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1 IntrodutionIn the \lassial" parallel random aess mahine (PRAM) model [20℄, aset of proesses exeuting in lok-step ommuniate by applying read andwrite operations to a shared memory. Existing shared memory arhitetures,however, are inherently asynhronous: proessors' relative speeds are unpre-ditable, at least in the short term, beause of timing unertainties intro-dued by variations in instrution omplexity, page faults, ahe misses, andoperating system ativities suh as preemption or swapping. A number ofresearhers have noted this mismath, and have proposed the asynhronousPRAM model as an alternative [16, 17, 21, 41℄. In this model, asynhronousproesses ommuniate by applying atomi read and write operations tothe shared memory 2. Tehniques for implementing these memory loa-tions, often alled atomi registers, have also reeived onsiderable attention[13, 14, 32, 35, 40, 43, 44℄.Muh of the work on asynhronous PRAM models addresses the prob-lem of omputing funtions, suh as parallel summation or substring math-ing, whose inputs reside in the shared memory. Many pratial applia-tions, however, suh as operating systems and data bases, are not organizedaround funtional omputation. Instead, they are organized around long-lived data objets suh as sets, queues, diretories, and so on. In this paper,we investigate the extent to whih the asynhronous PRAM model supportslong-lived, highly-onurrent data objets. There are several reasons whylong-lived objets are inherently more diÆult than funtional omputation.A data objet has an unbounded lifetime during whih eah proess an ex-eute an arbitrary dynamially-hosen sequene of operations. The thatdata strutures must be reused, but they must retain enough information toensure that \sleepy" proesses that arbitrarily suspend and resume exeu-tion an ontinue to progress, while disarding enough information to keepthe objet size bounded. Care must be taken to guard against starvation,sine one operation an be \overtaken" by an arbitrary sequene of otheroperations.An implementation of a onurrent objet is wait-free if every proessmust omplete an operation after taking a �nite number of steps, despitefailures of other proesses. It is k-bounded wait-free, for some �xed k > 0,if every proess ompletes an operation after taking k steps. The wait-freeACM Symposium on Parallel Arhitetures and Algorithms, Crete, Greee, July 1990 [7℄,and in the Proeedings of the Third Annual ACM Symposium on Parallel Arhiteturesand Algorithms, Hilton Head, North Carolina, July 1991 [25℄.2Some of these models also inlude primitives for barrier synhronization.2



property exludes starvation: any proess that ontinues to take steps will�nish its operation. The bounded wait-free property bounds how long itwill take. Either of these properties rules out onventional synhronizationtehniques suh as barrier synhronization, busy-waiting, onditional wait-ing, or ritial setions, sine the failure or delay of a single proess within aritial setion or before a barrier will prevent the non-faulty proesses frommaking progress.Whih objets have wait-free implementations in asynhronous PRAM?Elsewhere [23, 26℄, we have shown that any objet X that solves onsensusfor two or more proesses annot be implemented without randomization ina model that provides only simple reads and writes of shared memory. Thusthe asynhronous PRAM model does not permit deterministi implementa-tions of ommon data types suh as sets, queues, staks, priority queues, orlists, most if not all the lassial synhronization primitives, suh as test&set,ompare&swap, and feth&add, and simple memory-to-memory operationssuh as move or swap.In the �rst part of the paper, we give some additional impossibility resultsfor the asynhronous PRAM model. Given that one annot onstrut await-free implementation of any objet that solves two-proess onsensus,it is natural to ask whether the onverse holds: does asynhronous PRAMpermit wait-free implementations of all remaining objets, i.e., those thatdo not solve two-proess onsensus? In this paper, we show that the answeris no. In a system of two proesses, we demonstrate the existene of a stritin�nite hierarhy among objets that are still too weak to solve onsensus:� Objets with implementations that are wait-free, but not boundedwait-free. Eah operation requires a �nite number of steps, but thereis no bound ommon to all operations. (Theorem 8.)� For all k > 0, objets with implementations that are K-bounded wait-free for some K > k, but not k-bounded wait-free. (Theorem 7.)In the seond part of this paper, we give a new haraterization of awide lass of objets that do have wait-free implementations in the asyn-hronous PRAM model. This haraterization is algebrai in nature, in thesense that it is expressed in terms of simple ommutativity and overwritingproperties of the data type's sequential spei�ation. We present a teh-nique for transforming a sequential objet implementation into an n-proesswait-free implementation requiring a worst-ase synhronization overheadof O(n2) reads and writes per operation. Examples of objets that an be3



implemented in this way inlude ounters, logial loks [33℄, and ertainkinds of set abstrations.One ontribution of this paper is the impossibility hierarhy, whih showsthat even relatively \weak" onurrent objets have a rih mathematialstruture. A seond ontribution is the haraterization of a large lass ofonstrutible objets, implying that despite the weakness of the model, er-tain problems do have wait-free solutions. Perhaps the most general ontri-bution is to raise basi questions about the value of the asynhronous PRAMmodel. Although some synhronous PRAM algorithms an be adapted toasynhronous PRAM [16, 17, 21, 41℄, our results show that there is littlehope of onstruting useful highly-onurrent long-lived data strutures inthis model. Fortunately, however, one an argue that asynhronous PRAMis an inomplete reetion of urrent pratie. Starting with the IBM Sys-tem/370 arhiteture [30℄ in the early 1970's, nearly every major arhite-ture has provided some kind of atomi read-modify-write primitive. We haveshown elsewhere that one an onstrut a bounded wait-free implementationof any objet by augmenting the read and write operations with suÆientlypowerful read-modify-write primitives, suh as ompare&swap [24℄. It is notour intent here to suggest a spei� alternative model, but we do believe thatthe researh ommunity would bene�t from a more realisti and powerfulmodel of onurrent shared-memory omputation.2 Related WorkAlthough the work on atomi registers has a long history, it is only reentlythat researhers have attempted to formalize the omputational power ofthe resulting model. Cole and Zajiek [16, 17℄ and Nishimura [41℄ proposeomplexity measures and basi algorithms for an \asynhronous PRAM"model in whih asynhronous proesses ommuniate through shared atomiregisters. Gibbons [21℄ proposes an asynhronous model in whih sharedatomi registers are augmented by a form of barrier synhronization. Ourwork extends these approahes in two ways: we onsider data struturesrather than the usual numeri or graph algorithms, and we fous on wait-free omputation, sine we feel that algorithms that require proesses towait for one another are poorly suited to asynhronous models.Reently, a number of researhers have investigated the problem of om-piling lassial PRAM programs onto other models [31, 15℄, some still syn-hronous, some not. It must be emphasized that these researhers are ad-dressing very di�erent kinds of appliations. Their programs have the prop-4



erty that all the program's arguments are present in publi memory when theprogram starts. Beause new information does not arrive dynamially, theseprograms are not subjet to the onsensus-related impossibility results thatde�ne the omputational power of onurrent objets in this model. Thisassumption is a legitimate one for \o�-line" appliations suh as sienti�omputation, but not for reative systems suh as operating systems, �lesystems, databases, and any other kind of long-lived system.Two other atomi san algorithms were developed independently of theone presented here: by Afek et al. [2℄ and by Anderson [4℄. The former hastime omplexity omparable to ours, while the latter uses time exponentialin the number of proesses. Both of these proposals use bounded ounters,while the most straightforward implementation of our san algorithm usesunbounded ounters to represent lattie elements.Anderson [5℄ gives a bounded implementation of pseudo read-modify-write instrutions in asynhronous PRAM. Let F be a set of funtions thatommute with one another. A pseudo read-modify-write instrution is pa-rameterized by a funtion f from F . When applied to a memory loationholding a value v, it replaes the ontents with f(v), but does not returna value. This onstrution uses bounded ounters, unlike our onstrution,but it does not permit overwriting operations.An objet implementation is randomized wait-free if eah operation om-pletes in a �xed expeted number of steps. Elsewhere [6℄, we have shownthat the asynhronous PRAM model is universal for randomized wait-freeobjets.Our approximate agreement algorithm and lower bounds give similarasymptoti results to the independent work of Attiya, Lynh, and Shavit [9℄.Hoest and Shavit [28℄ have reently shown that, when translated to an iter-ated snapshot model, the onstant fators in our results are the best possible.Sine the �rst appearane of the preliminary versions of this paper [7, 25℄,there have been many advanes in the study of wait-free objets built fromatomi registers. In partiular, there has been onsiderable improvementin algorithms for atomi snapshots. The lattie agreement tehnique [8℄,where proesses agree on a hain in a lattie, is losely related to the semi-lattie onstrution we use in Setion 6. By allowing proesses to obtainvalues spread throughout the lattie instead of pushing all proesses towardthe top, lattie agreement allows for faster snapshot protools suh as theasymptotially optimal O(n log n) protool of Attiya and Rahman [10℄.
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3 ModelInformally, our model of omputation onsists of a olletion of sequentialthreads of ontrol alled proesses that ommuniate through shared datastrutures alled objets. Eah objet has a type, whih de�nes a set of pos-sible states and a set of primitive operations that provide the only means tomanipulate that objet. Eah proess applies a sequene of operations to ob-jets, issuing an invoation and reeiving the assoiated response. The basiorretness ondition for onurrent systems is linearizability [27℄: althoughoperations of onurrent proesses may overlap, eah operation appears totake e�et instantaneously at some point between its invoation and re-sponse. In partiular, operations that do not overlap take e�et in their\real-time" order.3.1 AutomataA omplete formal exposition of our model is given elsewhere [26℄. Herewe give an abbreviated version, omitting some tehnial details for brevity.We model objets as automata, using a simpli�ed form of I/O automataformalism of Lynh and Tuttle [38℄. Beause the wait-free ondition doesnot require any fairness or liveness onditions, and beause we onsider only�nite sets of proesses and objets, we do not make use of the full powerof the I/O automata formalism. (For brevity, our algorithms are expressedusing pseudoode, although it is straightforward to translate this notationinto automata de�nitions.)An automaton A is a non-deterministi automaton with the followingomponents3: States(A) is a �nite or in�nite set of states, inluding a dis-tinguished set of starting states, In(A) is a set of input events, Out(A) isa set of output events, Steps(A) is a transition relation given by a set oftriples (s0; e; s), where s and s0 are states and e is an event. Suh a tripleis alled a step, and it means that an automaton in state s0 an undergo atransition to state s, and that transition is assoiated with the event e. Anexeution fragment of an automaton A is a �nite sequene s0; e1; s1; : : : en; snor in�nite sequene s0; e1; s1; : : : of alternating states and events suh thateah (si; ei+1; si+1) is a step of A. An exeution is an exeution fragmentwhere s0 is a starting state. A history fragment of an automaton is the sub-sequene of events ourring in an exeution fragment, and a history is the3To remain onsistent with the terminology of [27℄, we use \event" where Lynh andTuttle use \operation," and \history" where they use \shedule."6



subsequene ourring in an exeution. A pre�x of an exeution or historyis a pre�x of the sequene that is itself an exeution or history, respetively.3.2 Linearizable ObjetsAn objet is an automaton with input events invoke(P ,op) where P is a pro-ess and op is an operation of the objet 4, and output events respond(P ,res),where res is a result value. We refer to these events as invoations and re-sponses. If H is a history, then HjP is the subsequene of invoations andresponses labeled with P . Two invoations and responses math if their pro-ess names agree. To apture the notion that a proess represents a singlethread of ontrol, we say that a proess history is well-formed if it beginswith an invoation and alternates mathing invoations and responses. Aninvoation is pending if it is not followed by a mathing response. A historyis well-formed if, for eah proess P , HjP is well-formed. We restrit ourattention to well-formed histories.An exeution is sequential if its �rst event is an invoation, and it al-ternates mathing invoations and responses. A history is sequential if itis derived from a sequential exeution. (Notie that a sequential exeutionpermits proess steps to be interleaved, but at the granularity of ompleteoperations.) If we restrit our attention to sequential histories, then the be-havior of an objet an be spei�ed in a partiularly simple way: by givingpre- and postonditions for eah operation. We refer to suh a spei�a-tion as a sequential spei�ation. In this paper, we onsider only objetswhose sequential spei�ations are total and deterministi: if the objet hasa pending invoation, then it has a unique mathing enabled response. Weonsider only total operations beause it is unlear how to interpret thewait-free ondition for partial operations. For example, the most naturalway to de�ne the e�ets of a partial dequeue operation of a shared queue ina onurrent system is to have it wait until the queue beomes non-empty,a spei�ation that learly does not admit a wait-free implementation. Weonsider only deterministi operations beause one an always use a de-terministi implementation to satisfy a non-deterministi spei�ation, e.g.,using the dequeue operation for queues to implement a non-deterministihoose operation for sets.If H is a history, let omplete(H) denote the maximal subsequene ofH onsisting only of invoations and mathing responses. Eah history Hindues a partial \real-time" order �H on its operations: p �H q if the4Op may also inlude argument values. 7



response for p preedes the invoation for q. Operations unrelated by �Hare said to be onurrent. If H is sequential, �H is a total order. An objetis linearizable if eah history H an be extended to a well-formed historyH 0, by adding zero or more responses, suh that there exists a sequentialhistory S suh that:� For all P , omplete(H 0)jP = SjP� �H��SIn other words, the history \appears" sequential to eah individual proess,and this apparent sequential interleaving respets the real-time preedeneordering of operations. Equivalently, eah operation appears to take e�etinstantaneously at some point between its invoation and its response. Alinearizable objet is thus \equivalent" to a sequential objet, and its oper-ations an also be spei�ed by simple pre- and postonditions.As disussed in more detail elsewhere [27℄, linearizability di�ers fromrelated orretness onditions suh as sequential onsisteny [34℄ or stritserializability [42℄ beause it is a loal property: a set of objets is linearizableif and only if eah individual objet is linearizable.3.3 ImplementationsAn implementation of an objet is itself an automaton omposed from aolletion of smaller automata. When a proess invokes an operation, thatinvoation is handled by a front-end automaton, whih applies a sequene ofoperations to a representation automaton, and eventually returns a responseto the proess. The front-end models the proedure that implements theoperation, and the representation models shared memory in the obviousway: it aepts read and write invoations, and its state is just the CartesianProdut of eah of the registers.An implementation is k-bounded wait-free if eah invoation returns pro-vided its front-end takes at least k steps, it is wait-free if eah pendinginvoation eventually returns provided its front-end ontinues to take steps.4 A Wait-Free HierarhyIn this setion, we onstrut a family of objets with the property that, forall k, there exists an objet whose implementations are K-bounded wait-freebut not k-bounded wait-free, for some K > k. There also exists an objetwhose implementations are wait-free but not k-bounded wait-free for any k.8



We prove the lower bounds by reduing the (diÆult) problem of analyzingall possible implementations of a partiular objet to the (more tratable)problem of analyzing solutions to a related deision problem.If S is a nonempty set of real numbers, let range(S) = [min(S);max(S)℄,midpoint (S) = (min(S) + max(S))=2, and let jSj = max(S) �min(S). Forthe empty set, de�ne range(;) = ; and j;j = 0.An approximate agreement objet provides two operations:input(P: proess, x: real)output(P: proess) returns (real)A sequential spei�ation for these operations, expressed in terms of pre- andpost-onditions, appears in Figure 1. The objet's abstrat state has twoomponents: a set of real input values X and a set of real output values Y ,initially both empty. In postonditions, X 0 and Y 0 denote the omponents'new states. The input operation inserts its argument value in X. The outputoperation is de�ned only when X is non-empty. It inserts its result in Y ,ensuring that range(Y ) � range(X) and jY j < � for some �xed � > 0. Forbrevity, we leave unspei�ed how output behaves when X is empty.As a deision problem, approximate agreement has been studied in avariety of message-passing models [12, 18, 19, 39℄. Attiya, Lynh, and Shavit[9℄ independently derive upper and lower bounds for approximate agreementin shared memory that an be adapted obtain asymptoti bounds similar tothose given here. Their approximate agreement algorithm is optimized fora best-ase model where proesses run approximately synhronously, andso involves some additional mahinery that exploits the eÆienies possiblein this model. In ontrast, our algorithm is relatively simple, but does notperform as well for best-ase exeutions.A wait-free implementation of an approximate agreement objet appearsin Figure 2. The objet is represented by an n-element array r of entries,where eah entry has two �elds: an integer round initially zero, and a realprefer, initially ?. A proess is a leader if its round �eld is greater thanor equal to any other proess's round �eld. P advanes its entry by settingits preferene to the midpoint of the leaders' preferenes (line 16) and byinrementing its round �eld by one. P sans the entries by reading them inan arbitrary order.The �rst time P alls input, it sets prefer to its input value. Subsequentalls have no e�et. When P alls output, it returns the results of exeutinga wait-free approximate agreement protool. This protool onsists of aloop in whih P sans the entries (line 10), and disards those whose round�elds trail its own by two or more (line 11). If the diameter of the remaining9



Objet State:X is a set of reals, initially ;.Y is a set of reals, initially ;.input(P, x)pre: truepost: X 0 = X [ fxgy := output(P)pre: X 6= ;post: Y 0 = Y [ fyg ^range(Y ) � range(X) ^jrange(Y )j < �.Figure 1: Sequential Spei�ation for Approximate Agreement1 pro input(P: proess, x: real)2 if r[P℄.prefer = ? then3 r[P℄ := [prefer: x, round: 1℄4 end if5 end input7 pro output(P: proess)8 advane := false9 loop10 San r11 E := fr[Q℄.prefer : r[Q℄.round � r[P℄.round� 1g12 L := fr[Q℄.prefer : r[Q℄.round = maxQ r[Q℄.roundg13 if jrange(E)j < �=2 then14 return r[P℄.prefer15 elseif jrange(L)j < �=2 or advane then16 r := [prefer: midpoint (L),17 round: r.round + 1℄18 advane := false19 else advane := : advane20 end if21 end loop22 end outputFigure 2: Wait-Free Implementation of Approximate Agreement Objet10



preferenes is less than �=2, P returns its own preferene (lines 13{14). If thediameter of the leaders' preferenes is less than �=2, then P advanes its entryand resumes the loop (line 16). If the diameter of the leaders' preferenesexeeds �=2, then P resans the entries one more before advaning its entry.This resan is implemented using the advane ag, set in lines 18 and 19.In analyzing the algorithm, it will be useful to keep trak of all values thata proess writes to its register during the entire exeution, as opposed to justthe most reent value.. We will denote by \P 's r-entry" (or r-preferene) theunique value of r[P ℄ (or the prefer �eld in that value) with round numberr, of all values written to r[P ℄ during an exeution of the algorithm.The essential idea of the algorithm is that the range spanned by theset of all proesses r-entries shrinks in eah round, and when it gets smallenough, the proesses orretly detet termination. Consider some pre�x ofan exeution of the algorithm, and let Xr denote the set of all proesses'r-preferenes in that pre�x, i.e., all prefer values written during that pre�xwith round number r. Lemmas 1, 2, and 3 bound how eah Xr relates tothe preeding Xr�1, and how these quantities hange over time.Lemma 1 In any pre�x of an exeution of the approximate agreement al-gorithm, for all r > 1, range(Xr) � range(Xr�1).Proof: The proof is by indution on the length of the pre�x. The base aseis an empty pre�x, in whih the laim holds sine range(Xr) = ; for all r.If a proess reates a preferene as part of an input operation in line 3,then it may inrease range(X1) but does not inrease the range of any largerround; thus writing inputs preserves the indution hypothesis.Now suppose P reates an r-preferene xp by writing a new entry in line16. For eah s, let X 0s be the set of s-preferenes in the pre�x preeding thiswrite operation. By the indution hypothesis, range(X 0s) � range(X 0r�1) forall s � r � 1.If LP is the set of leaders P omputes (in the preeding line 12), then LPonsists of preferenes at some round rmax � r � 1 (as the maximum roundinludes P 's own round r � 1). Thus xp = midpoint (LP ) 2 range(X 0rmax) �range(X 0r�1) = range(Xr�1).We will say that P expands Xr if it writes a preferene that inreasesjrange(Xr)j.Lemma 2 If P expands Xr after observing the set of leaders LP , then theentries orresponding to preferenes in LP have round number r � 1.11



Proof: As in the proof of Lemma 1, we use the fat that all preferenes inLP orrespond to entries with the same round number rmax � r � 1.Suppose now that rmax > r � 1. Then when P exeutes line 16, ithooses as its new preferene midpoint (LP ) 2 range(LP ) � range(Xrmax) �range(Xr), where the last inlusion follow from Lemma 1. But this ontra-dits the fat that P expands Xr. Thus rmax = r � 1.Lemma 3 In any pre�x of an exeution of the approximate agreement al-gorithm, for all r > 1, jrange(Xr)j � jrange(Xr�1)j=2.Proof: We will show that the endpoints of range(Xr) are the midpointsof overlapping subranges of range(Xr�1), from whih the laim follows by asimple ase analysis.Let P be the �rst proess to write xp = min(Xr), Q be the �rst proessto write xq = max(Xr), and let LP and LQ their respetive sets of leaders asomputed in line 12 immediate preeding their writes of xp and xq in line 16.Sine both writes expand Xr, Lemma 2 implies that all entries in LP and LQhave round number r� 1. Note also that LP ontains P 's (r� 1)-prefereneand LQ ontains Q's (r � 1)-preferene.We will now show that at least one of these preferene also ours in theset of leader values observed by the other proess, and thus that LP \ LQis nonempty.Let P1, Q1 be the events that P and Q write their (r � 1)-preferenes,respetively; and let P2; Q2 be the events that P and Q start their followingsans (line 10). Suppose P does not observe Q's (r � 1)-preferene in LP .Then Q1 ours after P2, in whih ase Q2 ours after P1, and thus Q'ssan inludes P 's (r� 1)-preferene. Thus at least one of P 's or Q's (r� 1)-preferenes appears in both LP and LQ.It follows that range(LP )\range(LQ) is nonempty. Let [a; b℄ = range(LP )and [; d℄ = range(LQ), so that xp = midpoint(range(LP )) = a+b2 andxq = midpoint (range(LP )) = +d2 . Then xq � xp = +d�a�b2 . If a �  �b � d, then  � a and d � b are the lengths of non-overlapping intervalsontained in range(Xr�1 and so xq � xp � (�a)+(d�b)2 � jrange(Xr�1)j=2.If a �  � d � b, then xq 2 [a; b℄ and xq � a+b2 � b�a2 � jrange(Xr�1)j=2.The remaining ase  � a � b � d follows similarly. In eah ase, we havejrange(Xr)j = jxp � xqj � jrange(Xr�1)j=2.Lemma 3 says that the range of preferenes shrinks exponentially inthe number of rounds. Thus the range will eventually drop below �=2, thethreshold for the termination test in line 13. In Lemma 4, we show that if12



this test is true and a proess exeutes the return in line 14, then later ationsby other proesses will not produe values outside the � range permitted bythe spei�ation.Lemma 4 If P returns xp at round r, and Q writes xq at round r, thenjxp � xqj < �.Proof: By ontradition. Without loss of generality, let Q the �rst proessto write an r-preferene xq suh that jxp � xqj � �. Let LP be the set ofleaders observed by P after writing xp, and let LQ be the set of leadersobserved by Q before writing xq. Note that xp 2 range(LP ) and xq 2range(LQ). Moreover, xq 62 LP beause jrange(LP )j < �=2 (from line 13),and P 's write of xp is not observed by Q when omputing LQ, by Lemma 2.Suppose jrange(LQ)j < �=2. Beause eah proess wrote its (r � 1)-entry before reading the other's entry, and beause neither proess readthe other's r-entry, one of the two proesses must have read the other's(r�1)-entry, and therefore LP \LQ 6= ;. It follows that jrange(LP [LQ)j �jrange(LP )j+jrange(LQ)j < �. Beause xp and xq lie within range(LP [LQ),jxp � xqj < �.Otherwise, if jrange(LQ)j � �=2, then Q reads twie before writing xq.Let L0Q be the set of leaders it saw during the �rst read. Sine Q readstwie, jrange(L0Q)j � �=2. If Q �nished reading L0Q before Q wrote xp,then L0Q � LP , and jrange(L0Q)j � jrange(LP )j < �=2, a ontradition. If Q�nished reading L0Q after Q wrote xp, then it started reading LQ afterwards,and xp 2 LQ, a ontradition.Theorem 5 Let � be an upper bound on the size of the range of the in-puts. There exists a wait-free implementation of the approximate agree-ment objet in asynhronous PRAM, in whih eah proess exeutes at most(2n+ 1) log2(�=�) +O(n) steps before �nishing.Proof: We show that the protool in Figure 2 is orret. There are threepoints to hek: (1) that every output value lies within the original inputrange, (2) that the diameter of the output set is less than �, and (3) thatthe algorithm is wait-free and runs within the spei�ed time bound.The �rst point is an immediate onsequene of Lemma 1. For the seondpoint, suppose P returns xp after round r and Q returns xq after round s,where r � s. Lemma 4 states that every element ofXr lies within � of xp, andLemma 1 that range(Xs) � range(Xr), hene jxp�xqj < �. Finally, Lemma3 implies that jXrj � � � 2�r+1, so that for some r = log2(�=�) + O(1) we13



have states that jXrj < �=2 in any pre�x of the exeution. Thus no proessever sees a larger range among the leaders at round r, and every proessreturns on or before round r + 1. To get the bound stated in the theorem,note that eah proess takes at most (2n+ 1) steps in eah round.Lemma 6 Let � be the size of range of the inputs. An adversary sheduleran fore some proess exeuting any deterministi implementation of theoutput operation of an approximate agreement objet to exeute blog3(�=�)steps before �nishing.Proof: It is enough to prove the result for two proesses. Consider anexeution in whih P and Q have distint input values, and eah exeutes anoutput. De�ne a proess's preferene at any point to be the value it returnsif it runs by itself until termination. Note that the preferene is well-de�nedas long as the proess is deterministi, that the preferene of a proess thatreturns is equal to its return value, and that one one proess returns theother will eventually return its own preferene (as the �rst proess is nolonger running). Thus the output operations annot both terminate whiletheir preferenes di�er by more than �.We will show a lower bound on the number of steps it takes for the pref-erenes of the two proesses to onverge. Initially, eah proess's prefereneis its input, for if it returns some other value without seeing any inputs ofother proesses, it may violate the ondition that range(Y ) � range(X).It is immediate from the de�nition that a proess's preferene an onlyhange as the result of a step by another proess. Consider the followingsenario. Run P until it is about to hange Q's preferene, then do the samefor Q. Alternate P and Q in this way as long as neither proess hangespreferene. Eventually, sine the operations annot run forever, the objetreahes a state where eah proess is about to hange the other's preferene.The adversary now has a hoie of running P , Q, or both. Let p0 be P 'surrent preferene, p1 its preferene if Q takes the next step, and let q0 andq1 be de�ned similarly. Depending on whom the adversary shedules next,the new preferenes will di�er by either jp0 � q1j, jp1� q0j, or jp1� q1j. Thesum of these quantities is at least jp0 � q0j, thus the adversary an alwayshoose one that is greater than or equal to jp0 � q0j=3, preventing the gapbetween the preferenes from shrinking by more than one third. Repeatingthis strategy k times, an adversary sheduler an ensure that the range of thepreferenes is at least �=(3k). Sine eah iteration of the strategy involvesat least one operation by eah proess, we get the desired lower bound.14



Curiously, the gap between the log2(�=�) rounds of the upper boundin Theorem 5 and the log3(�=�) rounds of the lower bound in Lemma 6is not an aident. Sine the �rst appearane of our results [25℄, Hoestand Shavit [28℄ have shown using topologial methods that in an iteratedsnapshot model with a struture similar to that of our algorithm, log3(�=�)is in fat a tight bound for two proesses, while log2(�=�) is tight for threeor more.Theorem 7 For all k > 0, there exists an objet with a K-bounded wait-freeimplementation, for K > k, that is not k-bounded wait-free.Proof: Consider an approximate agreement objet with the unit intervalas potential input range, and � = 1=3k. From Lemma 6, this objet isnot k-bounded wait-free, but it is K-bounded wait-free for K = O(nk) byTheorem 5.Theorem 8 There exists an objet with a wait-free implementation but nobounded wait-free implementation.Proof: Consider an approximate agreement objet with an unbounded in-put range. For any partiular set of inputs, � = jrange(X1)j is bounded,and Theorem 5 shows that the approximate agreement algorithm eventuallyterminates. But by setting � large enough, any implementation an be foreto run longer than any �xed bound by Lemma 6.5 A Class of Construtible ObjetsIn this setion, we desribe a lass of objets that an be onstruted in theasynhronous PRAM model. These objets are haraterized by a simplealgebrai property of their operations, desribed in detail in Setion 5.1. Theproperty says that any two operations of the objet must either ommute,meaning that the state of the objet after both have ourred does not revealwhih happened �rst; or at least one must overwrite the other, meaningthat if the overwriter ours last it is impossible to determine if the otheroperation ourred at all. Some tehnial onsequenes of this de�nitionare elaborated in Setion 5.2. These are used in Setion 5.3 to show thatany history of an objet satisfying the haraterization an be desribed bya linearization graph, with the properties that (a) all linearizations of thegraph orrespond to histories of the objet that are equivalent (in a formally15



de�ned sense); and (b) appropriately-de�ned subgraphs of the linearizationgraph produe linearizations that orrespond to histories of the objet thatare equivalent to pre�xes of the full history. An algorithm that simulatesobjets by onstruting families of onsistent linearization graphs for eahproess, together with a proof of its orretness, is given in Setion 5.4.5.1 Commuting and OverwritingWe are now ready to state the algebrai onditions an objet must satisfyfor us to provide a wait-free implementation.These onditions are de�ned in terms of the set of legal histories, de�nedas those meeting the objet's sequential spei�ation. If p is an operation,pi denotes p's invoation, and pr its response. We use \�" to denote on-atenation, and H � p to denote H � pi � pr, where H is a sequential history.De�nition 9 Two sequential histories H and H 0 are equivalent if, for allsequential histories G, H �G is legal if and only if H 0 �G is legal.De�nition 10 Invoations pi and qi ommute if, for all sequential historiesH, if H �p and H �q are legal then H �p�q and H �q �p are legal and equivalent.De�nition 11 Invoation qi overwrites pi if, for all sequential histories H,if H � p and H � q are legal then H � p � q is legal and equivalent to H � q.This partiular notion of ommutativity is due to Weihl [45℄. For brevity,we say that two operations ommute when their invoations ommute.We will show how to onstrut a wait-free asynhronous PRAM imple-mentation for any objet whose sequential spei�ation satis�es the followingproperty:Property 1 For all operations p and q, either p and q ommute, or oneoverwrites the other.For example, one data type that satis�es these onditions is the followingounter data type, providing the following operations:in(: ounter, amount: integer)de(: ounter, amount: integer)respetively inrement and derement the ounter by a given amount,reset(: ounter, amount: integer)16



reinitializes the ounter to amount, andread(: ounter) returns(integer)returns the urrent ounter value. Note that in and de operations om-mute, every operation overwrites read, and reset overwrites every operation.Suh a shared ounter appears, for example, in randomized shared-memoryalgorithms [6℄, and in the implementation of logial loks [33℄.5.2 Preliminary LemmasLemma 12 The overwrites relation is transitive.Proof: Suppose r overwrites q, and q overwrites p.By the de�nition of overwrites, there exists a sequential history H suhthat H �p, H �q, and H �r are legal, H �p �q is equivalent to H �q, and H �q �ris equivalent to H � r.Sine operations are total, there exists a response r0r suh that G =H � p � q � ri � r0r is legal. Sine q overwrites p, G is equivalent to H � q � ri � r0r.Sine H � q � r is legal, and sine operations are deterministi, rr = r0r.Sine r overwrites q, G is equivalent to H � p � r. Sine q overwrites p, Gis also equivalent to H � r. We have shown that if H � p and H � r are legal,then H � p � r is legal and equivalent to H � r, hene r overwrites p.Lemma 13 Let H be a history with operations p, q, r, and s suh that ppreedes q, r preedes s, and p and s are onurrent. We laim that r mustpreede q.Proof: Sine p and s are onurrent, si appears before pr in H. Sine rpreedes s, ri and rr also appear before pr. Finally, sine p preedes q, qiand qr appear after pr, and therefore r and q do not overlap, and r preedesq in H.Our objet simulation algorithm works by impliitly onstruting sequen-tial histories onsistent with a onurrent exeution. A entral problem is toget all proesses to agree on the order of operations in those ases where theorder matters. In general, we will try to put overwritten operations beforetheir overwriters, sine this destroys the most evidene that might otherwisebe used to onvit us of non-linearizability. Unfortunately this heuristi isnot enough to order all operations, as some pairs of operations might over-write eah other. For suh groups of mutually overwriting operations, we17



break ties using the indies of the proesses arrying out the operations.This gives us an extended notion of overwriting, whih we all dominane.For the following de�nition, proesses are ordered by their indies: Pi <Pj if and only if i < j.De�nition 14 An operation p of proess P dominates operation q of Q ifeither (1) p overwrites q but not vie-versa, or (2) p and q overwrite eahother and P > Q.Lemma 15 The dominane relation is a strit partial order.Proof: First we show that dominane is transitive. Suppose r dominates q,and q dominates p, where operations p, q, and r are respetively exeutedby proesses P , Q, R. By the de�nition of dominane, r overwrites q, and qoverwrites p, hene, by transitivity (Lemma 12), r overwrites p. If p does notoverwrite r, we are done, so suppose p also overwrites r. Sine p overwritesr and r overwrites q, p overwrites q. Sine p and q overwrite one another,and q dominates p, it must be that P < Q. Similarly, sine q overwritesp, and p overwrites r, q overwrites r, and, by similar reasoning, Q < R. Itfollows that P < R, hene r dominates p.We must also show that dominane is antisymmetri. Suppose an oper-ation p of proess P dominates an operation q of proess Q. Then either(1) q does not overwrite p and thus does not dominate p; or (2) p and qoverwrite eah other, but sine P > Q, q does not dominate p.5.3 Preedene and Linearization GraphsIn this setion, we de�ne the preedene and linearization graphs used inthe algorithm presented in Setion 5.4.A preedene graph is a direted ayli graph that represents the partialorder of operations in some history; eah node in the graph orresponds toan operation, and there is an edge from p to q if p preedes q, i.e., if theresponse of p ours before the invoation of q in the history.Any linearization of the history is a linear extension of the partial orderrepresented by the preedene graph, and thus orresponds to a topolog-ial sort of the graph. However, not all linear extensions give equivalentsequential histories. To ensure that all proesses see a onsistent piture,we augment the preedene graph with additional dominane edges basedon the dominane relation of De�nition 14. A dominane edge is diretedfrom p to q if q dominates p; their diretion is thus the reverse of the pree-dene edges, sine a preedene edge runs from p to q if p preedes q. The18



intuition is that we would like dominated operations to be plaed earlier inthe history, so that evidene of their presene or absene does not propagatein ways that might overly onstrain the story that the implementation tellsabout the sequential exeution it is laiming to simulate.Beause the ombination of preedene and dominane edges might re-ate yles, not all possible dominane edges are added to the preedenegraph. Instead, we add a maximal set that does not reate a yle, usingthe lingraph proedure from Figure 3. The result of this proedure is alleda linearization graph, beause its topologial sort de�nes a linearization ofthe onurrent history.In the atual algorithm, the purpose of the linearization graph is toensure that no operation's result is a�eted by onurrent operations. Inthis respet, linearization graphs owe something to the serialization graphs[11℄ used in database theory, although the tehnial details are di�erent.Given a preedene graph G, the assoiated linearization graph L(G) isde�ned by the lingraph algorithm shown in Figure 3. Here, fp1; : : : ; pkgrepresent the operations sorted in any order onsistent with the preedeneorder. The algorithm onstruts a sequene of intermediate graphs Li;j, for0 � i < j � k. For brevity, we say that the onstrution visits pi when itompares pi to pj , for i < j.Lemma 16 If p and q are onurrent in G, and p dominates q, then thereis either a path from p to q or a path from q to p in L(G).Proof: When lingraph visits the �rst of p or q, either there is already apath from p to q, or the edge q ! p will be added in line 8 or line 11.Lemma 17 If there is no path between p and q in L(G), then they ommute.Proof: First observe that p and q must be onurrent, as otherwise theyare adjaent in the preedene graph G.Suppose p and q do not ommute. Then at least one overwrites theother and so one dominates the other. Applying Lemma 16, there is a pathbetween them.Lemma 18 L(G) is ayli.Proof: By indution on the sequene of intermediate Li;j graphs. Sine Gis ayli, L1;0 = G is ayli. But beause of the tests in lines 7 and 10, nonew yles are reated by adding dominane edges.19



1 pro lingraph(G: preedene graph)2 L0;k := G3 for i in 1 : : : k do4 Li;i := Li�1;k5 for j in i+ 1 : : : k do6 if pi dominates pj and7 adding pj ! pi to Li;j�1 does not reate a yle8 then Li;j := Li;j�1 [pj ! pi9 elseif pj dominates pi and10 adding pi ! pj to Li;j�1 does not reate a yle11 then Li;j := Li;j�1 [ pi ! pj12 else Li;j := Li;j�113 end if14 end for15 end for16 return Lk;k17 end lingraphFigure 3: The Linearization Graph ConstrutionLemma 18 tells us that the linearization graph ontains no yles, andan thus be topologially sorted to give a total order on operations. Lemma 17tells us that this total order will orretly order all operations whose orderwe are about. In Lemma 20, below, we show that this fat is suÆient toshow that all orderings of the linearization graph yield equivalent histories.De�nition 19 A linearization of a preedene graph G is a sequential his-tory onstruted by a topologial sort of L(G).Lemma 20 If G has a legal linearization, then all linearizations of G arelegal and equivalent.Proof: By indution on the number of operations in G. The result isimmediate when the graph has a single operation.Pik an operation p suh that p has no outgoing edges in L(G). LetH = H1 � p �H2 be the legal linearization of G, and G = G1 � p �G2 any otherlinearization. Let G' be G with p removed.Sine p has no outgoing edges in L(G), eah operation in H2 and G2is onurrent with p, and hene ommutes with p (Lemma 17), so H isequivalent to H1 � H2 � p. Now, h0 = H1 � H2 is a legal linearization of G0,20



G0 = G1 �G2 is a linearization of G0, hene by the indution hypothesis, G0 islegal and equivalent to H 0. It follows that H is equivalent to G1 �G2 � p, andsine p ommutes with eah operation in G2 (see above), H is also equivalentto G1 � p �G2.We now prove a few tehnial lemmas that will be used to show thatappropriate partial views of the linearization graph yield onsistent histories.Lemma 21 Let G be a preedene graph, and p0 and p1 operations onur-rent in G, suh that there is a path from p0 to p1 in the intermediate graphLi;j in the onstrution of L(G). Any path of minimal length from p0 to p1in Li;j ontains at most one edge from G.Proof: If there is more than one preedene edge, then there exist opera-tions p, q, r, and s in the path suh that p preedes q, there is a path fromq to r, and r preedes s. If q preedes s, then the path an be shortened,and therefore p and s are onurrent. By Lemma 13, however, r would thenpreede q, whih ontradits the assumption that there is path from q tor.Lemma 22 If p dominates q, and there is a path from p to q in L(G), thenthere exists an r suh that r dominates p and r preedes q.Proof: Consider the �rst intermediate graph in the onstrution of L(G) toontain a path from p to q. We laim that any path of minimal length fromp to q in this graph ontains exatly one preedene edge. It annot ontainmore than one (Lemma 21), and if it ontains none, then q dominates p bytransitivity (Lemma 15), whih is impossible beause p dominates q.This path traverses operations p0 = p; p1; : : : ; pm and q0; q1; : : : ; q` = q,suh that dominane edges link pi to pi+1 and qi to qi+1, and pm preedesq0. Suppose p 6= pk and q 6= q0. To onstrut the paths from p to pk and q toq0, the onstrution must add at least one edge between two of the pi and atleast one edge between two of the qj. When the onstrution visits pi, it addsa dominane edge from p0 to pi (unless p0 = pi), and from pi to pm (unlesspm = pi). Although p dominates q, and hene so does pi, the onstrutiondoes not add an edge from q to pi, implying that there must already be apath from pi to q. Visiting pi thus ompletes the path from p to q, implyingthat pi must be the last operation visited. A symmetri argument, however,also shows that visiting qj also ompletes a path from p to q, implying thatqj must also be the also last operation visited, a ontradition.21



Suppose pm = p. Consider the �rst intermediate graph in the onstru-tion of L(G) to ontain a path from q0 to some q0, onurrent with q0, thatdominates p. Pik a path of minimal length, and let q00 be the operation im-mediately before q0 in this path. We laim that p and q0 must be onurrent,sine otherwise the path ould be shortened. Lemma 13, however, impliesthat q00 preedes q0, ontraditing the assumption that there is a path fromq0 to q00.It follows that q0 = q, and the r in the lemma statement is pk 6= p.Lemma 23 Let G be a preedene graph, p an operation of G with no out-going edges, and let G0 = G � p be the graph obtained by removing p from G.Then L(G0) is a subgraph of L(G).Proof: Suppose there is an edge from q to r in L(G0) but not in L(G).Beause G is a subgraph of G, the missing edge must be a dominane edge.The onstrution for L(G) fails to insert this edge only if it ompletes a pathfrom r to q before it an add an edge from q to r.By Lemma 22, there exists r0 in L(G) suh that r0 dominates r, and r0preedes q. Sine p does not preede any operations, r0 and p are distint,therefore r0 is in G0. Sine r0 preedes q, the onstrution visits either r orr0 before it visits q. Either way, it onstruts a path from r to r0 before itompares r and q, thus it ompletes a path from r to q, a path that doesnot exist in L(G0).Lemma 24 Let p be an operation; let H1 and H2 be sequential historiessuh that H1 � p and H2 � p are both legal; and suppose that for any q in H2that is dominated by p, there exists an r in H2 that preedes q and dominatesp. Then H1 � p �H2 is legal.Proof: By indution on the length of H2. The result is immediate if H2is empty. Otherwise, H2 an be written as q � H 02, where q is an operationthat p does not dominate. Either q dominates p, in whih ase the result isimmediate, or p and q ommute, in whih ase H1 � p � q � H 02 is equivalentto H1 � q � p �H 02, where the latter satis�es the onditions of the lemma, andthe result follows from the indution hypothesis.5.4 The AlgorithmA wait-free algorithm for implementing an objet satisfying Property 1 isshown in Figure 4. The objet is represented by its preedene graph. Eah22



1 % Shared data2 root: array[1..n℄ of pointer to entry4 pro exeute(pi: invoation) returns(response)5 % Step 1: onstrut a response6 view := atomi san of root array7 H := linearization of view8 e := new entry9 e.invoation := pi10 e.response := pr suh that H � pi � pr is legal11 for i in 1 . . . n do12 e.preeding[i℄ := view[i℄13 end for14 % Step 2: write out the response15 root[P℄ := address of e16 return pr17 end exeuteFigure 4: A Wait-Free Implementationoperation is represented by an entry, a data struture with �elds for theinvoation, the response, and n pointers to eah proess's preeding entry.The graph is rooted in an anhor array whose P th entry holds a pointer tothe entry for proess P 's most reent operation.A proess exeutes an operation in two steps:1. It takes an instantaneous snapshot of the anhor array using the atomisan proedure desribed in Setion 6. It then onstruts a lineariza-tion graph from the preedene graph rooted at the snapshot array,and then onstruts a linearization, alled its view. Using a sequentialimplementation of the objet, it determines the response to the invo-ation onsistent with the view. It reates an entry for the operation,�lling in the response and the preedene edges from the snapshotarray.2. The proess updates the preedene graph by storing a pointer to thenew entry in its position in the anhor array.Eah of these steps makes a single aess to shared data: Step 1 uses theatomi san algorithm given below, and Step 2 writes a single pointer intothe shared root array. Informally, this algorithm exploits the ommutativityand overwriting properties of operations to ensure that eah proess sees23



\enough" of the objet state to hoose a orret response independently ofany operations that may be taking plae onurrently. We will show thatthe shared preedene graph always has a legal linearization.Lemma 25 Let H1 � p �H2 be a linearization of the shared preedene graphG. If p and q are onurrent in G, p dominates q, and q is in H2, then thereexists an r suh that r dominates p and r preedes q.Proof: Sine p and q are onurrent and do not ommute, L(G) ontainsa path from one to the other (Lemma 16). Sine p appears before q in thelinearization, this path must go from p to q. The result now follows diretlyfrom Lemma 22.An entry that has been initialized but not yet written out is pending.Theorem 26 The following property is invariant: if the shared preedenegraph is linearizable, then it remains linearizable after writing out any pend-ing entry.Proof: By indution. The property holds trivially in the objet's initialstate, when the preedene graph is empty and no entries are pending. Theproperty is preserved when P exeutes Step 1, sine the result of writingout P 's entry is linearizable by onstrution, and the result of writing outany other entry is unhanged.It remains to hek that writing out P 's pending entry does not vio-late linearizability by \invalidating" any other proess's pending operation.Suppose P and Q respetively have pending operations p and q. Let G bethe urrent preedene graph, Gp the preedene graph after writing out p,Gq the preedene graph after writing out q, and Gpq the preedene graphafter writing out both.Let H1 � p �H2 � q �H3 be a linearization of L(Gpq). By Lemma 23, L(Gp)and L(Gq) are subgraphs of L(Gpq), hene H1 � p �H2 �H3 is a linearizationof Gp and H1 �H2 � q �H3 a linearization of Gq. By the indution hypothesis,these are both legal sequential histories.In partiular, H1 �p is legal, H1 �H2 �q �H3 is legal, and if p dominates anyoperation r in H2 � q �H3, then there exists an r0 in H2 � q �H3 that preedesr and dominates p (Lemma 25). By Lemma 24, G = H1 � p � H2 � q � H3 islegal.Corollary 27 The objet implementation in Figure 4 is linearizable.24



Beause of the generality of the algorithm, there is quite a bid of overheadin the onstrution and maintenane of the preedene and linearizationgraphs. For any partiular data type, it should be possible to apply type-spei� optimizations to disard most of the preedene graph, and to avoidreonstruting the entire linearization graph for eah operation.6 Atomi San1 pro San(P: proess, v: value) returns(value)2 san[P℄[0℄ := v _ san[P℄[0℄3 for i in 1 : : : n+ 1 do4 for Q in 1 : : : n do5 san[P℄[i℄ := san[P℄[i℄ _ san[Q℄[i-1℄6 end for7 end for8 return san[P℄[n+1℄9 end SanFigure 5: The San ProedureIn this setion, we show how to take an atomi snapshot san of anarray of multi-reader, single-writer registers in whih proess P writes theP th array element. It is onvenient to ast this problem in slightly moregeneral form: sine the array's state does not depend on the order in whihdistint proesses update their array elements, it is natural to treat the arraystate as the join in a _-semilattie of the input values5 The snapshot sansimply returns the join of the register values.Fix a _-semilattie L; for onveniene we will assume that L ontainsa bottom element ? suh that ? _ x = x for all x in L. The atomi sanobjet has an operation WriteL(P; v) for eah proess P and element v ofL, and an operation ReadMax(P ) for eah proess P . The serial semantisof the objet are straightforward: in any history H, the value returnedby a ReadMax(P ) operation is the join of the values written by earlierWriteL(Q; v) operations, for all Q.The proesses share an array san[1 : : : n℄[0 : : : n+1℄ of multi-reader/single-writer atomi registers, where P alone writes to eah san[P ℄[i℄. The opera-5A _-semilattie is a partial order with a join operation (written as _); the join a _ bof a and b is the unique least element of the partial order that is greater than or equal toboth a and b. 25



tions WriteL(P; v) and ReadMax(P ) are eah implemented using a strongerprimitive operation, San(P; v), de�ned in Figure 5. The WriteL operation isimplemented by exeuting San(P; v) and disarding the return value, whilethe ReadMax operation is implemented by exeuting San(P;?).6.1 Proof of CorretnessWe demonstrate the orretness of the atomi san algorithm in two steps.First, we show that any two values returned by San operations are om-parable within the lattie L. Seond, we use the lattie ordering of thereturned values to order the implemented WriteL and ReadMax operationsin any onurrent history H; this ordering will produe an equivalent serialhistory of the atomi san objet, thus proving linearizability. We use theusual order symbols <;>;�;� for the semilattie order in L.An implementation history is one in whih high-level San invoationsand responses are interleaved with low-level read and write invoations andresponses in a onstrained way: eah San invoation is separated from itsmathing response by a sequene of read and write operations of the sameproess. Sine read and write operations are linearizable by assumption,we may assume without loss of generality that the subsequene of low-leveloperations is a sequential history.Let H be �xed implementation history, p a San operation inH exeutedby proess P , and q a San operation by P . We use p[k℄ as an abbreviationfor the write operation to san[P ℄[k℄ exeuted on behalf of the high-leveloperation p. We sometimes abuse this notation by using p[k℄ also to referto the value it writes. We say that p[k℄ diretly-sees q[k � 1℄ if P 's read ofsan[P ℄[k � 1℄ appears after q[k � 1℄ in H. We say that p[k℄ sees q[l℄ if theylie in the in the reexive, transitive losure of diretly-sees. Note that forp[k℄ to see q[l℄ it is not enough that p[k℄ � q[l℄; it must also our later intime after a sequene of intermediate reads and writes that would allow thevalue q[l℄ to be inorporated in the value p[k℄.Certain fats about the sees relation are important enough to state aslemmas. The proofs are straightforward and are omitted for brevity.Lemma 28 If i � j, then p[j℄ sees p[i℄.Lemma 29 If p �H q and q[k℄ and p[k℄ exist, then q[k℄ � p[k℄.It is also not diÆult to see that any value written by a proess is thejoin of the values seen by that proess; more formally, we state:26



Lemma 30 For any p[k℄ in H, if 0 � l < k, then p[k℄ = W fq[l℄ j p[k℄ sees q[l℄g.The following lemma desribes the priniple on whih the atomi sanalgorithm depends:Lemma 31 If p[k℄ and q[k℄ both appear in H, for k > 0, then either p[k℄sees q[k � 1℄ or q[k℄ sees q[k � 1℄.Proof: Suppose p[k � 1℄ preedes q[k � 1℄. Sine Q's read of san[Q℄[k � 1℄appears after q[k � 1℄, it appears after p[k � 1℄, and q[k℄ sees p[k � 1℄.otherwise, if q[k � 1℄ preedes p[k � 1℄, then p[k℄ sees q[k � 1℄.We now prove the onsisteny of the atomi san operation.Lemma 32 Either p[n+ 1℄ � q[n+ 1℄ or q[n+ 1℄ � p[n+ 1℄.Proof: Let p0, q0 be San operations suh that p[n+1℄ sees p0[0℄, and q[n+1℄sees q0[0℄. We laim that:p[n+ 1℄ � q0[0℄ or q[n+ 1℄ � p0[0℄: (1)Let fp0; : : : ; pn+1g be an indexed set of San operations (not neessarilydistint) suh that p0 = p0, pn+1 = p, and for eah k, 0 < k < n+ 1, pk[k℄diretly-sees pk�1[k�1℄. De�ne fq0; : : : ; qn+1g similarly; the existene of thesets follows from the de�nition of sees.For eah pk, qk, where k > 0, Lemma 31 implies that either pk[k℄ seesqk[k � 1℄ or qk[k℄ sees pk[k � 1℄, and thus one of pk or qk has the propertythat its (k�1)st write is seen by both pk[k℄ and qk[k℄. Denote this operationby xk, and the assoiated proess by Xk.Now onsider the indexed set fx0; : : : ; xn+1g. By the pigeonhole prini-ple, there exist distint i and j suh that i < j and Xi = Xj . If xi = xj ,Lemma 28 immediately implies that xj [j � 1℄ sees xi[i℄.Otherwise, xi must preede xj , beause xj [j℄ sees either qi[i℄ or pi[i℄,both of whih see xi[i � 1℄. Thus, by Lemma 29, xj[j � 1℄ � xi[j � 1℄, butsine j � 1 � i Lemma 28 implies that xi[j � 1℄ sees xi[i℄. Thus in eitherase xj [j � 1℄ � xi[i℄. p[n+ 1℄ and q[n+ 1℄ see xj [j � 1℄, and xi[i℄ sees oneof p0[0℄, q0[0℄, showing that Equation 1 holds.Now suppose that p[n + 1℄ and q[n + 1℄ are inomparable. By Lemma30, there must then exist a p0[0℄ whih p[n+ 1℄ alone sees and a q0[0℄ whihq[n+ 1℄ alone sees | ontraditing Equation 1.Theorem 33 The atomi san objet implementation is linearizable.27



Proof: Consider any two operations x and y. Let x �0S y if either x[n+1℄ <y[n+ 1℄ or x[n+ 1℄ = y[n+ 1℄, x is a WriteL operation and y is a ReadMaxoperation. Extend �0S to a total order �S; by Lemma 29 �S extends �H ,and thus we an use it to linearize H. That the resulting sequential historyis legal follows diretly from Lemma 32.To implement the atomi snapshot algorithm used in the previous se-tion, we make eah value an n-element array of pointers, where the entirearray is kept in a single register. (As noted above, numerous tehniquesexist for onstruting large atomi registers from smaller ones.) Eah arrayentry has an assoiated tag, and the maximum of two entries is the one withthe higher tag. The join of two values is the element-wise maximum of thetwo arrays. The ? value is just an array whose tags are all zero. P writesthe P th position in the anhor array by initializing san[P ℄[0℄ to an arraywhose P th element has a higher tag than P 's latest entry, and whose otherelements have tag zero. (As a simple optimization, the other elements ansimply be omitted.)6.2 Running TimeEah San operation requires one read and one write operation to set san[P ℄[0℄,plus n read and one write operations for eah of n + 1 passes through theloop. Thus a single San operation requires a total of n2 + n + 1 read andn+2 write operations, where, as usual, n is the number of proesses. Someminor gains arise by eliminating superuous operations that simplify theproof: the very last write (to san[P ℄[n+1℄) is unneessary, as are the readsthat a proess does of its own registers. After eliminating these operations,a San requires n2 � 1 read and n+ 1 write operations.7 ConlusionsIn this paper, we have explored some of the mathematial struture under-lying the asynhronous PRAM model. We have seen that it enompasses arih impossibility hierarhy, but it still supports wait-free implementationsof a large lass of objets that have a simple algebrai haraterization.Although we believe that asynhronous PRAM is onsiderably more real-isti than its synhronous predeessor, it is still far from ideal. In one sense,asynhronous PRAM is too weak to be realisti. The only way for proessesto synhronize is by read and write operations. One might justify this re-strition in the same way one justi�es ruler-and-ompass onstrutions in28



lassial geometry: simply as an intelletual hallenge. One annot justifyit as a realisti reetion of urrent pratie. Nearly every major arhite-ture sine the 1970's has provided some form of read-modify-write operationthat atomially reads and modi�es memory. Examples inlude test-and-set,ompare-and-swap, feth-and-add, atomi swap, and many others. (Glewand Hwu [22℄ give an exellent survey of synhronization primitives pro-vided by urrent arhitetures.) Today, it would be inoneivable to designa shared-memory multiproessor without suh atomi instrutions.There is another sense in whih asynhronous PRAM may be too strongto be realisti. Many modern shared-memory multiproessors do not guar-antee that memory is sequentially onsistent [34℄: reads and writes to sharedmemory do not appear to our atomially (e.g., [1, 36℄ and many ommer-ial multiproessors). In modern arhitetures, proessors are fast, whilememory and ommuniation are slow, and as a result the ahe oherenyprotools neessary to enfore sequential onsisteny are expensive, and ar-hitets are often unwilling to pay this ost on every memory aess. Re-ently, a number of researhers have started exploring the impliations ofsuh \weak" memories [3, 29, 37℄. A satisfatory trade-o� between ease ofimplementation and ease of use has yet to be established for shared-memorysemantis.In onlusion, although the asynhronous PRAM model explored in thispaper has its limitations, we believe that the model is interesting in its ownright, and we hope that the questions we have raised and the tehniques wehave developed here will be useful and informative when the \right" modelomes along.AknowledgmentsHagit Attiya's remarks helped improve this paper. We are also grateful forthe insightful omments and patiene of the anonymous referees.Referenes[1℄ S.V. Adve and M.D. Hill. Weak ordering - a new de�nition. In Proeed-ings of the 17th Annual International Symposium on Computer Arhi-teture, pages 2{14, May 1990.
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