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This paper studies self-stabilization in networks of anonymous, asynchronously interacting nodes
where the size of the network is unknown. Constant-space protocols are given for Dijkstra-style
round-robin token circulation, leader election in rings, 2-hop coloring in degree-bounded graphs,
and establishing consistent global orientation in an undirected ring. A protocol to construct a
spanning tree in regular graphs using O(log D) memory is also given, where D is the diameter of
the graph. A general method for eliminating nondeterministic transitions from the self-stabilizing
implementation of a large family of behaviors is used to simplify the constructions, and gen-
eral conditions under which protocol composition preserves behavior are used in proving their
correctness.
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1. INTRODUCTION

In some practical scenarios, a large and sometimes unknown number of devices
are deployed over a region without fine control of their locations, communication
and movement patterns. The devices are all indistinguishable and have only a
few bits of memory each. Such scenarios are modeled by the population protocols
introduced in [Angluin et al. 2006], where families of predicates computable in
this model are explored. Graph properties computable in the same model are
discussed in [Angluin et al. 2005]. Communication in population protocols occurs
through pairwise interaction of anonymous finite-state nodes. The number of nodes
is finite but unbounded. A communication graph describes which pairs of nodes
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may interact.
In the theoretical literature on distributed computing, some variant of a weak

fairness condition is usually assumed. Informally, in an infinite fair execution each
process or node satisfying certain conditions is given a turn infinitely often. We call
this definition local fairness. The environment/scheduler is viewed as a powerful
adversary who can strategically determine the sequence in which processes are
activated, as long as local fairness is preserved. Many impossibility results rely
on this assumption. For instance, the impossibility of deterministic self-stabilizing
token circulation in uniform rings [Dijkstra 1974] follows from the assumption that
the scheduler can activate the nodes in a round-robin fashion, preserving symmetry
while achieving local fairness.

However, in practical distributed systems, such a powerful scheduler seldom ex-
ists. The global ordering of computational steps depends on a variety of elements.
Temperature and power-supply affect the efficiency of electronic devices. Local
clock frequency influences the progress of each node. For ad hoc networks, the
movement of nodes determines possible sequences of interactions. Random delay
is usually used in practical leader election and collision detection protocols, which
can be viewed as a way to randomize the scheduling of the system.

In the model of population protocols, an alternative fairness condition called
global fairness is assumed, which better reflects the scheduling properties of many
distributed systems. Global fairness puts more constraints on the scheduler, so
problems proved impossible under global fairness are also impossible under local
fairness. Global fairness also provides a simple conceptual framework for protocol
design. For instance, once a task is known to be possible in our model, random-
ization techniques can be applied to make the protocol work under some weaker
fairness conditions.

The responsibility of many systems is to meet certain specifications for well-
behavedness such as avoidance of deadlock, fairness among processes, fault toler-
ance, and other global system properties that cannot be simply modeled as func-
tional computation. We extend the model of population protocols to accommodate
such tasks. We focus on self-stabilizing systems that can start in any global config-
uration and achieve behavior meeting the task specification by itself. Such systems
can tolerate worst-case transient faults.

In our model, nodes are finite-state and strongly anonymous, which means not
only that they do not have unique IDs, but also that they do not have innate ability
to determine whether two messages come from the same source. This condition well
reflects the scenario of ad hoc networks consisting of identical nodes.

In Section 2, we give formal definitions of the new concepts that we use to extend
the original model.

In Section 3, we present a powerful technique to facilitate the design and analysis
of protocols by allowing the use of nondeterministic transitions. A large family of
behaviors called elastic behaviors is defined that includes all behaviors we consider
in this paper. We show that nondeterminism in protocols does not increase the
class of elastic behaviors that have self-stabilizing implementations.

In Section 4, we introduce a framework for composing certain self-stabilizing
protocols.
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From Section 5 to Section 9, we give self-stabilizing protocols for various prob-
lems. As a simple example, we describe a self-stabilizing token circulation protocol
in a ring with a pre-selected leader. The protocol resembles Dijkstra’s “k-state”
mutual-exclusion algorithm [Dijkstra 1974] but uses only O(1) bits per node. We
describe a self-stabilizing 2-hop coloring protocol which colors the nodes such that
no node has two neighbors colored the same given a bound on the number of
neighbors. Given the coloring protocol, we show how to direct an undirected ring.
We also give a self-stabilizing protocol which constructs a spanning tree in regular
graphs using O(log D) bits per node, where D is the diameter of the network. To
remove the assumption of a pre-selected leader in some protocols, we construct
a family of leader-election protocols, each corresponding to a class of rings. We
also show that self-stabilizing leader election is generally impossible in our model
without some restriction on topology.

In Section 10, we conclude with a brief summary of results and directions for
further research.

1.1 Other Related Work

Self-stabilizing systems were first introduced by Dijkstra [Dijkstra 1974]. In his
seminal paper, Dijkstra gives three protocols to achieve process mutual-exclusion in
rings in a self-stabilizing way. Leader election and token management are fundamen-
tal problems in self-stabilization and have been extensively studied in various other
models. Mayer, Ofek, Ostrovsky, and Yung [Mayer et al. 1992] give a constant-space
probabilistic protocol for a self-stabilizing round-robin token management scheme
on an anonymous bidirectional ring of identical processors, assuming an external
timeout mechanism to detect deadlocks. Itkis, Lin, and Simon [Itkis et al. 1995]
present a deterministic constant-space self-stabilizing protocol for leader election
on uniform bidirectional asynchronous rings of prime size. In their model, there
is a central daemon that picks an enabled processor each time to make an atomic
move. The chosen processor can read the states of its two neighbors at the same
time to determine its next state. Gouda and Haddix [Gouda and Haddix 1996]
present a self-stablizing token circulation algorithm on unidirectional rings with
one distinguished node. Each node in their algorithm has eight states. Higham and
Myers [Higham and Myers 1999] give a randomized self-stabilizing algorithm that
solves token circulation and leader election on anonymous, uniform, synchronous,
and unidirectional rings of arbitrary but known size, in which each processor state
and message has size in O(log n). Dolev, Israeli, and Moran [Dolev et al. 1997]
present a self-stabilizing leader election protocol that tolerates addition or deletion
of processors and links. Their protocol uses O(log n) bits per node. Beauquier,
Gradinariu, and Johnen [Beauquier et al. 1999] present a silent and deterministic
self-stabilizing leader-election protocol requiring constant memory space on unidi-
rectional, ID-based rings where the ID values are bounded. A protocol is silent
if from an arbitrary configuration the system reaches a configuration after which
the communication registers of each node remain constant. They also prove a non-
constant lower bound on space for self-stabilizing leader-election in unidirectional
anonymous rings under a weak fairness assumption.

Herman [Herman 1990] proposes a probabilistic synchronous self-stabilizing token-
circulation algorithm for identical nodes in an odd ring. Johnen [Johnen 2004]
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presents a randomized self-stabilizing token circulation protocol on unidirectional
anonymous rings. Fairness is enforced by randomization and the fair circulation of
privileges. The scheduler can only choose nodes that hold a privilege token to make
the next step.

Itkis and Levin [Itkis and Levin 1994] present a self-stabilizing leader-election pro-
tocol for asynchronous networks of identical nameless nodes with arbitrary topology.
In their model, each node’s state consists of bits and pointers to immediate neigh-
bors. The bits of a node x are visible to any neighbor y, and y can detect whether
a pointer of x points to x or to y. Each node can detect a neighbor whose state
satisfies a given property, set a pointer to it, and change state based on the above
information. Our impossibility result for leader election in connected interaction
graphs with arbitrary topology in Section 9 shows that their model and ours differ.
However, it is an open problem whether our model can simulate theirs in some
special classes of interaction graphs.

[Griggs and Yeh 1992] introduces the graph labeling problem with conditions at
distance 2. The communication networks community has studied variants of this
problem, for applications such as assigning radio frequency ranges or time slots
to wireless-signal transmitters to avoid interference. Herman and Tixeuil [Her-
man and Tixeuil 2004] describe a randomized self-stabilizing coloring algorithm for
wireless sensor networks. Although they consider ad hoc networks and do not as-
sume each node has prior knowledge of its neighborhood, the nodes have unique
identifiers. Under the assumption of a known upper bound of neighborhood size,
their algorithm uses a small set of colors to label the communication graph. This
is a generalization of the renaming problem [Attiya et al. 1987]. Gradinariu and
Johnen [Gradinariu and Johnen 2001] give a probabilistic solution for neighbor-
hood unique naming in anonymous networks. No explicit identifiers are assumed
in the model, however, each node has the ability to associate incoming messages
with neighbors, possibly by physical communication links. Moscibroda and Wat-
tenhofer [Moscibroda and Wattenhofer 2005] present another randomized coloring
algorithm for radio networks. Their algorithm has the property that nodes can join
the network asynchronously. The algorithm is not self-stabilizing and also assumes
the existence of unique identifiers to let a receiver recognize whether or not two
different messages are sent by the same sender. We study a similar 2-hop coloring
problem which requires distinct neighbors of each node receive different colors, but
two adjacent nodes can have the same color as long as they do not share any neigh-
bor. We impose a strong anonymity condition: A node does not have the innate
ability to distinguish different neighbors. To our knowledge no existing protocol
is applicable in this model. In Section 6, we give a self-stabilizing 2-hop coloring
protocol given a known degree bound. A direct application is to assign local iden-
tifiers so that nodes are able to refer to specific neighbors, whereas such an ability
is implicitly assumed in the above mentioned coloring algorithms.

2. BASIC MODEL

In the population protocols model, a network is represented by a directed graph
G = (V,E) with n vertices numbered 0 through n − 1 and no multi-edges or self-
loops. In this paper, all network graphs are assumed to be weakly connected.
ACM Journal Name, Vol. V, No. N, Month 20YY.
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Each vertex represents a finite-state sensing device, and an edge (u, v) indicates
the possibility of a communication between u and v in which u is the initiator
and v is the responder. The distinct roles of the two devices in an interaction is
a fundamental assumption in our model. An “undirected” communication graph
refers to a network in which for every edge (u, v), interactions of the forms (u, v)
and (v, u) are both possible.

When presenting protocols in the population protocols model in the rest of this
paper, we abbreviate “population protocol” to “protocol” in order to avoid ver-
bosity. Readers who are interested in the relationship between population protocols
and more traditional message-passing protocols could refer to [Angluin et al. 2007]
for a detailed treatment.

A protocol P (Q, C, X, Y, O, δ) consists of a finite set of states Q, a set of initial con-
figurations C, a finite set X of input symbols, an output function O : Q→ Y , where
Y is a finite set of output symbols, and a transition function δ mapping each element
of (Q×X)× (Q×X) to a nonempty subset of Q×Q. If (p′, q′) ∈ δ((p, x), (q, y)),
we call ((p, x), (q, y)) → (p′, q′) a transition. The transition function, and the pro-
tocol, is deterministic if δ((p, x), (q, y)) always contains just one pair of states. The
inputs provide a way for a protocol to interact with an external entity, be it the
environment, a user, or another protocol. If X is empty, the protocol does not
accept input.

A configuration is a mapping C : V → Q and an input assignment is a mapping
α : V → X. The state of each device in the network is given by C and the input
is given by α. If X is empty, α is also empty, and C specifies a configuration. A
trace TG(Z) on a graph G(V,E) is an infinite sequence of assignments from V to
the symbol set Z: TG = λ0, λ1, . . . where λi is an assignment from V to Z. Z is
called the alphabet of TG. If Z = X, we say TG is an input trace of the protocol.
A trace is called a constant trace if it is a sequence of the same assignment. Let
C and C ′ be configurations, α be an input assignment, and u, v be distinct nodes.
We say that (C,α) goes to C ′ via pair e = (u, v), denoted (C,α) e→ C ′, if the
pair (C ′(u), C ′(v)) is in δ((C(u), α(u)), (C(v), α(v))) and for all w ∈ V − {u, v}
we have C ′(w) = C(w). We say that (C,α) can go to C ′ in one step, denoted
(C,α) → C ′, if (C,α) e→ C ′ for some edge e ∈ E. If α is empty, we simply write
C

e→ C ′ and C → C ′ respectively. Given an input trace IT = α0, α1, . . . we write
C

∗→ C ′ if there is a sequence of configurations C = C0, C1, . . . , Ck = C ′, such that
(Ci, αi)→ Ci+1 for all i, 0 ≤ i < k, in which case we say that C ′ is reachable from
C given input trace IT . The same notation is used for protocols that do not accept
inputs.

An execution is an infinite sequence of configurations and input assignments
(C0, α0), (C1, α1), . . . such that C0 ∈ C and for each i, (Ci, αi) → Ci+1. We
extend the output function O to take a configuration C and produce an output
assignment O(C) defined by O(C)(v) = O(C(v)). Let σ = (C0, α0), (C1, α1), . . . ,
(Ci, αi), . . . be an execution of P . We define the output trace of an execution as
OT (σ) = O(C0), O(C1), . . . , O(Ci), . . ..

Unlike most models in the literature, in population protocols fairness is a global
property, therefore we call this fairness condition global fairness.

Definition 2.1 Global Fairness. An execution is fair if for every α, C and C ′
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such that (C,α) → C ′, if (C,α) occurs infinitely often in the execution, then C ′

also occurs infinitely often in the execution.

An execution is generated by an infinite sequence of interactions. Intuitively, if
the interactions in this sequence are chosen by an adversarial scheduler in accor-
dance with the global fairness condition, the scheduler can not prevent an interac-
tion from occurring infinitely often in a given configuration and input assignment
unless that configuration-input pair occurs only finitely many times.

Our definitions are actually slightly weaker. Our notion of execution specifies
only the resulting configuration of each transition, not the actual transition that
causes that result. In case two different transitions lead to the same result (as
can happen for example with “no-op” transitions), the execution only shows the
resulting configuration, not which transition led to that result. Similarly, our formal
definition of global fairness does not insist that a particular transition be activated
in a certain configuration-input pair; it requires only that the configuration that
would result, were the transition to be activated, must eventually occur. Note that
we do not require that it ever occur as the very next configuration.

One important use of global fairness is to show that if a certain execution frag-
ment is possible from a given infinitely-occurring configuration, then the configu-
ration that would result from executing that fragment must also occur infinitely
often in the execution, subject to some contraints on the inputs.

Theorem 2.2. Let σ be an execution that satisfies global fairness, and assume
C0 occurs infinitely often in σ. Let σ′ = (C0, α0), (C1, α1), . . . , (Ck, αk) be an exe-
cution fragment. Suppose the αi’s are such that if Ci occurs infinitely often in σ,
then (Ci, αi) occurs infinitely often in σ ( 0 ≤ i < k). Then Ck occurs infinitely
often in σ.

Proof. Global fairness implies that if (Ck−1, αk−1) occurs infinitely often in σ,
then Ck occurs infinitely often in σ. The result follows by an easy induction on k.

A self-stabilizing system can start at an arbitrary configuration and eventually
exhibit “good” behavior. We define a behavior B on a network G(V,E) to be a set
of traces on G that have the same alphabet. We write B(Z) to be explicit about
the common alphabet Z. A behavior B is constant if every trace in B is constant.
If given the constraint that every input trace is contained in some behavior Bin(X),
the output trace of every fair execution of a protocol P (Q, C, X, Y, O, δ) starting
from any configuration in C is in some behavior Bout(Y ), we say P is an imple-
mentation of output behavior Bout given input behavior Bin. If P does not have
any restriction on inputs, we simply say P is an implementation of Bout. Given
a behavior B(Z), we define the corresponding stable behavior Bs(Z) = Z∗B(Z).
Thus, an execution in a stable behavior has a completely arbitrary finite prefix
followed by an execution with the desired properties. If P (Q, C, X, Y, O, δ) is an
implementation of Bs, and C is the set of all possible configurations, we say that P
is a self-stabilizing implementation of B.

3. NONDETERMINISTIC PROTOCOLS
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In section 2, we gave the definition of deterministic protocol and nondeterministic
protocol. Nondeterminism in this model is different from nondeterminism in com-
putation theory. A nondeterministic Turing machine is allowed to always guess the
“correct” choice of multiple possible steps. In the execution of a population pro-
tocol, the choice is made by an adversarial scheduler who is only limited by global
fairness.

We define the repetition closure of a sequence t to be the set of sequences obtain-
able from t by repeating each element one or more times. In other words, given any
sequence t = a1a2 . . . ai . . ., the repetition closure R(t) is a+

1 a+
2 . . . a+

i . . . in regular
expression notation. We extend the definition of R to a behavior B by taking the
union of R(t) for all t ∈ B. We say a behavior B is elastic if B = R(B). We show
below that for elastic behaviors nondeterministic protocols are not more powerful
than deterministic ones, in the sense that if there exists a nondeterministic self-
stabilizing implementation of an elastic behavior, there also exists a deterministic
version. We only consider networks of at least three nodes.

We construct a compiler to convert every nondeterministic protocol to a de-
terministic one. To preserve self-stabilization, the compiler itself must be self-
stabilizing.

Let P1 be a nondeterministic protocol with states Q, input alphabet X, and
transition function δ. We describe a simulation of P1 that works in graphs with
at least three vertices. Let m be the maximum cardinality of any of the sets
δ((q, x), (q′, x′)) for q, q′ ∈ Q and x, x′ ∈ X. For each q, q′ ∈ Q and x, x′ ∈
X, select an arbitrary surjective function f(q,x),(q′,x′) mapping {0, 1, . . . ,m − 1}
to δ((q, x), (q′, x′)).

We describe a protocol P2 to simulate each step of P1 by multiple deterministic
steps. The state components used in P1 only change in the last of the corresponding
steps in P2. The state consists of three components:

(1) a state q ∈ Q,
(2) a mark • , which we call a nondeterminizer token (abbreviated as token from

here on for simplicity), or its absence ◦ ,
(3) a choice counter, consisting of an integer between 0 and m− 1 inclusive.

There are four types of transition rules in P2:

Rule 1. (([q • c], x), ([q′ • c′], x′)) → ([q ◦ c], [q′ • c′])
Rule 2. (([q • c], x), ([q′ ◦ c′], x′)) → ([q ◦ c], [q′ • (c′ + 1)])
Rule 3. (([q ◦ c], x), ([q′ • c′], x′)) → ([q • (c + 1)], [q′ ◦ c′])
Rule 4. (([q ◦ c], x), ([q′ ◦ c′], x′)) → ([r ◦ c], [r′ • c′])

where the increments are made modulo m and (r, r′) = f(q,x),(q′,x′)(c) is the pair
of states in δ((q, x), (q′, x′)). Thus, in transition rule 4, the value of the choice
counter of the initiator is used to make a deterministic choice of an element of
δ((q, x), (q′, x′)). The role of the tokens is to hop around the graph incrementing
choice counters as they go. The first three transition rules accomplish this purpose.
Transition rule 4 ensure that deadlock is impossible: even if we start from a config-
uration with no tokens, the rule will generate new tokens. Transition rule 1 ensure
that the tokens have room to move around by merging two adjacent tokens.
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We call the shared state component of P1 and P2 the q component. If C1 is a
configuration in P1, and C2 is a configuration in P2, we say C1 / C2 if each node in
C1 has the same q component as the corresponding node in C2.

Lemma 3.1. Assume a connected network with n ≥ 2 vertices. Starting from
an arbitrary configuration, every globally fair execution of P2 eventually reaches a
point after which the number of tokens in every configuration is between 1 and n−1.

Proof. Assume the initial configuration contains at least one token. If there
are n tokens, the next interaction will remove one of them, because only the first
transition rule is applicable. Starting from a configuration with at most n−1 tokens,
it is impossible to generate the nth token, because the transitions that generates
new tokens (rule 4) is applicable only when two nodes without the token interact.
It is also impossible for all the tokens to disappear, because the number of tokens
only decrease when two merge into one by applying transitions of rule 1.

If the initial configuration does not contain any token, the next interaction will
generate one, because only rule 4 is applicable.

Therefore, after the first step, there will be at least 1 and at most n− 1 tokens.
It is never possible thereafter to generate the nth token, nor is it possible for all
tokens to disappear.

Lemma 3.2. Assume a connected network with n ≥ 2 vertices. Starting from a
configuration with at least one and at most n− 1 tokens, a token can be generated
at any node without changing the q component of any node.

Proof. The only transitions that change the q component are of rule 4 which
require that both the initiator and the responder do not have a token. The token
can be moved to any node by applying the other transition rules. In particular,
transition rule 2 and rule 3 move a token in either direction on an arbitrary edge
with an existing token on one end and no token on the other.

Lemma 3.3. In a connected network of at least three nodes, for any possible step
(C1, α) → C ′

1 of P1 and any C2 such that there is at least one and at most n − 1
tokens in C2 and C1 / C2, where n is the number of nodes, there exists C ′

2 such
that C ′

1 /C ′
2 and an admissible sequence of steps of P2 from (C2, α) to C ′

2 given the
constant input trace with input assignment α.

Proof. Let (u, v) be the activated edge, and ((q1, x1), (q2, x2))→ (r1, r2) be the
transition in P1 corresponding to the step (C1, α) → C ′

1. We show there exists a
sequence of steps in P2 that starts from (C2, α) and reaches some C ′

2 where C2 /C ′
2.

We construct a sequence of steps using rules 1–3 to reach a configuration where
the states of u and v are [q1 ◦ c1] and [q2 ◦ c2] respectively, f(q1,x1),(q2,x2)(c1) =
(r1, r2), and no q component of any state has changed. A final activation of (u, v)
results in the desired configuration C ′

2.
First, we apply the sequence guaranteed by Lemma 3.2 to place a token at v

without changing the q component of any node. If there is now a token at u,
activate (u, v) twice; otherwise activate (u, v) once. Now there is one token at u
and no token at v.
ACM Journal Name, Vol. V, No. N, Month 20YY.
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Next, activate (u, v) repeatedly. The token moves back and forth between u and
v, and c1 cycles through all possible values. Stop when c1 assumes a value such
that f(q1,x1),(q2,x2)(c1) = (r1, r2). Now the token is at u.

Next, activate edges without changing the q component of any node so as to leave
both u and v without tokens. There are two cases. (1) If u is adjacent to another
node w (w 6= v), we remove the token from u by repeatedly activating the edge
connecting u and w. The number of activations depends on the direction of the
edge and whether w also has a token. (2) If v is the only neighbor of u, then v is
adjacent to another node w (w 6= v) since we assume the network has at least three
nodes and is connected. Activate (u, v) once to move the token to v. We remove
the token from v by repeatedly activating the edge connecting v and w. Again, the
number of interactions depends on the direction of the edge and whether w also
has a token.

Now, neither u nor v has a token. Activate edge (u, v). Rule 4 applies, and the
resulting configuration C ′

2 has identical q components with C ′
1; hence, C ′

1 / C ′
2.

Lemma 3.4. For any step (C2, α) → C ′
2 in an execution of P2 in which the q

component of some node is changed, there exist configurations C1 and C ′
1 of P1

such that C1 / C2, C ′
1 / C ′

2, and (C1, α)→ C ′
1 is a transition of P1.

Proof. The only transitions in P2 that change the q component of some node
are applications of rule 4 which by definition is derived from the transitions in P1.
Therefore for every possible step that applies rule 4, there exists a corresponding
possible step in P1.

Theorem 3.5. If a nondeterministic protocol P1 is a self-stabilizing implemen-
tation of a behavior B on a connected network of at least three vertices given a con-
stant behavior B′, there exists a deterministic protocol P2 that is a self-stabilizing
implementation of R(B) given B′.

Proof. Let P2 be the protocol from our construction. Let Πq : [qmc] 7→ q be the
projection that maps states of P2 to states of P1 by erasing all but the q component.
Extend Πq in the natural way to map configurations, sets of configurations, and
executions of P2 to the corresponding objects of P1. Let E2 be an execution of
P2. From Lemma 3.4, Πq(E2) is contained in the repetition closure R(E1) for some
execution E1 of P1.

Let A be the set of all possible configurations of P2, and let B ⊂ A be the set
of all configurations in which the number of tokens is between 1 and n− 1, where
n is the number of nodes. Obviously, Πq(A) = Πq(B). From Lemma 3.4, for any
execution E2 of P2 starting from a configuration in B, there exists an execution E1

of P1, such that Πq(E2) ∈ R(E1). From Lemma 3.1, every fair execution of P2 has
a suffix in which every configuration is in B.

The above shows that for any fair execution E2 of P2, there exists an execution
E1 of P1 such that Πq(E2) has a suffix in R(E1). Next, we show that E1 is a fair
execution of P1.

Let C1 be a configuration of P1, (C1, α) → C ′
1 a transition of P1, and suppose

C1 occurs infinitely often in E1. There is some configuration C2 with C1 / C2
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that occurs infinitely often in E2. From Lemma 3.3, there exists a configuration
C ′

2 of P2 such that C ′
1 / C ′

2 and C ′
2 can be reached from (C2, α) by an admissible

sequence of steps of P2 given the constant input trace with input assignment α.
By Theorem 2.2, since E2 is fair, C ′

2 occurs infinitely often in E2. Then C ′
1 occurs

infinitely often in E1. Thus, E1 satisfies global fairness, as desired.
Theorem 3.5 immediately follows from the definition of behavior and that the

output of each node is determined by its state.

If B is an elastic behavior, B = R(B). The following corollary is immediate:

Corollary 3.6. If a nondeterministic protocol P1 is a self-stabilizing imple-
mentation of an elastic behavior B given a constant behavior B′, there exists a
deterministic protocol P2 that is a self-stabilizing implementation of B given B′.

4. PROTOCOL COMPOSITION

In complex protocols, sometimes it is desirable to utilize existing protocols as mod-
ules. Parallel execution of protocols is easily achieved by taking the Cartesian
product of their state sets and updating the states for each protocol independently
when a transition occurs. In this section we introduce one technique of protocol
composition in our model and show how to compose protocols P1, P2, . . . , Pn, with
some restrictions.

For n = 2, assuming P1 and P2 access different components of the node’s state, we
run P1 and P2 in parallel, except that whenever P2 is executed, it uses the current
output of P1 as its current input. When an edge is fired, it is nondeterministically
determined which protocol gets the chance to execute. Recall that a behavior is
constant if it contains only constant traces.

Theorem 4.1. Suppose B1 is a constant behavior. If P2 is a self-stabilizing
implementation of an elastic behavior B2 given input behavior B1, and P1 is a self-
stabilizing implementation of B1, the composition of P1 and P2 (written as P1 ◦P2)
is a self-stabilizing implementation of B2.

Proof. Let S = C0, C1, . . . be any fair execution of P1◦P2. Define the projection
Π1(C) of a configuration C to be the sub-configuration produced by taking each
node’s state components that are accessed by P1. Π2 is defined similarly for P2.
Define S′ = C ′

0, C
′
1, . . . the maximal subsequence of S in which for each i, the tran-

sition immediately after C ′
i is defined in P1. S′′ = C ′′

0 , C ′′
1 , . . . is defined similarly for

P2. Because P1 is self-stabilizing, and Π1(C ′
0),Π1(C ′

1), . . . is a fair execution of P1,
there exists some i such that the output trace of Π1(C ′

i),Π1(C ′
i+1), . . . satisfies B1.

Let C ′′
j be any configuration that appears after C ′

i in S, and let C ′′
j , C ′′

j+1, . . . be the
sequence starting from C ′′

j in S′′. Because the output trace of P1 in C ′′
j , C ′′

j+1, . . .
is constant and satisfies B1, Π2(C ′′

j ),Π2(C ′′
j+1), . . . is a fair execution of P2 whose

output trace satisfies B2. Because B2 is elastic, the output trace of P1 ◦ P2 in the
subsequence of S starting from C ′′

j satisfies B2. Therefore P1◦P2 is a self-stabilizing
implementation of B2.
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5. TOKEN-CIRCULATION IN AN ORIENTED RING

As a simple example, we discuss the token circulation problem in an interaction
graph whose topology is an oriented ring. The protocol uses the same idea as in
Dijkstra’s first algorithm in [Dijkstra 1974], but we only use 2 colors (0 and 1).
Readers from the self-stabilization community will find the protocol familiar.

Definition 5.1. The token-circulation behavior TC on graph G(V,E) is the set
of all traces t = β0, β1, . . . with alphabet {T, φ} such that:

(1) For all m ≥ 0, ∃v ∈ V such that βm(v) = T and ∀u ∈ V − {v}, βm(u) = φ.
(2) For all 0 ≤ m < k < n, if ∃v, w ∈ V (v 6= w) such that βm(v) = βk(w) =

βn(v) = T , then ∀u ∈ V − {v}, ∃l such that m < l < n and βl(u) = T .
(3) For all v ∈ V , βk(v) = T for infinitely many k.

A node owns a token in a configuration if its output is T . For any trace in TC,
exactly one node has a token in each configuration, and after a node releases a
token, it does not obtain a token again until every other node has obtained a token
once.

We describe a self-stabilizing implementation of TC given the leader-election be-
havior LE. The description of a self-stabilizing implementation of LE is postponed
to Section 9.

Definition 5.2. The leader-election behavior LE on graph G = (V,E) is the set
of all constant traces β, β, . . . such that for some v ∈ V , β(v) = L and for all u 6= v,
β(u) = N .

Informally, there is a static node with the leader mark L, and all other nodes have
the nonleader mark N in every configuration. Given the LE input behavior, one
node receives input L and all other nodes receive input N .

When two nodes interact, if the responder is the leader, it sets its label to the
complement of the initiator’s label; otherwise the responder copies the label from
the initiator. If an interaction triggers a label change, a token is passed from the
initiator to the responder. If a token is not present at the initiator, a new token is
generated. Protocol 1 describes the process formally.

Protocol 1 Self-stabilizing token circulation in rings
Node states are pairs in { ◦ , • }×{0, 1}. “ • ” indicates the presence of a token and
“ ◦ ” indicates the absence of a token. The second component of a node is called
the label of that node. The interaction rules are:

Rule 1. (( ∗ b, N), ( ∗ b, L)) → ( ◦ b, • b)
Rule 2. (( ∗ b, ∗ ), ( ∗ b, N)) → ( ◦ b, • b)

We use the convention that ∗ on the left side of a rule matches any value for
the component, that b on the left side matches either 0 or 1, and b means the
complement of b. The output rules are • ∗ → T and ◦ ∗ → φ. (Output T if and
only if the first component is “ • ”.)
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Because each transition is independent of the presence or absence of tokens before
the interaction, the token component of the state is only needed for production of
the output symbol. In models with other conventions for specifying the location of
the token, this extra state bit might not be needed.

Generally, proving self-stabilization in our model involves proving two statements:
there exist some legitimate configurations, beginning with which every possible exe-
cution has a suffix satisfying the desired behavior, and a legitimate configuration is
reachable from any arbitrary configuration. The fairness condition guarantees that
every fair execution eventually reaches a legitimate configuration.

For Protocol 1, legitimate configurations are those in which every node has the
same label. We establish the correctness of the protocol in the following lemmas:

Lemma 5.3. Let C0 be a configuration in which every node has the same label.
Given the input behavior LE, the trace of every fair execution of Protocol 1 starting
with C0 has a suffix in TC.

Proof. We define the direction of the edges to be “clockwise” and the opposite
direction to be “counter-clockwise”. We call the leader node 0, and the sequence
of nodes to the clockwise direction is 0, 1, . . . , n− 1. We use (u, v) to refer to the
directed edge that starts at u pointing to v. The only edge in C0 that will cause
state change is (n − 1, 0) (by rule 1). When the edge is activated, node 0 obtains
a token and is assigned a label that is different from all other nodes, and if node
n − 1 owns a token before the interaction, it surrenders the token. Suppose C1

is the configuration immediately following C0. Node 0’s label cannot change until
node n−1 has the same label, and every other node u cannot change its label until
the label of node u− 1 is different from its own. Therefore u is the only node that
could change its label (when edge (0, 1) is activated). If C2 is the configuration
immediately following C1, it is easy to see that only (1, 2) will cause state change.
In general, for any u (1 < u ≤ n), the following is true in Cu:

(1) u− 1 owns a token.
(2) For all v < u− 1, v does not own a token.
(3) The only edge that can cause state change is (u− 1, u).

Note that in Cn every node again has the same label, and node n− 1 is the only
node that owns a token. Thus for u ≥ n, in Cu, the only edge that can cause state
change is (u− 1 mod n, u mod n), and node u− 1 mod n owns the unique token in
the ring.

Lemma 5.4. C0 is reachable from any arbitrary configuration.

Proof. We use the same naming convention as in the proof of Lemma 5.3. Let
the scheduler activate (0, 1), (1, 2), . . . , (n − 2, n − 1) sequentially. An activation
of (0, 1) can cause state change only when node 0 and node 1 have different labels,
and the activation causes 1 to change its label to be the same as 0’s. In general,
for 0 ≤ u < n− 1, the activation of (u, u+1) causes node u+1 to copy the label of
u if u and u + 1 don’t already have the same label. After (u, u + 1) is activated, 0,
1, . . . , u + 1 have the same label. Therefore, after (n− 2, n− 1) is activated, nodes
0, 1, . . . , n− 1 all have the same label.
ACM Journal Name, Vol. V, No. N, Month 20YY.
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Theorem 5.5. Protocol 1 is a constant-space self-stabilizing implementation of
output behavior TC given input behavior LE in an oriented ring.

Theorem 5.5 follows from Lemma 5.3 and Lemma 5.4

6. 2-HOP COLORING IN BOUNDED-DEGREE GRAPHS

To extend the token circulation algorithm to undirected rings, we need a protocol
that imposes orientation on the ring. A necessary condition is that each node
be able to recognize its two different neighbors. Here we describe a more general
algorithm that enables each node in a degree-bounded graph to distinguish between
its neighbors.

Suppose an undirected graph has degree bound d. We want to color the graph
such that any two nodes adjacent to the same node have different colors. After a
graph is properly colored, the neighbors of any node have different colors and thus
are distinguishable. Notice that two nodes directly connected by an edge can have
the same color if they are not both adjacent to the same node.

More precisely, for each node v, if u and w are distinct neighbors of v, then u and
w must receive different colors. We call such a pair (u, w) a 2-hop pair, and we call
a node-coloring in which every 2-hop pair is distinctly colored a 2-hop coloring. It
is not difficult to see that g = d(d−1)+1 colors suffice, for the related graph whose
edges are the 2-hop pairs of the original graph has degree bound d′ = d(d− 1), and
any graph of degree bound d′ can be colored (in the ordinary sense) with at most
d′ + 1 colors.

Definition 6.1. The 2-hop coloring behavior 2HC on graph G = (V,E) with
color set Γ is the set of constant traces λ, λ, . . . where the alphabet of λ is Γ and
whenever u, v, w ∈ V are such that (u, v) ∈ E and (v, w) ∈ E and u 6= w, we have
λ(u) 6= λ(w).

We give two protocols for solving 2-hop coloring for a graph with degree bound
d using g colors. The first is presented as a nondeterministic protocol, from which
the nondeterminism can be removed by applying Corollary 3.6. The second is a
deterministic protocol that incorporates a simplified nondeterminizer sufficient to
solve the problem at hand.

6.1 Nondeterministic protocol

In this and the following sections, we describe our algorithms by specifying the
interaction between two adjacent nodes u and v when the edge (u, v) is activated.
The pseudocode shows how the state variables of both u and v are updated in an
interaction as if the state variables of both nodes lived in a common memory. This
can easily be translated into our formal model whereby each node updates its own
state variables based on their current values and the values of the other node’s state
variables, which are supplied to it as inputs during the interaction.

In Protocol 2, each node u has the following state components:

coloru An integer encoding the color of node u. Its value is between 0 and g − 1.
Fu A bit array whose size is g, indexed by colors.

Node u outputs the current value of its coloru component.
ACM Journal Name, Vol. V, No. N, Month 20YY.



14 · Dana Angluin et al.

Protocol 2 Nondeterministic 2-hop coloring with degree bound d

For each node u:

State variables: coloru and Fu

Output: coloru

The interaction between an initiator u and a responder v:
1: if Fu[colorv] 6= Fv[coloru] then . possibly conflicting colors
2: coloru ← color ′u . nondeterministic coloring
3: Fu[colorv]← Fv[coloru]
4: else . valid coloring
5: Fu[colorv]← Fu[colorv]
6: Fv[coloru]← Fv[coloru]
7: end if

The statement coloru ← color ′u means one of the g possible colors is nondeter-
ministically assigned as the new color of u. In other words, in this case there are g
rules that can be applied to (u, v), each assigning a distinct color to u.

Distinct nodes u and w are violating nodes if they have the same color and share
a common neighbor. Formally, they are violating if coloru = colorw and there are
edges (u, v) and (v, w) for some v. We also apply the term violating to a single
node u if there exists a node w that it is in violation with.

Let (u, v) be an edge in the network. We say that the edge is synchronized if
Fu[colorv] = Fv[coloru]. We also apply the term synchronized to the pair of nodes
u and v, and we refer to the complementary case as unsynchronized.

A configuration is legitimate if it satisfies two safety conditions:

(1) [No color violations] There are no violating nodes.
(2) [Synchronization] There are no unsynchronized edges.

To get an intuition for the protocol, consider a legitimate configuration, and
suppose network edge (u, v) is activated. The edge is synchronized, so lines 5
and 6 of the protocol are are executed. These do not change the color of any
node. Although they do flip the bits Fu[colorv] and Fv[coloru], all edges remain
synchronized. Clearly (u, v) is still synchronized, as is any edge (x, y) that does
not share a node with (u, v). The other edges that touch u and v also remain
synchronized because of the first safety condition. If (u, w) is such an edge, then
colorv 6= colorw, so Fu[colorw] is not affected by the change to Fu[colorv], and (u, w)
remains synchronized. Similarly, each edge (v, w) with w 6= u remains synchronized.
Hence, the new configuration is legitimate.

Now suppose the original configuration is not legitimate, (u, v) and (v, w) are
network edges, and u and w have the same color c. Suppose edge (u, v) is activated.
If it was synchronized before the activation, line 6 is executed and bit Fv[c] is flipped.
This causes v’s synchronization status with w to change. In particular, if (v, w) was
synchronized before the u-v interaction, then it loses its synchronization as a result.
On the other hand, if (u, v) was not synchronized before the activation, then line 2
is executed and u is non-deterministically recolored, possibly causing it to become
violating. In either case, though, the edge (u, v) is synchronized in the resulting
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configuration. We will show that after enough nondeterministic recolorings, the
protocol will eventually reach a legitimate configuration.

We now make these arguments more precise.

Lemma 6.2. The trace of any execution of Protocol 2 starting from a legitimate
configuration is in 2HC.

Proof. Let C0 be a legitimate configuration and (u, v) be any edge. Suppose

C0
(u,v)−→ C1. Because (u, v) is synchronized in C0, no color change occurs, and

both Fu[colorv] and Fv[coloru] are complemented in the interaction. Hence, C0

and C1 have the same coloring, and (u, v) is synchronized in C1. Since C1 has no
color violations, v is the only neighbor of u with color colorv, and u is the only
neighbor of v with coloru. Therefore, the bits Fu[colorv] and Fv[coloru] which
differ between C0 and C1 do not affect the synchronization status of any other
edges, which remain synchronized in C1. Thus, C1 is legitimate and has the same
coloring as C0. Because C0 and (u, v) are chosen arbitrarily, we conclude that
every configuration in any execution starting from any legitimate configuration is
legitimate, and all configurations in any such execution have the same coloring. It
follows that the sequence of outputs is constant, and the trace is in 2HC.

Lemma 6.3. Starting from an arbitrary configuration, there exists a finite exe-
cution fragment of Protocol 2 that reaches a legitimate configuration.

Proof. We describe a two-phase procedure to construct a path to a legitimate
configuration from an arbitrary configuration. The first phase corrects color viola-
tions, and the second phase synchronizes all network edges without changing node
colors.

Phase 1 consists of a sequence of subphases σ(u), one for each node u. Each
subphase consist of a sequence of interactions as described below. The subphases
are constructed sequentially and refer to the configuration that results from the
previous subphases.

Subphase σ(u) is empty if u is not violating at the start of the subphase, so
assume now that u is violating. We construct a sequence of activations σ(u) that
change u’s color so that it is no longer violating but do not change the color of any
other node.

Since u is violating, there are edges (u, v) and (v, w) such that coloru = colorw.
σ(u) consists of the activations described by the cases below, which are based on
the values of Fu[colorv], Fv[coloru] = Fv[colorw], and Fw[colorv]:

(1) Fu[colorv] 6= Fv[coloru]. Let the scheduler activate (u, v), so that line 2 is
executed. Because u can be the endpoint of at most d(d − 1) 2-hop paths,
there exists at least one color color ′u that differs from the color of every 2-
hop neighbor of u. Let u choose color ′u as its new color. This removes the
color violation from u. Line 3 sets Fu[colorv] ← Fv[color ′u], so u and v are
synchronized after the interaction.

(2) Fu[colorv] = Fv[coloru] = Fw[colorv]. Let the scheduler activate (v, w). This
will flip Fv[colorw] and Fw[colorv], causing (u, v) to become unsynchronized.
Now continue with case 1.
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(3) Fu[colorv] = Fv[coloru] 6= Fw[colorv]. Let the scheduler activate (v, u) and
(v, w) sequentially. This will cause Fu[colorv] and Fw[colorv] to flip once and
Fv[coloru] to flip twice, leaving it unchanged. Afterwards, (v, w) is synchronized
but (u, v) is unsynchronized. Now continue with case 1.

Each subphase σ(u) corrects the color of u and does not introduce any new color
violations, so the configuration at the end of phase 1 satisfies the first safety con-
dition.

In the second phase, we remove violations of the synchronization condition. For
each unsynchronized edge (u, v), let the scheduler activate (u, v). If line 2 of the
protocol is taken, let node u choose not to change its color. Because u will set
Fu[colorv] ← Fv[coloru], the edge (u, v) becomes synchronized. Since the config-
uration after phase 1 has no color violations, the neighbors of each node now all
have distinct colors. Therefore synchronizing an edge does not introduce new un-
synchronized edges. Because the second phase does not modify the colors, after all
unsynchronized edges are corrected, the system is in a legitimate configuration.

The following theorem, which is an immediate consequence of Lemmas 6.2 and 6.3
and Theorem 2.2, establishes the correctness of the protocol.

Theorem 6.4. For each d, there exists a constant-space self-stabilizing imple-
mentation of the 2-hop coloring behavior in undirected communication graphs of
degree bounded by d.

According to Corollary 3.6, there exists a deterministic version of this protocol.
However, the full machinery of Corollary 3.6 is not needed to make the proto-
col work. In the following section, we show how a simpler deterministic protocol
suffices.

6.2 Deterministic protocol

One way to turn the nondeterministic Protocol 2 into a deterministic one is to
change the coloring rule at line 2, as shown in Protocol 3. Here, ru is a local bit
that flips whenever u acts as the initiator in an interaction. Consecutive repeated
executions of line 2 cause u’s color to cycle through all possible values, but an
interaction when ru = 0 will synchronize the interacting nodes without changing
their colors, needed for the construction of Lemma 6.6.

Lemma 6.5. The trace of any execution of Protocol 3 starting from a legitimate
configuration is in 2HC.

Proof. Because the set of possible traces of Protocol 3 is a subset of that of
Protocol 2, Lemma 6.5 follows from Lemma 6.2.

Lemma 6.6. Starting from an arbitrary configuration, there exists a finite exe-
cution fragment of Protocol 3 that reaches a legitimate configuration.

Proof. We use a two-phase procedure similar to the proof of Lemma 6.3 to
construct a path to a legitimate configuration from an arbitrary configuration.

As before, phase 1 consists of a sequence of subphases σ(u), one for each node
u. Each subphase consists of a sequence of interactions as described below. The
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Protocol 3 Deterministic 2-hop coloring with degree bound d

For each node u:

State variables: coloru, Fu, and ru.
Output: coloru

The interaction between an initiator u and a responder v:
1: if Fu[colorv] 6= Fv[coloru] then . possibly conflicting colors
2: coloru ← (coloru + ru) mod g
3: Fu[colorv]← Fv[coloru]
4: else . valid coloring
5: Fu[colorv]← Fu[colorv]
6: Fv[coloru]← Fv[coloru]
7: end if
8: ru ← 1− ru

subphases are constructed sequentially and refer to the configuration that results
from the previous subphases.

Subphase σ(u) is empty if u is non-violating at the start of the subphase, so
assume now that u is violating. We construct a sequence of activations that change
u’s color so that it is no longer violating but do not change the color of any other
node. σ(u) consists of a sequence of segments τ1(u), τ2(u), . . .. Each segment ad-
vances u’s color to (coloru +1) mod g without changing the color of any other node.
The subphase ends when u’s color becomes distinct from that of all of its 2-hop
neighbors.

Since u is violating, there are edges (u, v) and (v, w) such that coloru = colorw.
Segment τi(u) consists of the activations described by the cases below, which are
based on the values of Fu[colorv], Fv[coloru] = Fv[colorw], and Fw[colorv]:

(1) Fu[colorv] 6= Fv[coloru]. Let the scheduler activate (u, v).
(2) Fu[colorv] = Fv[coloru] and Fv[colorw] = Fw[colorv]. Let the scheduler acti-

vate (v, w) followed by (u, v).
(3) Fu[colorv] = Fv[coloru] and Fv[colorw] 6= Fw[colorv]. Let the scheduler acti-

vate (v, u), (v, w), and (u, v) sequentially.

In each case, some number of edges are activated, the last being (u, v). Only the
last of those activations causes line 2 to be executed, so the only node whose color
can possibly change is u. Moreover, u is the initiator of exactly one activation, so
the sequence of activations causes bit ru to flip.

If ru = 1 at the time of the activation of (u, v), then coloru is advanced and
the segment is complete. If not, we repeat the above once. This time, ru will be
1 when (u, v) is activated and coloru will advance as desired. This completes the
construction of segment τi(u), subphase σ(u), and phase 1.

In the second phase, we remove violations of the synchronization condition. For
each unsynchronized edge (u, v), there are two cases:

(1) ru = 0: The scheduler activates (u, v). No colors change but (u, v) becomes
synchronized. This step does not cause any other edges to lose synchronization
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because the only state change is to Fu[colorv] and v is non-violating; hence no
other neighbor of u has the same color as v.

(2) ru = 1: We need to change ru to 0, so that the edge can be corrected as in
case 1. There are two sub-cases:
(a) There exists some other synchronized edge (u, w) from u. Let the scheduler

activate (u, w). This will set ru to 0 without changing coloru. This step
does not cause any other edges to lose synchronization because the only
state changes are to Fu[colorw] and Fw[coloru], and both u and w are
non-violating. We continue with case 1.

(b) No edge (u, w) is synchronized. Let the scheduler activate (u, v). This will
change coloru. We now apply the activation sequence σ(u) that results
from applying the phase 1 construction to the current configuration. This
will correct the color violation for node u without changing the color of any
other node. It also synchronizes edge (u, v), so we are done.
We must show that no edge loses synchronization as a result of σ(u). The
fact that we are in case 2b means that no edge (u, w) is synchronized.
Hence, no such edge can possibly lose synchronization as a result of σ(u).
No edges not involving u lose synchronization. We go back to the three
possible edge activations in a segment, (v, u), (v, w), and (u, v) to see how
they affect the F -values for non-u nodes.
These edge activations can flip Fv[colorw] and Fw[colorv]. Since there were
no color violations at the beginning of phase 2, no other neighbor of v has
the same color as w (except for u), so changing Fv[colorw] can not affect
the synchronization status of v with any node other w (and u). Similarly,
no other neighbor of w has the same color as v, so changing Fw[colorv] can
not affect the synchronization status of w with any node other than v.
It can be verified by inspection that the edge sequences specified by cases 1,
2, and 3 all leave Fv[colorw] unchanged, and if they do change Fw[colorv],
it ends up the same as Fv[colorw], thereby synchronizing v and w even
if they were not synchronized beforehand. In no case does an edge lose
synchronization.
Thus, after node u has been recolored, the first safety property again holds,
no edge loses synchronization, and there exists a neighbor w of u that is
synchronized with u. This concludes subcase 2b.

After all violating edges are corrected, the system is in a legitimate configura-
tion.

The correctness of Protocol 3 follows from Lemma 6.5, Lemma 6.6, and Theo-
rem 2.2.

7. RING ORIENTATION

Given a graph colored by Protocol 2, we give a protocol that gives a sense of orien-
tation to each node on an undirected ring. The orientation is globally consistent.
In other words, each node has exactly one predecessor and exactly one successor;
the predecessor and successor of each node are distinct; for any two nodes u and v,
u is the predecessor of v if and only if v is the successor of u; for any edge (u, v),
either u is the predecessor of v or v is the predecessor of u.
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Definition 7.1. The ring orientation behavior RO on G(V,E) is defined as the
set of all constant traces t = λ, λ, . . . over an alphabet C × C × C. For all v ∈ V ,
λ(v), in the form of (cv, cv,0, cv,1), satisfies the following conditions:

(1) For all v ∈ V , cv,0 6= cv,1.
(2) For all (u, v) ∈ E, there exists b ∈ {0, 1} such that cv = cu,b ∧ cu = cv,b.

In the above definition, we can think of cu as the color of node u, cu,0 as the
color of its predecessor and cu,1 as the color of its successor.

In the protocol, each node u has the following components:

coloru the color of node u (we assume this value is provided by the input behavior
2HC.)

coloru,0 the color of the predecessor
coloru,1 the color of the successor

Node u outputs (coloru, coloru,0, coloru,1).

Protocol 4 Orienting an undirected ring
For each node u:

Input: coloru

State variables: coloru, coloru,0, and coloru,1.
Output: (coloru, coloru,0, coloru,1)

The interaction between an initiator u and a responder v:
1: if colorv = coloru,0 and colorv 6= coloru,1 then
2: colorv,1 ← coloru

3: else if colorv = coloru,1 and colorv 6= coloru.0 then
4: colorv,0 ← coloru

5: else
6: coloru,0 ← colorv

7: colorv,1 ← coloru

8: end if

A configuration is legitimate if its output assignment satisfies the requirement of
RO.

Lemma 7.2. In the executions of Protocol 4, given input behavior 2HC, all
reachable configurations from any legitimate configuration are also legitimate con-
figurations.

Proof. Let C be a legitimate configuration, that is, for all (u, v) ∈ E, there
exists b ∈ {0, 1} such that colorv = coloru,b and coloru = colorv,b̄, and for all u,
coloru,0 6= coloru,1. Depending on the value of b, the condition in either line 1 or
line 3 is true, and the assignments in line 2 and 4 do not modify the states, since the
components already have the assigned values. Therefore, starting from a legitimate
configuration, the state of each node does not change.
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Lemma 7.3. Starting from an arbitrary configuration given input behavior 2HC,
there exists a finite execution fragment of Protocol 4 that ends at a legitimate con-
figuration.

Proof. Starting from an arbitrary configuration, consider an arbitrary node
as the starting point and label the nodes sequentially as 0, 1, . . . , n − 1. Let the
scheduler activate edge (0, 1). There are two possibilities for node 0 and 1 after the
interaction:

(1) color0,0 = color1 and color1,1 = color0.
(2) color0,1 = color1 and color1,0 = color0.

We can assume 1 is true without loss of generality, because if 2 is true, we can
just reverse the label of 0 and 1 and label the ring in the reverse direction. Let
the scheduler activate (1, 2), (2, 3), . . . , (n − 1, 0) sequentially. It must hold after
each activation (u, (u+1)) that coloru,0 = color (u+1)modn and color ((u+1)modn),1 =
coloru, because 2HC guarantees that coloru−1 6= coloru+1, and by induction the
previous activation (u−1), u guarantees that the condition at line 3 cannot be true.

After the above procedure, a legitimate configuration is reached.

Theorem 7.4. Given the 2-hop-coloring input behavior, Protocol 4 is a constant-
space self-stabilizing implementation of ring orientation.

The correctness of Theorem 7.4 follows from Lemma 7.2 and Lemma 7.3.

8. SELF-STABILIZING SPANNING TREES IN REGULAR GRAPHS

Assuming the existence of a leader and the local addresses assigned by the 2-hop
coloring protocol, a spanning tree rooted at the leader can be constructed in a
self-stabilizing fashion in a regular graph of degree d. In this section we present a
protocol that uses O(log D) bits of memory, where D is the diameter of the graph.

Definition 8.1. Let N be a set of labels and φ 6∈ N be a special symbol. The
spanning tree behavior ST on graph G(V,E) consists of all constant traces t =
λ, λ, . . . such that:

(1) For u ∈ V , λ(u) is a pair (c, p) where c ∈ N and p ∈ N ∪ {φ}, and there exists
a unique r ∈ V such that the second component of λ(r) is φ.

(2) The projection of λ on the first component of the outputs Πc(λ) satisfies the
2-hop coloring behavior defined in Section 6.

(3) For all u0 6= r, there exists a path u0, u1, . . . , vk, where ui ∈ V , uk = r,
λ(ui) = (ci, pi) and pi = ci+1 for all 0 ≤ i < k.

Informally, N is the set of possible colors of nodes. If λ(u) = (c, p), c is the color
of u and p is the color of its parent in the spanning tree. The network is 2-hop
colored. For the root node r in the spanning tree, p = φ.

We define the first spanning tree of a 2-hop-colored graph with a unique leader
to be the spanning tree satisfying the following conditions:

(1) The leader is the root of the tree.
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(2) The parent of each node is the neighbor closest to the root. Ties are broken by
choosing the neighbor with smallest color.

It is easy to see that if the coloring and the leader are fixed, the first spanning
tree is unique. Protocol 5 is a self-stabilizing protocol which constructs the first
spanning tree in any properly 2-hop-colored regular graph given a root.

First of all, each node needs to know its neighbors. We let each node u keep a
queue neighborsu of size d. When u interacts with another node v, it checks if the
color of v (colorv) is in its queue. If not, it pushes colorv into the queue. If the
queue has more than d elements, the oldest value is removed. u will eventually have
the d distinct colors of all its neighbors in neighborsu.

To find the parent in the first spanning tree as defined above, node u tracks the
smallest known distance to the root in a variable distu and tracks the color of its
current parent in a variable parentu. When u interacts with another node v, if u is
the root, u records φ as its current parent and sets distu to 0. Otherwise u updates
its state to record v as its new parent if any of the following is true:

(1) parentu is not in neighborsu, which means either or both of parentu and neighborsu

are incorrect.

(2) distu > distv + 1, which means the path through v to the root is the shortest
known to u.

(3) distu = distv + 1 and parentu > colorv, which means v does not give a shorter
path to the root, but the color of v of is smaller than the color of the current
parent of u given a fixed ordering of colors.

If at the end of the interaction v is the current parent of u, Node u sets distu to
distv + 1.

Protocol 5 is a formal specification. The variables of each node u have the
following meanings:

neighborsu a queue containing the colors of the d most-recently-seen neighbors.

distu a nonnegative integer, to store length of the known shortest path from
the root.

parentu color of the parent node.

coloru the color of node u, provided by the input behavior 2HC.

statusu Either L (leader) or N (nonleader), provided by the input behavior LE.

The operations on a queue are defined below:

enqueue(item) inserts the item to the front of the queue.

dequeue() removes the last item from the back of the queue.

∈ or 6∈ tests occurrence of an element in the queue.

Theorem 8.2. Given the input behaviors LE and 2HC, Protocol 5 is a self-
stabilizing implementation of output behavior ST for all regular graphs of degree
d.
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Protocol 5 Self-stabilizing spanning tree in a regular graph
For each node u:

Inputs: coloru and statusu

State variables: distu and parentu

Output: (coloru, parentu)

The interaction between an initiator u and a responder v, when (u, v) is activated:
1: if colorv 6∈ neighborsu then
2: neighborsu.enqueue(colorv)
3: end if
4: while |neighborsu| > d do . keep d recently-seen neighbors
5: neighborsu.dequeue()
6: end while
7: if statusu = L then
8: distu ← 0;
9: parentu ← φ

10: else if (parentu 6∈ neighborsu)
11: ∨(distu > distv + 1)
12: ∨(distu = distv + 1 ∧ parentu > colorv) then
13: parentu ← colorv

14: end if
15: if parentu = colorv then
16: distu ← distv + 1
17: end if

Proof. Given input behaviors 2HC and LE, we may assume that the inter-
action graph G is properly 2-hop colored with one node marked L and all other
nodes marked N , and we use “leader” and “root” interchangeably afterwards. Let
T denote the unique first spanning tree of G.

For Protocol 5, a configuration is legitimate if the following conditions hold:

(1) For any node u, neighborsu stores the d distinct colors of its neighbors.

(2) For any non-root node u, parentu stores the color of its parent in T , and distu

is equal to distT
u , the length of the path from u to the root in T .

(3) For the root node r, parentr = φ and distr = 0.

From the definition of T , it is obvious that no interaction can cause a state change
in a legitimate configuration.

Now we show that a legitimate configuration is reachable from an arbitrary con-
figuration. First, activate every edge in each direction once. The queue of neighbors
of each node now stores the d colors of its neighbors. The root is in the correct state
with its parent set to φ, the distance to the root set to 0, and for each non-root
node u, parentu stores the color of one of its neighbors. Define graph H to consist
of the edges (u, v) such that parentu = colorv.

Among all edges (u, v) ∈ H − T , choose one that minimizes distT
u . Let w be u’s

parent in T . Thus, (u, v) ∈ H and (u, w) ∈ T . Inductively, we assume that all
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nodes u′ with distT
u′ < distT

u have parentu′ set correctly, that is, parentu′ = colorv′

where (u′, v′) ∈ T .
We activate a series of edges that changes u’s parent to w but does not change

the parent of any other node. There are two cases:

(1) In graph H, the root is reachable from u. First, activate the edges on the path
from the root to w in H sequentially. These edges are in both T and H since
all nodes u′ on that path have distT

u′ < distT u. Because each node will set its
distance variable to be the distance variable of its parent plus one, distw will
be the real distance distT

w. Next, activate the edges on the path from the root
to u in H sequentially. After that it must hold that distu is the length of the
path from root to u in H. Since T is the first spanning tree, we know that
either distu > distw + 1 is true, or distu = distw + 1 and colorv > colorw are
true. In either case, activate (u, w), and u will mark w as the new parent.

(2) In graph H, the root is not reachable from u. Let’s only look at H, and let the
component C consist of u and the nodes reachable from it. C does not contain
the root. Because all nodes in C have out-degree one, there must be a directed
cycle in C. By the definition of H, every node in the cycle marks the next node
as its parent. By activating the edges in the cycle, the dist values of the nodes
in the cycle can be increased to arbitrarily large values, because for any edge
(u, v) ∈ H, u sets distu = distv + 1 when (u, v) is activated. By activating the
edges on the path from any node in the cycle to u, the large dist value will be
propagated back to u. When distu > distw +1 activate (u, w), and u will mark
w as the new parent.

This process corrects the parentu mark for u. It does not change the parent mark
for any other node because activating an edge (u, x) ∈ H can never change parentu.
The process is repeated until H = T .

Finally, activate the edges in T in the order of a breadth-first traversal to make
sure that every node u updates distu to the correct value. The configuration is now
legitimate.

We remark that a traversal of the tree can simulate an oriented ring. Therefore,
token-circulation can be done in a regular graph with a distinguished leader by
composing the ring token-circulation protocol with the 2-hop coloring protocol and
the spanning tree protocol.

9. LEADER ELECTION

Two of the above protocols assume a pre-designated special node. In our model,
self-stabilizing leader election is possible in some classes of interaction graphs and
impossible in others. In this section, we first describe a family of leader-election
protocols in oriented rings. We also present an impossibility result for leader election
in general graphs. The formal definition of the leader-election behavior (LE) is
given in Section 5.

We first consider rings of odd size. Supposing each node has a label bit, we call
a maximal sequence of alternating labels a segment. Since the size of the ring is
odd, there is at least one pair of adjacent nodes with the same label. We define
the head and tail of a segment in the natural way according to the orientation of
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the ring. For example, the ring 0 → 1 → 0 → 0 → 1 → 1 → 0 → 1 → 0 has 3
segments: 0 → 1 → 0, 0 → 1, and 1 → 0 → 1 → 0. One edge of the form (0, 0)
or (1, 1) connects the tail of one segment to the head of another segment. We call
such edges barriers.

The protocol consists of several parts. At the base is the “unstable clock” proto-
col, in which the barriers move forward (clockwise) around the ring . Each barrier
advances by flipping the label bit of the second node on the barrier (the head of the
next segment). It is easy to verify that when two barriers collide, they cancel out
each other (both of the barriers disappear). Because the ring size is odd, there is
always at least one barrier, and there exists a sequence of activations that remove
all but one barrier. By fairness, eventually there is a single barrier which rotates
clockwise around the ring forever.

The remainder of the protocol manipulates the leader marks and two kinds of
tokens, bullet and probe. Probes move faster than barriers. (we do not allow a
barrier to go past a probe from behind). Probes are sent out by the barrier in a
clockwise direction and absorbed by any leader they run into. If a probe makes it
all the way back to the barrier, it is converted to leader (just behind the barrier,
which we can imagine is between the two endpoints of the barrier edge). Leaders
fire bullets counterclockwise around the ring. Bullets are absorbed by the barrier,
but they kill any leaders they encounter along the way (that is, they remove the
leader mark).

Call a configuration “clean” if it contains exactly one barrier, exactly one leader,
and there are no bullet or probe marks on any node in the interval starting from the
leader and proceeding clockwise to the barrier. Thus, any bullet and probe marks
are confined to the interval starting from the barrier and proceeding clockwise to
the leader. As the barrier rotates, this region gets squeezed smaller and smaller
until finally the barrier passes leader, at which point there are no bullet or probe
marks at all. Protocol 6 is the detailed specification. Each node u outputs L if
leaderu = 1, otherwise it outputs N .

The state variables of each node u have the following meanings:

leaderu 1 if u is a leader, 0 otherwise.

labelu the label of u.

probeu 1 if u holds a probe token, 0 otherwise.

phaseu alternates between 0 and 1 to make each barrier alternate between firing a
probe and moving forward.

Lemma 9.1. Assume Protocol 6 runs in a ring of odd size. Then all configu-
rations reachable from a clean configuration are also clean, and the same node is
marked leader in each.

Proof. No probe ever encounters the barrier, (from behind), because there are
no probe marks anywhere in the region between leader and the barrier, hence, no
new leader is created. No bullet ever encounters the leader because there are no
bullet marks anywhere in the region starting from the barrier and going counter-
clockwise (the direction of the bullet) to the barrier, hence the leader is never
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Protocol 6 Leader election in a ring of odd size
For each node u:

State variables: bulletu, leaderu, labelu, probeu, and phaseu.
Output: If leaderu = 1, output L; Otherwise, output N .

The phaseu variable is used to make each barrier alternate between generating a
probe and moving itself forward. The following specifies the interaction between
an initiator u and a responder v, when (u, v) is activated:
1: if labelu = labelv then . This is a barrier edge.
2: if probeu = 1 then . A probe hits a barrier
3: leaderu ← 1 . generate a leader
4: probeu ← 0
5: end if
6: if phaseu = 0 then . generate a probe
7: phaseu ← 1
8: if leaderv = 0 then
9: probev ← 1

10: end if
11: else if probev = 0 then . advance the barrier
12: labelv ← labelv
13: phasev ← 0
14: bulletv ← 0 . absorb incoming bullets
15: end if
16: else if leaderv = 1 then . non-barrier edge, v is leader
17: if bulletv = 1 then . If there is a bullet at v
18: leaderv ← 0 . v is killed
19: else
20: bulletu ← 1 . otherwise v fires a bullet to u
21: probeu ← 0 . and absorb a probe if any.
22: end if
23: else . v is not a leader.
24: if bulletv = 1 then . advance a bullet
25: bulletv ← 0
26: bulletu ← 1
27: end if
28: if probeu = 1 then . advance a probe
29: probeu ← 0
30: probev ← 1
31: end if
32: end if

killed. Newly created bullet and probe marks are both confined to the region from
the barrier to the leader.

Lemma 9.2. Assume Protocol 6 runs in a ring of odd size. For any configuration
C there exists a clean configuration C ′ reachable from C.
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Proof. First, pick a barrier edge and advance the barrier until it collides with
another barrier, and both barriers are removed. Repeat until there is only one
barrier left. This must occur since every ring of odd size always has at least one
barrier. Next, take any bullet in the forbidden region starting from the barrier
and proceeding counterclockwise to the first leader (or the entire ring if no node
is marked leader) and propagate the bullets counterclockwise around the ring until
they are absorbed by the barrier. Some or all leaders may die in the process. If any
leader remains, take the farthest leader from the barrier (in the counterclockwise
direction), fire a bullet, and propagate it until it is absorbed by the barrier. Now at
most one leader remains. Next, let the barrier create a probe mark, then propagate
all probe marks clockwise around the ring until they are absorbed by the leader or
they encounter the barrier and are converted to leader. At this point, we have a
ring with one barrier, one leader, and no other marks, so it is clean.

Theorem 9.3. Protocol 6 is a constant-space self-stabilizing implementation of
the leader-election behavior on all rings with odd sizes.

Proof. From Lemma 9.2, it follows from our fairness condition that every fair
computation contains a clean configuration. From Lemmas 9.1, all configurations
following the first clean configuration are also clean and have the same node marked
as leader.

This protocol is a special case of a family of protocols. For any ring of size n,
we can pick an integer k > 1 that is relatively prime to n. Each node is labeled
by an integer between 0 and k − 1 inclusive. Call an edge (u, v) a “barrier” if
labelu + 1 6≡ labelv (mod k). Because k is relatively prime to n, there is always at
least one barrier. To advance a barrier edge (u, v), set labelv ← labelu + 1 mod k.
Call this protocol Pk, then the protocol we detailed in this section is P2. Thus
we have a family of protocols P2, P3, . . . such that for any ring, Pk accomplishes
self-stabilizing leader election whenever k does not divide the size of the ring.

Theorem 9.4. For each integer k ≥ 2, there is a constant-space self-stabilizing
implementation of the leader-election behavior on all rings whose sizes are not mul-
tiples of k.

Finally, we present the following impossibility result:

Theorem 9.5. There does not exist a self-stabilizing protocol for leader election
in interaction graphs with general topology.

Proof. Assuming such a protocol A exists, we consider how it would behave in
directed lines. Let e be an arbitrary edge. If e were removed, the interaction graph
would become two directed lines, and by the correctness assumption of A, the two
shorter lines would each elect a leader. Therefore from any configuration C there
is a reachable configuration C ′ in which there are two leaders, because from C the
scheduler just stops activating e and only activates other edges for a certain amount
of time to reach C ′. By fairness, in any fair execution of A, some configuration C ′

with two leaders occurs infinitely often. Therefore the output trace of any fair
execution of A cannot have a suffix in the behavior LE.
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A class C of graphs is simple if there does not exist a graph in C which con-
tains two disjoint subgraphs that are also in C. Notable simple classes of graphs
include rings, or, more generally, connected degree-d regular graphs. Directed lines,
connected graphs with a certain degree bound and strongly connected graphs are
non-simple classes of graphs. The proof above shows that there is no self-stabilizing
leader election protocol that works for all the graphs in any non-simple class.

10. CONCLUSION AND OPEN PROBLEMS

In this paper, we extended the population protocol model of [Angluin et al. 2006] to
allow for inputs at each step, and we defined general classes of behaviors. We studied
self-stabilization protocols for token-circulation, 2-hop coloring, ring orientation,
spanning tree, and leader election in this extended model.

We remark that one of the applications of the self-stabilizing protocols is to
combine them with the protocols in [Angluin et al. 2006; Angluin et al. 2005]
to compute algebraic predicates or graph properties, with the additional benefit
of transient-fault tolerance. For instance the token-circulation protocol could be
augmented to compute predicates such as n > k or expressions like n mod k in
regular graphs in which n is the size of the network and k is a constant.

The leader election protocol we presented in this paper depends on the size of
the ring. There are impossibility results and space bounds on self-stabilizing leader
election in general rings in various other models [Dijkstra 1974; Beauquier et al.
1999]. Because of the difference between our model and those of the previous
papers, those results cannot be easily extended to our model. The existence of a
uniform constant-space leader election protocol on the class of all rings or on the
class of communication graphs that are regular of degree d > 2 is still open for
future research.
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