
The Computational Power of Population Protocols

Dana Angluin
Yale University

James Aspnes∗

Yale University
David Eisenstat†

Princeton University
Eric Ruppert‡

York University

July 27, 2007

Abstract

We consider the model of population protocols introduced by Angluin et al. [AAD+04], in which
anonymous finite-state agents stably compute a predicate of the multiset of their inputs via two-way
interactions in the family of all-pairs communication networks. We prove that all predicates stably
computable in this model (and certain generalizations of it) are semilinear, answering a central open
question about the power of the model. Removing the assumption of two-way interaction, we also
consider several variants of the model in which agents communicate by anonymous message-passing
where the recipient of each message is chosen by an adversary and the sender is not identified to the
recipient. These one-way models are distinguished by whether messages are delivered immediately or
after a delay, whether a sender can record that it has sent a message, and whether a recipient can queue
incoming messages, refusing to accept new messages until it has had a chance to send out messages of
its own. We characterize the classes of predicates stably computable in each of these one-way models
using natural subclasses of the semilinear predicates.

1 Introduction

In 2004, Angluin et al. [AAD+04] proposed a new model of distributed computation by very limited agents
called a population protocol. In this model, finite-state agents interact in pairs chosen by an adversary, with
both agents updating their state according to a joint transition function. For each such transition function,
the resulting population protocol is said to stably compute a predicate on the initial states of the agents if,
after sufficiently many interactions in a fair execution, all agents converge to having the correct value of the
predicate. Motivating scenarios include models of the propagation of trust in populations of agents [DF01]
and interactions of passively mobile sensors [AAD+04, AAD+06]. Similar models of pairwise interaction
have been used to study phenomena in other fields, for example, the propagation of diseases [Bai75] and
rumors [DK65] in human populations. In chemistry, a model consisting of a finite population of molecules
of a fixed number of different kinds with stochastic rules to select pairs of molecules to interact and to
determine the products of their interaction has been used to justify the Chemical Master Equation and to
simulate specific, biologically relevant systems of molecules [GB00, Gil92]. These results suggest that the
model of population protocols may be fundamental in several fields of study.
∗Supported in part by NSF grants CNS-0305258 and CNS-0435201.
†Supported in part by a National Defense Science and Engineering Graduate Fellowship and by a Gordon Y. S. Wu Graduate

Fellowship.
‡Supported in part by the Natural Sciences and Engineering Research Council of Canada.

1

Because the agents in a population protocol have only a constant number of states, independent of the
population size, it is impossible for them to adopt distinct identities, making them effectively anonymous.
An agent encountering another agent cannot tell in general whether it has interacted with that agent be-
fore. Despite these limitations, populations of such agents can compute surprisingly powerful predicates
on their initial states under a reasonable global fairness condition. When each agent may interact with
every other agent, any predicate over the counts of initial states definable in Presburger arithmetic is com-
putable [AAD+04, AAD+06]. When each agent has only a bounded set of neighbors with which it can
interact, linear-space computable predicates are computable [AAC+05].

In this paper we give exact characterizations of the class of stably computable predicates in the family
of all-pairs interaction graphs for the original population protocol model and certain natural variants of it
that we introduce to model the limitations of one-way communication. Most of the results in this paper have
appeared in extended abstract form in the two conference papers [AAE06b,AAER05]. (In Section 7 we also
correct an erroneous claim in [AAER05].)

1.1 Stably Computable Predicates Are Semilinear

Angluin et al. [AAD+04, AAD+06] showed that various common predicates such as parity of the number
of agents, whether agents in some initial state a outnumber agents in another initial state b, and so forth,
could be stably computed by simple population protocols. They further showed that population protocols
could in fact compute any semilinear predicate, which are precisely those predicates definable in first-order
Presburger arithmetic [Pre29]. But it was not known whether there were other, stronger predicates that could
also be computed by a population protocol, at least in the simplest case where every agent was allowed to
interact with every other agent. We show that this is not the case: that the semilinear predicates are precisely
the predicates that can be computed by a population protocol if there is no restriction on which pairs of
agents can interact with each other. This gives an exact characterization of the predicates stably computable
by population protocols, answering the major open question of [AAD+04, AAD+06].

These results also answer an open question in [AAC+05]: whether requiring population protocols to
deal with stabilizing inputs (rather than assuming all inputs are available at the start of computation) reduces
their computational power. We show that the answer is no; in both cases, the stably computable predicates
are precisely the semilinear predicates.

The semilinearity theorem is proved for a generalization of the model of population protocols, and
applies to stable computation in other models that have the property that a partitioned subpopulation can
still run on its own (in the sense that agents do not have any mechanism to detect if additional agents are
present but not interacting). Other models with this property include vector addition systems [HP78], some
forms of Petri nets, and 1-cell catalytic P-systems.

Semilinearity is strongly tied to the notion of stable computation, in which a correct and stable output
configuration must always be reachable at any step of the computation. Mere reachability of a desired
final configuration is not enough: the reachability sets of population protocols are not in general semilinear.
An example of this phenomenon may be derived from the construction given by Hopcroft and Pansiot of
a non-semilinear reachability set for a six-dimensional vector addition system [HP78]. Ibarra, Dang and
Egecioglu [IDE04] study 1-cell catalytic P-systems, in which all state-changing interactions occur between
an unmodified catalyst and at most one non-catalyst agent. In contrast to the general case, they show that
the reachability sets of 1-cell catalytic P-systems are semilinear.

2

1.2 One-way communication

We also introduce variants of the population protocol model that use forms of one-way communication
analogous to traditional asynchronous message-passing models, and exactly characterize their computa-
tional power in the family of all-pairs communication graphs in terms of natural subclasses of the semilinear
predicates. In the one-way models, pairwise interactions are split into separate send and receive events that
each affect at most a single agent. These models may better reflect communication in the context of sensor
networks, where radio communication may not be bidirectional, even between nearby sensors. Moreover,
one-way message-passing primitives may be easier to implement in practice.

For the one-way models, we consider the following attributes. The sender may be allowed to change
its state as a result of sending a message (transmission models), or not (observation models). The send and
receive events for a message may occur simultaneously (immediate delivery models) or may be subject to a
variable delay (delayed delivery and queued delivery models). In the queued delivery model, a receiver may
choose to postpone incoming messages until it has had a chance to send a message of its own; in the simpler
delayed delivery models, the receiver does not have this option. Thus, we consider five one-way models:
immediate and delayed observation, immediate and delayed transmission, and queued transmission.

The immediate models are perhaps best understood in terms of interactions between agents, while the
delayed and queued models are better thought of in terms of messages sent from one agent to another. In the
transmission models, the sender is aware that it has sent a message, and may update its state accordingly.
In the observation models, the sender is unaware of being observed by the receiver, and therefore does
not update its state. For example, consider a passive radio frequency tag that does not update its state in
response to being read; this is an example of immediate observation, in which the message (tag data) is
immediately delivered (read), but the state of the sender is unchanged. A web page that updates a counter
in response to a visit can be thought of as an example of immediate transmission: the message (web page
contents) is immediately delivered (viewed), and the web page is aware of the transaction and updates its
state accordingly.

We give exact characterizations of the classes of predicates that can be stably computed in each of
the one-way models we consider, which are summarized in Figure 2. We show that the model of queued
transmission stably computes exactly the semilinear predicates and is equivalent in power to the standard
population protocol model with two-way interactions. The other models are strictly weaker, and can be
characterized in terms of natural subclasses of the semilinear predicates. Weakest of all is the delayed
observation model, which allows only the detection of the presence or absence of each possible input symbol.
Next is the immediate observation model, which allows counting of input symbols up to an arbitrary constant
limit. The immediate and delayed transmission models are equivalent to each other in power, and add the
ability to count input symbols modulo an arbitrary constant. These results give us a precise and detailed
understanding of the capabilities of the one-way models.

2 Related Work

2.1 Population Protocols and Related Models

Stable computation by population protocols was introduced in [AAD+04, AAD+06]. It was shown that all
semilinear predicates are stably computable by population protocols in the family of all-pairs interaction
graphs. It was also shown that the all-pairs interaction graph has the least computational power, in the sense
that it may be simulated in any other connected interaction graph with the same number of agents. This
work was inspired by models of the propagation of trust studied by Diamadi and Fischer [DF01]. Related

3

models of automata with a central finite control and storage consisting of an unordered multiset of tokens
was studied in [AAD+03].

Angluin et al. [AAD+04, AAD+06] also introduced probabilistic population protocols, in which a uni-
form random choice of pairs to interact replaces the fairness condition; this enables quantification of the
probability of error and the number of interactions to convergence as a function of n, the number of
agents in the population. It was shown that each semilinear predicate can be computed in an expected
O(n2 log n) interactions, and that a register machine with a constant number of registers with O(log n)
bits per register could be simulated with inverse polynomial error probability and polynomial slowdown.
Recent work [AAE06a] has given faster protocols for these problems under the assumption that a unique
leader is present in the population: each semilinear predicate can be computed in an expected O(n log4 n)
interactions, and an improved register machine simulation can be done with inverse polynomial error in
O(n polylog(n)) interactions per step.

The question of what properties of the interaction graph are stably computable by population protocols
was studied in [AAC+05]. It was shown that for any d, there is a population protocol that organizes any
connected interaction graph of maximum degree at most d into a linear memory of Θ(n) bits, which is
asymptotically optimal. In the same paper, the population protocol model was extended to stabilizing inputs,
in which each agent has an input that may change finitely many times over the course of the computation
before stabilizing to a final value; this permits composition of protocols, in which the stabilizing outputs
of one protocol become the stabilizing inputs of another protocol. It was shown that all the semilinear
predicates can be computed with stabilizing inputs in the family of all-pairs interaction graphs. Thus, the
present paper shows that precisely the same predicates are stably computable with or without stabilizing
inputs in the family of all-pairs interaction graphs.

Self-stabilizing population protocols were studied in [AAFJ05], which gives self-stabilizing protocols
for token circulation in a directed ring, directing an undirected ring, local addressing in a degree bounded
interaction graph, and leader election in a ring with a constant bound k on the smallest nondivisor of the
ring size. Self-stabilizing leader election assuming an oracle for eventual leader detection was studied
in [FJ06], which gives self-stabilizing leader election protocols for complete graphs and rings. The question
of resilience to crash faults and transient faults was considered by Delporte-Gallet et al. [DGFGR06], who
give a general method to transform a population protocol into one that can withstand up to c crash faults and
t transient faults. The problem of stabilizing consensus was defined and studied in [AFJ06].

2.2 Comparison with Asynchronous Message-Passing

In an asynchronous message-passing model, agents communicate by sending messages. An agent may
spontaneously send a message at any time, which is delivered to a recipient at some later time. The recipient
may respond to the message by updating its state and possibly sending one or more messages. In the standard
asynchronous model, senders can choose the recipients of their messages, and recipients are aware of the
identities of the senders of messages they receive; however, in the population protocol models we consider,
these assumptions are dropped.

Agents in the population protocol models are assumed to be finite-state. Moreover, algorithms in this
model are uniform: the description of the protocol cannot depend on the number of agents in the system. To-
gether with a transition rule that depends only on the states of the two interacting agents, these assumptions
naturally yield a model in which agents are effectively anonymous. In this respect, the population protocol
models are weaker than a typical message-passing model, where processes have identities. In addition, not
only does a receiver not learn the identity of the sender, but a sender cannot direct its message to a particular
receiver. This is unusual even in anonymous message-passing models, which typically assume that a process

4

can use some sort of local addressing to direct messages to specific neighbors.
The question of what computations can be performed in anonymous systems, where processes start with

the same state and the same programming, has a long history in theoretical distributed computing. Many
early impossibility results such as [Ang80] assume both anonymity and symmetry in the communication
model, which limits what can be done without some mechanism for symmetry-breaking. See [FR03] for a
survey of many such impossibility results. More recent work targeted specifically at anonymity has studied
what problems are solvable in message-passing systems under various assumptions about the initial knowl-
edge of the processes [BV99,BV01,Sak99], or in anonymous shared-memory systems where the properties
of the supplied shared objects can often (but not always, depending on the details of the model) be used to
break symmetry and assign identities [ASS02,AGM02,BPSV06,ES94,GR,JT90,KOPS00,LP90,PPTV98,
Ten90]. This work has typically assumed few limits on the power of the processes in the system other than
the symmetry imposed by the model.

Asynchronous message-passing systems may be vulnerable to a variety of failures, including failures
at processes such as crashes or Byzantine faults, and failures in the message delivery system such as
dropped or duplicated messages. In this paper we assume fault-free executions; however, Delporte-Gallet et
al. [DGFGR06] characterize the power of population protocols in the presence of crash faults and transient
faults.

Because message delivery is asynchronous, making any sort of progress requires adopting some kind of
fairness condition to exclude executions in which indefinitely-postponed delivery becomes equivalent to no
delivery. A minimal fairness condition might be that if some process sends a particular messagem infinitely
often, then each other process receives the same messagem infinitely often. In Section 15, we show that even
with unbounded states and message lengths, this minimal fairness condition provides only enough power to
detect the presence or absence of each possible input because of the very strong anonymity properties of the
model. Instead we adopt a stronger global fairness condition derived from that used in [AAD+04,AAD+06],
which is defined and further discussed in Section 4.

Considering the communication capabilities of the population protocol models, the two-way population
protocol model is stronger than a typical message-passing model: communication between two interacting
agents is instantaneous and bidirectional. Instantaneous communication is also a feature of the immediate
transmission and immediate observation models. The observation models are weaker than message-passing
in that the sender is not aware of sending a message. In the immediate and delayed transmission models,
an agent must be prepared to receive and react to a message at all times. In the queued transmission model,
which most closely approximates asynchronous message-passing, an agent may postpone receiving a mes-
sage until it has sent messages of its own, and we show that this capability is essential to achieve the full
power of the model.

3 Preliminaries

In this section we introduce a vector notation that will be used to represent the multiset of states of agents in
a given configuration of the population: indices are states, and the value indexed is the number of agents in
that state.

Let N denote the set of natural numbers, 0, 1, 2, The set of all functions from a set X to a set Y is

5

denoted Y X . Let E be a finite nonempty set. For all f, g ∈ RE , we define the usual vector space operations

(f + g)(e) := f(e) + g(e) ∀e ∈ E
(f − g)(e) := f(e)− g(e) ∀e ∈ E

(cf)(e) := cf(e) ∀c ∈ R, e ∈ E

f · g :=
∑
e∈E

f(e)g(e).

Abusing notation, we define a 0 vector and standard basis vectors

0(e) := 0 ∀e ∈ E
e(e′) := [e = e′] ∀e, e′ ∈ E,

where [condition] is 1 if condition is true and 0 otherwise. We define a natural partial order on RE

componentwise:

f ≤ g ⇔ (∀e ∈ E)f(e) ≤ g(e).

Next we define the set of populations on E:

Pop(E) := NE \ {0}.

These may be interpreted as the nonempty multisets on E: for any f ∈ Pop(E) and e ∈ E, f(e) represents
the multiplicity of the element e in the multiset represented by f . Then, the partial order ≤ corresponds to
the subset order on multisets. The cardinality of a population is the sum of the multiplicities of its elements.

4 A Unified Framework

In each of the models we consider subsequently, a protocol can be considered as determining five compo-
nents: a countable set C of configurations; a set of input symbols Σ; a binary relation→ on C that captures
when the first configuration can reach the second in one step; a function I : Pop(Σ)→ C that takes inputs
to initial configurations; and a partial function O : C → {0, 1} that gives the output of each configuration
on which it is defined. We take ∗→ to be the reflexive-transitive closure of→. We say c′ is reachable from c
if c ∗→ c′. In this unified framework, we make the following definitions.

A configuration c is output stable with output b ifO(c) = b and for every d such that c ∗→ d,O(d) = b.
We define Sb to be the set of configurations that are output stable with output b, for b ∈ {0, 1}, and define
S = S0 ∪ S1 to be the set of all output stable configurations. Thus a configuration is output stable if and
only if its output is defined, and every configuration reachable from it has the same defined output.

An execution is a (finite or infinite) sequence of configurations c0, c1, . . . such that for all j, we have
cj → cj+1. An execution c0, c1, . . . is fair if for all c ∈ C, either there exist infinitely many j such that cj = c

or there exists j such that cj 6
∗→ c. Consequently, any global configuration that is infinitely often reachable

in a fair execution must occur infinitely often in that execution. Another straightforward consequence is that
if D is a finite set of configurations such that for each j there is some d ∈ D such that cj

∗→ d, then there
exists some d ∈ D such that cj = d for infinitely many j. This condition may be viewed as an attempt to
capture useful probability 1 properties in a probability-free model.

6

This fairness condition is generalized from the original one defined in [AAD+04, AAD+06]. That
original condition specifies that an infinite execution is fair if whenever c → c′ and c = ci for infinitely
many i, then also c′ = cj for infinitely many j.

An infinite execution that is fair with respect to the new definition is fair with respect to the original
definition, because one-step reachability is a special case of reachability. The converse implication does not
hold in general, but does hold when (as in [AAD+04, AAD+06]), the configurations in an execution are
drawn from a finite subset of C. To see this, suppose c0, c1, c2, . . . is an infinite execution that is fair with
respect to the original definition and all ci are from some finite subset D of C. Because D is finite, there
must be some d ∈ D such that d = cj for infinitely many j. For any c ∈ C, either for some cj , cj 6

∗→ c, or for
all cj , cj

∗→ c and therefore d ∗→ c. In the latter case, choose some finite execution d = d0, d1, . . . , dr = c
reaching c from d; then, by finite induction from 0 to r and the assumption that c0, c1, c2, . . . is fair with
respect to the original definition, each dk occurs infinitely often in c0, c1, c2, . . ., and therefore, c occurs
infinitely often in the execution.

To see that the converse implication does not hold in general, consider a system in which agents can
generate an unbounded number of delayed messages. Let ci be a configuration with i undelivered messages,
so that the one-step reachability relation is ci → ci+1 and ci+1 → ci for all natural numbers i. Then the
execution c1, c2, c3, . . . is fair under the original definition (because no configuration occurs infinitely often),
but not with respect to the new definition (because c0 is infinitely often reachable but never reached).

Our new stronger definition of fairness is intended to deal with the extension of the definition of con-
figuration, which in [AAD+04, AAD+06] includes only the states of the agents in the population, to allow
also an arbitrary finite number of messages in transit. However, this extension also allows us to deal with
interaction rules that may create or delete agents in the population. 1

Because C is countable, any finite execution is a prefix of a fair execution, which can be constructed as
follows. Fix an enumeration of C where each configuration appears infinitely often. Then, starting with the
finite execution, repeatedly extend it with a sequence of configurations that reaches the next configuration
in the enumeration that is reachable from the last configuration of the execution constructed in the previous
step.

In Section 15 we show that a weaker, but plausible, fairness condition severely limits the power of
the model. Comparisons of several different fairness conditions may be found in Hong Jiang’s Ph. D.
thesis [Jia07].

A fair execution c0, c1, . . . converges with output b if there exists an m such that for all j ≥ m, the
function O is defined on cj and O(cj) = b. In particular, a fair execution converges with output b if and
only if it reaches an output stable configuration with output b. A protocol is well-specified if, for all initial
configurations c0 ∈ I(Pop(Σ)), there exists a b such that all fair executions c0, c1, . . . converge with output
b. In a well-specified protocol, every fair execution starting from an input configuration converges with an
output that is determined by that input configuration.

A well-specified protocol induces a predicate ψ : Pop(Σ) → {0, 1}. We say that this protocol stably
computes ψ. We remark that by interchanging 0 and 1 in the range of the output function O, we obtain a
protocol that stably computes the complement of ψ. The results in this paper characterize the predicates ψ
stably computable in various models of finite local state distributed computing.

1We remark that our proof of semilinearity goes through as long as the definition of fairness guarantees that for any input x there
exists an output value b such that any configuration c reachable from I(x) can reach an output-stable configuration with output b.

7

5 Definitions of Models

In this section we define the standard model of two-way population protocols in the family of all-pairs
interaction graphs and certain one-way variants of it, as well as a new model of message transmission with
queuing and certain restricted variants of it, and finally the Abstract Model, which subsumes all of these.
For each model, we specify the configurations, input alphabet, one-step reachability relation, input map and
output map required by the unified framework above.

5.1 Two-way

In the two-way model there is a finite population of agents that may interact in ordered pairs, in which
one agent is the initiator and the other is the responder. In this interaction, each agent learns its role in
the interaction (whether initiator or responder) and the state of the other agent, and updates its own state
accordingly. In this paper we consider the case in which every ordered pair of agents may interact (although
the general definition [AAD+04, AAD+06] permits any weakly connected interaction graph). The states of
the agents come from a finite set which is independent of the number of agents in the population. There is a
finite set of input symbols; we assume that the input to a computation is an assignment of one input symbol
to each agent, indicated by the initial state of the agent.

We study what predicates of the multiset of input symbols can be stably computed in this model. If the
input symbols are {a, b}, examples of such predicates are “at least one a occurs” or “an odd number of a’s
occur” or “there are twice as many a’s as b’s” or “the number of a’s is the square of the number of b’s.” It
has been shown [AAD+04, AAD+06] that the first three of these predicates are stably computable in this
model; one consequence of the current paper is that the fourth one is not.

To indicate an output, the states are mapped to the output symbols 0 and 1. To stably compute the correct
value (0 or 1) of the predicate of the multiset of input states, we require that after some finite execution, every
agent remains in some state with the correct output in every possible continuation of the execution. This does
not require the state of an agent to stop changing, only its output value. Nor does it mean that any particular
agent will be able to tell when convergence to the correct output has occurred. The formal definition follows.

A two-way protocol is specified by five components: Q, a finite set of states; Σ, a finite set of input
symbols; δ : Q × Q → Q × Q, a joint transition function; ι : Σ → Q, the initial state mapping; and
o : Q→ {0, 1}, the individual output function.

We define

C := Pop(Q)

I(x) :=
∑
σ∈Σ

x(σ)ι(σ)

O(c) := b if for all q ∈ Q, c(q) ≥ 1⇒ o(q) = b

We define c→ c′ if q1 + q2 ≤ c, c′ = c− q1 − q2 + q′1 + q′2 and δ(q1, q2) = (q′1, q
′
2).

A configuration in this model is a multiset that gives the states of all the agents. Because agents do
not have identifiers and we are considering the all-pairs communication graph, agents in the same state are
interchangeable; thus, the multiset of their states completely specifies the global state of the population. An
initial configuration sets the state of each agent according to the input symbol assigned to it. A step is an
interaction between two agents and simultaneously updates both of their states according to the value of the
joint transition function of their current states. If the transition used is δ(q1, q2), we refer to the agent in state
q1 as the initiator and the other agent as the responder.

8

Each agent has an individual output of 0 or 1 determined by its current state via the function o. The
configuration output function is 0 (respectively, 1) if all the individual outputs are 0 (respectively, 1). If
the individual outputs are mixed 0’s and 1’s, then the configuration output function is undefined. Note
that interchanging 0 and 1 in the range of the individual output function o interchanges 0 and 1 in the
configuration output map O because mixed configurations remain mixed. Thus, the complements of stably
computable predicates are stably computable in this model.

In fact, all boolean combinations of stably computable predicates are stably computable in this model [AAD+04,
AAD+06]. We give the construction and verify that it works correctly with our fairness condition.

Lemma 1. The class of predicates stably computable by two-way protocols is closed under boolean combi-
nations.

Proof. Given two protocols stably computing ψ1 and ψ2 over a common input alphabet and a binary boolean
function f , we take a direct product of the two protocols: the state space is the Cartesian product of the two
state spaces, the combined transition function is δ((q1, q2), (q′1, q

′
2)) := (δ1(q1, q

′
1), δ2(q2, q

′
2)), the input

map is ι(σ) := (ι1(σ), ι2(σ)), and the output map is o(q1, q2) := f(o1(q1), o2(q2)).
We show that this construction correctly computes f(ψ1, ψ2). The key claim is that a fair execution of

the direct product protocol projects down to fair executions of the original protocols. This guarantees that
they individually reach an output stable configuration with the correct output, and thus that the direct product
protocol does the same. To see the claim, fix a fair execution c0, c1, c2, . . . of the direct product protocol,
and let c′0, c

′
1, c
′
2, . . . be the projection onto its first component; this is an execution of the first protocol. Let

e′ be any configuration of the first protocol. Either there exists some j such that c′j 6
∗→ e′ or there exist

infinitely many j such that c′j
∗→ e′. In the second case, because there are only finitely many possibilities

for configurations cj , there exists a configuration d such that there are infinitely many j for which cj = d

and d′ ∗→ e′, where d′ is the projection of d. Thus there exists some configuration e such that d ∗→ e and e
projects to e′; e can be obtained from d by applying the steps that produce e′ from d′ in the first protocol,
and arbitrarily chosen steps in the second protocol. By the fairness of c0, c1, c2, . . ., e must occur infinitely
often in this execution, and therefore e′ occurs infinitely often in c′0, c

′
1, c
′
2,

5.2 Transmission with Queuing

We define a related new model of message transmission with queuing. Once again there is a finite population
of agents, but we consider that they communicate by sending messages rather than by direct interaction with
each other. In this model, when a sender sends a message it does not learn the state of the eventual recipient
of the message. The set of possible states of the agents and the set of possible messages are both finite,
independent of the size of the population of agents; thus, the identity of the sender cannot necessarily be
deduced from a message. Also, rather than direct a message to a particular recipient, a sender “launches” a
message, which remains in the multiset of messages in transit until it is received by some agent enabled to
receive it. Instead of a joint transition function, there are separate transition functions for sending a message
and for receiving a message. The transition function for receiving messages may be partial; that is, in some
states an agent may refuse delivery of some or all messages. As we show, this ability is necessary for the
full power of this model.

We assume that inputs from a finite alphabet are assigned to the agents at the start of the computation,
and ask what predicates of the multiset of inputs can be stably computed in this model. A configuration in
this model specifies the multiset of the states of the agents, and the multiset of messages in transit, that is,
messages that have been sent but not received. The formal definition follows.

9

A queued transmission protocol is specified by seven components: Q, a finite set of states; M , a
finite set of messages that is disjoint from Q; Σ, a finite set of input symbols; δs : Q→M ×Q, a transition
function for sent messages; δr : Q×M → Q, a partial transition function for received messages; ι : Σ→ Q,
the initial state function; and o : Q→ {0, 1}, the individual output function. We define

C := {c ∈ NQ∪M : c(q) > 0 for some q ∈ Q}

I(x) :=
∑
σ∈Σ

x(σ)ι(σ)

O(c) := b if for all q ∈ Q, c(q) ≥ 1⇒ o(q) = b.

We have c → c′ if for some state q ∈ c and some message m, c′ = c− q + q′ +m where (m, q′) = δs(q);
or if there exists a message m ∈ c and a state q ∈ c such that c′ = c− q −m+ δr(q,m). In the latter case,
δr(q,m) must be defined.

A configuration in this model is the multiset of all agents’ states and all messages in transit. (They cannot
be confused, because Q and M are disjoint.) An input configuration has no messages in transit and sets the
state of each agent according to the input symbol assigned to it. A step is either a send event, in which an
agent in state q adds a message m to the multiset of messages in transit and goes to state q′ (according to
δs(q) = (m, q′),) or a receive event, in which a message m is removed from the multiset of messages in
transit and is delivered to an agent in state q, which updates its state to q′ (according to δr(q,m) = q′). If
δr(q,m) is not defined, then message m cannot be delivered to an agent in state q; this permits agents to
refuse to receive messages temporarily.

The class of predicates stably computable in this model is closed under complement, by interchanging
0 and 1 in the range of o. Because we ultimately characterize this class as the class of semilinear predicates,
it is closed under general boolean operations. However, we note that the direct product construction in the
proof of Lemma 1 cannot be used directly to show closure under general boolean operations in this model.
This is because an infinite number of different configurations may occur in an execution (as there is no
bound on the size of the multiset of messages in transit). This property means that extra care is required in
the use of the fairness condition in this model.

5.3 Immediate Transmission and Observation

We consider two progressively more restricted versions of the two-way model in which the initiator does not
learn the state of the responder. This one-way communication may more accurately model certain situations,
and may be easier to implement in practice. However, as we show, these restrictions limit the computational
power of the models.

Immediate transmission is a special case of the two-way model in which the state of the initiator
is updated independent of the state of the responder. That is, there exist functions δ1 : Q → Q and
δ2 : Q × Q → Q such that for all q1, q2 ∈ Q, we have δ(q1, q2) = (δ1(q1), δ2(q1, q2)). Thus, the initiator
(or sender) is aware of the fact that an interaction has taken place (or of sending a message), and may update
its state accordingly, but it is not aware of the state of the responder (or receiver).

Immediate observation is a special case of immediate transmission in which δ1 is the identity function.
This is the situation in which the initiator (or sender) is not aware of being “observed” by the responder (or
recipient) and therefore does not have an opportunity to update its state.

Note that when the direct product construction in the proof of Lemma 1 is applied to two immediate
transmission protocols, it yields an immediate transmission protocol. Therefore, the class of predicates

10

stably computable by immediate transmission protocols is closed under general boolean operations. The
same holds of immediate observation protocols.

5.4 Delayed Transmission and Observation

We also consider two progressively more restricted versions of the queued transmission model, which help
us understand which features of the model affect its computational power.

Delayed transmission is a special case of queued transmission, with the requirement that δr be a total
function. In this case, the recipient does not have the option of temporarily refusing to receive messages,
which means that it is in danger of being “overwhelmed” by incoming messages. Our characterization
results show that this indeed limits the power of protocols in this model.

Delayed observation is a special case of delayed transmission in which for all q ∈ Q, we have δs(q) =
(q,m) for some m ∈ M . In this model, the weakest of those we consider, an agent can neither refuse
incoming messages nor update its state when it has sent a message.

We note that because an agent in an observation model does not change state upon being observed, there
would be no way for it to leave a non-receive enabled state; thus we do not consider a queued observation
model.

When we remove the possibility of refusing incoming messages, we ensure that it is always possible
to reach a configuration in which all the messages have been delivered, that is, the multiset of undelivered
messages is empty. Combining that fact with fairness, we have the following.

Lemma 2. Let c0, c1, c2, . . . be a fair execution of a delayed transmission protocol. Then there is a config-
uration d with no undelivered messages such that d = cj for infinitely many j.

Proof. Let D be the set of configurations d with no messages in transit such that for some j, cj
∗→ d. Then

D is finite and for every j there exists d ∈ D such that cj
∗→ d, by delivering all the messages. Because of

fairness, this implies that there is some d ∈ D such that cj = d for infinitely many j.

This in turn means that a variant of the direct product construction of Lemma 1 can be successfully
applied to delayed transmission protocols.

Lemma 3. The class of predicates stably computable by delayed transmission protocols is closed under
boolean operations.

Proof. Given two delayed transmission protocols stably computing ψ1 and ψ2 and a binary boolean function
f , we define a direct product of the two protocols that stably computes f(ψ1, ψ2). The state space is the
Cartesian product {1, 2} × Q1 × Q2, where the first component alternates between 1 and 2 and indicates
which protocol will next send a message. The message space is the disjoint union of the two message spaces
M1 and M2, so that messages can be uniquely associated with their respective protocols. The input map
is ι(σ) := (1, ι1(σ), ι2(σ)) and the output map is o(t, q1, q2) := f(o1(q1), o2(q2)), where f is the given
boolean function. The transition function for sent messages is defined for (t, q1, q2) by using t to determine
which protocol is to send a message, adding the appropriate message for that protocol to the multiset of
messages in transit, and updating the state of that protocol accordingly (leaving the state of the other protocol
unchanged), and then flipping t between 1 and 2. The transition function for received messages is defined for
a messagem and a state (t, q1, q2) by delivering the message to whichever protocol is appropriate (according
to whether m belongs to M1 or M2) and updating the state of that protocol accordingly, leaving the turn
indicator t and the state of the other protocol unchanged. Note that the resulting protocol is a delayed

11

transmission protocol, but is not in general a delayed observation protocol because of the need to flip between
t = 1 and t = 2.

To see that this direct product protocol correctly computes f(ψ1, ψ2) we argue as in the proof of
Lemma 1 that suitably projecting a fair execution of the direct product protocol yields a fair execution
of the first protocol, and similarly for the second protocol. Thus, both must reach correct output stable
configurations, which means the direct product protocol reaches a correct output stable configuration.

Suppose c0, c1, c2, . . . is a fair execution of the direct product protocol. By Lemma 2, there is some
configuration d with no undelivered messages such that cj = d for infinitely many j. We construct a
sequence c′0, c

′
1, c
′
2, . . . by projecting c0, c1, c2, . . . onto the first protocol’s component, and deleting the steps

in which the second protocol sends or receives a message (which leaves the configuration of the first protocol
unchanged). For an arbitrary configuration e′ of the first protocol, either c′j 6

∗→ e′ for some j, or c′j
∗→ e′

for infinitely many j. In the second case, e′ must be reachable from d′, where d′ is the projection of d onto
the first protocol’s component. Thus, there must be a configuration e reachable from d in which the first
protocol’s component is e′; e may be obtained from d by using the same sequence of sends and receives
for the first protocol that reaches e′ from d′, with arbitrarily chosen sends for the second protocol. By the
fairness of c0, c1, c2, . . ., because e is reachable from d and d occurs infinitely often, ci = e for infinitely
many i, and therefore c′j = e′ for infinitely many j, establishing the fairness of c′0, c

′
1, c
′
2,

5.5 The Abstract Model

In order to present our semilinearity characterization in full generality, we introduce another model. All of
the preceding single step rules can be described in terms of replacing one collection of elements (states or
messages) with another without regard to the other elements in the configuration. In this model it is also
convenient to identify input symbols with the states they map to, dispensing with the need for an initial state
map ι.

E is a set of elements, which may be either states or messages; Σ ⊆ E is a set of input symbols;→ is a
relation on Pop(E) such that if c → c′, then for all d ∈ Pop(E), we have c+ d → c′ + d; o : E → {0, 1}
is the individual output map. Then,

C := Pop(E)
I(x) := x, and

O(c) := b if for all e ∈ E, c(e) ≥ 1⇒ o(e) = b.

We note that the class of predicates stably computable by a protocol in the Abstract Model is closed
under complement, because we may exchange 0 and 1 in the range of o. To see that this model generalizes
the two-way model, we take E to be the disjoint union of the input symbols and states of the two-way
model, and treat the input symbol σ as equivalent to the state ι(σ), extending the individual output map o to
Σ by o(σ) = o(ι(σ)). To see that the Abstract Model also generalizes the queued transmission model, we
define E to be the disjoint union of the input symbols, states, and two copies of the messages of the queued
transmission model. Having two copies of each messagem allows us to designate one copy as having output
0 and the other as having output 1. Again we treat input symbol σ as equivalent to the state ι(σ), and extend
the individual output map o to Σ by o(σ) = o(ι(σ)). Also, we extend o to the two copies of each message
by defining it to be the designated output of that copy. To ensure that outputs propagate from agent states
to messages, we add rules that take a state of an agent and a copy of a message, and change (if necessary)
the designated output of the message to be the same as the output of the state. Each send rule is modified to
send a message with the same output value as the sender, and the receive rules ignore the output values of

12

the messages. These changes guarantee that when the outputs of the agents stabilize, the designated outputs
of the messages stabilize to the same thing. Thus, every predicate stably computable in either the two-way
or the queued transmission model is stably computable in the Abstract Model.

5.6 Mirrors and Messages to Self

Separating message transmission and receipt creates the possibility that an agent may receive its own mes-
sage. Because senders are not identified, such an agent will in general not be able to recognize the message
as its own. This can be thought of as including mirrors, or self-loops in the interaction graph controlling
which agents can communicate, which we otherwise take to consist of all ordered pairs of agents. In general,
we assume that this does not occur in the two-way and immediate delivery models, which are perhaps best
thought of as interaction models, but may occur in the delayed and queued delivery models, on the principle
that once an anonymous message is sent it may be delivered to anyone. This has at most a minor effect on
the computational power of the models we consider, which we note below as appropriate.

6 Predicate Classes

We now define the classes of predicates used in our characterizations. Although stably computable pred-
icates are defined only on Pop(Σ), our proofs are facilitated by defining predicate classes on ZΣ. The
support of a predicate is the set of all inputs that make it true.

6.1 Semilinear Predicates

The most important class of predicates we consider is the class of semilinear predicates, which we write
SLIN. This class can be defined in several equivalent ways.

A linear set is a set of the form {b + k1p1 + k2p2 + · · · + knpn | k1, k2, . . . , kn ≥ 0}, where
b, p1, p2, . . . , pn are vectors. The vector b is the base of the linear set, and the vectors pi are the period
vectors. A semilinear set is a finite union of linear sets. A (semi)linear predicate is a predicate whose
support is (semi)linear predicate.

Semilinear sets are also precisely the sets definable by first-order formulas in Presburger arithmetic [Pre29]
which are formulas in arithmetic that use only <, +, 0, 1, and the standard logical quantifiers and connec-
tives. Here the set consists of all satisfying assignments of the free variables; for example, the semilinear
set S = {(1, 0) + k1(0, 1) + k2(2, 1)} ∪ {(0, 2) + k3(2, 0)}, depicted in Figure 1, consists precisely of the
satisfying assignments (x, y) of the formula

(∃z : (z ≥ 0) ∧ (x = z + z + 1) ∧ (y ≥ z)) ∨ (∃z : (z ≥ 0) ∧ (x = z + z) ∧ (y = 1 + 1)) , (1)

where x = y abbreviates ¬((x < y) ∨ (y < x)) and x ≥ y abbreviates ¬(y < x). It follows immediately
from the correspondence between semilinear sets and Presburger formulas that the semilinear sets are closed
under complement, finite intersection and finite union. Thus a predicate is semilinear if and only if its
complement is semilinear.

A curious and useful property of Presburger formulas is that all quantifiers (and their bound variables)
can be eliminated by the addition of binary relations≡m that test for equality modulom for any nonnegative
integer m [Pre29]. For example, the formula (1) defining S can be rewritten without quantifiers as

((x ≥ 0) ∧ (x ≡2 1) ∧ (x ≤ y + y + 1)) ∨ ((x ≥ 0) ∧ (x ≡2 0) ∧ (y = 1 + 1)).

13

(1,0)

(0,2)

Figure 1: A semilinear set S, equal to the union of the linear set of all points {(1, 0) + k1(0, 1) + k2(2, 1)}
(dark circles) and the linear set {(0, 2) + k3(2, 0)} (shaded circles).

This yields another characterization: a semilinear predicate is a boolean combination of threshold pred-
icates, whose support takes the form {x | x · v ≥ r} for some v ∈ ZΣ and r ∈ Z, and modulo predicates,
whose support takes the form {x | x ·v ≡ r (mod m)} for some v ∈ ZΣ and r,m ∈ Z withm > 0. Viewed
geometrically, sets of the first type consist of points on one side of a hyperplane, and sets of the second type
are lattices. As an example of a predicate of the first type, consider comparison, which is true if the number
of a’s in the input exceeds the number of b’s in the input. As an example of a predicate of the second type,
consider parity, which is true if the number of a’s in the input is odd.

In yet another characterization, Parikh’s Theorem [Par66] shows that a subset S of Nd is semilinear if
and only if there is a context-free language L over an alphabet of d symbols such that S consists of the
vectors of multiplicities of alphabet symbols of strings in L. Moreover, the same statement holds with
regular languages in place of context-free languages. Using this characterization, it is not difficult to see
that the following predicates on the number of a’s and b’s in the input are not semilinear: the number of a’s
is a prime, the number of a’s is the square of the number of b’s, the number of a’s is a power of 2, and the
number of a’s is bounded above by

√
2 times the number of b’s.

6.2 The Classes MOD and coreMOD

We write MOD for the class of boolean combinations of modulo predicates only. This class includes the
predicates true and false, as well as such predicates as the number of a’s is congruent to 3 or 4 modulo 5 and
the number of b’s is not congruent to 1 modulo 17.

We next need a technical notion of similarity of two predicates with respect to subalphabets of their
input alphabet. Let Σ′ ⊆ Σ be any nonempty subset of the input alphabet. Then x ∈ ZΣ is a k-rich profile
with respect to Σ′ if x(σ′) ≥ k for all σ′ ∈ Σ′ and x(σ) = 0 for all σ ∈ Σ \Σ′. Let ψ and ψ′ be predicates
on ZΣ. If ψ(x) = ψ′(x) for every x that is a k-rich profile with respect to Σ′, then we say that ψ and ψ′ are
k-similar with respect to Σ′.

The class coreMOD is the class of predicates ψ such that for every nonempty Σ′ ⊆ Σ, there exists a
ψ′ ∈ MOD and k ≥ 0 such that ψ is k-similar to ψ′ with respect to Σ′. Clearly MOD ⊆ coreMOD,
so the parity predicate is in coreMOD. The comparison predicate is not in coreMOD because it is not
k-similar to any modulo predicate with respect to {a, b} for any k ≥ 0. However, if we define the exactly-
one c comparison predicate ψ over the alphabet {a, b, c} to be true when there is exactly one c and the

14

number of a’s exceeds the number of b’s, then ψ is in coreMOD. To see this, note that ψ is false when the
number of c’s is 0 or at least 2. Thus, if Σ′ is any nonempty subalphabet of {a, b, c}, ψ is 2-similar to the
false predicate with respect to Σ′.

6.3 Simple Threshold Predicates

We define a simple threshold predicate to be a threshold predicate with support {x | x · v ≥ r} in which
v = σ for some input symbol σ. An example of a simple threshold predicate is one that is true when
the number of a’s is at least 5. Then we define COUNTk to be the class of boolean combinations of
simple threshold predicates in which the threshold value r ≤ k. A predicate in COUNTk is completely
determined by the counts of the input symbols truncated at k. For example, when k = 1, such a predicate
depends only on the presence or absence of each input symbol. Finally, COUNT∗ is the union of the
classes COUNTk for k = 1, 2, 3, The comparison predicate is an example of a threshold predicate
that is not in COUNT∗.

7 Summary of Characterizations

The computational power of the population protocol models we consider is summarized in Figure 2. For
each model we give the class of predicates on Pop(Σ) that can be stably computed by protocols in the
model. Protocols in the Abstract Model, which subsumes the two-way and queued transmission models,
stably compute exactly the semilinear predicates. The immediate and delayed transmission models are
equal in power, and stably compute exactly those semilinear predicates that are in coreMOD; they cannot
stably compute the comparison predicate. Immediate observation protocols stably compute exactly those
predicates determined by the counts of the input symbols truncated at k for some k; they cannot stably
compute the comparison predicate or the parity predicate. Delayed observation protocols stably compute
exactly those predicates determined by the presence or absence of each input symbol; they cannot stably
compute the comparison predicate, the parity predicate or simple threshold predicates for thresholds greater
than 1.

The results in [AAER05] incorrectly claimed that any predicate ψ that is k-similar with respect to Σ to a
predicate in MOD is stably computable in the immediate and delayed transmission models. To see that this
is false, consider the at-most-one c comparison predicate ψ over the alphabet {a, b, c} defined to be true
if there is at most one c in the input and the number of a’s exceeds the number of b’s. Then ψ is 2-similar
to the constant false predicate with respect to {a, b, c}, but the characterization results we shall prove show
that it is not stably computable in the immediate and delayed transmission models. In particular, ψ is not in
the class coreMOD, because when we consider the subalphabet {a, b}, ψ is not k-similar to any predicate
in MOD with respect to {a, b} for any k ≥ 0. This is the reason for the extra quantification over all the
non-empty subalphabets of Σ in the definition of the class coreMOD.

We note the contrast between the exactly-one c comparison predicate (defined in Section 6.2), which is
in coreMOD∩SLIN, and the at-most-one c comparison predicate, which is not in coreMOD∩SLIN.
As we shall see, the ability to assume that there is exactly one (or any fixed number) of some symbol(s) in
the input can be exploited computationally by the immediate and delayed transmission models.

15

Model Power
Abstract SLIN
Two-way SLIN

Queued Transmission SLIN
Immediate Transmission SLIN ∩ coreMOD
Delayed Transmission SLIN ∩ coreMOD
Immediate Observation COUNT∗
Delayed Observation COUNT1

Figure 2: The power of population protocols.

8 Protocols

We first give protocols for each model in Figure 2 to establish that each model is at least as powerful as
claimed.

8.1 The Two-Way Model

From [AAD+04, AAD+06] we have the following.

Theorem 4. Every semilinear predicate on Pop(Σ) is stably computable by a two-way population protocol.

To help us describe protocols in the one-way models, we here give specific two-way protocols for simple
threshold, modulo and general threshold predicates. Because the class of predicates stably computable by
two-way protocols is closed under boolean operations, it is sufficient to give algorithms for these base
predicates.

Simple threshold predicates. The following protocol computes the simple threshold predicate ψ(x) :=
[x · σ ≥ k], which is true when there are at least k occurrences of the input symbol σ in the input x.

Q := {0, 1, . . . , k}

δ(q1, q2) :=

(q1, k) if q1 = k

(q1, q2 + 1) if 1 ≤ q1 < k and q1 = q2

(q1, q2) otherwise

ι(σ′) := [σ′ = σ]
o(q) := [q = k]

Initially, agents with input σ are in state 1 and all other agents are in state 0. As this protocol runs, the states
of the agents make a “tower”. All but one of the agents in state i advance to state i + 1 in each case. This
tower will extend to k if and only if there are initially at least k agents in nonzero states. We note that this is
an immediate observation protocol because the state of the initiator remains unchanged by each interaction.

Active and passive agents. In the protocols for the modulo predicate ψ(x) = [x · v ≡ r (mod m)] and
the threshold predicate ψ(x) = [x · v ≥ r] agents fall into one of two categories: active or passive. Every
agent is initially active, and there is at least one active agent at all times. Each active agent also has a data

16

value, initially σ · v, where σ is the input symbol for this agent. When a passive responder meets an active
initiator, it copies the output of the active initiator. When two passive agents meet, nothing happens. When
two active agents meet, they attempt to combine their data values, and one of them may become passive.

Modulo predicates. For a modulo predicate, ψ(x) = [x · v ≡ r (mod m)], the data values of active
agents combine by sum modulo m. The initiator becomes passive while the responder remains active and
keeps the combined data value. Eventually, exactly one agent is active and has the correct sum modulo m,
and distributes the correct output to all of the other agents. We note that this is an immediate transmission
protocol because the state of the initiator is updated uniformly, independent of the state of the responder.

As a concrete example, we specify a protocol over the alphabet {a, b, c} that computes whether the
number of occurrences of a in the input is congruent to 2 modulo 3. The states of the agents are of the form
(x, y), where x ∈ {A,P} indicates whether the agent is active or passive, and y ∈ {0, 1, 2} is a data value
modulo 3. The input map ι maps the input symbol a to the state (A, 1) and the input symbols b and c to
the state (A, 0). The output map o maps the state (x, y) to 1 if y = 2 and to 0 otherwise. The transition
function is defined as follows, where + denotes addition modulo 3. Note that the initiator’s state is updated
independently of the responder’s state.

δ((x1, y1), (x2, y2)) :=

((P, y1), (A, y1 + y2)) if x1 = A, x2 = A

((P, y1), (A, y1)) if x1 = A, x2 = P

((P, y1), (x2, y2)) otherwise

Threshold predicates. The situation for a threshold predicate, ψ(x) = [x · v ≥ r], is more complicated.
In the end there may be multiple active agents, but they will all agree on the output. We assume without
loss of generality that r ≥ 0. The active states are a range of values that include all possible initial data
values and 2r − 1. The output is 1 if and only if the data value is at least r. Suppose y1 and y2 are the data
values when two active agents meet. If y1 + y2 is representable by an active state, one agent remains active
with this data value; the other becomes passive. Otherwise, both agents remain active and they average their
data values, that is, one becomes dy1+y2

2 e and the other becomes by1+y2
2 c. These transitions maintain the

invariant that the sum of all the active agents’ data values is x · v. Note that this protocol involves updates
of both states depending on both states; it is not an immediate transmission protocol.

To show correctness, we distinguish three cases based on the sum of all the initial data values. In the
first case, the sum is negative. Eventually, no active agent will have a positive data value. In the second case,
the sum is between 0 and r − 1. There will eventually be exactly one active agent with this data value. In
the third case, the sum is at least r. The number of active agents with data value less than r never increases.
The only way it can increase is after an interaction involving an active agent with value at least r where both
agents remain active. This will happen, however, only in the case when the two agents average their values,
which never happens with an agent with value at least r unless the result is both agents having value at least
r. After there are no more agents with negative values, any interaction with an agent whose value is less
than r will decrease the number of such agents.

As a concrete example, we specify a protocol over the alphabet {a, b, c} to determine whether the num-
ber of occurrences of a exceeds three times the number of occurrences of b by at least 2. Thus v is the vector
(1,−3, 0) and r is the value 2. Hence the required range of data values is D = {−3,−2,−1, 0, 1, 2, 3},
because the initial data values may be 1, −3 or 0, and the range must include 2r − 1 = 3. States consist of
pairs (x, y) where x ∈ {A,P} indicates whether the agent is active or passive, and y ∈ D. Then ιmaps a to

17

(A, 1), b to (A,−3) and c to (A, 0), and o maps (x, y) to 1 if y is at least 2, and 0 otherwise. The transition
function is defined as follows. Note that the case resulting in averaging means that the update to the initiator
depends on the state of the responder.

δ((x1, y1), (x2, y2)) :=

((P, y1), (A, y1 + y2)) if x1 = A, x2 = A and y1 + y2 ∈ D
((A, dy1+y2

2 e), (A, by1+y2
2 c)) if x1 = A, x2 = A and y1 + y2 6∈ D

((P, y1), (A, y1)) if x1 = A, x2 = P

((x1, y1), (x2, y2)) otherwise

8.2 Queued Transmission

When combined with Theorem 4, the following theorem implies that every semilinear predicate on Pop(Σ)
is stably computable in the queued transmission model.

Theorem 5. Every predicate on Pop(Σ) stably computable in the two-way model is stably computable in
the queued transmission model.

Proof. Given any protocol in the two-way model, we describe a simulation of it by a protocol in the queued
transmission model. Each agent can store up to two states from the two-way protocol. Initially, each agent
has one simulated state, which is determined from the input symbol for that agent by the initial state map of
the simulated protocol. Agents transfer states by sending a message. An agent called upon to send will send
a message containing the state it has been holding longest. If it is not currently holding any states, it sends a
null message. Whenever an agent receives a null message ignores it, that is, does not change its state. Any
agent with free space is eligible to receive a non-null message. Whenever an agent receives its second state,
it uses the transition function from the two-way protocol to have the two interact, with the state it already
has acting as the initiator.

The simulated configuration cannot make any steps that were impossible under the two-way model.
Conversely, any sequence of interactions made under the two-way model can be achieved by first having
every agent launch all states it holds, and then by repeating the following actions: deliver two states to a
particular agent, and then have the agent release both in messages. Therefore, the simulation is faithful.

To see that every fair execution of the simulating protocol is a fair execution of the simulated protocol,
we consider a fair execution c0, c1, c2, . . . of the simulating protocol. Let D be the set of all configurations
d with no null messages in transit such that c0

∗→ d; then D is finite and for each j, some element of D is
reachable from cj (by delivering all the null messages). Thus by fairness, there exists some d ∈ D such that
cj = d for infinitely many j.

Now consider c′0, c
′
1, c
′
2, . . ., obtained by projecting out the simulated states (whether held by simulating

agents or in the multiset of undelivered messages) and deleting steps that do not correspond to steps in the
simulated protocol. Let d′ be the projection of d; then c′j = d′ for infinitely many j. For any configuration

e′ of the simulated protocol either c′j 6
∗→ e′ for some j, or c′j

∗→ e′ for infinitely many j. In the second

case, d′ ∗→ e′ via some sequence of steps. Simulating that sequence of steps starting with d reaches some
configuration e of the simulating protocol. By the fairness of c0, c1, c2, . . ., we must have cj = e for
infinitely many j, and therefore c′i = e′ for infinitely many i, establishing the fairness of the projected
execution c′0, c

′
1, c
′
2,

Thus, if the two-way protocol stably computes the predicate ψ, then for every input x and every fair
execution of the simulating protocol from the input configuration, the simulated protocol experiences a

18

fair execution and must reach a correct output stable configuration, which is also a correct output stable
configuration for the simulating protocol for ψ on input x.

8.3 Immediate and Delayed Transmission

Theorem 6. Every predicate on Pop(Σ) in the class SLIN ∩ coreMOD is stably computable in the
immediate transmission model and also in the delayed transmission model.

Proof. We first show that in both models, the class of stably computable predicates is closed under boolean
operations and includes all the simple threshold predicates and predicates in MOD. For immediate trans-
mission, as we previously noted, the construction in Lemma 1 implies closure under boolean operations.
Also, the two-way protocols given in Section 8.1 for simple threshold and modulo predicates are immediate
transmission protocols.

For the delayed transmission model, Lemma 3 shows closure under boolean operations. To see that
simple threshold and modulo predicates are computable in this model, we describe protocols as follows.
Every agent state is active or passive; all are initially active. A sender sends its state and becomes passive,
preserving its previous output. Passive messages are received and ignored by all agents. An active receiver
combines its data with the data from an active message, remaining active. (The data values u and v are
combined as (u+ v) mod m for a modulo predicate or min(k, u+ v) for a simple threshold predicate.) A
passive receiver sets its state equal to an active message, becoming active again. Consider a fair execution
c0, c1, c2, . . . from the input configuration I(x) and the set D of configurations of this population in which
there is exactly one active agent and no messages in transit and every agent has the same output. The set D
is finite and some element of D is reachable from every cj , so by fairness there is some d ∈ D such that
cj = d for infinitely many d. Once d is reached, the agents all compute the correct output value for the input
x, and the configuration is output stable.

Suppose ψ ∈ SLIN ∩ coreMOD. For each nonempty subset Σ′ of the input alphabet Σ, we describe
a protocol that computes ψ assuming that Σ′ is exactly the set of symbols present in the input x. We can
“and” this protocol with one that verifies this assumption (it is a boolean combination of simple threshold
predicates, and therefore stably computable in both models), and “or” together the resulting protocols for
each choice of Σ′, and the result will stably compute ψ.

Because ψ ∈ coreMOD, there is a predicate ψ′ ∈MOD and an integer k ≥ 0 such that ψ is k-similar
to ψ′ with respect to Σ′. Then ψ′ is stably computable by an immediate (or delayed) transmission protocol,
as is the predicate that is true if x is k-rich with respect to Σ′, so the conjunction of these predicates correctly
computes ψ when there are at least k occurrences of each input symbol from Σ′ and no occurrences of any
other symbol.

In the remaining cases, some σ ∈ Σ′ occurs between 1 and k − 1 times. Because ψ ∈ SLIN, it is
stably computable by a two-way protocol. For each input symbol σ ∈ Σ′ we describe below how to adapt
the simulation of the two-way protocol in the proof of Theorem 5 to show that the predicate that is the
conjunction of ψ and the predicate that is true when there are between 1 and k − 1 occurrences of σ in the
input is stably computable in the immediate (or delayed) transmission models. Then we “or” these protocols
together for all choices of σ ∈ Σ′. The simulation of a two-way protocol by a queued transmission protocol
requires queuing in order to prevent agents’ storage from being overwhelmed by messages. Suppose it may
be assumed, however, that at least 1 and at most k − 1 copies of σ can appear in the input. The agents
distinguished by receiving input σ then allow a protocol to simulate flow control.

Each agent keeps a queue of simulated states, containing initially the simulated state determined by that
agent’s input and the input map from the simulated protocol. Agents also keep an additional 1-bit value that

19

represents the minimum number of simulated states that they must keep in their queues; agents with input σ
have value 0, and all others have value 1. No interactions cause agents to change these 1-bit values. When
an agent transmits, if it can dequeue a simulated state without violating the above invariant, it does so and
sends the state out. Otherwise, it sends a “trigger” message. On the other end, when an agent receives a
state, it enqueues it. When an agent receives a trigger message, if it has at least two states in its queue, it
simulates an interaction initiated by the state at the head of the queue with the state just behind it; otherwise,
it does nothing.

We must check several properties of this simulation. First, no agent can ever have more than k states
in its queue, so the simulation can be carried out by finite-state agents. In a population of n agents, at
least n − (k − 1) agents, namely those whose input was not σ, have at least one state in their queue by
the invariant. There are at most k − 1 remaining states, which may be distributed arbitrarily, but it is not
possible to exceed the maximum of k for any agent. Second, at every step the simulated configuration can
always be reached from the input under the protocol being simulated, because the simulation ensures that
the number of simulated agents remains constant, and the only changes to the simulated population are made
in accordance with the transition rules of the protocol. Third, the fairness condition holds with respect to the
simulated populations, which, together with the first two propositions, ensures that the simulation is faithful.

In the case of immediate transmission, the set of configurations reachable from a particular input is finite,
and it suffices to show that any configuration reachable by the simulated population can be reached by the
simulation. Assume without loss of generality that the population has at least two agents, and induct on the
number of steps needed to reach the desired configuration. Choosing a simulated initiator and responder, the
first objective is for the initiator to be alone in some agent’s queue. If there are simulated agents ahead of the
initiator, send them to another agent. If the initiator is at the head of the queue with one or more simulated
agents behind it, some agent’s queue is empty by an averaging argument, and the initiator can be sent to that
agent.

The second objective is to move the responder behind the initiator. In the event that the initiator occupies
the only agent with value 0, the initiator should be sent to an agent with value 1, and all of the simulated
agents now ahead of it should be sent elsewhere. If there are only two agents, the responder now resides in
the queue of an agent with value 0 and can be sent to the initiator’s queue. Otherwise, all simulated agents
ahead of the responder should be sent to a third agent. Now, either the responder can be sent to the initiator’s
queue, or it is alone in the queue of an agent with value 1. In the latter case, some other agent besides the
one with the initiator has an extra agent that can be sent to the responder’s queue to release the responder.
Finally, once the initiator and responder share a queue in the right order, some agent has no simulated agents
and can trigger an interaction.

For the case of delayed transmission, we note that every configuration reachable in the simulated popu-
lation is reachable in the simulation by the same inductive argument as for immediate transmission, because
each immediate transmission step can be accomplished by a send immediately followed by a receive in the
delayed transmission model. As for the fairness condition, it is always the case by an averaging argument
that some agent has zero or one simulated agents, and thus it is possible to deliver all trigger messages in
flight without causing an interaction. We finish along the lines of Lemma 3.

Note in particular that immediate and delayed transmission protocols can stably compute the exactly-
one c comparison predicate over the alphabet {a, b, c}, which is true if there is exactly one c and the number
of a’s exceeds the number of b’s. The characterization in Section 14.1 shows that the standard comparison
predicate over {a, b}, which is true if the number of a’s exceeds the number of b’s, is not stably computable
by immediate or delayed transmission protocols, essentially because no such control of incoming messages
is possible in this case.

20

8.4 Immediate Observation

Theorem 7. Every predicate on Pop(Σ) in COUNT∗ is stably computable in the immediate observation
model.

Proof. Every predicate in COUNT∗ can be expressed as a boolean combination of simple threshold pred-
icates, each of which depends only on the count of one input symbol. The two-way protocol in Section 8.1
for the simple threshold predicate [x · σ ≥ k] is in fact an immediate observation protocol because only
the responder’s state is updated in each case. Also, the class of predicates stably computable by immediate
observation protocols is closed under boolean operations.

The protocol from Section 8.1 uses k + 1 states, which can be reduced to k (by removing state 0) if the
input alphabet is unary. It can be shown that k − 1 states are not sufficient to stably compute this predicate
in the immediate observation model in the case of a unary alphabet; the proof is rather involved and will
appear elsewhere.

8.5 Delayed Observation

Theorem 8. Every predicate on Pop(Σ) in COUNT1 is stably computable in the delayed observation
model.

Proof. The value of a predicate ψ in COUNT1 is completely determined by the set of symbols that occur
in the input. We define a protocol in which the states are subsets of the set of input symbols, the initial state
of an agent is {σ} if σ is the input symbol assigned to that agent and the output is determined by the value
of ψ for the agent’s current state. When called upon to send, an agent sends its current state and does not
update it, consistent with the observation restriction. When an agent receives a message, it updates its state
to be the union of its current state and the message.

Consider any fair execution of this protocol, c0, c1, c2, . . ., starting with the input configuration I(x), and
let d be the configuration of this population in which there are no undelivered messages and every agent’s
state is equal to the set of symbols that occur in the input x. Then d is reachable from every cj , and by
fairness, must occur infinitely often. Because d is output stable and has the correct output, this protocol
stably computes ψ.

Because an agent may receive its own message, it cannot tell whether an input symbol occurs with
multiplicity greater than one. However, if agents do not receive messages from themselves, then predicates
in COUNT2 are stably computable in the delayed observation model.

9 Characterization of the Power of the Abstract Model

To complete the characterizations in Figure 2, we have to demonstrate that each model is limited to the
indicated power. In Section 14, we consider the one-way models. Here we consider the Abstract Model,
which includes the two-way model and the queued transmission model as special cases, and prove the
following semilinearity theorem.

Theorem 9. Every predicate on Pop(Σ) that is stably computable in the Abstract Model is semilinear.

Because the two-way and queued transmission models are special cases of the Abstract Model, and both
models can stably compute all the semilinear predicates over Pop(Σ), we have the following characteriza-
tions.

21

Corollary 10. The predicates stably computable in (1) the two-way model of population protocols, or (2)
the queued transmission model of population protocols are exactly the semilinear predicates on Pop(Σ).

Stable computation of a predicate by a two-way population protocol with stabilizing inputs was defined
in [AAC+05]. We do not repeat the definition here, but the idea is that each agent has an input register that
may change finitely many times over the course of the execution before stabilizing to its final value, and
the goal is to compute a predicate on the multiset of all the agents’ final input values. Because this is a
more restrictive definition, every predicate stably computable by a two-way protocol with stabilizing inputs
is stably computable by a two-way protocol with fixed inputs, but whether the converse held was left as an
open problem. However, in [AAC+05] it was shown that every semilinear predicate on Pop(Σ) is stably
computable by a two-way protocol with stabilizing inputs. Thus we get the following corollary showing that
stabilizing inputs do not reduce the power of the standard two-way model.

Corollary 11. The predicates stably computable by two-way population protocols with stabilizing inputs
are exactly the semilinear predicates on Pop(Σ).

To prove Theorem 9, we must show that the support of any stably-computable predicate is a semilinear
set: in particular, that there is a finite set of base points each attached to a finitely-generated cone such that
the support is precisely the elements of these cones. The first step, which requires the development of the
machinery of Section 10 and is completed in Section 11, is to show that the support can be decomposed
into a finite collection of monoid cosets that are not necessarily finitely generated. We then proceed, in
Sections 12 and 13, to show that any such decomposition can be further decomposed into a finite covering
by cosets of finitely generated monoids, which gives us the full result.

10 Groundwork

We assume that ψ is a predicate stably computed by a protocol (E,→,Σ, o) in the Abstract Model and
establish some basic results. These will lead up to the Pumping Lemma of Section 11.

10.1 Monoids, Groups, and Semilinearity

A subset M of Zd is a monoid if it contains the zero and is closed under addition; if it is also closed under
subtraction, M is a group. A monoid M ⊆ Zd is finitely generated if there exists a finite subset A ⊆ M
such that every element of M is a sum of elements from A. It is a classic result in abstract algebra that
every subgroup of Zd is finitely generated [Lan02], but submonoids are not always finitely generated. For
example, the following monoid is not finitely generated.

M√2 = {(i, j) ∈ N2 : i ≤
√

2j}.

A subset H of Zd is a group coset (resp., monoid coset) if there exists an element v ∈ Zd such that
H = v +G and G is a group (resp., monoid).

Then from the definitions in Section 6.1, we have yet another characterization of linear and semilinear
sets. A subset L of Zd is linear if it is a coset of a finitely generated monoid in Zd, and is semilinear if it is
a finite union of linear sets.

22

10.2 Higman’s Lemma

We shall make extensive use of some corollaries to Higman’s Lemma [Hig52], a fundamental tool in well-
quasi-order theory.

Lemma 12. Every subset of Nd has finitely many minimal elements under ≤.

Lemma 13. Every infinite subset of Nd contains an infinite chain (i.e., an infinite totally ordered sequence)
under ≤.

These both follow from the fact that Higman’s Lemma implies that Nd ordered by ≤ is a well-quasi-
order, that is, a set in which any infinite sequence a1, a2, . . . contains elements ai, aj with i < j and
ai ≤ aj . The special case of Higman’s Lemma given in Lemma 12 was proved earlier by Dickson [Dic13].

10.3 Truncation Maps and Their Properties

Recall from the description of the Abstract Model in Section 5.5 that E is the set of elements (states or
messages) of a population protocol, and that C denotes the set of configurations, that is, the set of nonempty
multisets of elements of E, which we also think of vectors of natural numbers indexed by E.

For each k ≥ 1, we define a map τk from C to C by

τk(c)(e) := min(k, c(e)) for all e ∈ E.

This map truncates each component of its input to be at most k; clearly τk(c) ≤ c for all c ∈ C. Two useful
properties of τk are that it respects both the inclusion ordering and addition.

Lemma 14. For all c, d ∈ C and k ≥ 1, if c ≤ d then τk(c) ≤ τk(d).

Proof. For each e ∈ E, we have c(e) ≤ d(e), so min(k, c(e)) ≤ min(k, d(e)). Thus τk(c) ≤ τk(d).

Lemma 15. For all c, c′, d ∈ C and k ≥ 1, if τk(c) = τk(c′), then τk(c+ d) = τk(c′ + d).

Proof. For each e ∈ E, either c(e) = c′(e) or both are at least k. In either case, min(k, c(e) + d(e)) =
min(k, c′(e) + d(e)), so τk(c+ d) = τk(c′ + d).

10.4 Truncation and Stability

Truncation is important because membership of a configuration c in the set of output stable configurations S
can be determined from a truncate of fixed size. Let U := C \ S, the set of output unstable configurations.

Lemma 16. For all c ≤ d, if c ∈ U , then d ∈ U (U is closed upward under inclusion).

Proof. Suppose c ∈ U and c ≤ d. Then either (1) O(c) is undefined, or (2) O(c) = b, but for some
configuration c′ such that c ∗→ c′ either O(c′) is undefined or O(c′) 6= b. In case (1), O(d) is undefined
and d ∈ U . In case (2), d = d − c + c

∗→ d − c + c′. If O(d) is not defined, then d ∈ U . If O(c′) is not
defined, then O(d − c + c′) is not defined, and d ∈ U . If both O(d) and O(c′) are defined, we have that
O(d) = O(c) 6= O(c′), and O(d− c+ c′) is either undefined or equal to O(c′), so d ∈ U . Thus U is closed
upwards under inclusion.

Lemma 17. There exists k ≥ 1 such that c ∈ U if and only if τk(c) ∈ U .

23

Proof. By Higman’s Lemma, only finitely many elements u1, . . . , un are minimal in U , and because U
is upwards closed, c ∈ U if and only if ui ≤ c for some i. Let k be the maximum value ui(e) for all
i ∈ {1, . . . , n} and all e ∈ E. Then τk(ui) = ui for each i.

Suppose c ∈ U . Then ui ≤ c for some i, so ui = τk(ui) ≤ τk(c) by Lemma 14, and thus τk(c) ∈ U .
Conversely, if τk(c) ∈ U , then ui ≤ τk(c) ≤ c for some i, and therefore c ∈ U .

Lemma 18. There exists k ≥ 1 such that for all c ∈ C and b ∈ {0, 1}, we have c ∈ Sb if and only if
τk(c) ∈ Sb.

Proof. By Lemma 17, there exists k ≥ 1 such that for all c ∈ C, we have c ∈ U if and only if τk(c) ∈ U .
Taking the contrapositive, we have c ∈ S if and only if τk(c) ∈ S . Since truncation does not affect output,
the conclusion follows.

10.5 Extensions

We define a map X from C to subsets of NΣ as follows.

X(c) := {x ∈ NΣ | there exists d ≥ c such that c+ x
∗→ d and τk(c) = τk(d)},

where k is the constant from the conclusion of Lemma 18. If c ∈ S, then X(c) is the set of inputs by which
c can be pumped. We call such inputs the extensions of c. We first prove that pumping does not affect stable
output.

Lemma 19. If x ∈ Pop(Σ) and c ∈ S and x ∗→ c, then ψ is constant on x+X(c).

Proof. If y ∈ X(c), then there exists d ∈ C such that c + y
∗→ d and τk(c) = τk(d). Since c ∈ S, by

Lemma 18 we have d ∈ S, and O(c) = O(d). Thus ψ(x) = ψ(x+ y).

We now prove that pumping operations can be composed, i.e., that X(c) is a monoid.

Lemma 20. X(c) is a monoid for all c ∈ C.

Proof. We have 0 ∈ X(c), with d = c as a witness. If x1, x2 ∈ X(c), then there exist d1, d2 such that
c ≤ d1 and c ≤ d2 and τk(c) = τk(d1) = τk(d2) and c+ x1

∗→ d1 and c+ x2
∗→ d2. Thus

c+ x1 + x2
∗→ d1 + x2 = (d1 − c) + c+ x2

∗→ (d1 − c) + d2.

Taking d := d1 + d2 − c, we have c ≤ d and c + x1 + x2
∗→ d and τk(c) = τk(d2) = τk(c + d2 − c)

and by Lemma 15, τk(c + d2 − c) = τk(d1 + d2 − c) = τk(d), since τk(c) = τk(d1). We conclude that
x1 + x2 ∈ X(c).

11 A Pumping Lemma for Stably Computable Predicates

Given a set of inputs Y ⊆ Pop(Σ), a monoid-coset covering of Y with respect to ψ is a set {(xi,Mi)}i∈I
of pairs of inputs and submonoids of NΣ such that Y ⊆

⋃
i∈I(xi + Mi) and for all i ∈ I , we have xi ∈ Y

and ψ(xi + Mi) = {ψ(xi)}. We say ψ admits finite coset coverings if for all Y there exists a finite
monoid-coset covering of Y with respect to ψ. The following Pumping Lemma states that every stably
computable predicate admits finite coset coverings. We show later (Theorem 24) that any predicate such
that the predicate and its complement both admit finite coset coverings is semilinear.

24

Lemma 21. Every stably computable predicate ψ admits finite coset coverings.

Proof. Consider any Y ⊆ Pop(Σ). If Y is a finite set {x1, . . . , xn} then it has a trivial finite covering
{(xi, ∅)}1≤i≤n. So assume Y is infinite. Let y1, y2, . . . be any enumeration of Y such that yi ≤ yj implies
i ≤ j. (For example, fix an ordering of Σ. Then enumerate the elements of Y ordered by cardinality and
then lexicographic order.) We define a family of sets Bi ⊆ Pop(Σ)× S inductively as follows.

B0 := ∅.

Bi :=

{
Bi−1 if there exists (x, c) ∈ Bi−1 such that yi ∈ x+X(c)
Bi−1 ∪ {(yi, s(yi))} ∪ {(yi, s(c+ yi − x)) | (x, c) ∈ Bi−1 and x ≤ yi} otherwise,

where s(d) ∈ S is any stable configuration reachable from d. It is easy to see by induction on i that, for
all (x, c) ∈ Bi, x

∗→ c, and in the construction, s(d) is applied only to reachable configurations d, so the
existence of s(d) is guaranteed by the requirements of stably computing a predicate. So, Lemma 19 implies
that ψ is constant on x+X(c). LetB :=

⋃
i≥1Bi. It follows from Lemma 20 that {(x,X(c)) | (x, c) ∈ B}

is a monoid-coset covering of Y with respect to ψ. We now show that B is finite to prove that this is a finite
covering.

Assuming to the contrary that B is infinite, infinitely many different elements of Y appear as first com-
ponents of elements of B, since each Bi is clearly finite. By Higman’s Lemma, there exists an infinite chain
z1 < z2 < . . . of such elements. Our construction guarantees the existence of associated configurations
{di}i≥1 such that (zi, di) ∈ B and di + (zi+1 − zi)

∗→ di+1 for all i ≥ 1.
Consider the sequence d1, d2, d3, . . .; either only finitely many values occur (recall we are considering

the Abstract Model, not just the two-way model) or infinitely many values occur and we can apply Higman’s
Lemma again. In either case, there exists an increasing function f such that df(1) ≤ df(2) ≤ df(3) ≤
Thus the sequence τk(df(i)) reaches a maximum and becomes constant at some index i = j. Consequently,
we have zf(j+1) − zf(j) ∈ X(df(j)), which contradicts the membership of (zf(j+1), df(j+1)) in B.

Applying this lemma with Y = ψ−1(1) (the support of ψ) we obtain a finite family of monoid cosets
xi +Mi such that

ψ−1(1) =
⋃
i

(xi +Mi).

This does not prove semilinearity by itself, since some monoidMi might not be finitely generated. However,
every submonoid of Z1 is finitely generated, so in the special case of a unary alphabet, we have already that
ψ is semilinear, and therefore regular.

Corollary 22. Every stably computable predicate over a unary alphabet is semilinear. Thus, over a unary
alphabet, the stably computable predicates are exactly the semilinear (in fact, regular) predicates.

For example, the unary predicate that is true if the number of input symbols is a power of 2 (or a prime,
or any other non-regular predicate) is not stably computable. Another easy corollary suffices to show certain
other predicates over non-unary alphabets are not stably computable.

Corollary 23. Suppose ψ is a stably computable predicate such that L = ψ−1(1) is infinite. Then L
contains an infinite linear subset.

Proof. By Lemma 21 there is a finite monoid-coset covering of L. If L is infinite, some (x + M) ⊆ L in
the covering must be infinite.

25

As an application, consider the set of inputs over the alphabet {a, b} such that the number b’s is the
square of the number of a’s. This is an infinite set with no infinite linear subset, and is therefore not stably
computable. Using closure results for stably computable predicates we can then show that the set of all inputs
over alphabet {a, b, c} such that the number of c’s is the product of the number of a’s and the number of b’s
is not stably computable. The existence of a pumping lemma and the negative results for these particular
predicates were conjectured in [AAD+04, AAD+06].

12 Proof of the Semilinearity Theorem: Outline

We are now in a position to give an overview of how we go from the pumping lemma (Lemma 21) of
Section 11 to the semilinearity theorem (Theorem 9), via Theorem 24.

Recall the following set of points in N2.

M√2 = {(i, j) : i ≤
√

2j}.

This is a monoid but is not stably computable. To see this, suppose the contrary. By the Pumping Lemma
(Lemma 21), there exist monoid cosets xi +Mi for 1 ≤ i ≤ m such that

M√2 =
⋃

1≤i≤m
(xi +Mi).

Let v = (−1,
√

2); then x · v > 0 for all x ∈ M√2. Let ε = mini{xi · v}. Choose some y ∈ M√2 such
that 0 < y · v < ε. Then for some i, y ∈ xi + Mi, and (y − xi) · v = y · v − xi · v < ε − ε = 0. Thus
for a sufficiently large n ∈ N, (xi + n(y − xi)) · v < 0, which contradicts the fact that xi +Mi is a subset
of M√2. The issue here is that the line dividing the positive and negative inputs cannot have an irrational
slope if the predicate is stably computable. One ingredient of our proof is a generalization of this idea to
separating hyperplanes.

However, to be able to use separating hyperplanes, we first must deal with separating “intermixed”
positive and negative inputs using their images in a finite group. For example, consider the following set of
points in N2, which is stably computable.

L = {(i, j) : i < j, (i+ j) is odd}.

By first separating the points in N2 by their images (i mod 2, j mod 2) in the group Z2 × Z2, we get four
subproblems in which lines suffice to separate the positive and negative points.

A further issue is that because of the relationship between the monoids X(c) and their cosets x +
X(c), instead of a single separating hyperplane we have to consider finite sets of parallel hyperplanes,
which themselves may contain points from the support of ψ. These points can be handled by induction on
dimension, but this requires that the main theorem be generalized to consider the intersection of the support
of ψ and an arbitrary group coset (where we view each hyperplane as a group coset). We shall prove the
following theorem by induction on the dimension of the group G; it clearly holds when G has dimension 0,
i.e., when G is the trivial group.

Theorem 24. If ψ and its complement admit finite coset coverings then for any group coset H = x0 +G ⊆
ZΣ, we have ψ−1(1) ∩H is semilinear.

26

This theorem, together with Lemma 21 can now be used to prove Theorem 9. If ψ is stably computable
in the Abstract Model, then so is its complement (since the output function of the protocol can be negated).
Thus, by Lemma 21, both ψ and its complement admit finite coset coverings. Applying Theorem 24 with
H = ZΣ establishes Theorem 9.

The details of the proof of Theorem 24 are quite involved and are in Section 13. To summarize briefly,
the overall strategy is:

1. By dividing the space into residue classes with respect to appropriately chosen moduli, we can arrange
for the vectors from the monoids associated with the cover to appear in all-positive and all-negative
regions separated by hyperplanes. In this part of the proof we extend NΣ to ZΣ to make use of the
fact that all subgroups of ZΣ are finitely generated. (Section 13.1.)

2. We then further map the problem from ZΣ to RΣ, and use techniques from convex geometry to show
that appropriate hyperplanes separating the monoids indeed exist. (Section 13.2.) We obtain a (looser)
separation by slabs (the space between two parallel hyperplanes) on the inputs by observing that each
input is displaced a uniformly bounded amount from its corresponding extension vector.

3. Moving to RΣ allows for the possibility of separating hyperplanes with irrational coefficients. Ap-
plying the Pumping Lemma as described above, we show that the resulting separating hyperplanes
are normal to a vector with rational coordinates and thus correspond to cosets of subgroups of ZΣ.
(Section 13.3.)

4. At this stage, we have shown that the positive inputs to the predicate consist of (a) those inputs in the
interior of the separated regions, which can by identified first by computing the residue classes of their
coordinates and then by identifying which of a finite number of polytopes (given by intersections of
half-spaces with rational coordinates) they appear within, and (b) those inputs that lie in some slab.
The first class is semilinear as identification of a residue class and identification of membership in a
particular polytope are both expressible in Presburger arithmetic. The second class is then shown to be
semilinear by induction on dimension, with the base case of dimension 0 being the trivially semilinear
case of a single point. (Section 13.4.)

13 Proof of the Semilinearity Theorem: Details

The proof of Theorem 24 is delayed to Section 13.4. First we describe the process of separating inputs in
more detail.

13.1 Separating Intermixed Inputs

Let ψ : Pop(Σ)→ {0, 1} be a predicate that admits finite coset coverings. Let G be a subgroup of ZΣ and
let H = h + G be a coset of G. Take {(ai,Mi)}i∈I and {(bj , Nj)}j∈J to be finite monoid-coset covers
of ψ−1(0) ∩ H and ψ−1(1) ∩ H respectively. Assume without loss of generality that Mi, Nj ⊆ G by
intersecting with G if necessary. Define K(i, j) := Z(Mi ∩Nj), the group generated by the intersection of
Mi and Nj .

Lemma 25. For all i ∈ I and j ∈ J , no coset of K(i, j) intersects both ai +Mi and bj +Nj .

27

Proof. If we suppose the lemma is false, then there exist x ∈ ai+Mi and x′ ∈ bj +Nj such that (x−x′) ∈
K(i, j). Because Mi ∩ Nj is a monoid, we can rewrite x − x′ as a difference y′ − y where y ∈ Mi and
y′ ∈ Nj . Thus x+ y = x′ + y′. The former is in ai +Mi, whereas the latter is in bj +Nj . This contradicts
the fact that ai +Mi and bj +Nj are disjoint (since they have different predicate values).

Define
K :=

⋂
K(i,j) has finitely many cosets in G

K(i, j).

In addition to having finitely many cosets in G, the group K inherits the relevant properties of the groups
K(i, j) included in its defining intersection.

Lemma 26. For all i ∈ I and j ∈ J such thatK(i, j) has finitely many cosets inG, no coset ofK intersects
both ai +Mi and bj +Nj .

Proof. Since K(i, j) ⊇ K, each coset of K is contained in a coset of K(i, j). The result follows from
Lemma 22.

Since all group cosets are semilinear, we can use membership in the cosets of K to separate those pairs
of monoid cosets that are full rank. For the others, we have to take another approach.

13.2 Separating with Hyperplanes

Let g1 +K, . . . , gn +K ⊆ G be the cosets of K in G. For each ` ∈ {1, . . . , n} define H` := h+ g` +K.
Note that ∪`H` = H . If two monoid cosets ai +Mi and bj +Nj both meet some coset h+ (g` +K) ⊆ H ,
it is possible to separate H` ∩ (ai +Mi) from H` ∩ (bj +Nj) with a hyperplane (except for a set of lower
dimension). Define I` := {i ∈ I | (ai +Mi)∩H` 6= ∅} and J` := {j ∈ J | (bj +Nj)∩H` 6= ∅}. If i ∈ I`
and j ∈ J`, then H`, which is a coset of K, intersects both ai + Mi and bj + Nj , so K(i, j) has infinitely
many cosets in G, by Lemma 26.

At this point we turn to the methods of geometry. We pass from groups to vector spaces by working in
the vector space closure RG of G in RΣ. Instead of monoids, we consider the convex cones they generate:
the set of nonnegative linear combinations of monoid elements. We connect the geometry to the algebra
by observing that K(i, j) has finitely many cosets in G if and only if RK(i, j), the vector space closure of
K(i, j), is all of RG. Thus if two monoid cosets are not intermixed, their intersection of their associated
monoids has strictly smaller dimension than G. This allows us to separate these monoids with a hyperplane.

Formally, given sets of vectors U and U ′, a set of nonzero vectors V distinguishes U and U ′ if for all
u ∈ U and u′ ∈ U ′, there exists v ∈ V such that (u · v)(u′ · v) ≤ 0; that is, either one dot product is zero
or one is negative and the other is positive. Define M̂` :=

⋃
i∈I` Mi and N̂` :=

⋃
j∈J`

Nj . The goal of this

subsection is to show the existence of a finite set of vectors V that distinguishes M̂` from N̂`. The main tool
we use is the Separating Hyperplane Theorem from convex geometry. Note that intU denotes the interior
of U .

Theorem 27. (Separating Hyperplane Theorem [Lay92]) If U and U ′ are convex subsets of Rd with
nonempty interiors such that intU ∩ intU ′ = ∅, then there exists v ∈ Rd such that u · v ≤ 0 for all
u ∈ U and u′ · v ≥ 0 for all u′ ∈ U ′.

Unfortunately, Mi and Nj are not convex. Thus we are forced to consider the convex cones that they
generate. We need Carathéodory’s theorem, another result from convex geometry, to verify the seemingly
trivial fact that the intersection of these cones lies in a proper vector subspace of RG.

28

Theorem 28. (Carathéodory’s Theorem [Lay92]) For any set of vectors Y ⊆ Rd, if x ∈ R+Y , then there
exists a linearly independent subset Y ′ ⊆ Y such that x ∈ R+Y

′.

Lemma 29. For all i ∈ I` and j ∈ J`, the set Z = R+Mi∩R+Nj is contained in a proper vector subspace
of RG.

Proof. Suppose to the contrary. Then the vector subspace RZ is all of RG and has a basis {z1, . . . , zd} ⊆ Z.
By perturbing this basis to have rational coordinates, we can assume without loss of generality that zs ∈ QG
as well for all s ∈ {1, . . . , d}.

By Theorem 28, for each s, there is a linearly independent set Ys ⊆ Mi such that zs ∈ R+Ys. When
we write each zs as its unique linear combination of elements in Ys, we see by linear algebra over QG
that in fact zs ∈ Q+Mi. Repeating this argument with Nj yields that zs ∈ Q+Mi ∩ Q+Nj . We clear
denominators to find numbers ms such that mszs ∈Mi ∩Nj . The set {mszs}, however, is a basis for RG,
which contradicts the fact that RK(i, j) is not all of RG.

Lemma 30. For all i ∈ I` and j ∈ J`, there exists a nonzero vector v such that {v} distinguishes I` and J`.

Proof. If either Mi or Nj is contained in a proper vector subspace of RG, then take v to be normal to that
subspace.

Otherwise, consider the sets U := R+Mi and U ′ := R+Nj . The intersection of their interiors is both
open and contained in a proper vector subspace of RG. Thus U and U ′ have no interior point in common.
Therefore, by Theorem 27 there exists v ∈ RG such that for all u ∈ U , we have u · v ≤ 0; and for all
u′ ∈ U ′, we have u′ · v ≥ 0. It follows that {v} distinguishes Mi and Nj .

To obtain a set of vectors that distinguish M̂` and N̂`, we put together all of the individual distinguishing
vectors.

Lemma 31. For all 1 ≤ ` ≤ n, there exists a finite set of vectors V that distinguishes M̂` and N̂`.

Proof. The set V := {v(i, j) | i ∈ I` and j ∈ J`} distinguishes M̂` and N̂`, where v(i, j) is the vector from
Lemma 30 such that {v(i, j)} distinguishes Mi and Nj .

Combining results in this section and the previous one, we have some powerful criteria for determining
the predicate value of an input.

Lemma 32. Let V be a set of vectors that distinguishes M̂` and N̂`. Suppose x ∈ M̂` and y ∈ H` are such
that for all j ∈ J` and v ∈ V , we have (x · v)((y − bi) · v) > 0. Then ψ(y) = 0.

Proof. Suppose to the contrary that ψ(y) = 1. Then there exists j ∈ J` such that (y− bj) ∈ Nj . The set V ,
however, fails to distinguish x and y − bj , which is a contradiction.

Clearly, this lemma has an analogous counterpart that establishes sufficient conditions for ψ(y) = 1.

13.3 Achieving Rationality

The chief obstacle yet to be overcome is that a distinguishing set of vectors might include vectors with
irrational coordinates. In order to rule out predicates like ψ(r, s) := [r < (

√
2)s], we need to show that we

can always distinguish M̂` and N̂` by vectors with integral coordinates. We must use for a second time the
fact that ψ admits finite coset covers.

29

Lemma 33. For all ` there exists a finite set of vectors from ZΣ that distinguishes M̂` and N̂`.

Proof. Since we can clear denominators, it is enough to find a set of vectors in QΣ that distinguishes M̂`

and N̂`. By Lemma 31 there exists a finite set of vectors V that distinguishes M̂` and N̂`. Assume that
V \ QΣ has minimum cardinality, that is, as few vectors in V have irrational components as possible. To
avoid a special case later, we assume without loss of generality that V contains the standard basis Σ of RΣ.
We show that this set V contains only vectors in QΣ.

Suppose to the contrary that there exists v ∈ V \ QΣ. By assumption, the set V ′ := V \ {v} cannot
distinguish M̂` and N̂`. Thus there exist i ∈ I` and j ∈ J` and x ∈Mi and y ∈ Nj such that for all v′ ∈ V ′
we have (x · v′)(y · v′) > 0.

We consider two cases. In the first case, for all choices of x and y we have (x · v)(y · v) = 0. Then
at least one vector in each problem pair is normal to v. By linear algebra over QΣ, there exists a vector
v′ ∈ QΣ such that if w ∈ G is normal to v, then w is normal to v′. Thus V ′ ∪{v′} distinguishes M̂` and N̂`,
which is a contradiction, since (V ′ ∪ {v′}) \QΣ has fewer elements than V \QΣ.

In the second case, we have x and y such that (x · v′)(y · v′) > 0 for all v′ ∈ V ′ and (x · v)(y · v) < 0.
Assume without loss of generality that x · v < 0 < y · v by taking −v instead of v if necessary. Let
Ω := {w ∈ RG | v′ · w > 0 for all v′ ∈ V and w(q) > 0 for all q ∈ Σ}. Clearly Ω is an open set. Also,
y ∈ Ω, since by the assumption that Σ ⊆ V we have y(q) > 0 for all q ∈ Σ. Given that Ω is a nonempty
open set, we can extend x, y to a basis w1 = x,w2 = y, . . . , wm such that ws ∈ Ω for all s ≥ 2. By
perturbing each ws slightly to have rational coordinates and clearing denominators, we assume without loss
of generality that ws ∈ Ω ∩K. There exists s such that (ws · v)/(w1 · v) is irrational, since otherwise some
nonzero real scalar multiple of v belongs to QΣ.

In consequence N(x · v) + N(ws · v) is dense in R, so we can find sequences of positive integers mt and
m′t such that

mt(x · v) +m′t(ws · v)

is a negative monotone increasing sequence of real numbers approaching 0 as t approaches infinity. For all
v′ ∈ V , the points (mtx+m′tws)t≥1 lie on the same side of the hyperplane normal to v, and as a sequence
they approach the hyperplane normal to v arbitrarily closely. By another application of Higman’s Lemma,
there is an increasing function f such that (mf(t),m

′
f(t)) is an increasing sequence.

Let z ∈ (ai + Mi) ∩H`. There exists some constant c ≥ 0 such that for each r, the points ((z + (c +
mf(t))x+m′f(t)ws)− br)t≥1 all lie on the same side of each hyperplane as x. It is easily verified that each
of these points belongs to H`. Thus by Lemma 32, ψ(z + (c+mf(t))x+m′f(t)ws) is constantly 0. Apply
the pumping lemma (Lemma 21) again to these inputs to obtain a finite cover. Then there exist t1 < t2 such
that (mt2 −mt1)x+ (m′t2 −m

′
t1)ws ∈ P , where the monoid coset (z+mt1x+mt2ws) +P belongs to the

cover. Pumping z+ (c+mt1)x+m′t1ws by a sufficiently large multiple of (mt2 −mt1)x+ (m′t2 −m
′
t1)ws

yields an element z′ such that ψ(z′) = 0, but for each r, we have that z′ − ar is on the same side of each
hyperplane as ws, which contradicts Lemma 32.

13.4 Proof of Theorem 24

We can now prove Theorem 24 by induction on the dimension of G (the cardinality of the largest linearly
independent subset of G).

Proof. If the dimension of G is zero, then H is a single point and the result holds. If the dimension of G is
greater than zero, then by Lemmas 26 and 33, there exist a group K and finite distinguishers V` ⊆ ZΣ for
all cosets H` of K in H .

30

For each distinguishing vector v ∈ V`, consider the set of points x ∈ H` such that it is not that the case
that the following numbers are either all negative or all positive: (x− ai) · v for i ∈ I` and (x− bj) · v for
j ∈ J`. This set has finite width in the direction of v. Thus it can be written as the union of finitely many
cosets of a group of smaller dimension. The key to the induction is that any point not in the union of these
sets over the different x satisfies the hypotheses of one of the variants of Lemma 32.

Define the sets

B :=
⋃
`

{x ∈ H` | ∃y ∈ N̂` such that ((x− bj) · v)(y · v) > 0 for all j ∈ J` and v ∈ V`}

B′ :=
⋃
`

{x ∈ H` |6 ∃y ∈ M̂` such that ((x− ai) · v)(y · v) > 0 for all i ∈ I` and v ∈ V`}.

By Lemma 32 we have B ⊆ ψ−1(1) ⊆ B′. It is not difficult to verify that B and B′ are semilinear.
Moreover, B′ \B is a union of finitely many group cosets of dimension less than G. It follows by inductive
hypothesis that ψ−1(1) ∩ (B′ \B) is semilinear, and thus that ψ itself is semilinear.

14 Characterizations of the One-Way Models

In this section, we complete the characterizations of the one-way models in Figure 2 by showing that they
are limited to the indicated power.

14.1 Immediate and Delayed Transmission

We first consider the immediate and delayed transmission models to prove the following converse to Theo-
rem 6.

Theorem 34. Let ψ be a predicate that is stably computable by an immediate or delayed transmission
protocol. Then ψ is in SLIN ∩ coreMOD.

Thus, for example, the comparison predicate, true if there are more a’s than b’s in the input, is not stably
computable in the immediate or delayed transmission model, because it is not in coreMOD. Intuitively,
the weakness of delayed transmission compared with queued transmission is in the inability of a receiver to
refuse messages temporarily; in effect, by delivering a number of copies of some message to a receiver and
and forcing it back into the same state, we cause the whole collection of messages to “disappear” from the
computation.

Because a delayed transmission protocol is a special case of a queued transmission protocol and an
immediate transmission protocol is a special case of a two-way protocol, Corollary 10 shows that ψ is in
SLIN. To see that ψ is also in coreMOD requires some preliminary lemmas. Consider any delayed or
immediate transmission protocol that stably computes ψ, and consider any nonempty subset Σ′ of Σ.

To unify the treatment of the two kinds of protocols, we assume that in a delayed transmission protocol,
the sender simply sends its current state; thus, we need not distinguish between states and messages in
our description. Formally, in this case the set of messages consists of a disjoint copy of the set of states,
distinguished by the phrases “the state qi” and “the message qi.” In the case of immediate transmission, an
interaction (p, q) 7→ (δ1(p), δ2(p, q)) is described as the sender sending message p and going to state δ1(p),
and the receiver receiving message p and going to state δ2(p, q).

We let Q′ denote the set of states that appear in configurations reachable from inputs that contain only
symbols from Σ′. For states q, q′ ∈ Q′ of the protocol, we say that q can reach q′ if there is some finite

31

sequence of messages (from Q′) sent and received by an agent in state q that enable it to enter state q′.
Formally, q can reach q′ if there is a sequence of states q = q1, q2, . . . , qk = q′ such that, for 2 ≤ i ≤ k,
either qi = δs(qi−1) or qi = δr(p, qi−1) for some message p ∈ Q′.

The following lemma shows that, for any message p, a sufficient number of copies of p can be “absorbed”
by an agent in some state q, returning that agent to state q.

Lemma 35. Fix any message p ∈ Q′. Define fp(q) = δr(p, q). There exists a state q ∈ Q′ and a positive
integer n such that f (n)

p (q) = q.

Proof. For any state r ∈ Q′, the sequence of states r, fp(r), f
(2)
p (r), . . . in Q′ must be eventually periodic

of some period n. Choosing q to be any state in the periodic part, we see that f (n)
p (q) = q.

If n is a positive integer and q1, q2 ∈ Q′ are states, we say that q1 and q2 are n-substitutable if there
exist an input x containing only symbols from Σ′ and a configuration b of states, such that the configurations
c = nq1 + b and d = nq2 + b are reachable from I(x). We note that if q1 and q2 are n-substitutable, then
they are mn-substitutable for any positive integer m. We define two states q1, q2 ∈ Q′ to be substitutable if
there is some positive integer n such that they are n-substitutable. Substitutability is reflexive and symmetric
by definition; we now show it is transitive.

Lemma 36. Let q1, q2, q3 ∈ Q′ be states and assume that q1 and q2 are substitutable and q2 and q3 are
substitutable. Then q1 and q3 are substitutable.

Proof. For some input x containing only symbols from Σ′, configuration b of states and integer n, the
configurations c = nq1 + b and d = nq2 + b are reachable from I(x). Similarly, for some input y containing
only symbols from Σ′, configuration b′ of states and positive integer m, the configurations c′ = mq2 + b′

and d′ = mq3 + b′ are reachable from I(y).
Consider the input z = mx + ny, which contains only input symbols from Σ′. From I(z) there is a

computation reaching mc + nc′, which is equal to mnq1 + (mnq2 + mb + nb′), and also a computation
reachingmd+nd′, which is equal tomnq3 +(mnq2 +mb+nb′). Thus q1 and q3 aremn-substitutable.

Now we show that reachability implies substitutability.

Lemma 37. If q1, q2 ∈ Q′ are states such that q1 can reach q2 then q1 and q2 are substitutable.

Proof. Because substitutability is transitive, it suffices to consider the case in which q2 is reachable in one
step from q1. For every state q ∈ Q′, we define cq to be any configuration of states containing q that is
reachable from an input containing only symbols from Σ′. We consider two cases.

If q1 reaches q2 by a send step, then by Lemma 35 we may choose a state q3 ∈ Q′ and a positive integer
n such that f (n)

q1 (q3) = q3. (Intuitively, this means an agent in state q3 will be back in q3 after receiving n
copies of message q1.) We choose b = n(cq1 − q1) + cq3 , and let c = nq1 + b, so that c = ncq1 + cq3 . Then
c is reachable from I(x) for some input x containing only symbols from Σ′.

From c we may have each of n agents in state q1 transmit a message (and reach state q2) to a single agent
in state q3, which will again be in state q3 after receiving the n copies of q1. Formally, it is easy to see by
induction on j that c ∗→ (n − j)q1 + jq2 + b − q3 + f

(j)
q1 (q3) for 0 ≤ j ≤ n. Taking j = n, we have that

d = nq2 + b is reachable from c, and therefore from I(x), so q1 and q2 are substitutable.
Suppose q1 reaches q2 by a receive step, say of message q3 ∈ Q′. Let q4 be the state reached from state

q3 after a send. Then by Lemma 35, there is a state q5 ∈ Q′ and a positive integer n such that f (n)
q3 (q5) = q5.

32

(This means that after receiving n copies of message q3 an agent that starts in state q5 will be back in state
q5.) We choose

b = n(cq1 − q1) + n(cq3 − q3) + nq4 + cq5 ,

and let
c = nq1 + b = ncq1 + n(cq3 − q3) + nq4 + cq5 .

Now c′ = ncq1 + ncq3 + cq5 is reachable from I(x) for some input x containing only symbols from Σ′. It
is easy to see by induction on j that, for 0 ≤ j ≤ n, c′ ∗→ ncq1 + ncq3 − jq3 + jq4 + cq5 − q5 + f

(j)
q3 (q5)

by a sequence of steps in which j agents in state q3 send a message (and go to state q4) to a single agent
that started in state q5. Taking j = n, we see that c′ ∗→ ncq1 + ncq3 − nq3 + nq4 + cq5 = c. Also,
d = nq2 + b = n(cq1 − q1) +nq2 +n(cq3 − q3) +nq4 + cq5 is reachable from c′ by a computation in which
we pair up n agents in state q3 with n agents in state q1 and in each of the n pairs have the agent in state q3

send a message to the agent in state q1, transforming the sender into state q4 and the receiver into state q2.
Thus, in this case also, q1 and q2 are substitutable.

Thus we have the following pumping lemma for predicates stably computable by immediate and delayed
transmission protocols.

Lemma 38. For every input symbol σ ∈ Σ′ there exist positive integers k and n such that for every input
y ∈ Pop(Σ) that is k-rich with respect to Σ′, y and y + nσ are both accepted or both rejected.

Proof. Let k0 be the constant in Lemma 18 such that k0-truncates are sufficient to determine membership
in the set S of output stable configurations for the protocol. We choose k1 to be |Q′|(k0 − 1) + 1.

Let σ be any input symbol from Σ′ and let q = ι(σ), the initial state associated with σ. Let R ⊆ Q′

be the set of states that q can reach, and consider any q′ ∈ R. By Lemma 37, q and q′ are nq′-substitutable
for some positive integer nq′ . Let n be the least common multiple of the nq′ for all q′ ∈ R; q and q′ are
n-substitutable. That is, there exists an input xq′ containing only symbols from Σ′ and a configuration of
states bq′ such that the configurations cq′ = nq + bq′ and dq′ = nq′ + bq′ are reachable from I(xq′).

Let x be the sum of all xq′ over q′ ∈ R. We choose k2 to be the maximum multiplicity of any input
symbol in x. Let k = max(k1, k2) and let y be any input that is k-rich with respect to Σ′. Then y ≥ x and
y contains only symbols from Σ′.

Consider a computation from I(y) that first takes I(x) to the sum s =
∑

q′∈R cq′ and then proceeds to
an output stable configuration e. Since y is k-rich with respect to Σ′, there are at least k ≥ k1 agents with
input symbol σ. By the pigeonhole principle, some state q′ ∈ R appears with multiplicity at least k0 in e.

Now from I(y+nσ) = I(y) +nq we consider a computation that takes I(x−xq′) to s− cq′ and I(xq′)
to dq′ , giving

I(y − x) + nq + (s− (nq + bq′)) + nq′ + bq′ = I(y − x) + s+ nq′.

Now we continue by running I(y − x) + s to e, giving e + nq′, which is output stable because τk0(e) =
τk0(e+ nq′). Thus y and y + nσ are both accepted or both rejected.

Now we can conclude the proof of Theorem 34.

Proof. For each alphabet symbol σ ∈ Σ′, by Lemma 38 there exist integers kσ and nσ such that for all
inputs y that are kσ-rich with respect to Σ′, y + nσσ is accepted if and only if y is accepted. Let k be the
maximum of the kσ’s over σ ∈ Σ′. Then the acceptance or rejection of an input y that is k-rich with respect
to Σ′ depends only on the values of the number of occurrences of σ modulo nσ, which implies that ψ is
k-similar with respect to Σ′ to a predicate in in MOD. Because Σ′ was an arbitrary nonempty subset of Σ,
this shows that ψ ∈ coreMOD.

33

14.2 Immediate Observation

In the immediate observation model, transitions are of the form (p, q) 7→ (p, q′) and there is no multiset
of undelivered messages. We have shown in Theorem 7 that for any constant k, an immediate observation
protocol can count the number of copies of each input symbol up to k, However, this is also the extent of its
power.

Theorem 39. Let ψ be a predicate that is stably computable by an immediate observation protocol. Then
ψ ∈ COUNT∗.

Proof. Let k be the constant in Lemma 18 such that k-truncates are sufficient to determine membership
in the set S of output stable configurations. Assume that x is an input such that some input symbol σ
occurs with multiplicity at least k′ = |Q|(k − 1) + 1 in x. Let c0, c1, c2, . . . , cm be an execution from the
initial configuration c0 = I(x) to an output stable configuration cm. Then, ci = ci−1 − pi + p′i for some
pi, p

′
i ∈ Q. We define si(j) inductively to represent the state of the jth agent with input σ in ci, as follows.

Let s0(j) = ι(σ). If the multiset {si−1(j) : 1 ≤ j ≤ k′} is contained in ci, then si = si−1. Otherwise, there

is some ̂ such that si−1(̂) = pi, and we define si(j) =

{
p′i if j = ̂

si−1(j) otherwise.
By the pigeonhole principle, the multiset {sm(j) | 1 ≤ j ≤ k′} contains some state q′ with multiplicity

at least k. Choose j′ such that sm(j′) = q′. We introduce a “clone” of this agent into the execution.
Formally, we show by induction that I(x + σ) ∗→ ci + si(j′). When i = 0, I(x + σ) = c0 + s0(j′).
Assume I(x + σ) ∗→ ci−1 + si−1(j′). If qi(j′) = si−1(j′), then the claim is clearly true. Otherwise,
ci + si(j′) = ci−1− pi + 2p′i, which is reachable from ci−1 + si−1(j′) = ci−1 + pi by having two agents in
state pi change to state p′i by observing some state in ci−1 − pi.

Thus, I(x + σ) ∗→ cm + q′. Because the multiplicity of q′ in cm is at least k, τk(cm) = τk(cm + q′).
Therefore, since cm is output stable, so is cm + q′. Moreover, cm + q′ has the same output as cm, so
ψ(x) = ψ(x + σ). Because this holds of any input symbol σ of multiplicity at least k′ in x, we have
ψ ∈ COUNTk′ ⊂ COUNT∗.

We may also consider a variant of the immediate observation model in which an agent may interact with
itself, that is, a rule (p, p) 7→ (p, q) can be applied to a single agent in state p to change it to state q. This is
the model with mirrors. The two versions of the model are equal in power, as they can simulate each other,
using bit-flipping protocols to avoid or permit self-interactions.

Theorem 40. The same predicates are stably computable by immediate observation protocols in the models
with and without mirrors.

Proof. We may assume that n, the population size, is at least 3, since any predicate on 3 or fewer agents is
computable in either model; this case can be detected and handled separately in either kind of protocol.

Given an immediate observation protocol that stably computes a predicate ψ in the model without mir-
rors, we can derive another protocol that stably computes ψ in the model with mirrors. For every old state
q we introduce a new state q′ and for every old transition (p, q) 7→ (p, r), where p 6= q, we introduce vari-
ants of the transition with all combinations of primed and unprimed states p, q, and r. We replace every
old transition (p, p) 7→ (p, q) with four new transitions: (p, p) 7→ (p, p′) and (p′, p′) 7→ (p′, p), as well as
(p, p′) 7→ (p, q) and (p′, p) 7→ (p′, q). In the mirrored model, this allows an agent to flip back and forth
between p and p′ by itself, but to leave these two states, it must interact with someone other than itself
(witnessed by having different “primation”).

34

For the other direction, given an immediate observation protocol in the model with mirrors that stably
computes a predicate ψ, we can again introduce primed and unprimed versions of each state. For each
ordered pair of states p and q, we have rules (p, q) 7→ (p, q′) and (p, q′) 7→ (p, q), which allow a state to flip
between primed and unprimed as long as there is at least one unprimed state. Because the input states are
unprimed, these rules cannot eliminate the last unprimed state. In addition, for every rule (p, q) 7→ (p, r)
with p 6= q in the protocol with mirrors, there is a rule (p′, q) 7→ (p′, r) in the protocol without mirrors; this
allows steps involving two agents in different states to be simulated by priming the initiator, unpriming the
responder, and taking the step. For every rule (p, p) 7→ (p, r) in the protocol with mirrors, there are rules
(q′, p′) 7→ (q′, r′) for every original state q. If a step involves two agents in state p, it can be simulated
by priming both agents and taking the step. If a step involves one agent in state p, it can be simulated by
priming that agent (to get p′) and any other agent (to get q′) and taking the step. Note that this simulation
can be carried out if there are at least three agents in the population because there is at least one unprimed
agent in every configuration reachable from an input configuration.

14.3 Delayed Observation

Here, we prove the converse of Theorem 8, showing that the delayed observation model is the weakest of
the one-way models we defined.

Theorem 41. Suppose ψ is stably computed by a delayed observation protocol. Then ψ is in COUNT1.

Proof. We show that for any input x, if σ ∈ x then ψ(x + σ) = ψ(x), which implies that ψ is completely
determined by the presence or absence of each input symbol and hence is in COUNT1.

Consider the finite graph whose nodes are configurations reachable from I(x) that contain no messages
in transit, with a directed edge from c to c′ if c ∗→ c′. A final strongly connected component of this graph is
one from which no other strongly connected component of the graph is reachable. From I(x) we can reach
a configuration in a final strongly connected component F of this graph. Let F̂ denote all the configurations
d, including those with undelivered messages, such that c ∗→ d for some c ∈ F . For any configurations d
and d′ in F̂ , d ∗→ d′ by first delivering all messages in d. This implies that all configurations in F̂ are output
stable.

The set T of states that occur in configurations in F̂ is closed, that is, if p, q ∈ T and (p, q) 7→ (p, q′),
then q′ ∈ T . To see this, assume not. Then, take a configuration c in F̂ that contains p and let an agent in state
p send a message, putting p into messages in transit. Now mimic a computation from d to a configuration
d′ in F̂ containing q, leaving the message p undelivered. Then deliver p to an agent in state q, arriving at a
configuration in F̂ containing q′, a contradiction.

Now consider any σ in x. Consider an execution that begins in I(x) and ends in an output stable
configuration c in F . There must be a sequence of states q0, q1, . . . , qm where q0 = ι(σ), qm appears in
c, and (pi, qi−1) 7→ (pi, qi) for some state pi that appeared in some configuration during the execution.
Starting from the configuration I(x+ σ) = I(x) + q0, we can reach a configuration c+ q0 that also has one
additional copy of each message p1, . . . , pm left in transit. By delivering all of the m messages to the agent
in state q0 in order, we reach the configuration c+ qm. Because T is closed and the states of c+ qm are all
in T , c+ qm is output stable and therefore ψ(x+ σ) = ψ(x).

If we assume that no agent ever receives its own message, then the power of the model increases only
slightly: it becomes possible for an agent in a unique state to observe that it never encounters a twin, and the
stably computable predicates are COUNT2 in this case. The proof is a straightforward extension of the
proof of Theorem 41.

35

15 Local Fairness is Weak Even with Unbounded States

In this section, we consider a strongly anonymous message-passing model with the following local fairness
condition: if some agent sends a particular message m infinitely often, then each agent receives message m
infinitely often. This model turns out to be surprisingly weak. Even if the states of processes and the lengths
of messages may grow without bound, protocols in this model cannot distinguish two multisets of inputs
if the same set of values appears in each. Since this model subsumes the one-way finite-state population
protocol models, this result supports the choice of the stronger global fairness condition assumed in the rest
of the paper.

Theorem 42. Let Σ denote the (finite or countably infinite) set of possible input values. A predicate ψ on
finite nonempty multisets of elements from Σ is stably computable in the asynchronous message-passing
model with the weak fairness condition if and only if ψ is completely determined by the set of input values
present in the initial configuration.

Proof. We describe a protocol in which each agent eventually determines the set of all the inputs that occur
in the initial configuration, and therefore the correct value of ψ. The state of each agent is the set consisting
of its initial input value together with every value that has occurred in a message it has received. Whenever
an agent runs, it sends its current state. Whenever an agent receives a message, it updates its state to be the
union of its previous state and the set of values in the message.

Clearly every message sent is a subset of the set of input values in the initial configuration, so there
are only finitely many possible messages in each computation. Every message sent by an agent with input
value σ contains the element σ, and it sends infinitely many messages, so eventually every agent receives
a message containing σ. Thus, the state of every agent eventually consists of the set of values in the input
configuration, and each outputs the correct value of ψ.

For the converse, assume that we have a protocol that stably computes a predicate ψ, and let x and x′

be any two nonempty multisets of values from Σ such that the same set of values appears in each. Let
n = |x| and n′ = |x′|. Let c0 and c′0 be initial configurations corresponding to inputs x and x′, respectively.
We construct two executions α and α′ starting from c0 and c′0. Let m1,m2, . . . be an arbitrary sequence of
messages where every possible message appears infinitely often. We construct the executions α and α′ in
phases, where phase i will ensure that message mi gets delivered to everyone if that message has been sent
enough times. Let ci and c′i be the configurations of α and α′ at the end of phase i.

Our goal is to prove the following claim: for all i ≥ 0 and for all σ ∈ Σ, the state in ci of each agent
with original input σ is the same as the state in c′i of each agent with original input σ. Assume that we have
constructed the first i − 1 phases of the two executions so that the claim is satisfied. Suppose we run all
processes in lock step from ci−1 and c′i−1 without delivering any messages. There are two cases.

Case (i): Eventually, after ri rounds, the run from ci−1 will have at least n copies of mi in transit and,
after r′i rounds, the run from c′i−1 will have at least n′ copies of mi in transit. Then, the ith phase of α and
α′ is constructed by running each agent for max(ri, r′i) rounds without delivering any messages, and then
delivering one copy of mi to every agent. This ensures the claim will be true for ci and c′i.

Case (ii): Otherwise, we allow every agent to take one step without delivering any messages. (This
clearly satisfies the claim for ci and c′i.)

It remains to show that both α and α′ satisfy the weak fairness condition, and then it will follow from
the claim that ψ(x) = ψ(x′). First, notice that every agent takes infinitely many steps in α and α′. If some
agent v sends a message m infinitely many times in α or α′, it will also be sent infinitely many times by an
agent with the same input value in the other execution (since an agent with a particular input experiences the
same sequence of events in both executions). Suppose m is never delivered after phase i to some agent w

36

in one of the two executions. Eventually, there will be n copies of m in transit in Cj for some j > i and n′

copies of m in transit in C ′j′ for some j′ > i. Consider the first occurrence of m in the sequence m1,m2, . . .
that comes after mj and mj′ . During the corresponding phase, m will be delivered to every agent, including
w, a contradiction. Thus, α and α′ satisfy the weak fairness condition.

16 Conclusions and Discussion

We have shown that the predicates stably computable by population protocols in the family of all-pairs
communication graphs are semilinear, answering the main open question in [AAD+04, AAD+06]. This
result also shows that the model of population protocols with stabilizing inputs, introduced in [AAC+05],
is equal in computational power to the standard model of population protocols in the family of all-pairs
communication graphs, resolving another open question.

Our semilinearity proof is given for an abstract model that includes not only population protocols, but
generalizations permitting rules that replace one finite multiset of elements of a configuration with another
finite multiset of elements. Thus, even a generalization of population protocols in which rules may add
or delete agents or involve interactions between more than two agents will stably compute only semilinear
predicates, answering a question in [AAD+03].

We have introduced several models of one-way communication in population protocols: queued trans-
mission, immediate and delayed transmission and immediate and delayed observation, and exactly charac-
terized the classes of predicates stably computable in these models in the family of all-pairs communication
networks by natural subclasses of the semilinear predicates. These one-way models are more closely related
to asynchronous message-passing models, and illuminate the effects of capabilities such as the ability to
refuse to accept incoming messages temporarily.

Another natural variant of the population protocol model considers “reversing moves” and requires that
a protocol stably compute a predicate despite the possible presence in an execution of a finite number of
reversing moves, that is, steps in which a rule (p, q) 7→ (p′, q′) is used in reverse: (p′, q′) 7→ (p, q). It is not
difficult to show that the basic protocols for modulo and threshold predicates are resistant to such reversing
moves, and therefore that all the semilinear predicates can be computed by protocols resistant to reversing
moves. Thus, requiring such resistance does not reduce the computational power of population protocols in
the family of all-pairs communication graphs.

Despite promising results for population protocols in restricted communication graphs [AAC+05], much
more remains to be understood about their computational power. In particular, the computational power of
one-way protocols in restricted communication graphs has not been studied.

17 Acknowledgments

This research was carried out while the third author was an undergraduate at the University of Rochester. The
authors would like to thank the reviewers of the extended abstracts on which this paper is based [AAE06b,
AAER05] and also the referees of the current paper for their thoughtful comments and suggestions.

References

[AAC+05] Dana Angluin, James Aspnes, Melody Chan, Michael J. Fischer, Hong Jiang, and René Per-
alta. Stably computable properties of network graphs. In Viktor K. Prasanna, Sitharama Iyen-

37

gar, Paul Spirakis, and Matt Welsh, editors, Distributed Computing in Sensor Systems: First
IEEE International Conference, DCOSS 2005, Marina del Rey, CA, USA, June/July, 2005,
Proceedings, volume 3560 of Lecture Notes in Computer Science, pages 63–74. Springer-
Verlag, June 2005.

[AAD+03] Dana Angluin, James Aspnes, Zoë Diamadi, Michael J. Fischer, and René Peralta. Urn au-
tomata. Technical Report YALEU/DCS/TR-1280, Yale University Department of Computer
Science, November 2003.

[AAD+04] Dana Angluin, James Aspnes, Zoë Diamadi, Michael J. Fischer, and René Peralta. Compu-
tation in networks of passively mobile finite-state sensors. In PODC ’04: Proceedings of the
Twenty-Third Annual ACM Symposium on Principles of Distributed Computing, pages 290–
299. ACM Press, 2004.

[AAD+06] Dana Angluin, James Aspnes, Zoë Diamadi, Michael J. Fischer, and René Peralta. Computa-
tion in networks of passively mobile finite-state sensors. Distributed Computing, 18(4):235–
253, March 2006.

[AAE06a] Dana Angluin, James Aspnes, and David Eisenstat. Fast computation by population proto-
cols with a leader. In Distributed Computing: 20th International Symposium, DISC 2006:
Stockholm, Sweden, September 2006: Proceedings, pages 61–75, September 2006.

[AAE06b] Dana Angluin, James Aspnes, and David Eisenstat. Stably computable predicates are semi-
linear. In Proceedings of the 25th ACM Symposium on Principles of Distributed Computing,
pages 292–299, July 2006.

[AAER05] Dana Angluin, James Aspnes, David Eisenstat, and Eric Ruppert. On the power of anonymous
one-way communication. In Principles of Distributed Systems; 9th International Conference,
OPODIS 2005; Pisa, Italy; December 2005; Revised Selected Papers, volume 3974 of Lecture
Notes in Computer Science, pages 396–411, December 2005.

[AAFJ05] Dana Angluin, James Aspnes, Michael J. Fischer, and Hong Jiang. Self-stabilizing popula-
tion protocols. In Principles of Distributed Systems; 9th International Conference, OPODIS
2005; Pisa, Italy; December 2005; Revised Selected Papers, volume 3974 of Lecture Notes in
Computer Science, pages 103–117, December 2005.

[AFJ06] Dana Angluin, Michael J. Fischer, and Hong Jiang. Stabilizing consensus in mobile networks.
In Proceedings of Distributed Computing in Sensor Systems: Second IEEE International Con-
ference, volume 4026 of Lecture Notes in Computer Science, pages 37–50, June 2006.

[AGM02] Hagit Attiya, Alla Gorbach, and Shlomo Moran. Computing in totally anonymous asyn-
chronous shared memory systems. Information and Computation, 173(2):162–183, March
2002.

[Ang80] Dana Angluin. Local and global properties in networks of processors. In Proceedings of the
12th ACM Symposium on Theory of Computing, pages 82–93, 1980.

[ASS02] James Aspnes, Gauri Shah, and Jatin Shah. Wait-free consensus with infinite arrivals. In
Proceedings of the 34th ACM Symposium on Theory of Computing, pages 524–533, 2002.

38

[Bai75] Norman T. J. Bailey. The Mathematical Theory of Infectious Diseases, Second Edition.
Charles Griffin & Co., London and High Wycombe, 1975.

[BPSV06] Harry Buhrman, Alessandro Panconesi, Riccardo Silvestri, and Paul Vitanyi. On the im-
portance of having an identity or, is consensus really universal? Distributed Computing,
18(3):167–176, 2006.

[BV99] Paolo Boldi and Sebastiano Vigna. Computing anonymously with arbitrary knowledge. In
Proceedings of the 18th ACM Symposium on Principles of Distributed Computing, pages 173–
179, 1999.

[BV01] Paolo Boldi and Sebastiano Vigna. An effective characterization of computability in anony-
mous networks. In Distributed Computing, 15th International Conference, pages 33–47, 2001.

[DF01] Zoë Diamadi and Michael J. Fischer. A simple game for the study of trust in distributed
systems. Wuhan University Journal of Natural Sciences, 6(1–2):72–82, March 2001. Also
appears as Yale Technical Report TR–1207, January 2001.

[DGFGR06] Carole Delporte-Gallet, Hugues Fauconnier, Rachid Guerraoui, and Eric Ruppert. When birds
die: Making population protocols fault-tolerant. In Proceedings of the Second IEEE Interna-
tional Conference on Distributed Computing in Sensor Systems (DCOSS ’06), pages 51–66,
2006.

[Dic13] Leonard Eugene Dickson. Finiteness of the odd perfect and primitive abundant numbers with
n distinct prime factors. American Journal of Mathematics, 35(4):413–422, October 1913.

[DK65] D. J. Daley and D. G. Kendall. Stochastic rumours. Journal of the Institute of Mathematics
and its Applications, 1:42–55, 1965.

[ES94] Ömer Eğecioğlu and Ambuj K. Singh. Naming symmetric processes using shared variables.
Distributed Computing, 8(1):19–38, 1994.

[FJ06] Michael J. Fischer and Hong Jiang. Self-stabilizing leader election in networks of finite-state
anonymous agents. In Tenth International Conference on Principles of Distributed Systems,
volume 4305 of Lecture Notes in Computer Science, pages 395–409, December 2006.

[FR03] Faith Fich and Eric Ruppert. Hundreds of impossibility results for distributed computing.
Distributed Computing, 16(2-3):121–163, September 2003.

[GB00] Michael A. Gibson and Jehoshua Bruck. Efficient exact stochastic simulation of chemical
systems with many species and many channels. Journal of Physical Chemistry A, 104:1876–
1880, 2000.

[Gil92] Daniel T. Gillespie. A rigorous derivation of the chemical master equation. Physica A,
188:404–425, 1992.

[GR] Rachid Guerraoui and Eric Ruppert. Anonymous and fault-tolerant shared-memory com-
puting. Distributed Computing. To appear. A preliminary version appeared in Distributed
Computing , 19th International Conference, pages 244–259, 2005.

39

[Hig52] Graham Higman. Ordering by divisibility in abstract algebras. Proceedings of the London
Mathematical Society, 3(2):326–336, 1952.

[HP78] J. Hopcroft and J. Pansiot. On the reachability problem for 5-dimensional vector addition
systems. Theoretical Computer Science, 8(2):135–159, 1978.

[IDE04] Oscar H. Ibarra, Zhe Dang, and Omer Egecioglu. Catalytic P systems, semilinear sets, and
vector addition systems. Theor. Comput. Sci., 312(2-3):379–399, 2004.

[Jia07] Hong Jiang. Distributed Systems of Simple Interacting Agents. PhD thesis, Yale University,
2007.

[JT90] Prasad Jayanti and Sam Toueg. Wakeup under read/write atomicity. In Distributed Algorithms,
4th International Workshop, volume 486 of LNCS, pages 277–288, 1990.

[KOPS00] Shay Kutten, Rafail Ostrovsky, and Boaz Patt-Shamir. The Las-Vegas processor identity prob-
lem (How and when to be unique). Journal of Algorithms, 37(2):468–494, November 2000.

[Lan02] Serge Lang. Algebra (Revised Third Edition). Springer-Verlag, 2002.

[Lay92] Steven R. Lay. Convex Sets and their Applications. Krieger Publishing Company, 1992.

[LP90] Richard J. Lipton and Arvin Park. The processor identity problem. Information Processing
Letters, 36(2):91–94, October 1990.

[Par66] Rohit J. Parikh. On context-free languages. J. ACM, 13(4):570–581, 1966.

[PPTV98] Alessandro Panconesi, Marina Papatriantafilou, Philippas Tsigas, and Paul Vitányi. Random-
ized naming using wait-free shared variables. Distributed Computing, 11(3):113–124, August
1998.

[Pre29] Mojzesz Presburger. Über die Vollständigkeit eines gewissen Systems der Arithmetik ganzer
Zahlen, in welchem die Addition als einzige Operation hervortritt. In Comptes-Rendus du I
Congrès de Mathématiciens des Pays Slaves, pages 92–101, Warszawa, 1929.

[Sak99] Naoshi Sakamoto. Comparison of initial conditions for distributed algorithms on anonymous
networks. In Proc. 18th ACM Symposium on Principles of Distributed Computing, pages
173–179, 1999.

[Ten90] Shang-Hua Teng. Space efficient processor identity protocol. Information Processing Letters,
34(3):147–154, April 1990.

40

