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Consider the following edge orientation problem:on a set of n nodes labeled f1; : : : ; ng there is a(possibly in�nite) sequence of edges, i.e. pairs of nodes.Undirected edges arrive one by one, and each edgeshould be oriented upon its arrival. The goal is devise amethod of orienting the edges so that in every node atevery point in time the di�erence between the indegreeand outdegree is as small as possible. (Note that itcan be shown that for every sequence there exists anorientation such that at any point along the sequencethe maximum di�erence is 1.)The problem comes in three avors:1. Find a deterministic rule for orienting the edgesand analyze it on the the worst input sequence.2. Suggest a rule and analyze it under the some as-sumption on the distribution of the sequence, inparticular that each edge in the sequence is cho-sen uniformly from all possible edges and indepen-dently of the rest of the sequence.3. Suggest a randomized rule for orienting the edgesand analyze its expected performance on the worstsequence.The greedy algorithm is the one where an edgeis oriented from the node with the smaller di�erencebetween the outdegree and indegree to the one with thelarger di�erence. In the deterministic version of the ruleties are broken according to the lexicographic order. Inthe randomized version of the rule ties are broken atrandom.We address the three avors of the problem andobtain the following results:1. The deterministic performance is n=2: there is amethod (the greedy algorithm) that achieves thisbound and for any deterministic rule there is asequence where this di�erence will occur. (Thelower bound is from [17]).2. The expected di�erence of the greedy algorithm onthe uniform distribution on the edges is �(log logn)and we derive a complete description of the process



Ajtai, Aspnes, Naor, Rabani, Schulman and Waartsin this case. This is the main technical contributionof the paper. In this abstract we show in detailonly a proof of an O(logn) upper bound. We givean overview of the �(log logn) proof.3. There is a rule (local greedy) with expected per-formance O(pn logn) on any sequence. The lowerbound is 
( 3plogn).In addition we investigate the relationship betweenthe edge orientation problem and the vector roundingproblem. In this problem we are given a real matrix col-umn by column and should produce an integer matrixso that each column in the output matrix is a roundingof the corresponding column in the input matrix thatpreserves the sum. The goal is to minimize the max-imum over all rows of the di�erence between the sumof the row in the integer and real matrix. (A formalde�nition can be found in Section 4.) We show:4. A general transformation from the vector roundingproblem to the edge orientation problem, at theprice of doubling the expected di�erence. Thetransformation applies to both deterministic andrandomized algorithms.As it turns out, problems in fairness of schedulingcan be reduced to the vector rounding problem.1.2 Motivation and ApplicationsOn-line machine scheduling has been studied exten-sively (see e.g. [4, 5, 6, 8, 15, 18, 15, 22]), but the issueof fairness in job allocation has usually not been con-sidered quantitatively (however, see [3, 13, 16, 19, 20]).In a typical on-line scheduling problem, there are n ma-chines and a number of separate jobs; the jobs arriveone by one, and each job must be assigned to exactlyone of the machines, thereby increasing the load on thismachine by an amount that depends on both the joband the machine. The goal of the scheduling problemsstudied in all the above literature is to minimize themaximum machine load. The situation in which thismodel seems most applicable is if all machines have oneowner that wishes to optimize their utilization. If themachines have di�erent owners, then fairness in alloca-tion may be an additional, or primary, parameter to beoptimized by the scheduler; for instance the dispatcherfor a number of independently owned taxicabs.Assuming that machines (or their owners) are re-luctant (or eager) to do the required jobs, a \fair" rule,which takes into account the bene�t to each machine(owner) of performing each task, must be applied. Thus,when faced with such a problem we should de�ne thedesired load of a machine (the fair share) and then sug-gest an algorithm for scheduling the jobs that tries togive each machine a number of jobs corresponding to itsfair share.

An interesting property of the results we obtain instudying \fair" scheduling, is that there are schedulingprotocols for which the discrepancy between the loadsof the machines can be bounded in terms of functionsonly of the number of the machines, with no dependenceon the elapsed time.We elaborate here on two cases where fairness is de-sired and see the connections with the edge orientationproblem mentioned above.The Carpool Problem The issue of fairness inscheduling was �rst isolated by Fagin and Williams [17],who abstracted it to what they call the carpool problem.A rough quotation from [17]: \Suppose that n people,tired of spending their time and money in gasoline lines,decide to form a carpool. Each day a subset of thesepeople will arrive and one of them should drive. Ascheduling algorithm is required for determining whichperson should drive on any given day. The algorithmshould be perceived as fair by all members so as toencourage their continued participation."The �rst question is how to de�ne fairness. If thedriver were not a member of the group, but a hireddriver, then the meaning of fairness would be clear:The professional driver charges a �xed price for everyride, and each day the people that show up split theprice of the driver equally among them. When thedriver is just one of the set of people that show up, thisreasoning leads immediately to the following de�nitionof fairness given in [17]: If on a certain day, d peopleshow up, each of them owes the driver 1=d of a ride.The unfairness of the algorithm at a certain point ofthe execution is de�ned as the maximum number ofowed rides that anybody has accumulated up to thatpoint or that anybody owes the rest of the group atthat point. We will evaluate the algorithms accordingto the expected value of their unfairness when computedthroughout the execution, and refer to it as expectedunfairness.Fagin and Williams proposed a natural algorithmfor this problem, which we call the global greedy algo-rithm. When a set of people shows up, the one to drivewill be the one that is currently the poorest. Ties arebroken arbitrarily. They analyzed the performance ofthis algorithm assuming the worst case sequence of re-quests. In this setting they showed that the unfairnessof this algorithm is bounded above by a number that isexponential in the number of people, but independent inthe number of days, and mentioned that Coppersmithmanaged to reduce this upper bound to linear (how-ever, this proof is lost [14]). Finally, in collaborationwith Coppersmith they showed a linear lower bound onthe unfairness in this setting.We view the carpool problem as a game played be-



Fairness in schedulingtween the carpool members and an adversary scheduler,which determines which people show up on each day.There are three main types of adversaries treated inthe literature: the adaptive, the oblivious, and the uni-formly random, where the distinction is made accordingto the way the adversary determines which people showup. The adaptive adversary constructs its schedule onthe y, making decisions that may depend on the wholeprevious history of the game. The oblivious adversarymust �x its schedule before the game starts, though itmay choose this schedule based on knowledge of the al-gorithm. The uniformly random adversary schedulespeople each day independently and uniformly at ran-dom.Observe that the edge orientation problem is simplya special case of the carpool problem, restricted totwo people arriving each day. (Though notice thatthe unfairness as measured in the edge orientationproblem is double that as measured in the 2-personcarpool problem.) (For this reason we shall refer to theperformance of an algorithm for the edge orientationproblem as its unfairness.) On the other hand, the(general) carpool problem is a special case of the vectorrounding problem: each participant corresponds to arow, each day corresponds to a column; the ith entry ofthe jth column is 0 if the ith participant did not showup on the jth day, and is 1dj if dj participants, includinghimself, did show up.Therefore, an immediate byproduct of the resultsmentioned above on the edge orientation problem and ofthe general transformation to the vector rounding prob-lem is that the general carpool problem has unfairnessof �(n) against an adaptive adversary, and expected un-fairness of O(pn logn) against an oblivious adversary.(In fact, we also show directly that the natural greedyalgorithm for the carpool problem maintains unfairnessn against an adaptive adversary).Fair queuing Consider a system where processesrepeatedly access resources, each of which can be usedby one process at a time. For simplicity assumethat whenever a process uses a resource it takes oneunit of time. We would like to �nd a fair way ofordering processes that try to access the same resourcesimultaneously. Given an execution in which a processtries to access a resource t times, with di processes attime i, its total expected waiting time, if the processesare scheduled at random, is Pti=1 di�12 . We considerthis as the process fair waiting time. Our goal istherefore to �nd a method of queuing the processes soas to minimize the di�erence between the actual timea process spends waiting for resources throughout itsexecution and its fair waiting time. We refer to thisdi�erence as the unfairness of the algorithm.

Note that we are interested in algorithms where theunfairness is a function of the number of processes, butis independent of the life-time of the system. Therefore,an algorithm that queues at random the processes thattry to access the same resource simultaneously will notdo, since with high probability there will be a processthat is pt away from its fair waiting time.In the full version of the paper we relate thefair queuing problem to a weighted variant of thevector rounding problem and show that the maximumdiscrepancy between the fair waiting time and actualwaiting time can be bounded by a function of thenumber of processes only.Comparison with competitive analysis A popu-lar methodology for evaluating the performance of on-line algorithm is the the competitive analysis approachof Sleator and Tarjan [21]: the on-line algorithm is com-pared with a \hypothetical" optimal o�-line and boundson the competitive ratio are obtained (for an adaptive,oblivious or random adversary). For the carpool prob-lem, if one is given in advance a list specifying for eachof the days which subset arrives on that day, then itis possible to construct a schedule whose unfairness isbounded by one (see Section 4). Therefore we can treatthe results as being about the competitive di�erence ofthe carpool problem. If, instead, we would have ana-lyzed the ratio between the fair-share = o�ine-load andthe actual load, we would have obtained a 1+o(1) com-petitive ratio.1.3 BackgroundOur problem is related to a \chip game" analyzedin [2]. In that game chips are placed in stacks on theintegers, and in each round, two chips which are in thesame stack may be selected, and one of them moved onestep to the right while the other is moved one step tothe left. This is the same thing that happens in the edgeorientation game when a pair of vertices with the sameindegree-outdegree di�erence is given; the di�erencebetween the games is that in ours pairs which are notcolocated may also be selected (and moved toward eachother). While our game can continue ad in�nitum, thegame of [2] must terminate, and some of the principalresults of that paper concern the terminating states. Inparticular it is shown there that from any initial state ofchips, there is a unique terminating position; and whenn chips start all at the origin, no chip can be broughtto distance more than d(n� 1)=2e from the origin.One can obtain an upper bound of d(n � 1)=2e onthe maximumunfairness of the greedy algorithm for theedge orientation problem by a reduction to the caseof the game of [2]. The reduction is to show that forthe greedy algorithm, any sequence of requests for pairs



Ajtai, Aspnes, Naor, Rabani, Schulman and Waartsof nodes can be replaced by another sequence, whichreaches the same unfairness, but which uses no requestsinvolving non-colocated pairs. (This reduction has alsobeen noted recently by Babu Narayanan.) A moregeneral proof is given in this paper.1.4 OrganizationDue to lack of space, we do not provide the de-tails of many of the arguments; they are available inthe full version of our paper [1]. In this extended ab-stract we describe in detail only the O(logn) analysisfor the case of uniformly distributed requests on edges(Section 2), the general proof guaranteeing bounded un-fairness (Section 3), and the reduction from the vectorrounding problem to the edge orientation problem (Sec-tion 4). An overview of the �(log logn) analysis for thecase of uniformly distributed requests on edges appearsin Section 2.2 Uniformly Distributed Requests2.1 OverviewWe present two analyses of the greedy algorithmfor the edge orientation problem, for the case where theadversary schedules the edges uniformly at random. Wesay that a node is at position i if and only if its indegree�outdegree = i. In both methods the combination of theadversary and the algorithm is represented as a Markovprocess. A single state of the Markov chain is describedby the list consisting of the number of nodes at eachposition.When two nodes are paired, they either each moveone step away from the other, if they are on the samepoint; or each move one step toward the other if they arenot. Intuitively, we can think of the process as a balancebetween a \repulsive force" between colocated nodesand an \attractive force" between distant ones. Tostretch this physical analogy further, we would expectthat the attractive force, being stronger in spread-outcon�gurations, would tend to gather the nodes intoa tight clump held apart only by pressure from therepulsive force.Our �rst analysis of the system, in Section 2.2,shows that the nodes do in fact clump together, andthat in the stationary distribution of the Markov chainthe expected maximal unfairness is O(logn). We de�nea potential function on the states of the system, in whicheach node contributes an amount that is exponential inits deviation from 0 in that state. Since the Markovchain corresponding to the system is ergodic whenn � 3, we can use the fact that in the stationarydistribution the expected change in the value of thepotential function is 0. We show that at any state wherethe maximal unfairness exceeds O(logn), the potential

function is likely to drop by a large amount: theexpected change in the value of the potential function isat most �n+ 1. On the other hand we show that fromany state, the potential function can rise by at most1. For these small rises to balance out the large dropsin the states with unfairness greater than O(logn), theprobability of \high" unfairness can be at most O(1=n);and since (as we show) the unfairness of any state cannotexceed n, the expected unfairness is just O(logn).However, in our simulations of the process it ap-peared that the maximum unfairness of the globalgreedy algorithm against a uniform random adversarywas much smaller than O(logn). Motivated by this ob-servation, we examined the process more closely. Theresult was the tight asymptotic bounds of �(log logn)on the expected maximum unfairness. The details ofthese bounds are given in the full version of the pa-per [1]. Here, we limit ourselves to an overview of themethod used to obtain them.We obtain the O(log logn) upper bound througha sequence of tighter and tighter approximations. Tobegin with, we pick a time interval of length nlog logn,whose starting point t is any point in the execution. Weshow that with high probability, the maximal unfairnessgoes below logn by time t + n4, and then stays below2 logn throughout the interval. We then remove the�rst n4 steps in the interval from consideration. Nextwe show that, for each � > 0, with high probabilitywe can chop o� a pre�x of this new interval whoselength is polynomial in n, leaving a su�x in whichthe unfairness of all but �n nodes is bounded by aconstant k. For any such interval we show that withhigh probability, we can chop o� a second pre�x, whoselength depends polynomially on n but not at all on kor �, to leave a su�x in which at most �2n nodes areabove k + 2. Repeating this operation log logn timesgives us an interval whose length is only polynomiallyless than the interval we originally started with, and inwhich the maximal unfairness is at most O(log logn)(with high probability). Since for su�ciently largen the low-unfairness interval is much longer than thehigh-unfairness interval, it dominates the average andthus gives an O(log logn) upper bound on the expectedunfairness.This analysis is tight: by time t+n5, the unfairnessis at least log logn and stays above log logn for atleast nlogn additional steps. The proof of this lowerbound mirrors the proof of the upper bound. Weshow that with high probability, any su�ciently longinterval throughout which the unfairness of at least �nnodes is at least k contains a su�x, whose startingpoint is polynomially shifted, in which the unfairnessof at least c�2n nodes is at least k + 1; after log logn



Fairness in schedulingiterations of this process we are left with an intervalwhose length is close to the length of the original intervalwe picked, such that with high probability, throughoutthis resulting interval, the maximal unfairness is at leastlog logn.2.2 The O(logn) BoundWe maintain a position dj for every j 2 [n].Initially, dj = 0 for all j 2 [n]. Given a request for a pairof nodes, the algorithm increases by one the position ofthe node whose current position is the smallest amongthe two, and decreases by one the position of the otherparticle in the pair. If two particles in the same positionare requested, we ip an unbiased coin to determinewhich goes up and which goes down. Other positionsremain the same. This is a randomized version of theglobal greedy strategy of [17]. We assume that thesequence generated is very long. The exact meaningof \very long" will be explained shortly. (We notethat randomization of the on-line player is not essentialto the analysis since, against the uniformly randomadversary, the nodes may be considered unlabeled.)Given such random input, the behavior of theglobal greedy algorithm can be represented as a Markovchain. By our analysis of the deterministic global greedyperformance in the next section, we know that jdjj �d(n�1)=2e for all j 2 [n]. Thus, if the nodes are labeled,then the state space is f�d(n�1)=2e; : : : ; d(n�1)=2egn.The i-th coordinate of a state s, denoted si, is theposition of the i-th node on the line. We now de�nethe transitions and their probabilities. Let s be a stateand fi; jg a possible request. Without loss of generality,assume si � sj . If si < sj , then with probability �n2��1there is a transition to s0 with s0i = si + 1, s0j = sj � 1and for all k 62 fi; jg, s0k = sk. If si = sj , then withprobability �n2��1=2 there is a transition to s0 as above,and with the same probability there is a transition tos00 with s00i = si � 1, s00j = sj + 1 and for all k 62 fi; jg,s00k = sk. For n � 3 it is easy to see that limited to theset of states reachable from the initial state of the all-zero vector, this Markov chain is ergodic and thereforeconverges to a stationary distribution. We are interestedin the long-term behavior of the chain and thereforeassume that the adversary sequence is long enough forthe stationary behavior to be dominant.If the nodes are unlabeled, which we will assumein this section since we are considering the uniformlyrandom adversary, then e�ectively we are interested in asmallerMarkov chain, which is a coarsening of the abovechain, and in which each state is simply a con�gurationof stacks of nodes lying on the integers: thus, the stateis represented by a vector n�d(n�1)=2e; : : : ; nd(n�1)=2ewhere each ni is the number of particles at position i.

Let pj = nj=n. Note that if s is a state reachable fromthe all 0's vector, then Pi ini = 0.Let � = 32 and let the potential function�(s) = d(n�1)=2eXj=�d(n�1)=2enj � �jjj:Let ��(s) = Es0[�(s0)] � �(s), where s0 denotesthe (random) state reached from s in one step of theMarkov chain.We wish to estimate ��(s). The following fact iseasily veri�ed:Fact 2.1. If s0 is any outcome of requesting twonodes occupying the same position, then �(s0)��(s) >0. If s0 is the outcome of requesting two nodes that areat distance 1 apart, then �(s0) � �(s) = 0. Otherwise,�(s0)� �(s) < 0.Estimating ��(s) is done by estimating the contri-bution of each position separately, and adding up thosecontributions. The idea is to show that for any j 6= 0,the positive contribution due to two nodes in j beingrequested is overwhelmed by the negative contributiondue to a node in j and a node on the other side of 0 be-ing requested. We will ignore other requests. They canonly increase the negative contribution. In order to dothis correctly, we need to consider disjoint events, so, toevaluate the contribution of position j, we will considerordered pairs, where the �rst of the two is from j. Thefollowing fact is also easily veri�ed:Fact 2.2. Under a uniform distribution over pairsof nodes, Prob[j; j] = Prob[ordered j; j] � p2j ;and12Prob[i; j; i 6= j] = Prob[ordered i; j]= Prob[ordered j; i] � pipj:These relations are inequalities (rather than equalities)because we draw each pair without replacement; thismakes it slightly less likely that we will draw two nodesat the same location.Let Aj be the event that the �rst node in a pairis j (given that we are at con�guration s). Formally,the contribution of position j to ��(s) is pjE[�(s0) ��(s)jAj ]. We now show:Lemma 2.1. For j, 1 � jjj � d(n � 1)=2e, thecontribution of position j to ��(s) is at most �16p2j�jjj.Proof. Let j > 0. The argument for j < 0 issymmetric. If the pair j; j is chosen, the increase in thepotential function is �j+1 + �j�1 � 2�j. On the otherhand, if the (ordered) pair chosen is j; i (i < 0), the



Ajtai, Aspnes, Naor, Rabani, Schulman and Waartsdecrease in the potential function is �j+�i��j�1��i+1.We need an estimate on the distribution of nodes onthe negative side. Since the sum of the positions of thenodes is 0, the nj nodes at j must be balanced by nodesin negative positions. Hence:Xi<0(�i)ni � j � nj:It is not di�cult to see that the worst case (the leastdecrease in �) is when equality holds and when all thenegative side nodes are in one position �x. Notice thatwe might need to consider a non-integral x. So, we getxn�x � jnj , or p�x � jxpj. The total decrease in thepotential function due to position j is at least:p2j ( jx ��j + �x � �j�1 � �x�1���j+1 � �j�1 + 2�j);for x minimizing this expression. Observe that this de-crease is \essentially" the sum of two �rst derivativesof �j, minus its second derivative. The basis of ourlower bound on this expression is that for � below somethreshold, the increase due to the �rst derivative (rep-resenting the choice of nodes at two di�erent locations)dominates the decrease due to the second derivative(representing the choice of colocated nodes).We show that for j > 0 the decrease is at leastp2j�j=6, i.e. that for all j � 1 and x > 0,j ��j + �x � �j�1 � �x�1�> x��j+1 + �j�1 � 2�j + 16�j� ;or j �1� ��1� ��j + �x� > x��+ ��1 � 116 ��j:Recalling that � = 32 we want to prove that13j ��j + �x� > 13x�j:If x � j this is trivial. If x > j write r = x� j > 0. Wewish to show that j�r > r, and since j � 1 it su�cesto show that �r > r for all r > 0. Let � = minr �r � r.Some calculus shows that � is achieved at r = � log log�log� ;and moreover that � varies monotonically in �. Thuswe can solve for � = 0, �nding that this is achieved for� = e1=e � 1:4447, and conclude that � > 0 for all� > e1=e and in particular for the chosen � = 32 .For j = 0 we cannot guarantee a negative contri-bution. However, we can upper bound the conditionalpositive contribution by 2�� 2 = 1, since the probabil-ity of choosing a pair in positions 0; 0 is at most 1 andthe total increase due to these positions is at most 1.

Concluding the above discussion: the contributionof position 0 is at most +1. The contribution of positionj, jjj � 1 is at most �16p2j(32 )jjj.Let T = 3 log32 n+ log 32 6 and assume n � 3. Then,if s has a node whose distance from 0 is more than T ,then ��(s) � �n + 1 (note that if this node's positionis j, then pj � 1n ).Now, partition the state space into two subsets: Acontains those states that do not contain a node beyondT ; B contains the other states. We haveFact 2.3. 8a 2 A, ��(a) � 1. 8b 2 B, ��(b) ��n + 1.Since the total expected change in �, under thestationary distribution, must be 0, it must hold thatunder the stationary distribution, Prob[B] � 1n . Itfollows that:Theorem 2.1. For n � 3, in the stationary distri-bution, the probability that any node is beyond distanceT = 3 log32 n + log32 6 from the origin is at most 1=n.Thus the expectation of the maximum distance of a nodefrom the origin is � T + 1 = O(logn).3 Bounded UnfairnessWe consider the following on-line deterministic strategyfor the n-participant carpool game. We maintain thedeviation dj for every j 2 [n]. Initially, dj = 0 forall j 2 [n]. Given a request r (i.e., a subset of [n]of cardinality 2 or more), the algorithm chooses j 2 rsuch that dj = mini2r di, breaking ties arbitrarily. Thedeviations are then updated as follows. dj increasesby 1 � 1=jrj. For all other elements i 2 r, i 6= j, didecreases by 1=jrj. Other deviations remain the same.This strategy is the global greedy strategy of [17].We show an upper bound on the unfairness resultingfrom the deterministic global greedy algorithm. Thefollowing fact is trivial.Fact 3.1. For any adversary %, the unfairness ofglobal greedy is given by maxj2[n] jdjj, where the valuesof dj are taken at the end of the game.Lemma 3.1. Consider an n-participant carpoolgame between any adversary and the global greedy al-gorithm. For every round of the game there exists aweighted directed graph with node set [n], edge set Eand weight function w with the following properties.1. 8e 2 E; 1n! � w(e) � 12 :2. 8e 2 E, w(e) = pq , where p; q are integers,and q divides n!.



Fairness in scheduling3. 8j 2 [n]; dj = Xe2in(j)w(e)� Xe2out(j)w(e)where in(j) is the set of incoming edges incident to jand out(j) is the set of outgoing edges incident to j.Proof. The proof is by induction on the number ofrounds.Basis: No rounds. Take an empty graph.Inductive step: Assume the claim holds for t � 1rounds. Let the t-th request of the adversary be Xt =fi1; : : : ; ikg.De�ne w(i; j) to be the weight of the directed edgefrom i to j, if such exists, or minus the weight of thedirected edge from j to i, if such exists, or 0 otherwise.Without loss of generality, assume that the globalgreedy algorithm selects i = i1. We will modify thegraph in two steps. The �rst modi�cation, describedbelow, maintains the two conditions of the lemma forround t� 1 and in addition establishes that there is noedge to i from any other node in Xt. The second stepadds an edge with weight 1=k from every ij , 2 � j � kto i. If these new edges create any pairs of anti-paralleledges, we merge each such pair to a single directededge. Its weight is the di�erence between the largerand the smaller weight in the pair, and its directioncoincides with the larger weighted edge in the pair. (Ifthe two weights are equal, we remove both edges fromthe graph.)To complete the proof we show how to do the �rststep. Suppose there exists j 2 Xt such that w(j; i) > 0.From the de�nition of the algorithm we have that afterround t�1, di � dj. Thus, there exists l 2 [n] such thatw(l; j) > w(l; i).We execute the following procedure.while w(j; i) > 0 doChoose l 2 [n] such that w(l; j) > w(l; i)if w(l; j) > 0 thenLet w = minf1=2� w(l; i); w(j; i); w(l; j)g,Increase w(l; i) by w,Decrease w(l; j) and w(j; i) by w each.else (w(l; j) < 0)Let w = minf1=2� w(j; l); w(j; i); w(i; l)g,Increase w(j; l) by w,Decrease w(j; i) and w(i; l) by w each.stop .Recall that by the inductive hypothesis, at the begin-ning of round t, w(e) = pq , where p; q are integers andq divides n!. Clearly, this property is preserved by theabove procedure (note that n � 2). Moreover, it impliesthat w(e) continues to be � 1=n! unless it becomes 0.Thus in both cases of the procedure above, in each iter-ation the sum of the weights over all edges in the graph

decreases by w � 1=n!. Therefore, this process termi-nates.We conclude from Fact 3.1 and Lemma 3.1 thatTheorem 3.1. For any adversary %, the unfairnessof global greedy is at most dn�12 e.In comparison, we note that the results of [2]provide a lower bound on the performance of anydeterministic algorithm. Stated in our framework, it isshown there that in the edge orientation problem, anysequence of requests which picks only colocated pairsof nodes, will eventually result in the nodes occupyingthe entire interval [�d(n�1)=2e; d(n�1)=2e] (except theorigin in case n is even). Moreover it is shown there thatthe number of requests necessary to bring the nodes tothis con�guration is n(n+1)(n+2)=24 if n is even, and(n�1)n(n+1)=24 if n is odd. We use this bound on thelength of the request sequence later on to prove lowerbounds for randomized algorithms.Thus:Theorem 3.2. ([2]) For every deterministic edgeorientation algorithm f , for every k 2 Z+, k � dn�12 e,there exists an adversary % that gives a sequence of atmost k3 requests, pushing the unfairness achieved by fto at least k.(To apply the bounds to the carpool problem, dividethe unfairness by 2.)4 Reducing Vector Rounding to the 2-PersonCarpool GameIn this section we show that the general carpool problemcan be reduced to one where each day only two peoplearrive. This is done by a reduction from the still moregeneral vector rounding problem. The n-dimensionalvector rounding problem is this: the input is a list ofvectors (V1; V2; : : :), where each Vt = (v1t ; v2t ; : : : vnt ) is avector of length n over the reals. The output is a listof integer vector (Z1; Z2; : : :) where Zt = (z1t ; z2t ; : : : znt )is a rounding of Vt that preserves the sum, i.e. for all1 � i � n we have that zit 2 fbvitc; dviteg and thatnXi=1 zit 2 fb nXi=1 vitc; d nXi=1 vitegThe goal is to make the accumulated di�erence ineach entry as small as possible, i.e. for every t wewant max1�i�n jPtj=1 zij � Ptj=1 vij j to be as smallas possible. For input vectors (V1; V2; : : :) and out-put vector (Z1; Z2; : : :) the associated cost at time t ismax1�i�n jPtj=1 zij �Ptj=1 vij j. As before we can con-sider the o�-line problem where we are given the vec-tors (V1; V2; : : :) ahead of time and the on-line problemwhere we are given the vectors (V1; V2; : : :) one at a timeand have to decide on the corresponding (Z1; Z2; : : :).



Ajtai, Aspnes, Naor, Rabani, Schulman and WaartsAs in the carpool problem, in the on-line version weconsider deterministic algorithms as well as randomizedalgorithms against the oblivious adversary.Tijdeman [23] has considered the vector roundingproblem and has shown that the o�-line version hasa solution of di�erence 1, i.e. for every sequence ofreal vectors (V1; V2; : : :) there exist integer (Z1; Z2; : : :)such that for all t � 1 we have max1�i�n jPtj=1 zij �Ptj=1 vijj � 1.One can easily cast the carpool problem as a vectorrounding problem: for a sequence (X1; X2; : : :) createthe vectors (V1; V2; : : :) where for all t � 1 and all1 � i � n we havevit = � 1=jXtj if i 2 Xt0 if i 62 Xt.Therefore if we can connect the performance ofthe 2-person carpool problem to the vector roundingproblem then we will have reduced the general carpoolproblem to the 2-person problem.Before we show the reduction we will make somesimplifying assumptions, which can be easily justi�ed:We assume that for every t and 1 � i � n, vit is non-negative (since we can add the absolute value of dvite andthen subtract it from zit) and thatPni=1 vit is an integer(if not, it only gives us more freedom). Furthermore weassume an a priori bound T on the number of vectors,i.e. t < T (otherwise we will increase T as we go alongin multiples of 2).Our reduction is applicable to both deterministicand randomized algorithms.Theorem 4.1. � Deterministic Algorithms:Suppose that we have a deterministic algorithm ffor the n-participant carpool problem where everyday two people show up that maintains unfairnessat most �(n), then we can construct a determin-istic algorithm f 0 to the vector rounding problemthat maintains an accumulated di�erence of at most2�(n) for every sequence ' = (V1; V2; : : :).� Randomized algorithms against the oblivious adver-sary: Suppose that we have a randomized algorithm~f for the n-participant carpool problem where everyday two people show up that maintains unfairness�(n), then we can construct a randomized algo-rithm ~f 0 for the vector rounding problem that main-tains an accumulated di�erence of at most 2�(n),for every sequence ' = (V1; V2; : : :).Proof. The reduction is made by a \scaling" argu-ment, similar in avor to the bit-by-bit rounding of Beckand Fiala [10, 9]. The constructions of the determinis-tic and randomized algorithms for the vector rounding

problem from the corresponding algorithms for the 2-person carpool problem are similar, only the analysis isa bit di�erent. Consider the binary representation ofthe vit's. We will make it only ` = 2 logT bits long byignoring the rest of the bits and adjusting one of thevit. This can hardly a�ect the outcome (by a 1T additiveterm only, and this can be made arbitrarily small bymaking ` larger). Run ` carpool instances in parallel,one corresponding to each of the ` bit positions. Foreach instance apply the strategy for the carpool prob-lem (f or ~f depending on the case). Each problem has nparticipants and the accounting and decisions (But notthe inputs!) of each instance are done independently.We start by describing how the `-th instance isde�ned and then how the rest of the instances follow.Consider the `-th bits of the entries of Vt. SincePi vit 2Z+, there must be an even number of i's such that the `-th bit of vit is 1. Partition them into pairs arbitrarily andschedule those pairs as requests. If vit and vjt are paired,request fi; jg. Those i's that were chosen to drive bythe carpool strategy f or ~f are rounded up, i.e. we add2�l to vit. Those i's that were not chosen as driversare rounded down, i.e. we simply throw away (that is,replace with a 0) the `-th bit of vit. It is easy to verifythat this procedure preserves the sum of entries (i.e.Pni=1 vit) and that the modi�ed Vt requires only ` � 1bits for its representation. The procedure is repeatednow with the ` � 1st instance and so on. After we dothat for all the ` carpool instances we are left with aninteger Vt which is our Zt.How good is this reduction?Let C(t; j; i; V1; V2; : : :Vt) denote the unfairness of thei-th participant at the j-th instance de�ned by inputsV1; V2; : : :Vt. Let D(t; i; V1; V2; : : :Vt) be Ptj=1(zij � vij)on input V1; V2; : : :Vt. We claim thatD(t; i; V1; V2; : : :Vt)= X̀j=1 12j�1C(t; j; i; V1; V2; : : :Vt)This can be shown by induction on `. The contribu-tion of the `-th instance is 1=2`�1, since we have scaledthe `-th instance by 2`�1.We now turn to the analysis. In the deter-ministic case we know by assumption on f thatjC(t; j; i; V1; V2; : : :Vt)j is bounded by �(n). Therefore,jD(t; i; V1; V2; : : :Vt)j� X̀j=1 12j�1 jC(t; j; i; V1; V2; : : :Vt)j � 2�(n)and therefore max1�i�n jD(t; i; V1; V2; : : :Vt)j � 2�(n)



Fairness in schedulingFor the case of a randomized algorithm, we should�rst be convinced that the adversary's power is nostronger than that of an oblivious adversary in each ofthe carpool instances that we have de�ned. Observethat the inputs to the j instance are determined by(V1; V2; : : :) and the decisions made by the carpool solveron instances j + 1 through `. The decisions made ininstance k, for 1 � k � j at any point in time do note�ect the inputs to instance j. Therefore, for instance j,the adversary chooses a distribution on (V1; V2; : : :) andcan even be given the power to make all the decisionsin instances j + 1 through ` and yet all that it wouldbe doing cannot depend on the decision at the j-thinstance. Given that we know thatmax1�i�n jD(t; i; V1; V2; : : :Vt)j� X̀j=1 12j�1 max1�k�n jC(t; j; k; V1; V2; : : :Vt)jand the expectation ofmax1�k�n jC(t; j; k; V1; V2; : : :Vt)jis bounded by �(n), we get that the expectation ofmax1�i�n jD(t; i; V1; V2; : : :Vt)j is at most 2�(n).AcknowledgmentsWe are grateful to Noga Alon, Tom�as Feder,Alan Frieze, Anna Karlin, Nimrod Megiddo, BabuNarayanan, Gerald Schedler and Joel Spencer for manyhelpful discussions.References[1] M. Ajtai, J. Aspnes, M. Naor, Y. Rabani, L. J.Schulman and O. Waarts. Fairness in Schedulingmanuscript, available from the authors.[2] R. Anderson, L. Lov�asz, P. Shor, J. Spencer,E. Tardos and S. Winograd. Disks, balls, andwalls: analysis of a combinatorial game. AmericanMathematical Monthly 96, 1989, pp. 481{493.[3] T. E. Anderson, S. Owicki, J. B. Saxe and C. P.Thacker. High Speed Switch Scheduling for LocalArea Networks. ACM Trans. on Comm. Syst., 11(4),1993, pp. 319{352.[4] J. Aspnes, Y. Azar, A. Fiat, S. A. Plotkin, andO. Waarts. On-line load balancing with applicationsto machine scheduling and virtual circuit routing. InProc. of the 25th Ann. ACM Symp. on Theory ofComputing, pages 623-631, May 1993.[5] Y. Azar, A. Broder, and A. Karlin, E. Upfal.Balanced allocations. In Proc. of the 26th Ann. ACMSymp. on Theory of Computing, pages 593{602, May1994.[6] Y. Azar, J. Naor, and R. Rom. The competitivenessof on-line assignment. In Proc. of the 3rd Ann. ACM-SIAM Symp. on Discrete Algorithms, pages 203{210,1992.
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