Approximate Shared-Memory Counting Despite a Strong Adversary

James Aspnes Keren Censor

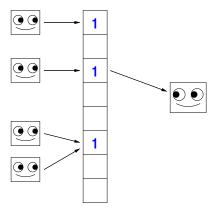
January 5th, 2009

・ロト ・日本 ・モート ・モート

Model Handling many increments Handling few increments Full result

Model

- Processes can read and write shared **atomic registers**.
- Read on an atomic register returns value of last write.
- Timing of operations is controlled by an adversary.
- Cost of a high-level operation is number of low-level operations (register reads and writes) used.



・ロト ・回ト ・ヨト

Model Handling many increments Handling few increments Full result

Approximate counting

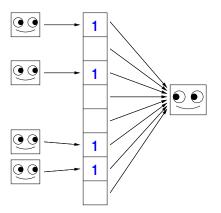
- Each of *n* processes increments a **shared counter** at most once.
- Counter read operation should return number of increments within δ relative error with high probability.
- Cost of read should be $\ll n$.
 - $O(n/\log n)$ is enough for our intended application.
 - $\widetilde{O}(n^{4/5+\epsilon})$, for any fixed ϵ , is what we achieve.
- Counter must work despite **strong adversary** that can see internal states of processes.

・ロン ・回と ・ヨン ・ヨン

Model Handling many increments Handling few increments Full result

Counting by collect

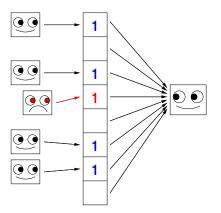
- Each process writes its increment to a separate register.
- To read the counter, read all registers and add them up. (This takes Θ(n) time!)
- Counter read always includes writes that finish before read starts.



Model Handling many increments Handling few increments Full result

Latecomers

- If a write starts before the collect finishes, reader may or may not read it.
- OK as long as total returned by collect doesn't exceed number of writes finished or in progress.



イロン イヨン イヨン イヨン

Model Handling many increments Handling few increments Full result

Approximate counting

We want a counter that acts like the simple collect, but will sacrifice accuracy for speed. Counter read is δ -accurate if it:

- Returns at least (1δ) times the number of increments that finish before the read starts.
- **2** Returns at most $(1 + \delta)$ times the number of increments that start before the read finishes.

(This is a pretty weak guarantee.)

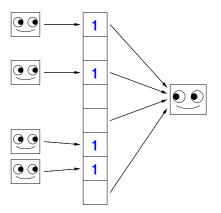
・ロン ・回と ・ヨン ・ヨン

Model Handling many increments Handling few increments Full result

Counting by sampling

Instead of reading all registers, randomly sample s registers and multiply by n/s.

 With no concurrent increments, gives predictable additive error w.h.p. (standard Chernoff bounds).

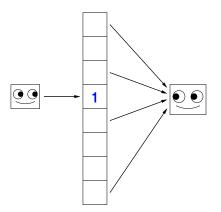


Model Handling many increments Handling few increments Full result

Counting by sampling

Instead of reading all registers, randomly sample s registers and multiply by n/s.

- With no concurrent increments, gives predictable additive error w.h.p. (standard Chernoff bounds).
- Danger of undercount with *m/s* increments.

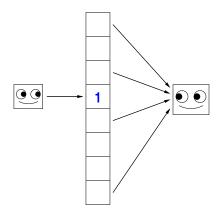


Model Handling many increments Handling few increments Full result

Counting by sampling

Instead of reading all registers, randomly sample s registers and multiply by n/s.

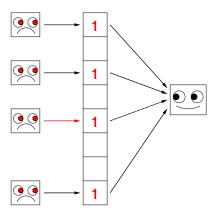
- With no concurrent increments, gives predictable additive error w.h.p. (standard Chernoff bounds).
- Danger of overcount if adversary controls concurrent writes.



Model Handling many increments Handling few increments Full result

Potemkin village attack

- Strong adversary controls all timing and can see where reader is about to look.
- So it rushes an increment into each register the reader is about to read.
- Amazing! Ones everywhere!
- Reader always returns n.

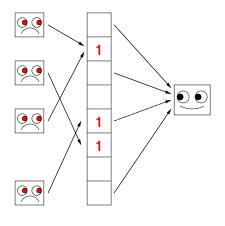


・ロト ・回ト ・ヨト

Model Handling many increments Handling few increments Full result

Two-sided sampling

- Incrementers also write to random locations.
- Collisions are reduced by using N ≫ n registers.
- Adversary can't cause overcount with late increments: each new increment only increases chance of 1 in target register by 1/N.
- But undercount problem gets worse: granularity is now *N*/*s*.



イロン イヨン イヨン イヨン

Model Handling many increments Handling few increments Full result

Sampling counter: details

Fix small $\epsilon > 0$ and let $s = n^{4/5+\epsilon}$, $N = n^{6/5+\epsilon/4}$.

- Expected increments lost to collisions is $O(n^2/N) = O(n^{4/5-\epsilon/4}).$
- Completed increments are sampled with standard deviation $O((N/s)\sqrt{s}) = O(n^{4/5-\epsilon/4})$; stock Chernoff bounds give bound on undercounts.
- Concurrent increments may depend in odd ways on behavior of adversary, but a supermartingale argument and appropriate tail bound give a similar bound on overcounts.

Result: After $n^{4/5}$ increments, probability that a single call to sampling read is δ -inaccurate is at most $\exp\left(-\frac{\delta^2 n^{\epsilon/2}}{2}\right)(1+o(1))$ = small.

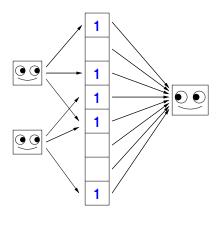
소리가 소문가 소문가 소문가

Model Handling many increments Handling few increments Full result

Small numbers of increments

Use a second counter for few increments:

- Each incrementer now writes $D = \widetilde{O}(\log^{O(1/\epsilon)} n) \text{ of }$ $\widetilde{O}(n^{4/5+\epsilon}) \text{ registers.}$
- Reader reads all the registers and divides by *D*.
- Write locations are chosen using an **expander** $\Rightarrow k$ increments give between $(1 - \delta)Dk$ and Dk ones.
- Fails only after sampling counter starts working.



・ロト ・回ト ・ヨト

Model Handling many increments Handling few increments Full result

Combined counter

The full counter combines the two components:

- Incrementer increments sampling counter first, then expander counter.
- Reader checks expander counter first, then checks sampling counter if expander overflows.
- Since sampling counter is always ≥ expanding counter, sampling counter is only used in its accurate range.

Result: δ -accurate approximate counter w.h.p. in $\widetilde{O}(\log^{O(1/\epsilon)} n)$ register writes per increment and $\widetilde{O}(n^{4/5+\epsilon})$ register reads per counter read.

イロン イヨン イヨン イヨン

Randomized consensus

- Want n processes to agree on a bit despite asynchrony and up to n − 1 halting failures.
- Impossible for deterministic algorithms with even one failure (Fischer-Lynch-Paterson 1985; Loui and Abu-Amara 1987).
- Possible using randomization even with strong adversary.

(4 回) (4 回) (4 回)

Randomized consensus: total work

- Exponential-time algorithm (Abrahamson 1988).
- Reduction to random voting (Aspnes-Herlihy 1989).
 - Generate $\Theta(n^2)$ random ± 1 votes.
 - Use counter to test if we have enough votes.
 - $\Omega(n)$ standard deviation beats votes hidden in dead processes with constant probability.
 - First polynomial-time algorithm $(O(n^6))$.
- Only check termination every $\Theta(n/\log n)$ votes (Bracha-Rachman 1991) $\Rightarrow O(\log n)$ amortized cost to check counter $\Rightarrow O(n^2 \log n)$ total work (but same individual work).
- Use termination flag to stop voting when one process notices termination (Attiya-Censor 2007) \Rightarrow only need to check every $\Theta(n)$ votes $\Rightarrow O(1)$ amortized cost per vote $\Rightarrow O(n^2)$ total work. Also shown to be optimal.

Randomized consensus: individual work

Simple ± 1 voting may force one process to generate all $\Omega(n^2)$ votes itself. What if we want each process to only do O(n) operations?

- Weighted voting (Aspnes-Waarts 1996).
 - Faster processes cast bigger votes.
 - Have to check termination slightly more often to avoid runaway big votes.
 - With Bracha-Rachman-style termination test, individual work is $O(n \log^2 n)$ (= $O(n^2 \log^2 n)$ total work, worse that Bracha-Rachman).
- Attiya-Censor termination bit reduces cost to O(n log n) (Aspnes-Attiya-Censor 2008).
 - Main limitation is each process still checks counter Ω(log n) times ⇒ Ω(n log n) cost with simple counter.
- New result: (AAC 2008) + sublinear counter + much pushing and shoving ⇒ O(n) individual work. This is optimal by previous lower bound of (Attiya-Censor 2007).

What's left?

- Randomized consensus: pretty much done (in this model).
- Further counter improvements:
 - Practical time complexity.
 - Exact counting.
 - Linearizability.
 - Unbounded increments.

- 4 回 2 - 4 □ 2 - 4 □

What's left?

- Randomized consensus: pretty much done (in this model).
- Further counter improvements:
 - Practical time complexity.(*)
 - Exact counting.(*)
 - Linearizability.
 - Unbounded increments.

(*) Can get deterministic exact counting with $O(\log^2 n)$ cost for increments and $O(\log n)$ for reads. (Aspnes-Attiya-Censor, in preparation.)

(人間) とうり くうり