Tight bounds for anonymous adopt-commit objects

James Aspnes! Faith Ellen?

lYale

2Toronto

June 6th, 2011

SPAA 2011 Tight bounds for anonymous adopt-commit objects

What we really care about is shared-memory consensus:

@ Termination:

®©
®©

N el
®0®

1]
@9 — |Consensus | — | (@18
\ ®

~—

\

®
(&
O}

All non-faulty processes terminate.

o Validity: Every output value is somebody’s input.

o Agreement: All output values are equal.

SPAA 2011 Tight bounds for anonymous adopt-commit objects

Usual asynchronous shared-memory model:

@ n concurrent processes.
@ Communication by reading and writing atomic registers.

@ Asynchronous, with timing controlled by an adversary
scheduler.
@ Wait-free: each process finishes in a finite number of steps.

We will be considering anonymous algorithms in which all
processes run the same code.

SPAA 2011 Tight bounds for anonymous adopt-commit objects

Implementing consensus

Do something Done!

@ Typical implementation: use some randomized process that
produces agreement with some probability, and commit to a
return value when we detect agreement.

@ But how to detect agreement?

SPAA 2011 Tight bounds for anonymous adopt-commit objects

Adopt-commit objects

0 3 0 commit, 1

.
1010 1‘ Adopt- i adopts 1
~ - Commit ~
dopt, 1
o7 AN 72dopt,

~— NG

3 |8

O]

(Gafni, PODC 1998; Mostefaoui et al., SICOMP 2008)

@ Termination: All non-faulty processes terminate.
o Validity: Every output value is somebody’s input.

@ Coherence: All output values are equal if some process
commits.

@ Acceptance: All processes commit if all inputs are equal.

Any consensus object is also an adopt-commit object.

SPAA 2011 Tight bounds for anonymous adopt-commit objects

Adopt-commit objects

3 adopt, 3

2. P

00 1- " o6 adopt, 2
~ Commit ~
/'

dopt, 1
o7 \®a0p,

~— NG

O]

(Gafni, PODC 1998; Mostefaoui et al., SICOMP 2008)

@ Termination: All non-faulty processes terminate.
o Validity: Every output value is somebody’s input.

@ Coherence: All output values are equal if some process
commits.

@ Acceptance: All processes commit if all inputs are equal.

Any consensus object is also an adopt-commit object.

SPAA 2011 Tight bounds for anonymous adopt-commit objects

Adopt-commit objects

0] 0 commit, 1

55 1\ Adopt. - commit, 1
— 77| commit | | =
/

1 commit, 1
@® \ ®

~— NG

3 |8

O]

(Gafni, PODC 1998; Mostefaoui et al., SICOMP 2008)

@ Termination: All non-faulty processes terminate.
o Validity: Every output value is somebody’s input.

@ Coherence: All output values are equal if some process
commits.

@ Acceptance: All processes commit if all inputs are equal.

Any consensus object is also an adopt-commit object.

SPAA 2011 Tight bounds for anonymous adopt-commit objects

Adopt-commit objects

3 0 commit, 1

N\

-~ commit, 1
- o —
/’

2 commit, 1
@® \ ®

~— NG

3 |8

O]

(Gafni, PODC 1998; Mostefaoui et al., SICOMP 2008)

@ Termination: All non-faulty processes terminate.
o Validity: Every output value is somebody’s input.

@ Coherence: All output values are equal if some process
commits.

@ Acceptance: All processes commit if all inputs are equal.

Any consensus object is also an adopt-commit object.

SPAA 2011 Tight bounds for anonymous adopt-commit objects

Conflict detectors

| . False
® Conflict
@-/ Detector
/

1
@@

We show that adopt-commit is equivalent (up to small constants)
to a conflict detector:

@ Two operations: write and read.

@ The read operation returns true if distinct values have
previously been written, otherwise false.

SPAA 2011 Tight bounds for anonymous adopt-commit objects

Conflict detectors

3

1> Conflict _ [o® True
Detector

-

We show that adopt-commit is equivalent (up to small constants)
to a conflict detector:

@\@
9 |

@ Two operations: write and read.

@ The read operation returns true if distinct values have
previously been written, otherwise false.

SPAA 2011 Tight bounds for anonymous adopt-commit objects

Conflict detector from adopt-commit

procedure write(v)
begin
if adoptCommit(v) # (commit, v) then
conflict < true

1
end -
end G\D_@ commit, 1 &iﬁﬁ:lt
procedure read ()
begin
return conflict
end

SPAA 2011 Tight bounds for anonymous adopt-commit objects

Conflict detector from adopt-commit

procedure write(v)
begin
if adoptCommit(v) # (commit, v) then
conflict < true

end 1 Adopt-
end G/DQ 2 1 Commit
procedure read ()
begin

return conflict
end

SPAA 2011 Tight bounds for anonymous adopt-commit objects

Adopt-commit from conflict detector

procedure adoptCommit (v)
begin
conflict.write(v)

u < proposal

if u= 1 then
proposal «+ v

else Proposal
V< u

end
if conflict.read() = false

then @ @ commit, 1
return (commit, v) False ~
else

return (adopt, v) Conflict
end detector

end

SPAA 2011 Tight bounds for anonymous adopt-commit objects

Adopt-commit from conflict detector

procedure adoptCommit (v)
begin
conflict.write(v)

u < proposal
if u= 1 then 1
proposal «+ v
else Proposal
Vi< u adopt, 1
end @ @

if conflict.read() = false

then @ @ commit, 1
return (commit, v) True ~
else

return (adopt, v) Conflict
end detector

end

SPAA 2011 Tight bounds for anonymous adopt-commit objects

Adopt-commit from conflict detector

procedure adoptCommit (v)
begin
conflict.write(v)

u < proposal
if u= 1 then 2
proposal «+ v
else Proposal
Vi< u adopt, 2
end @ @

if conflict.read() = false

then adopt, 1
return (commit, v) @2@
else

return (adopt, v) Conflict
end detector

end

SPAA 2011 Tight bounds for anonymous adopt-commit objects

Conflict detector using subsets

(Aspnes, PODC 2010)

@ Assign unique write quorum W, of
k out of 2k registers to each value
v, where k = ©(log m) satisfies

2k
@ Write v by writing all registers in J—
W, .

@ Check for v/ # v by reading all

registers in W .
@ | always see you if you finish

writing W,/.
Cost: ©(log m) individual work and ©(log m) space.
Can we do better?

SPAA 2011 Tight bounds for anonymous adopt-commit objects

Conflict detector using subsets

(Aspnes, PODC 2010)

@ Assign unique write quorum W, of
k out of 2k registers to each value
v, where k = ©(log m) satisfies

2k
>
@ Write v by writing all registers in J— Qogoee S
OB O
W, . vel

@ Check for v/ # v by reading all

registers in W .
@ | always see you if you finish

writing W,/.
Cost: ©(log m) individual work and ©(log m) space.
Can we do better?

SPAA 2011 Tight bounds for anonymous adopt-commit objects

Conflict detector using permutations

@@

]

o®

With 2 values:

@ Processes with 1 write r; then read r.
@ Processes with 2 write r» then read rp

@ With a conflict, whoever writes last sees the other value.

SPAA 2011 Tight bounds for anonymous adopt-commit objects

Conflict detector using permutations

o®

With 2 values:

@ Processes with 1 write r; then read r.
@ Processes with 2 write r» then read rp

@ With a conflict, whoever writes last sees the other value.

SPAA 2011 Tight bounds for anonymous adopt-commit objects

Conflict detector using permutations

0J0,

N——

/

SR

o®

With 2 values:

@ Processes with 1 write r; then read r.
@ Processes with 2 write r» then read rp

@ With a conflict, whoever writes last sees the other value.

SPAA 2011 Tight bounds for anonymous adopt-commit objects

Conflict detector using permutations

With 2 values:

@ Processes with 1 write r; then read r.
@ Processes with 2 write r» then read rp

@ With a conflict, whoever writes last sees the other value.

SPAA 2011 Tight bounds for anonymous adopt-commit objects

Conflict detector using permutations

With 2 values:

@ Processes with 1 write r; then read r.
@ Processes with 2 write r» then read rp

@ With a conflict, whoever writes last sees the other value.

SPAA 2011 Tight bounds for anonymous adopt-commit objects

Conflict detector using permutations

With m values:
@ Use k registers with k! > m.
@ Each value v gets a distinct permutation 7.

@ Processes execute the following code: 12345

for i in 7, do @@

r<1r ~——
if r = 1 then \HH
ri <— Vv
else if r # v then (T @)
conflict < true \
end 52143
end @ @

@ Any distinct permutations invert some pair
= conflict detected as in two-value version.

o Cost: ©(log m/ loglog m).

SPAA 2011 Tight bounds for anonymous adopt-commit objects

Conflict detector using permutations

With m values:
@ Use k registers with k! > m.
@ Each value v gets a distinct permutation 7.

@ Processes execute the following code: 12345

for i in 7, do @@

r<1r ~——
if r = 1 then \HH
ri <— Vv
else if r # v then 0000)
conflict « true ’
end 52143
end @ @

N—

@ Any distinct permutations invert some pair
= conflict detected as in two-value version.

o Cost: ©(log m/ loglog m).

SPAA 2011 Tight bounds for anonymous adopt-commit objects

Conflict detector using permutations

With m values:
@ Use k registers with k! > m.
@ Each value v gets a distinct permutation 7.

@ Processes execute the following code: 12345

for i in 7, do @@

r<1r ~——
if r = 1 then \HH
ri <— Vv
else if r # v then 0000)
conflict < true \
end 52143
end @ @

S

@ Any distinct permutations invert some pair
= conflict detected as in two-value version.

o Cost: ©(log m/ loglog m).

SPAA 2011 Tight bounds for anonymous adopt-commit objects

Upper bound result

We have reduced the cost of an m-valued adopt-commit from
O(log m)

to
O(log m/ log log m).

This is not especially exciting on its own, but we also have a
matching lower bound.

SPAA 2011 Tight bounds for anonymous adopt-commit objects

Lower bound: deterministic version

Theorem: Any anonymous deterministic conflict detector has an
input that causes a process to take Q(log m/ loglog m) steps in a
solo execution

Proof outline:
@ For each input v, consider set of registers accessed in resulting
solo execution E, .
@ Define a permutation 7, of this set based on order of accesses.

© If w, and 7., agree on order of registers accessed in both E,
and E,/, then there exists an execution where v # v/ conflict
is not detected.

@ Avoiding this requires longest 7, to have at least
Q(log m/ log log m) elements.

SPAA 2011 Tight bounds for anonymous adopt-commit objects

Using clones to hide writes

We are using a classic trick of (Fich,
Herlihy, and Shavit, JACM 1998):

@ Most clones do the same thing at
the same time (they're anonymous @
and deterministic). —

N

@ But we leave a few behind to cover
any register we write.
o If we read the register again, we

release a delayed write to restore @ @
our last value. N

@ This transforms solo execution E,
into clone execution E.

SPAA 2011 Tight bounds for anonymous adopt-commit objects

Using clones to hide writes

We are using a classic trick of (Fich,
Herlihy, and Shavit, JACM 1998):

@ Most clones do the same thing at @@
the same time (they're anonymous ~ @@
L] ~
and deterministic). .

@ But we leave a few behind to cover
any register we write.
o If we read the register again, we

release a delayed write to restore @ @
our last value. N

@ This transforms solo execution E,
into clone execution E.

SPAA 2011 Tight bounds for anonymous adopt-commit objects

Using clones to hide writes

We are using a classic trick of (Fich,
Herlihy, and Shavit, JACM 1998):

@ Most clones do the same thing at @@
the same time (they're anonymous ~ @@
and deterministic). A ~—
o But we leave a few behind to cover
any register we write. 2
o If we read the register again, we Y/
release a delayed write to restore @ @
our last value. N

@ This transforms solo execution E,
into clone execution E.

SPAA 2011 Tight bounds for anonymous adopt-commit objects

Using clones to hide writes

We are using a classic trick of (Fich,
Herlihy, and Shavit, JACM 1998):

@ Most clones do the same thing at @@
the same time (they're anonymous ~ @@
L] ~
and deterministic). .

@ But we leave a few behind to cover
any register we write.
o If we read the register again, we
release a delayed write to restore

our last value. OIO; N
@ This transforms solo execution E,
into clone execution E.

SPAA 2011 Tight bounds for anonymous adopt-commit objects

Using clones to hide writes

We are using a classic trick of (Fich,
Herlihy, and Shavit, JACM 1998):
@ Most clones do the same thing at @@
the same time (they're anonymous ~ ©©®
and deterministic).

@ But we leave a few behind to cover \
any register we write.
o If we read the register again, we
release a delayed write to restore

our last value. OIO; N
@ This transforms solo execution E,
into clone execution E.

SPAA 2011 Tight bounds for anonymous adopt-commit objects

First-write /last-read permutation

E, = W1 R2 W1 R3 W2 Rl R3
4 I 1
T, = 1 2 3

@ For each register r, pick the

o First write to r if there is one, or
o Last read from r otherwise.

@ Let 7, list the registers in order of these operations.

SPAA 2011 Tight bounds for anonymous adopt-commit objects

Interleaved execution

E; w1 R2 W1 R3 W2 R1 R3
E; R2 wi R1 R2 W4 (W1) R1

o Interleave E; and E, according to m, U,/ to make chosen
operations on the same registers adjacent.

@ Put last-reads before first-writes.

@ Use delayed clones to rewrite registers before later reads.

SPAA 2011 Tight bounds for anonymous adopt-commit objects

Why the interleaving works

Restricting the view to a single register:

o If | don’t write to r, my last read of r comes before your first
write:
E; R2 W2
E; R2 R2
o If | do write to r, your first write happens at the same time as
mine, so we can use cloned operations to mask it (and any
subsequent writes):
E; W1 W1l R1
E) W1l R1 (W1) R1

= Conflict detector doesn't work unless 7, and 7,/ are
inconsistent for all v # v/.

SPAA 2011 Tight bounds for anonymous adopt-commit objects

Combinatorial lemma

Claim: Any family of pairwise-inconsistent partial permutations

{m,} satisfies
1
2 i St
» |y !

Proof:
@ Pick a random ordering of all registers.
Q Let A, be the event that 7, is increasing in this ordering.
Q Pr[A/] = |7T IR
@ Observe that if m, and 7,/ are inconsistent, A, N A,» = ().
@ = > PrlA/]=Pr[JUA/] <1

1
Corollary: Pigeonhole argument gives - for some v, which

\W\‘—

gives max, |m,| = Q(log m/ log log m).

SPAA 2011 Tight bounds for anonymous adopt-commit objects

Lower bound: randomized version

For a randomized conflict detector:

@ Define E, to be shortest solo execution that occurs with
nonzero probability for input v.

@ Repeat same analysis as for deterministic executions.

© If we can interleave E; and E,, there is a (small) nonzero
probability that every clone flips its coins the right way,
violating the spec.

So lower bound applies with probability 1 to solo executions of
randomized algorithms as well.

SPAA 2011 Tight bounds for anonymous adopt-commit objects

Dependence on n

Let n be the number of processes.

Interleaving consumes O(1) clones per step.

Can also get O(n) upper bound.

© (min M, n
log log m

Same lower bound applies for anonymous m-valued consensus.

°
@ = lower bound can't exceed Q(n).
°
°

So real bound is:

SPAA 2011 Tight bounds for anonymous adopt-commit objects

Open problem

Does © (min (log m n)) bound hold without anonymity?

loglog m?

Progress so far (not in proceedings version):

@ Lower bound:

2 (" (igleg e)

log log m’ log log n

for deterministic implementations.

O [min M,Iogn .
log log m

SPAA 2011 Tight bounds for anonymous adopt-commit objects

@ Upper bound:

