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Anonymity

Processes do not have identifiers and execute identical programmes.
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Advantages Disadvantage
e Ccheaper to mass-produce Problems that require
e |less testing required symmetry-breaking become

e Can enhance privacy impossible.



Anonymous Broadcast

The processes communicate by broadcasting messages to all pro-
cesses.
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No failures, n known to all processes.



Anonymous Shared Memory

Processes communicate via shared objects of various types.
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e No failures, n known to all processes.
e Linearizable objects, initialized as programmer wishes.
e Provides abstractions that are useful for programmer.

Question: How do shared-memory models relate to broadcast model
(and one another) in anonymous systems?



Previous Work on Anonymity

e Some research on point-to-point message-passing systems.
Impossibility of leader election in a ring [Angluin, 1980].

Using asymmetry of network to solve problems [Boldi, Vigna, 1999—
2001].

e Agreement tasks solvable using registers (no failures)
[Attiya, Gorbach, Moran, 2002].

e Naming possible, but not consensus, using randomization and reg-
isters (halting failures) [Buhrman et al. 2000].

e Topological approach used to characterize tasks with wait-free
solutions from registers [Herlihy, Shavit 1999].



Idemdicence

A shared object is idemdicent (‘“same-saying”) if two consecutive
invocations of the same operation (with the same arguments) always
return identical responses.

0 write(l) : ack 1 write(l) : ack 1 read : 1 read : 1
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Idemdicent objects: registers, snapshots, consensus objects.
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Non-idemdicent objects: queues, compare&swap.



Counter

e stores an integer

e increment operation
(returns ack)

e read operation

More Examples

Fetch&Increment

e stores an integer

e single fetch&inc operation
(returns value)

f&i:0 f&i:1

InC : ack Inc : ack
0 - 1 - 2

0 - 1 - 2
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Counters are idemdicent.
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Fetch&Inc objects are not.



What Can Broadcasts Implement?

Theorem Broadcasts can simulate shared objects iff the objects are
idemdicent.

(=): We show that asynchronous broadcasts can simulate a syn-
chronous system that contains any idemdicent objects.

Store a local copy of shared memory at each process.

To simulate round r:

A process that wants to perform op on object X broadcasts (r, op, X).
Each process collects all n broadcasts for round r

and simulates all operations on the shared objects locally.

If several processes access same object in the round, order operations
lexicographically.
Idemdicence = no need to break ties consistently.



The Converse

Theorem Broadcasts can simulate shared objects iff the objects are
idemdicent.

(«<): We show that even synchronous broadcast cannot implement
an asynchronous system with a non-idemdicent object.

Consider a non-idemdicent object.
If all processes perform same operation on it, at least two will get

different results.
Synchronous broadcasts cannot break symmetry in this way.



Broadcast = Counters

Counters are idemdicent, so broadcasts can simulate them.

Conversely, we show how the asynchronous counter model can sim-
ulate synchronous broadcasts.

WLOG, assume bounded-length messages.

Use one counter for every possible message that can be sent
plus a read counter and a write counter.
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Counters Simulate Broadcasts

Message read write
Counters counter counter
_ 1 2 3 4
To send a message, increment ollollollo 0 0

the corresponding message counter

and then the write counter. @41 ; @43

Wait until write counter mod n = 0.
1//0[|2]]0 0 3
Read all message counters.

Increment read counter. @ @

1,/0/1210 3 3

oO

Wait until read counter mod n = 0.
Start next round.
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Idempotence

An object is m-idempotent if
e it is idemdicent, and
e doing an operation m + 1 times has same effect as doing it once.

Examples A register is 1-idempotent.

A mod-3 counter is 3-idempotent:

InC : ack Inc : ack InC : ack Inc : ack
0 - 1 - 2 - 0
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Clones

A collection of processes behave as clones in an execution if
e they have the same input,

e they run in lock-step, and

e all perform the same step in each round.

If objects accessed by P in an execution are m-idempotent, we can
add m clones of P to the execution, and nobody will notice their
presence.

0 @ o 200,

Configurations C’, C" are indistinguishable (except to the two clones)
if objects accessed are 2-idempotent.
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Broadcast is Stronger than Registers
Registers are idemdicent, so broadcasts can implement them.

T hreshhold-2 function:
e binary function of n variables
e output is 1 iff at least 2 inputs are 1.

Easy to compute using broadcast.

Impossible to compute (even synchronously) using registers
(when n > 2) since no register-based algorithm can distinguish

2 clones with input O, from 1 process with input O,
1 process with input 1 2 clones with input 1
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Robustness
Robustness is a desirable property of shared-memory models.

It says objects that are weak when used individually are no stronger
when used together.

I.e. types A and B can implement type C only if
A alone can implement C or
B alone can implement C.

lLots of research on robustness in asynchronous, wait-free models.
Robustness violated by somewhat strange objects.

Here we have a natural counter example to robustness:

mod-2 counters and mod-3 counters can be used together to count
up to 5.
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mod-3 Counters Cannot Count up to 5
Consider any algorithm constructed using mod-3 counters.

Since mod-3 counters are 3-idempotent,
4 clones are indistinguishable from a single process.
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Cannot tell if the value of an up-to-5 counter should be 1 or 4.

Similarly, mod-2 counters cannot count up to 5.
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mod-3 4+ mod-2 Counters Can Count to 5

Our definition of an “up-to-5 counter” says correct responses re-
quired only when fewer than 6 increments occur.

Use 3 mod-3 counters and 2 mod-2 counters arranged in a row.

mod-3 mod-2 mod-3 mod-2 mod-3

2 1 2 1 2

@ increment
|
read @
-

A set of reads is consistent if all mod-3 counters return equal re-
sponses and both mod-2 counters return equal responses.

Read repeatedly until you get a consistent set.
Return unique value in {0,1,..,5} that could give these values.
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Termination

Inconsistent sets of reads are caused when a read ‘‘crosses’ an in-
crement.

mod-3 mod-2 mod-3 mod-2 mod-3

2 0 1 0 0

increment

- X
- read @

No process will do more than 5 increments.
Eventually all increments will terminate, and consistent set will be
obtained.

% increment
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Correctness

Prove correctness only when fewer than 6 increments are done.
Linearize all operations when they (last) access middle object.

If a set of reads is consistent, there are three cases.

Case 1: No increments in progress.

Case 2: 3 increments are crossed in left half.

mod-3 mod-2 mod-3 mod-2 mod-3
0] 0] 0] 0] 0]
—= X
- X
- X
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Case 3: 3 increments are crossed in right half.

mod-3 mod-2 mod-3 mod-2 mod-3
0] 1 0] 1 0]
- X
- X
- X
-

In each case, the values that were read tell us exactly how many
increments accessed the middle counter.
= Linearization is correct.
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Generalizing the Construction

Theorem Let m = lcm(mq,...,my).
There is an implementation of an m-valued counter from the set
{mod — my counter,...,mod — mq counter}.

Proof uses a larger array of various counters, and the
Generalized Chinese Remainder T heorem.
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Open Questions

What is computable when n is unknown to processes?

What about models with failures?

How can anonymity be used in a practical way to help protect pri-
vacy?’

22



