of the order



of ln r. To prove this we will need to get an upper boundon xi d.By comparing the identity i�1Xj=1 1j!d = i�1Xi1=1 i�1Xi2=1 � � � i�1Xid=1 dYj=1 1ijwith (4) we see that i�1Xj=1 1j!d = ixi dd! + terms involving squares. (6)Hence xi d � �Pi�1j=1 1j�di:d! � (1 + ln(i � 1))di:d! (7)In fact we can show that as i ! 1, xi d ! lnd i=(id!).That is, the Di are asymptotically Poisson distributed withparameter ln i.Let d = k ln i. Then using Stirling's formula we have(1 + ln i)dd! = �dk�d �1 + kd �dd! � 2�dk�d ekd!� 2ekp2�d �dk�d � ed�d � ekek(1�ln k) ln i� 1ik ln k�k�1 (8)assuming that i � 3. By combining (7) and (8) we obtainxi d � 1ik ln k�k provided i � 3 and d � k ln i (9)Suppose Mx � y for some x; y. Since if there is a nodewith depth bigger than y there must be a node of depthexactly y we have using (2) thatPr [Mx � l] �Xi�x Pr [Di = y] =Xi�x xi y = (x+ 1)xx+1 y+1So by applying (9) we can conclude that if k is some con-stant, k � 2 thenPr [Mx�1 � k ln x] � 1xk ln k�k�1 (10)In particular if k � 9 we have that k ln k � k � 1 � k soPr [Mx�1 � k ln x] � 1xk for k � 9: (11)4 Repeated collectsIn this section we consider an extension of the algorithmfrom Section 3, which implements the cooperative collectprimitive. For this primitive, a processor must not only beable to collect a set of values that are initially present in theregisters; it must also be able to repeatedly carry out collectoperations that gather n new values that are guaranteed tobe fresh in the sense that they were present in the registersat some time during the collect operation.

Our algorithm ensures freshness by a simple timestampscheme. Upon starting a collect a processor writes out anew timestamp. Timestamps spread through the processor'sregisters in parallel to register values. When a processorreads a value directly from its original register, it tags thatvalue by the most recent timestamp it has from each of theother processors. Thus if a processor sees a value taggedwith its own most recent timestamp, it can be sure thatthat value was present in the registers after the processorstarted its most recent collect, i.e. that the value is fresh.The algorithm can be summarized as follows. Below, Stracks the set of values (together with their tags) knownto the processor. The array T lists each processor's mostrecent timestamps. Both S, T , and the current successorare periodically written to the processor's output register.� Choose a new timestamp � and set our entry in T to� .� While some values are unknown:{ Set p to be a random processor, write out p as oursuccessor and T as our list of known timestamps.{ Repeat � ln n times:� Read the register of p. Set S to be the unionof S and the values �eld. Update T to includethe most recent timestamps for each proces-sor. Set p to the successor �eld.� Write out the new S and T .� Return S.We can characterize the performance of this algorithm bydescribing its collective latency [3], an upper bound on theamount of work needed to complete all collects in progressat some time t:Theorem 9 Fix a starting time s. Let k, �, n, and c beas in Theorem 8. Each process carries out a certain numberof steps between s and the time at which it completes thecollect it was working on at time s. Let T be the sum overall processors of these numbers. ThenPr �T > 2c�kn ln3 n� � 2� 1nk�5 + 1n� ln ����3�Proof: Divide the steps contributing to T into two classes:(i) steps taken by processors that do not yet know times-tamps corresponding to all of the collects in progress at times; and (ii) steps taken by processes that know all n of thesetimestamps. To bound the number of steps in class (i), ob-serve that the behavior of the algorithm in spreading thetimestamps during these steps is equivalent to the behav-ior of the algorithm in Section 3. Similarly, steps in class(ii) correspond to an execution of the algorithm in Section 3when we consider the spread of values tagged by all n currenttimestamps. Thus the total time for both classes of steps isbounded by twice the bound from Theorem 8, except for acase whose probability is at most twice the probability fromTheorem 8.Having a bound on the collective latency of our repeated-collect algorithm is important because it allows us to showthat the algorithm is competitive against other distributedalgorithms. The competitive ratio that we obtain dependson the particular competitive model chosen; there are twonatural possibilities for the collect problem, described in thefollowing two sections.



Figure 1: Latency model. New high-level operations (ovals) start at times speci�ed by the scheduler (vertical bars). Scheduleralso speci�es timing of low-level operations (small circles). Cost to algorithm is number of low-level operations actuallyperformed (�lled circles).
Figure 2: Throughput model. New high-level operations (ovals) start as soon as previous operations end. Scheduler controlsonly timing of low-level operations (�lled circles). Payo� to algorithm is number of high-level operations completed.4.1 Latency competitivenessThe competitive latency model of Ajtai et al. [3] is amechanism for applying the technique of competitive anal-ysis, originally developed to deal with the unknown se-quences of user inputs in on-line algorithms [33], to unknownpatterns of system behavior as found in fault-tolerant dis-tributed algorithms. In the context of the repeated collectproblem, it is assumed that the adversary controls the exe-cution of an algorithm by generating (possibly in responseto the algorithm's behavior) a schedule that speci�es whencollects start and when each processor is allowed to take astep (see Figure 1. A processor halts when it �nishes a col-lect; it is not charged for opportunities to take a step in be-tween �nishing one collect and starting another (intuitively,we imagine that it is o� doing something else). The compet-itive latency of a candidate algorithm is the least constantk, if any, that guarantees that the expected total number ofoperations carried out by the candidate on a given schedule� is at most k times the cost of an optimal distributed al-gorithm (called the champion by [3]) running on the sameschedule.Ajtai et al. show that if an algorithm has a maximumcollective latency of L at all times, then its competitive ratioin the latency model is at most L=n + 1. Unfortunately,this result is stated only for deterministic algorithms, andin any case the upper bound on the collective latency ofour algorithm is only a high-probability guarantee and notabsolute.However, the proof in [3] of the relationship between col-lective latency and competitive latency does not really de-pend on these details. It proceeds by dividing an executioninto segments and showing that for each such segment, thecandidate algorithm carries out at most L + n operations

and the champion carries out at least n operations. As weshow in the full paper, this construction works equally wellfor randomized algorithms, but the upper bound L + n onthe work done by the candidate for each segment becomes arandom variable (whose expectation will be O(n log3 n) forour algorithm). It follows that:Theorem 10 The competitive latency of the repeated collectalgorithm is O(log3 n).This result holds even against an adaptive o�-line adver-sary [14], which is allowed to choose the champion algorithmafter seeing a complete execution of the candidate.4.2 Throughput competitivenessMore recently, Aspnes and Waarts [10] have proposed a dif-ferent measure for the competitive performance of a dis-tributed algorithm. This measure, which they call thecompetitive latency, removes the adversary control over thestarting times of collects; instead, both the candidate andthe champion try to complete as many collects as possiblein the time available (see Figure 2). It also distinguishesbetween the schedule (the timing of events in the system),which is shared between a candidate algorithm and thechampion it is competing against, and the input (the speci-�cation of what tasks to perform), which is assumed to beworst-case for the candidate and best-case for the champion.(In analyzing just the cooperative collect primitive, the in-put is irrelevant since the cooperative collect algorithm canonly perform one type of task). The throughput competitive-ness is a bound on the ratio of the number of high-level tasks(e.g., collects) completed by the champion to the number ofhigh-level tasks completed by the candidate.



The motivation for these changes from the earlier latencymodel is that they permit competitive algorithms to be con-structed modularly; they allow the competitive ratio of asubroutine and a function that calls it to be computed sepa-rately, with the competitive ratio of the combined algorithmsimply being the product of the ratios of its components.Unfortunately, the throughput model does not permitas good a competitive ratio for cooperative collect as thelatency model: Aspnes and Waarts give a lower bound of
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