Fairness in Scheduling

(Extended Abstract)

Miklos Ajtai*

James Aspnes!

. +
Moni Naor*

Yuval Rabani® Leonard J. Schulman?

Orli Waartsl!l

Abstract

On-line machine scheduling has been studied extensively, but
the fundamental issue of fairness in scheduling is still mostly
open. In this paper we explore the issue in settings where
there are long living processes which should be repeatedly
scheduled for various tasks throughout the lifetime of a
system. For any such instance we develop a notion of
desired load of a process, which is a function of the tasks it
participates in. The unfairnessof a system is the maximum,
taken over all processes, of the difference between the desired
load and the actual load.

An example of such a setting is the carpool problem
suggested by Fagin and Williams [17]. In this problem,
a set of n people form a carpool. On each day a subset
of the people arrive and one of them is designated as the
driver. A scheduling rule is required so that the driver will
be determined in a ‘fair’ way.

We investigate this problem under various assumptions
on the input distribution. We also show that the carpool
problems can capture several other problems of fairness in
scheduling.

1 Introduction

1.1 Owur results

~ *IBM Research Division, Almaden Research Center. E-Mail:
ajtai@almaden.ibm.com

tDept. of Computer Science, Yale University. Supported by
NSF grant CCR-9410228. During part of this research this
author was visiting IBM Almaden Research Center. E-Mail:
aspnes@cs.yale.edu

{Incumbent of the Morris and Rose Goldman Career De-
velopment Chair, Dept. of Applied Math and Computer Sci-
ence, Weizmann Institute, Israel. Research supported by an
Alon Fellowship and a grant from the Israel Science Founda-
tion administered by the Israeli Academy of Sciences. E-Mail:
naor@wisdom.weizmann.ac.il

§This work was done while the author was at ICSI, Berkeley,
and at the Lab. for Computer Science, MIT. Work at ICSI
supported by a Rothschild postdoctoral fellowship. Work at MIT
supported by ARPA/Army contract DABT63-93-C-0038. Present
address: Department of Computer Science, University of Toronto,
Toronto, Ontario M5S 1A4, E-mail: rabani@cs.toronto.edu.

TComputer U.C. Berkeley. Work
supported by an NSF postdoctoral fellowship. E-Mail:
schulman@cs.berkeley.edu

Science Division,

”Computer Science Division, U.C. Berkeley. Supported by
an NSF postdoctoral fellowship. Part of this work was done
while this author was at IBM Almaden Research Center. E-Mail:
waarts@cs.berkeley.edu

Consider the following edge orientation problem:
on a set of n nodes labeled {1,...,n} there is a
(possibly infinite) sequence of edges, i.e. pairs of nodes.
Undirected edges arrive one by one, and each edge
should be oriented upon its arrival. The goal is devise a
method of orienting the edges so that in every node at
every point in time the difference between the indegree
(Note that it
can be shown that for every sequence there exists an

and outdegree 1s as small as possible.

orientation such that at any point along the sequence
the maximum difference is 1.)
The problem comes in three flavors:
1. Find a deterministic rule for orienting the edges
and analyze it on the the worst input sequence.

2. Suggest a rule and analyze it under the some as-
sumption on the distribution of the sequence, in
particular that each edge in the sequence is cho-
sen uniformly from all possible edges and indepen-
dently of the rest of the sequence.

3. Suggest a randomized rule for orienting the edges
and analyze 1ts expected performance on the worst
sequence.

The greedy algorithm is the one where an edge
is oriented from the node with the smaller difference
between the outdegree and indegree to the one with the
larger difference. In the deterministic version of the rule
ties are broken according to the lexicographic order. In
the randomized version of the rule ties are broken at
random.

We address the three flavors of the problem and
obtain the following results:

1. The deterministic performance is n/2: there is a
method (the greedy algorithm) that achieves this
bound and for any deterministic rule there is a
sequence where this difference will occur. (The

lower bound is from [17]).

2. The expected difference of the greedy algorithm on
the uniform distribution on the edges is ©(loglog n)
and we derive a complete description of the process



in this case. This is the main technical contribution
of the paper. In this abstract we show in detail
only a proof of an O(logn) upper bound. We give
an overview of the O(loglogn) proof.

3. There is a rule (local greedy) with expected per-
formance O(y/nlogn) on any sequence. The lower
bound is (/log n).

In addition we investigate the relationship between
the edge orientation problem and the wvector rounding
problem. In this problem we are given a real matrix col-
umn by column and should produce an integer matrix
so that each column in the output matrix is a rounding
of the corresponding column in the input matrix that
preserves the sum. The goal is to minimize the max-
imum over all rows of the difference between the sum
of the row in the integer and real matrix. (A formal
definition can be found in Section 4.) We show:

4. A general transformation from the vector rounding
problem to the edge orientation problem, at the
price of doubling the expected difference. The
transformation applies to both deterministic and
randomized algorithms.

As it turns out, problems in fairness of scheduling
can be reduced to the vector rounding problem.

1.2 Motivation and Applications

On-line machine scheduling has been studied exten-
sively (see e.g. [4, b, 6, 8, 15, 18, 15, 22]), but the issue
of fairness in job allocation has usually not been con-
sidered quantitatively (however, see [3, 13, 16, 19, 20]).
In a typical on-line scheduling problem, there are n ma-
chines and a number of separate jobs; the jobs arrive
one by one, and each job must be assigned to exactly
one of the machines, thereby increasing the load on this
machine by an amount that depends on both the job
and the machine. The goal of the scheduling problems
studied in all the above literature is to minimize the
maximum machine load. The situation in which this
model seems most applicable is if all machines have one
owner that wishes to optimize their utilization. If the
machines have different owners, then fairness in alloca-
tion may be an additional, or primary, parameter to be
optimized by the scheduler; for instance the dispatcher
for a number of independently owned taxicabs.

Assuming that machines (or their owners) are re-
luctant (or eager) to do the required jobs, a “fair” rule,
which takes into account the benefit to each machine
(owner) of performing each task, must be applied. Thus,
when faced with such a problem we should define the
desired load of a machine (the fair share) and then sug-
gest an algorithm for scheduling the jobs that tries to
give each machine a number of jobs corresponding to its
fair share.

Ajtai, Aspnes, Naor, Rabani, Schulman and Waarts

An interesting property of the results we obtain in
studying “fair” scheduling, is that there are scheduling
protocols for which the discrepancy between the loads
of the machines can be bounded in terms of functions
only of the number of the machines, with no dependence
on the elapsed time.

We elaborate here on two cases where fairness is de-

sired and see the connections with the edge orientation
problem mentioned above.
The Carpool Problem The issue of fairness in
scheduling was first isolated by Fagin and Williams [17],
who abstracted it to what they call the carpool problem.
A rough quotation from [17]: “Suppose that n people,
tired of spending their time and money in gasoline lines,
decide to form a carpool. Each day a subset of these
people will arrive and one of them should drive. A
scheduling algorithm is required for determining which
person should drive on any given day. The algorithm
should be perceived as fair by all members so as to
encourage their continued participation.”

The first question is how to define fairness. If the
driver were not a member of the group, but a hired
driver, then the meaning of fairness would be clear:
The professional driver charges a fixed price for every
ride, and each day the people that show up split the
price of the driver equally among them. When the
driver is just one of the set of people that show up, this
reasoning leads immediately to the following definition
of fairness given in [17]: If on a certain day, d people
show up, each of them owes the driver 1/d of a ride.
The wunfairness of the algorithm at a certain point of
the execution is defined as the maximum number of
owed rides that anybody has accumulated up to that
point or that anybody owes the rest of the group at
that point. We will evaluate the algorithms according
to the expected value of their unfairness when computed
throughout the execution, and refer to it as ezpected
unfairness.

Fagin and Williams proposed a natural algorithm
for this problem, which we call the global greedy algo-
rithm. When a set of people shows up, the one to drive
will be the one that is currently the poorest. Ties are
broken arbitrarily. They analyzed the performance of
this algorithm assuming the worst case sequence of re-
quests. In this setting they showed that the unfairness
of this algorithm is bounded above by a number that is
exponential in the number of people, but independent in
the number of days, and mentioned that Coppersmith
managed to reduce this upper bound to linear (how-
ever, this proof is lost [14]). Finally, in collaboration
with Coppersmith they showed a linear lower bound on
the unfairness in this setting.

We view the carpool problem as a game played be-



Fairness in scheduling

tween the carpool members and an adversary scheduler,
which determines which people show up on each day.
There are three main types of adversaries treated in
the literature: the adaptive, the oblivious, and the uni-
formly random, where the distinction 1s made according
to the way the adversary determines which people show
up. The adaptive adversary constructs its schedule on
the fly, making decisions that may depend on the whole
previous history of the game. The oblivious adversary
must fix its schedule before the game starts, though it
may choose this schedule based on knowledge of the al-
gorithm. The uniformly random adversary schedules
people each day independently and uniformly at ran-
dom.

Observe that the edge orientation problem is simply
a special case of the carpool problem, restricted to
two people arriving each day. (Though notice that
the unfairness as measured in the edge orientation
problem is double that as measured in the 2-person
carpool problem.) (For this reason we shall refer to the
performance of an algorithm for the edge orientation
problem as its unfairness.) On the other hand, the
(general) carpool problem is a special case of the vector
rounding problem: each participant corresponds to a
row, each day corresponds to a column; the ith entry of
the jth column is 0 if the ¢th participant did not show
up on the jth day, and 1s d% if d; participants, including
himself, did show up.

Therefore, an immediate byproduct of the results

mentioned above on the edge orientation problem and of
the general transformation to the vector rounding prob-
lem 1s that the general carpool problem has unfairness
of O(n) against an adaptive adversary, and expected un-
fairness of O(y/nlogn) against an oblivious adversary.
(In fact, we also show directly that the natural greedy
algorithm for the carpool problem maintains unfairness
n against an adaptive adversary).
Fair queuing Consider a system where processes
repeatedly access resources, each of which can be used
by one process at a time. For simplicity assume
that whenever a process uses a resource it takes one
unit of time. We would like to find a fair way of
ordering processes that try to access the same resource
simultaneously. Given an execution in which a process
tries to access a resource t times, with d; processes at
time ¢, its total expected waiting time, if the processes
are scheduled at random, is 22:1 d’z_l. We consider
this as the process fair waiting time. Our goal is
therefore to find a method of queuing the processes so
as to minimize the difference between the actual time
a process spends waiting for resources throughout its
execution and its fair waiting time. We refer to this
difference as the unfairness of the algorithm.

Note that we are interested in algorithms where the
unfairness is a function of the number of processes, but
is independent of the life-time of the system. Therefore,
an algorithm that queues at random the processes that
try to access the same resource simultaneously will not
do, since with high probability there will be a process
that is v/t away from its fair waiting time.

In the full version of the paper we relate the

fair queuing problem to a weighted variant of the
vector rounding problem and show that the maximum
discrepancy between the fair waiting time and actual
waiting time can be bounded by a function of the
number of processes only.
Comparison with competitive analysis A popu-
lar methodology for evaluating the performance of on-
line algorithm is the the competitive analysis approach
of Sleator and Tarjan [21]: the on-line algorithm is com-
pared with a “hypothetical” optimal off-line and bounds
on the competitive ratio are obtained (for an adaptive,
oblivious or random adversary). For the carpool prob-
lem, if one is given in advance a list specifying for each
of the days which subset arrives on that day, then it
is possible to construct a schedule whose unfairness is
bounded by one (see Section 4). Therefore we can treat
the results as being about the competitive difference of
the carpool problem. If, instead, we would have ana-
lyzed the ratio between the fair-share = offline-load and
the actual load, we would have obtained a 1+0(1) com-
petitive ratio.

1.3 Background

Our problem is related to a “chip game” analyzed
in [2]. In that game chips are placed in stacks on the
integers, and in each round, two chips which are in the
same stack may be selected, and one of them moved one
step to the right while the other is moved one step to
the left. This is the same thing that happens in the edge
orientation game when a pair of vertices with the same
indegree-outdegree difference is given; the difference
between the games is that in ours pairs which are not
colocated may also be selected (and moved toward each
other). While our game can continue ad infinitum, the
game of [2] must terminate, and some of the principal
results of that paper concern the terminating states. In
particular it is shown there that from any initial state of
chips, there i1s a unique terminating position; and when
n chips start all at the origin, no chip can be brought
to distance more than [(n — 1)/2] from the origin.

One can obtain an upper bound of [(n — 1)/2] on
the maximum unfairness of the greedy algorithm for the
edge orientation problem by a reduction to the case
of the game of [2]. The reduction is to show that for
the greedy algorithm, any sequence of requests for pairs



of nodes can be replaced by another sequence, which
reaches the same unfairness, but which uses no requests
involving non-colocated pairs. (This reduction has also
been noted recently by Babu Narayanan.) A more
general proof is given in this paper.

1.4 Organization

Due to lack of space, we do not provide the de-
tails of many of the arguments; they are available in
the full version of our paper [1]. In this extended ab-
stract we describe in detail only the O(logn) analysis
for the case of uniformly distributed requests on edges
(Section 2), the general proof guaranteeing bounded un-
fairness (Section 3), and the reduction from the vector
rounding problem to the edge orientation problem (Sec-
tion 4). An overview of the ©(loglogn) analysis for the
case of uniformly distributed requests on edges appears
in Section 2.

2 Uniformly Distributed Requests

2.1 Overview

We present two analyses of the greedy algorithm
for the edge orientation problem, for the case where the
adversary schedules the edges uniformly at random. We
say that a node is at position ¢ if and only if its indegree—
outdegree = i. In both methods the combination of the
adversary and the algorithm is represented as a Markov
process. A single state of the Markov chain is described
by the list consisting of the number of nodes at each
position.

When two nodes are paired, they either each move
one step away from the other, if they are on the same
point; or each move one step toward the other if they are
not. Intuitively, we can think of the process as a balance
between a “repulsive force” between colocated nodes
and an “attractive force” between distant ones. To
stretch this physical analogy further, we would expect
that the attractive force, being stronger in spread-out
configurations, would tend to gather the nodes into
a tight clump held apart only by pressure from the
repulsive force.

Our first analysis of the system, in Section 2.2,
shows that the nodes do in fact clump together, and
that in the stationary distribution of the Markov chain
the expected maximal unfairness is O(logn). We define
a potential function on the states of the system, in which
each node contributes an amount that is exponential in
its deviation from 0 in that state. Since the Markov
chain corresponding to the system is ergodic when
n > 3, we can use the fact that in the stationary
distribution the expected change in the value of the
potential function is 0. We show that at any state where
the maximal unfairness exceeds O(logn), the potential

Ajtai, Aspnes, Naor, Rabani, Schulman and Waarts

function is likely to drop by a large amount: the
expected change in the value of the potential function is
at most —n 4+ 1. On the other hand we show that from
any state, the potential function can rise by at most
1. For these small rises to balance out the large drops
in the states with unfairness greater than O(logn), the
probability of “high” unfairness can be at most O(1/n);
and since (as we show) the unfairness of any state cannot
exceed n, the expected unfairness is just O(logn).

However, in our simulations of the process it ap-
peared that the maximum unfairness of the global
greedy algorithm against a uniform random adversary
was much smaller than O(logn). Motivated by this ob-
servation, we examined the process more closely. The
result was the tight asymptotic bounds of ©(loglogn)
on the expected maximum unfairness. The details of
these bounds are given in the full version of the pa-
per [1]. Here, we limit ourselves to an overview of the
method used to obtain them.

We obtain the O(loglogn) upper bound through
a sequence of tighter and tighter approximations. To
begin with, we pick a time interval of length nl°glg”
whose starting point ¢ is any point in the execution. We
show that with high probability, the maximal unfairness
goes below logn by time ¢ + n*, and then stays below
2logn throughout the interval. We then remove the
first n? steps in the interval from consideration. Next
we show that, for each ¢ > 0, with high probability
we can chop off a prefix of this new interval whose
length is polynomial in n, leaving a suffix in which
the unfairness of all but en nodes is bounded by a
constant k. For any such interval we show that with
high probability, we can chop off a second prefix, whose
length depends polynomially on n but not at all on %
or ¢, to leave a suffix in which at most ¢?n nodes are
above k 4 2. Repeating this operation loglogn times
gives us an interval whose length is only polynomially
less than the interval we originally started with, and in
which the maximal unfairness is at most O(loglogn)
(with high probability). Since for sufficiently large
n the low-unfairness interval is much longer than the
high-unfairness interval, it dominates the average and
thus gives an O(loglogn) upper bound on the expected
unfairness.

This analysis is tight: by time ¢ +n®, the unfairness
is at least loglogn and stays above loglogn for at
least n'°8” additional steps. The proof of this lower
bound mirrors the proof of the upper bound. We
show that with high probability, any sufficiently long
interval throughout which the unfairness of at least en
nodes 1s at least k contains a suffix, whose starting
point is polynomially shifted, in which the unfairness
of at least ce?n nodes is at least k + 1; after loglogn



Fairness in scheduling

iterations of this process we are left with an interval
whose length is close to the length of the original interval
we picked, such that with high probability, throughout
this resulting interval, the maximal unfairness is at least
loglog n.

2.2 The O(logn) Bound

We maintain a position d; for every j € [n].
Initially, d; = 0 for all j € [n]. Given arequest for a pair
of nodes, the algorithm increases by one the position of
the node whose current position is the smallest among
the two, and decreases by one the position of the other
particle in the pair. If two particles in the same position
are requested, we flip an unbiased coin to determine
which goes up and which goes down. Other positions
remain the same. This is a randomized version of the
global greedy strategy of [17]. We assume that the
sequence generated is very long. The exact meaning
of “very long” will be explained shortly. (We note
that randomization of the on-line player is not essential
to the analysis since, against the uniformly random
adversary, the nodes may be considered unlabeled.)

Given such random input, the behavior of the
global greedy algorithm can be represented as a Markov
chain. By our analysis of the deterministic global greedy
performance in the next section, we know that |d;| <
[(n—1)/2] for all j € [n]. Thus, if the nodes are labeled,
then the state space is {—[(n—1)/2],...,[(n—1)/2]}".
The ¢-th coordinate of a state s, denoted s;, is the
position of the ¢-th node on the line. We now define
the transitions and their probabilities. Let s be a state
and {i,j} a possible request. Without loss of generality,
assume s; < s;. If 5; < 55, then with probability (g)_l
there is a transition to s’ with s} = s; +1, 57 = s; — 1
and for all k ¢ {i,j}, s, = sp. If s5; = s;, then with
probability (g)_l/Q there is a transition to s’ as above,
and with the same probability there is a transition to
s;j + 1 and for all k ¢ {i, j},
sy = sp. For n > 3 it is easy to see that limited to the

1 . "o . "o
s with s = 5, — 1, 57 =

set of states reachable from the initial state of the all-
zero vector, this Markov chain is ergodic and therefore
converges to a stationary distribution. We are interested
in the long-term behavior of the chain and therefore
assume that the adversary sequence is long enough for
the stationary behavior to be dominant.

If the nodes are unlabeled, which we will assume
in this section since we are considering the uniformly
random adversary, then effectively we are interested in a
smaller Markov chain, which is a coarsening of the above
chain, and in which each state is simply a configuration
of stacks of nodes lying on the integers: thus, the state
is represented by a vector n_pm_1)/21, -, P[(n=1)/2]
where each n; i1s the number of particles at position .

Let p; = n; /n. Note that if s is a state reachable from
the all 0’s vector, then " in; = 0.

Let oo = % and let the potential function

[(n=1)/2]
P(s) =
j==[(n-1)/2]

-
nj - ol

Let Ad(s) = Eyo[®(s")] — ®(s), where s’ denotes
the (random) state reached from s in one step of the
Markov chain.

We wish to estimate A®(s).
easily verified:

Fact 2.1. If s’ is any outcome of requesting two
nodes occupying the same position, then ®(s') — ®(s) >
0. If s’ is the outcome of requesting two nodes that are
at distance 1 apart, then ®(s') — ®(s) = 0. Otherwise,
P(s') — P(s) < 0.

Estimating A®(s) is done by estimating the contri-
bution of each position separately, and adding up those
contributions. The idea is to show that for any j # 0,
the positive contribution due to two nodes in j being
requested is overwhelmed by the negative contribution
due to a node in j and a node on the other side of 0 be-
ing requested. We will ignore other requests. They can
only increase the negative contribution. In order to do
this correctly, we need to consider disjoint events, so, to
evaluate the contribution of position j, we will consider
ordered pairs, where the first of the two is from 5. The
following fact 1s also easily verified:

Fact 2.2. Under a uniform distribution over pairs
of nodes,

The following fact is

Prob[j, j] = Problordered j, j] < pjz»,
and

1
§Prob[i,j, i#£j =
= Problordered j,i] > pip;.

Prob[ordered 1, j]

These relations are inequalities (rather than equalities)
because we draw each pair without replacement; this
makes it slightly less likely that we will draw two nodes
at the same location.

Let A; be the event that the first node in a pair
is j (given that we are at configuration s). Formally,
the contribution of position j to A®(s) is p; E[®(s) —
®(s)|4;]. We now show:

LEMMA 2.1. For j, 1 < |j| < [(n = 1)/2], the
contribution of position j to AD(s) is at most —%p]zozm.
Proof. Let j > 0. The argument for 57 < 0 is
symmetric. If the pair j,j is chosen, the increase in the
potential function is o/ *t! 4+ o=t — 2aJ. On the other
hand, if the (ordered) pair chosen is j,i¢ (i < 0), the



decrease in the potential function is o/ +a —ad ~t—at1.

We need an estimate on the distribution of nodes on
the negative side. Since the sum of the positions of the
nodes is 0, the n; nodes at j must be balanced by nodes
in negative positions. Hence:

<0
It is not difficult to see that the worst case (the least
decrease in @) is when equality holds and when all the
negative side nodes are in one position —z. Notice that
we might need to consider a non-integral z. So, we get
Tn_p > jnj, or p_y > Zp;. The total decrease in the
potential function due to position j is at least:

pj( f(@l+a”—al"l—a)
—adtt it 4 2a),

for £ minimizing this expression. Observe that this de-
crease 1s “essentially” the sum of two first derivatives
of o/, minus its second derivative. The basis of our
lower bound on this expression is that for & below some
threshold, the increase due to the first derivative (rep-
resenting the choice of nodes at two different locations)
dominates the decrease due to the second derivative
(representing the choice of colocated nodes).

We show that for j > 0 the decrease is at least
pjz»ozj/G, l.e. that for all j > 1 and = > 0,

j(ozj _|_ax _aj—l _ax—l)
> l‘(a]+1+a]_1—20z]+60¢]),

or

j(l—a_l) (aj+ax)>x<a—|—a_1—16—1) o

Recalling that o = % we want to prove that

1 . 1 .
Zila? @ Zrad
3](@ —|—oz)>3a:oz.

If # <j thisis trivial. If ¢ > j writer =z — 5 > 0. We
wish to show that ja" > r, and since j > 1 it suffices
to show that o > r for all » > 0. Let 6 = min, " — r.
Some calculus shows that 6 is achieved at r = ig{)oggl%_oz;
and moreover that 6 varies monotonically in «. Thus
we can solve for 6 = 0, finding that this is achieved for
o = e/ & 1.4447, and conclude that & > 0 for all

o > e'/¢ and in particular for the chosen o = 2. m

2

For j = 0 we cannot guarantee a negative contri-
bution. However, we can upper bound the conditional
positive contribution by 2ae — 2 = 1, since the probabil-
ity of choosing a pair in positions 0,0 is at most 1 and
the total increase due to these positions is at most 1.

Ajtai, Aspnes, Naor, Rabani, Schulman and Waarts

Concluding the above discussion: the contribution
of position 0 is at most +1. The contribution of position
J, 17| > 1 is at most —%p]z(%)m.

Let T'= 3log% n—i—log% 6 and assume n > 3. Then,
if s has a node whose distance from 0 is more than 7T,
then A®(s) < —n 4+ 1 (note that if this node’s position
is j, then p; > %)

Now, partition the state space into two subsets: A
contains those states that do not contain a node beyond
T'; B contains the other states. We have

Facr 2.3. Va € A, Ad(a) < 1. Vb€ B, Ad(b) <
—n+1.

Since the total expected change in ®, under the
stationary distribution, must be 0, it must hold that
under the stationary distribution, Prob[B] < % It
follows that:

THEOREM 2.1. Forn > 3, wn the stationary distri-
bution, the probability that any node is beyond distance
T = 3log% n + log% 6 from the origin is al most 1/n.
Thus the expectation of the mazimum distance of a node
from the origin is <T + 1 = O(logn).

3 Bounded Unfairness

We consider the following on-line deterministic strategy
for the n-participant carpool game. We maintain the
deviation d; for every j € [n]. Initially, d; = 0 for
all j € [n]. Given a request r (i.e., a subset of [n]
of cardinality 2 or more), the algorithm chooses j € r
such that d; = min;e, d;, breaking ties arbitrarily. The
deviations are then updated as follows. d; increases
by 1 — 1/|r|. For all other elements i € r, i # j, d;
decreases by 1/|r|. Other deviations remain the same.
This strategy is the global greedy strategy of [17].

We show an upper bound on the unfairness resulting
from the deterministic global greedy algorithm. The
following fact is trivial.

Fact 3.1. For any adversary o, the unfairness of
global greedy is given by max;cpn) |d;|, where the values
of d; are taken at the end of the game.

LEMMA 3.1. Consider an n-participant carpool
game between any adversary and the global greedy al-
gorithm. For every round of the game there exists a
weighted directed graph with node set [n], edge sel E
and weight function w with the following properties.

1.

L cue) <

Ve € F,
n!

N | —

Ve € E, w(e) = f]—’,
and ¢ divides n!.

where p, q are integers,



Fairness in scheduling

Vji€lnl], dj =

Z w(e) — Z w(e)

e€in(y) e€out(y)

where in(j) is the set of incoming edges incident to j
and out(j) is the set of outgoing edges incident to j.

Proof.
rounds.
Basis: No rounds. Take an empty graph.

Inductive step: Assume the claim holds for ¢ — 1
rounds. Let the t-th request of the adversary be X; =
{iy, ... ik}

Define w(i, j) to be the weight of the directed edge
from ¢ to j, if such exists, or minus the weight of the
directed edge from j to 7, if such exists, or 0 otherwise.

Without loss of generality, assume that the global
greedy algorithm selects ¢ = ¢;. We will modify the
graph in two steps. The first modification, described
below, maintains the two conditions of the lemma for
round ¢t — 1 and in addition establishes that there i1s no
edge to ¢ from any other node in Xy. The second step
adds an edge with weight 1/k from every i;, 2 < j <k
to i. If these new edges create any pairs of anti-parallel
edges, we merge each such pair to a single directed
edge. Its weight is the difference between the larger
and the smaller weight in the pair, and its direction
coincides with the larger weighted edge in the pair. (If
the two weights are equal, we remove both edges from
the graph.)

To complete the proof we show how to do the first
step. Suppose there exists j € X; such that w(j,¢) > 0.
From the definition of the algorithm we have that after
round t —1, d; < d;. Thus, there exists [ € [n] such that
w(l, 7) > w(l, ).

We execute the following procedure.
while w(j,i) > 0 do

Choose [ € [n] such that w({,j) > w(l, %)
if w(l,j) > 0 then
Let w =min{l/2 — w(l, i), w(j, i), w(, j)},
Increase w(l, ) by w,
Decrease w(l, j) and w(j, %) by w each.
else (w(l,j) < 0)
Let w=min{l/2 — w(j,{), w(j, ), w(s, )},
Increase w(j,!) by w,
Decrease w(j, i) and w(é,!) by w each.

The proof 1s by induction on the number of

stop .

Recall that by the inductive hypothesis, at the begin-
ning of round ¢, w(e) = f]—’, where p, q are integers and
q divides n!. Clearly, this property is preserved by the
above procedure (note that n > 2). Moreover, it implies
that w(e) continues to be > 1/n! unless it becomes 0.
Thus in both cases of the procedure above, in each iter-

ation the sum of the weights over all edges in the graph

decreases by w > 1/n!. Therefore, this process termi-
nates. MW

We conclude from Fact 3.1 and Lemma 3.1 that

THEOREM 3.1. For any adversary g, the unfairness
of global greedy is at most f”z;l]

In comparison, we note that the results of [2]
provide a lower bound on the performance of any
deterministic algorithm. Stated in our framework, it is
shown there that in the edge orientation problem, any
sequence of requests which picks only colocated pairs
of nodes, will eventually result in the nodes occupying
the entire interval [—[(n—1)/2], [(n—1)/2]] (except the
origin in case n is even). Moreover it is shown there that
the number of requests necessary to bring the nodes to
this configuration is n(n+1)(n+2)/24 if n is even, and
(n—Dn(n+1)/24 if nis odd. We use this bound on the
length of the request sequence later on to prove lower
bounds for randomized algorithms.

Thus:

THEOREM 3.2. ([2]) For every deterministic edge
orientation algorithm f, for every k € ZT, k < f%],
there exists an adversary o that gives a sequence of at
most k> requests, pushing the unfairness achicved by f
to at least k.

(To apply the bounds to the carpool problem, divide
the unfairness by 2.)

4 Reducing Vector Rounding to the 2-Person
Carpool Game

In this section we show that the general carpool problem
can be reduced to one where each day only two people
arrive. This is done by a reduction from the still more
general wvector rounding problem. The n-dimensional
vector rounding problem is this: the input is a list of
vectors (V1, Va,...), where each V; = (vf,vZ,...v}) is a
vector of length n over the reals. The output is a list
of integer vector (Z1, Za,...) where Zy = (2}, 22,...27)
is a rounding of V; that preserves the sum, i.e. for all
1 < i< n we have that 2! € {[v¢], [vi]} and that

n n n

Yoaedld ul [yl

i=1 i=1 i=1

The goal is to make the accumulated difference in
each entry as small as possible, i.e. for every t we
want maxi<i<n |Z§»:1 2t — Z;Il v;| to be as small
as possible. For input vectors (V1,V,...) and out-
put vector (71, Za,...) the associated cost at time ¢ is
maxi<;<n | Z;Il z]Z — Z;Il v;: . As before we can con-
sider the off-line problem where we are given the vec-
tors (V1, Va,...) ahead of time and the on-line problem
where we are given the vectors (V1, Va,...) one at a time

and have to decide on the corresponding (71, Za,...).



As in the carpool problem, in the on-line version we
consider deterministic algorithms as well as randomized
algorithms against the oblivious adversary.

Tijdeman [23] has considered the vector rounding
problem and has shown that the off-line version has
a solution of difference 1, i.e. for every sequence of
real vectors (V1, Va,...) there exist integer (71, Za, .. .)
such thgt for all £ > 1 we have max;<;<n, |Z;:1 z]Z —
Yo vl <L

One can easily cast the carpool problem as a vector
rounding problem: for a sequence (X7, Xs,...) create
the vectors (Vi,Va,...) where for all ¢ > 1 and all
1 <7< n we have

o = { (1)/|Xt|

Therefore if we can connect the performance of
the 2-person carpool problem to the vector rounding
problem then we will have reduced the general carpool
problem to the 2-person problem.

Before we show the reduction we will make some
simplifying assumptions, which can be easily justified:
We assume that for every ¢ and 1 < i < n, v} is non-
negative (since we can add the absolute value of [v¢] and
then subtract it from z{) and that Y_;_, v} is an integer
(if not, it only gives us more freedom). Furthermore we
assume an a priori bound 7" on the number of vectors,
i.e. t < T (otherwise we will increase T' as we go along
in multiples of 2).

Our reduction is applicable to both deterministic
and randomized algorithms.

ifie X,
ifi g X;.

THEOREM 4.1. e Deterministic Algorithms:
Suppose that we have a deterministic algorithm f
for the n-participant carpool problem where every
day two people show up that maintains unfairness
at most a(n), then we can construct a determin-
istic algorithm f' to the vector rounding problem
that maintains an accumulated difference of at most

2a(n) for every sequence ¢ = (V1, Va,...).

e Randomized algorithms against the oblivious adver-
sary: Suppose that we have a randomized algorithm
ffor the n-participant carpool problem where every
day two people show up that maintains unfairness
a(n), then we can construct a randomized algo-
rithm f’ for the vector rounding problem that main-
tains an accumulated difference of at most 2a(n),
for every sequence ¢ = (V1,Va,...).

Proof. The reduction is made by a “scaling” argu-
ment, similar in flavor to the bit-by-bit rounding of Beck
and Fiala [10, 9]. The constructions of the determinis-
tic and randomized algorithms for the vector rounding

Ajtai, Aspnes, Naor, Rabani, Schulman and Waarts

problem from the corresponding algorithms for the 2-
person carpool problem are similar, only the analysis is
a bit different. Consider the binary representation of
the vi’s. We will make it only ¢ = 2logT bits long by
ignoring the rest of the bits and adjusting one of the
vi. This can hardly affect the outcome (by a % additive
term only, and this can be made arbitrarily small by
making ¢ larger). Run £ carpool instances in parallel,
one corresponding to each of the ¢ bit positions. For
each instance apply the strategy for the carpool prob-
lem (f or f depending on the case). Each problem has n
participants and the accounting and decisions (But not
the inputs!) of each instance are done independently.

We start by describing how the /-th instance is
defined and then how the rest of the instances follow.
Consider the ¢-th bits of the entries of V;. Since Y, vi €
Z7T, there must be an even number of #’s such that the (-
th bit of v! is 1. Partition them into pairs arbitrarily and
schedule those pairs as requests. If v{ and v] are paired,
request {7,j}. Those i’s that were chosen to drive by
the carpool strategy f or f are rounded up, i.e. we add
27! to vi. Those i’s that were not chosen as drivers
are rounded down, i.e. we simply throw away (that is,
replace with a 0) the (-th bit of v¢. It is easy to verify
that this procedure preserves the sum of entries (i.e.
Sor_,vi) and that the modified V; requires only ¢ — 1
bits for its representation. The procedure is repeated
now with the £ — 1st instance and so on. After we do
that for all the £ carpool instances we are left with an
integer V; which 1s our Z7;.

How good is this reduction?
Let C(t, 4,1, V1,Va,...V;) denote the unfairness of the
1-th participant at the j-th instance defined by inputs

Vi, Va, ... Vi Let D(t,i,V1,Va, ... V) be 30 (2 — i)
on input Vi, Va,...V;. We claim that
D(t,i, Vi, Va,... Vi)
1 -
= 22]._100,],1,1/1,1/2,...%)
]:

This can be shown by induction on ¢. The contribu-
tion of the ¢-th instance is 1/2°~! since we have scaled
the /-th instance by 2¢~1.

We now turn to the analysis. In the deter-
ministic case we know by assumption on f that

|C(t, 4,4, V1, Va,... ;)| is bounded by «(n). Therefore,

|D(t, 4, Vi, Va, ... V3)]
1
< Z; S| 7,0V, Ve, - Vi) < 2a(n)
]:
and therefore maxi<i<n |D(t, 4, V1, Vo, ... Vi)| < 2a(n)



Fairness in scheduling

For the case of a randomized algorithm, we should
first be convinced that the adversary’s power is no
stronger than that of an oblivious adversary in each of
the carpool instances that we have defined. Observe
that the inputs to the j instance are determined by
(V1, Va,...) and the decisions made by the carpool solver
on instances j + 1 through £. The decisions made in
instance k, for 1 < k < j at any point in time do not
effect the inputs to instance j. Therefore, for instance j,
the adversary chooses a distribution on (V3, Va,...) and
can even be given the power to make all the decisions
in instances j 4+ 1 through ¢ and yet all that it would
be doing cannot depend on the decision at the j-th
instance. Given that we know that

max |D(t,4, V1, Va, ... V3)|
1<i<n
1
S ' 9i—1 11%1ka§n|c(tajakavlav2a~~~‘/t)|
j=1
and the expectation of
max |C(t,j,k, V1, Va,... V})|

1<k<n

is bounded by a(n), we get that the expectation of
maxi<i<n [D(t,4, V1, Va, ... V;)| is at most 2a(n). W

Acknowledgments

We are grateful to Noga Alon, Tomdas Feder,
Alan Frieze, Anna Karlin, Nimrod Megiddo, Babu
Narayanan, Gerald Schedler and Joel Spencer for many
helpful discussions.

References

[1] M. AJjrar, J. AspNEs, M. Naor, Y. RaBani, L. J.
SCHULMAN AND O. WAARTS. Fairness in Scheduling
manuscript, available from the authors.

[2] R. AnDERSON, L. LovAsz, P. SHOR, J. SPENCER,
E. Tarpos anD S. WINOGRAD. Disks, balls, and
walls: analysis of a combinatorial game. American
Mathematical Monthly 96, 1989, pp. 481-493.

[3] T. E. ANDERSON, S. Owickl, J. B. SAXE anD C. P.
THACKER. High Speed Switch Scheduling for Local
Area Networks. ACM Trans. on Comm. Syst., 11(4),
1993, pp. 319-352.

[4] J. AsPNEs, Y. AzAR, A. FiaT, S. A. PLOTKIN, AND
O. WAARTS. On-line load balancing with applications
to machine scheduling and virtual circuit routing. In
Proc. of the 25th Ann. ACM Symp. on Theory of
Computing, pages 623-631, May 1993.

[5] Y. AZAR, A. BRODER, AND A. KARLIN, E. UPFAL.
Balanced allocations. In Proc. of the 26th Ann. ACM
Symp. on Theory of Computing, pages 593-602, May
1994.

[6] Y. AZAR, J. NAOR, AND R. RoM. The competitiveness
of on-line assignment. In Proc. of the 3rd Ann. ACM-
SIAM Symp. on Discrete Algorithms, pages 203-210,
1992.

[7]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

7s. BARANYAIL. On the factorization of the complete
uniform hypergraph. In Infinite and finite sets, Collo-
quia Mathematica Societatis Janos Bolyai, 1973.

Y. BarraL, A. Fiat, H. KArRLOFF, AND R. VOHRA.
New algorithms for an ancient scheduling problem.
In Proc. of the 24th Ann. ACM Symp. on Theory of
Computing, pages 51-58, 1992.

J. BEcK. Balanced two-colorings of finite sets in the
cube. Discrete Math, 73:13-25, 1988-9.

J. BEck ANnD T. FirarLA Integer-making theorems.
Discrete Applied Mathematics, 3:1-8, 1981.

S. BeEN-Davip, A. BorobpiN, R.M. Karp, G. TAR-
DOS, AND A. WIGDERSON. On the power of random-
ization in online algorithms. In Proc. of the 22nd Ann.
ACM Symp. on Theory of Computing, pages 379386,
May 1990.

A. BoroDIN, N. LINTAL, AND M. SAkKS. An optimal
on-line algorithm for metrical task systems. In Proc.
of the 19th Ann. ACM Symp on Theory of Computing,
pages 373-382, May 1987.

A. CHARNY. An Algorithm for Rate Allocation in a
Packet-Switching Network With Feedback MIT/LCS
TR-601, 1994.

D. CoPPERSMITH. Private Communication.

E. Davis anD J.M. JAFFE. Algorithms for scheduling
tasks on unrelated processors. JACM, 28:712-736,
1981.

A. DEMERS, S. KESHAV AND S. SHENKAR Analysis
and simulation of a fair queuing algorithm Proc. ACM
SIGCOMM 89, pp. 1-12.

R. FaciN aAND J.H. WiLLIAMS. A fair carpool schedul-
ing algorithm. In IBM Journal of Research and Devel-
opment, 27(2):133-139, March 1983.

R.L. GrRAHAM. Bounds for certain multiprocessing
anomalies. Bell System Technical Journal, 45:1563—
1581, 1966.

E. HAHNE. Round-robin scheduling for maxmin fair-
ness in data networks [EFE J. on Selected areas in
Communication, vol 9(7), 1991.

K. RAMAKRISHNAN AND R. JAIN. A binary feedback
scheme for congestion avoidance in computer networks.
ACM Trans. on Comm. Syst., 8(2), 1990, pp. 158-181.
D.D. SLEator AND R.E. TARJAN. Amortized effi-
ciency of list update and paging rules. Communication
of the ACM, 28(2):202-208, 1985.

D. Samoys, J. WEIN, AND D. P. WILLIAMSON.
Scheduling parallel machines on-line. In Proc. of the
32nd IFEFE Ann. Symp. on Foundations of Computer
Science, pages 131-140, 1991.

R. TiiDEMAN. The chairman assignment problem.
Discerte Math, 32:323-330, 1980.

A.C. Yao. Probabilistic computation, towards a
unified measure of complexity. In Proc. of the 18th
Ann. IEFE Symp. on Foundation of Computer Science,
pages 222-227, 1977.



