
Tight bounds for anonymous adopt-commit objects

James Aspnes1 Faith Ellen2

1Yale

2Toronto

June 6th, 2011

SPAA 2011 Tight bounds for anonymous adopt-commit objects

Motivation

What we really care about is shared-memory consensus:

3

2

1

1

1

1
Consensus

Termination: All non-faulty processes terminate.

Validity: Every output value is somebody’s input.

Agreement: All output values are equal.

SPAA 2011 Tight bounds for anonymous adopt-commit objects

Model

Usual asynchronous shared-memory model:

n concurrent processes.

Communication by reading and writing atomic registers.

Asynchronous, with timing controlled by an adversary
scheduler.

Wait-free: each process finishes in a finite number of steps.

We will be considering anonymous algorithms in which all
processes run the same code.

SPAA 2011 Tight bounds for anonymous adopt-commit objects

Implementing consensus

Do something Agree?

No

Done!
Yes

Typical implementation: use some randomized process that
produces agreement with some probability, and commit to a
return value when we detect agreement.

But how to detect agreement?

SPAA 2011 Tight bounds for anonymous adopt-commit objects

Adopt-commit objects

3

2

1 Adopt-
Commit

commit, 1

adopt, 1

adopt, 1

(Gafni, PODC 1998; Mostefaoui et al., SICOMP 2008)

Termination: All non-faulty processes terminate.

Validity: Every output value is somebody’s input.

Agreement: All output values are equal.

Coherence: All output values are equal if some process
commits.

Acceptance: All processes commit if all inputs are equal.

Any consensus object is also an adopt-commit object.

SPAA 2011 Tight bounds for anonymous adopt-commit objects

Adopt-commit objects

3

2

1 Adopt-
Commit

adopt, 3

adopt, 1

adopt, 2

(Gafni, PODC 1998; Mostefaoui et al., SICOMP 2008)

Termination: All non-faulty processes terminate.

Validity: Every output value is somebody’s input.

Agreement: All output values are equal.

Coherence: All output values are equal if some process
commits.

Acceptance: All processes commit if all inputs are equal.

Any consensus object is also an adopt-commit object.

SPAA 2011 Tight bounds for anonymous adopt-commit objects

Adopt-commit objects

1

1

1 Adopt-
Commit

commit, 1

commit, 1

commit, 1

(Gafni, PODC 1998; Mostefaoui et al., SICOMP 2008)

Termination: All non-faulty processes terminate.

Validity: Every output value is somebody’s input.

Agreement: All output values are equal.

Coherence: All output values are equal if some process
commits.

Acceptance: All processes commit if all inputs are equal.

Any consensus object is also an adopt-commit object.

SPAA 2011 Tight bounds for anonymous adopt-commit objects

Adopt-commit objects

3

2

1
Consensus

commit, 1

commit, 1

commit, 1

(Gafni, PODC 1998; Mostefaoui et al., SICOMP 2008)

Termination: All non-faulty processes terminate.

Validity: Every output value is somebody’s input.

Agreement: All output values are equal.

Coherence: All output values are equal if some process
commits.

Acceptance: All processes commit if all inputs are equal.

Any consensus object is also an adopt-commit object.

SPAA 2011 Tight bounds for anonymous adopt-commit objects

Conflict detectors

We show that adopt-commit is equivalent (up to small constants)
to a conflict detector:

Two operations: write and read.

The read operation returns true if distinct values have
previously been written, otherwise false.

SPAA 2011 Tight bounds for anonymous adopt-commit objects

Conflict detectors

We show that adopt-commit is equivalent (up to small constants)
to a conflict detector:

Two operations: write and read.

The read operation returns true if distinct values have
previously been written, otherwise false.

SPAA 2011 Tight bounds for anonymous adopt-commit objects

Conflict detector from adopt-commit

procedure write(v)
begin

if adoptCommit(v) 6= (commit, v) then
conflict← true

end
end

procedure read()

begin
return conflict

end

commit, 1
Adopt-
Commit

1

SPAA 2011 Tight bounds for anonymous adopt-commit objects

Conflict detector from adopt-commit

procedure write(v)
begin

if adoptCommit(v) 6= (commit, v) then
conflict← true

end
end

procedure read()

begin
return conflict

end

adopt, 3
Adopt-
Commit

1

SPAA 2011 Tight bounds for anonymous adopt-commit objects

Adopt-commit from conflict detector

procedure adoptCommit(v)
begin

conflict.write(v)
u ← proposal
if u = ⊥ then

proposal← v
else

v ← u
end
if conflict.read() = false
then

return (commit, v)
else

return (adopt, v)
end

end

Conflict
detector

Proposal

1

False

commit, 1

SPAA 2011 Tight bounds for anonymous adopt-commit objects

Adopt-commit from conflict detector

procedure adoptCommit(v)
begin

conflict.write(v)
u ← proposal
if u = ⊥ then

proposal← v
else

v ← u
end
if conflict.read() = false
then

return (commit, v)
else

return (adopt, v)
end

end

Conflict
detector

Proposal

1

True

commit, 1

adopt, 1

SPAA 2011 Tight bounds for anonymous adopt-commit objects

Adopt-commit from conflict detector

procedure adoptCommit(v)
begin

conflict.write(v)
u ← proposal
if u = ⊥ then

proposal← v
else

v ← u
end
if conflict.read() = false
then

return (commit, v)
else

return (adopt, v)
end

end

Conflict
detector

Proposal

2

True

adopt, 1

adopt, 2

SPAA 2011 Tight bounds for anonymous adopt-commit objects

Conflict detector using subsets

(Aspnes, PODC 2010)

Assign unique write quorum Wv of
k out of 2k registers to each value
v , where k = Θ(logm) satisfies(2k
k

)
≥ m.

Write v by writing all registers in
Wv .

Check for v ′ 6= v by reading all
registers in W v .

I always see you if you finish
writing Wv ′ .

Cost: Θ(logm) individual work and Θ(logm) space.
Can we do better?

SPAA 2011 Tight bounds for anonymous adopt-commit objects

Conflict detector using subsets

(Aspnes, PODC 2010)

Assign unique write quorum Wv of
k out of 2k registers to each value
v , where k = Θ(logm) satisfies(2k
k

)
≥ m.

Write v by writing all registers in
Wv .

Check for v ′ 6= v by reading all
registers in W v .

I always see you if you finish
writing Wv ′ .

Cost: Θ(logm) individual work and Θ(logm) space.
Can we do better?

SPAA 2011 Tight bounds for anonymous adopt-commit objects

Conflict detector using permutations

With 2 values:

Processes with 1 write r1 then read r2.

Processes with 2 write r2 then read r1

With a conflict, whoever writes last sees the other value.

SPAA 2011 Tight bounds for anonymous adopt-commit objects

Conflict detector using permutations

1

With 2 values:

Processes with 1 write r1 then read r2.

Processes with 2 write r2 then read r1

With a conflict, whoever writes last sees the other value.

SPAA 2011 Tight bounds for anonymous adopt-commit objects

Conflict detector using permutations

1

With 2 values:

Processes with 1 write r1 then read r2.

Processes with 2 write r2 then read r1

With a conflict, whoever writes last sees the other value.

SPAA 2011 Tight bounds for anonymous adopt-commit objects

Conflict detector using permutations

1 2

With 2 values:

Processes with 1 write r1 then read r2.

Processes with 2 write r2 then read r1

With a conflict, whoever writes last sees the other value.

SPAA 2011 Tight bounds for anonymous adopt-commit objects

Conflict detector using permutations

1 2

With 2 values:

Processes with 1 write r1 then read r2.

Processes with 2 write r2 then read r1

With a conflict, whoever writes last sees the other value.

SPAA 2011 Tight bounds for anonymous adopt-commit objects

Conflict detector using permutations

With m values:

Use k registers with k! ≥ m.

Each value v gets a distinct permutation πv .

Processes execute the following code:

for i in πv do
r ← ri
if r = ⊥ then

ri ← v
else if r 6= v then

conflict← true
end

end

Any distinct permutations invert some pair
⇒ conflict detected as in two-value version.

Cost: Θ(logm/ log logm).

12345

52143

SPAA 2011 Tight bounds for anonymous adopt-commit objects

Conflict detector using permutations

With m values:

Use k registers with k! ≥ m.

Each value v gets a distinct permutation πv .

Processes execute the following code:

for i in πv do
r ← ri
if r = ⊥ then

ri ← v
else if r 6= v then

conflict← true
end

end

Any distinct permutations invert some pair
⇒ conflict detected as in two-value version.

Cost: Θ(logm/ log logm).

12345

52143

SPAA 2011 Tight bounds for anonymous adopt-commit objects

Conflict detector using permutations

With m values:

Use k registers with k! ≥ m.

Each value v gets a distinct permutation πv .

Processes execute the following code:

for i in πv do
r ← ri
if r = ⊥ then

ri ← v
else if r 6= v then

conflict← true
end

end

Any distinct permutations invert some pair
⇒ conflict detected as in two-value version.

Cost: Θ(logm/ log logm).

12345

52143

SPAA 2011 Tight bounds for anonymous adopt-commit objects

Upper bound result

We have reduced the cost of an m-valued adopt-commit from

Θ(logm)

to
Θ(logm/ log logm).

This is not especially exciting on its own, but we also have a
matching lower bound.

SPAA 2011 Tight bounds for anonymous adopt-commit objects

Lower bound: deterministic version

Theorem: Any anonymous deterministic conflict detector has an
input that causes a process to take Ω(logm/ log logm) steps in a
solo execution

Proof outline:

1 For each input v , consider set of registers accessed in resulting
solo execution Ev .

2 Define a permutation πv of this set based on order of accesses.

3 If πv and πv ′ agree on order of registers accessed in both Ev

and Ev ′ , then there exists an execution where v 6= v ′ conflict
is not detected.

4 Avoiding this requires longest πv to have at least
Ω(logm/ log logm) elements.

SPAA 2011 Tight bounds for anonymous adopt-commit objects

Using clones to hide writes

We are using a classic trick of (Fich,
Herlihy, and Shavit, JACM 1998):

Most clones do the same thing at
the same time (they’re anonymous
and deterministic).

But we leave a few behind to cover
any register we write.

If we read the register again, we
release a delayed write to restore
our last value.

This transforms solo execution Ev

into clone execution E ∗v .

1

SPAA 2011 Tight bounds for anonymous adopt-commit objects

Using clones to hide writes

We are using a classic trick of (Fich,
Herlihy, and Shavit, JACM 1998):

Most clones do the same thing at
the same time (they’re anonymous
and deterministic).

But we leave a few behind to cover
any register we write.

If we read the register again, we
release a delayed write to restore
our last value.

This transforms solo execution Ev

into clone execution E ∗v .

1

1

SPAA 2011 Tight bounds for anonymous adopt-commit objects

Using clones to hide writes

We are using a classic trick of (Fich,
Herlihy, and Shavit, JACM 1998):

Most clones do the same thing at
the same time (they’re anonymous
and deterministic).

But we leave a few behind to cover
any register we write.

If we read the register again, we
release a delayed write to restore
our last value.

This transforms solo execution Ev

into clone execution E ∗v .

2

1

SPAA 2011 Tight bounds for anonymous adopt-commit objects

Using clones to hide writes

We are using a classic trick of (Fich,
Herlihy, and Shavit, JACM 1998):

Most clones do the same thing at
the same time (they’re anonymous
and deterministic).

But we leave a few behind to cover
any register we write.

If we read the register again, we
release a delayed write to restore
our last value.

This transforms solo execution Ev

into clone execution E ∗v .

2

1

2

SPAA 2011 Tight bounds for anonymous adopt-commit objects

Using clones to hide writes

We are using a classic trick of (Fich,
Herlihy, and Shavit, JACM 1998):

Most clones do the same thing at
the same time (they’re anonymous
and deterministic).

But we leave a few behind to cover
any register we write.

If we read the register again, we
release a delayed write to restore
our last value.

This transforms solo execution Ev

into clone execution E ∗v .

2

1

SPAA 2011 Tight bounds for anonymous adopt-commit objects

First-write/last-read permutation

Ev = W1 R2 W1 R3 W2 R1 R3
↓ ↓ ↓

πv = 1 2 3

For each register r , pick the

First write to r if there is one, or
Last read from r otherwise.

Let πv list the registers in order of these operations.

SPAA 2011 Tight bounds for anonymous adopt-commit objects

Interleaved execution

E ∗v W1 R2 W1 R3 W2 R1 R3
E ∗v ′ R2 W1 R1 R2 W4 (W1) R1

Interleave E ∗v and E ∗v ′ according to πv ∪ πv ′ to make chosen
operations on the same registers adjacent.

Put last-reads before first-writes.

Use delayed clones to rewrite registers before later reads.

SPAA 2011 Tight bounds for anonymous adopt-commit objects

Why the interleaving works

Restricting the view to a single register:

If I don’t write to r , my last read of r comes before your first
write:
E ∗v R2 W2
E ∗v ′ R2 R2

If I do write to r , your first write happens at the same time as
mine, so we can use cloned operations to mask it (and any
subsequent writes):

E ∗v W1 W1 R1
E ∗v ′ W1 R1 (W1) R1

⇒ Conflict detector doesn’t work unless πv and πv ′ are
inconsistent for all v 6= v ′.

SPAA 2011 Tight bounds for anonymous adopt-commit objects

Combinatorial lemma

Claim: Any family of pairwise-inconsistent partial permutations
{πv} satisfies ∑

v

1

|πv |!
≤ 1.

Proof:

1 Pick a random ordering of all registers.

2 Let Av be the event that πv is increasing in this ordering.

3 Pr[Av] = 1
|πv |! .

4 Observe that if πv and πv ′ are inconsistent, Av ∩ Av ′ = ∅.
5 ⇒

∑
Pr[Av] = Pr [

⋃
Av] ≤ 1.

Corollary: Pigeonhole argument gives 1
|πv |! ≤

1
m for some v , which

gives maxv |πv | = Ω(logm/ log logm).

SPAA 2011 Tight bounds for anonymous adopt-commit objects

Lower bound: randomized version

For a randomized conflict detector:

1 Define Ev to be shortest solo execution that occurs with
nonzero probability for input v .

2 Repeat same analysis as for deterministic executions.

3 If we can interleave E ∗v and E ∗v ′ , there is a (small) nonzero
probability that every clone flips its coins the right way,
violating the spec.

So lower bound applies with probability 1 to solo executions of
randomized algorithms as well.

SPAA 2011 Tight bounds for anonymous adopt-commit objects

Dependence on n

Let n be the number of processes.

Interleaving consumes O(1) clones per step.

⇒ lower bound can’t exceed Ω(n).

Can also get O(n) upper bound.

So real bound is:

Θ

(
min

(
logm

log logm
, n

))
Same lower bound applies for anonymous m-valued consensus.

SPAA 2011 Tight bounds for anonymous adopt-commit objects

Open problem

Does Θ
(

min
(

logm
log logm , n

))
bound hold without anonymity?

Progress so far (not in proceedings version):

Lower bound:

Ω

(
min

(
logm

log logm
,

√
log n

log log n

))
for deterministic implementations.

Upper bound:

O

(
min

(
logm

log logm
, log n

))
.

SPAA 2011 Tight bounds for anonymous adopt-commit objects

