Wait-Free Data Structures
in the Asynchronous PRAM Model

James Aspnes Maurice Herlihy
School of Computer Science Digital Equipment Corporation
Carnegie-Mellon University Cambridge Research Laboratory
Pittsburgh, PA 15213 One Kendall Square
Cambridge MA, 02139

May 22, 2000

Abstract

A wait-free implementation of a data object in shared memory is one that guarantees
that any process can complete any operation in a finite number of steps, regardless of the
execution speeds of the other processes. Much of the literature on wait-free synchronization
has focused on the construction of atomic registers, which are memory locations that can
be read or written instantaneously by concurrent processes. This model, in which a set of
asynchronous processes communicate through shared atomic registers, is sometimes known
as asynchronous PRAM. It is known, however, that the asynchronous PRAM model is not
sufficiently powerful to construct wait-free implementations of many simple data types such
as lists, queues, stacks, test-and-set registers, and others. In this paper, we give an algebraic
characterization of a large class of objects that do have wait-free implementations in asyn-
chronous PRAM, as well as a general algorithm for implementing them.

Contact Author: M. Herlihy, herlihy@crl.dec.com (617) 621-6646.



1 Problem Statement

A concurrent object is a data structure shared
by asynchronous concurrent processes. An im-
plementation of a concurrent object is wait-
free if it guarantees that any process will com-
plete any operation in a finite number of steps,
regardless of the execution speeds of the other
processes. The wait-free condition is a natural
property to require of asynchronous systems.
It guarantees that no process can be prevented
from completing an operation by variations
in other processes’ speeds, or by undetected
halting failures. Even in a failure-free system,
a process can encounter unexpected delay by
taking a page fault or cache miss, exhausting
its scheduling quantum, or being swapped out.
Similar problems arise in heterogeneous archi-
tectures, where some processors may be inher-
ently faster than others, and some memory lo-
cations may be slower to access. The wait-free
condition rules out many conventional algo-
rithmic techniques such as busy-waiting, con-
ditional waiting, or critical sections, since the
failure or delay of a single process within a
critical section will prevent the non-faulty pro-
cesses from making progress.

The fundamental problem in this area is the
following: under what circumstances can we
construct a wait-free implementation of one
concurrent object from another? Elsewhere
[10, 11], we have shown that any object X
can be assigned a consensus number, which is
the largest number of processes (possibly infi-
nite) that can achieve asynchronous consensus
[8] by applying operations to a shared X. No
object with consensus number n can be imple-
mented by an object with a lower consensus
number in a system of n or more processes, but
any object with consensus number 7 is univer-
sal (it implements any other object) in a sys-
tem of n or fewer processes. By computing the
consensus numbers of existing synchronization
primitives, one can derive an infinite hierarchy

of successively more powerful synchronization
primitives.

In this paper, we extend our earlier results
by investigating the class of objects that have
wait-free implementations using only atomic
read and write operations applied to individual
memory cells. This model is sometimes known
as asynchronous PRAM [7, 9]. Many re-
searchers have investigated techniques for con-
structing such memory cells, called atomic reg-
isters, from simpler primitives [5, 6, 14, 17, 18,
20, 21, 22, 23]. Despite the impressive amount
of intellectual energy that has been applied to
these constructions, it is not difficult to show
that atomic registers have consensus number
1, and thus the asynchronous PRAM model is
too weak to support wait-free implementations
of any object with a higher consensus num-
ber, including common data types such as sets,
queues, stacks, priority queues, or lists, most if
not all the classical synchronization primitives,
such as test-and-set, compare-and-swap, and
fetch-and-add, and simple memory-to-memory
operations such as move or swap. These ob-
servations raise an intriguing question: what,
if anything, are atomic registers good for?

In this paper, we give a new characteriza-
tion of a wide class of objects that do have
wait-free implementations in the asynchronous
PRAM model. This characterization is al-
gebraic in nature, in the sense that it is ex-
pressed in terms of simple commutativity and
overwriting properties of the data type’s se-
quential specification. We present a technique
for transforming a sequential object implemen-
tation into an m-process wait-free implemen-
tation requiring a worst-case synchronization
overhead of O(n?) reads and writes per oper-
ation. Examples of objects that can be imple-
mented in this way include counters, logical
clocks [15], and certain kinds of set abstrac-
tions.



2 Summary of Results

Details of the formal model [11, 13] are omit-
ted here for brevity. Informally, however, a
concurrent system consists of a collection of
n sequential processes that communicate by
applying operations to shared typed objects.
Processes are sequential — each process ap-
plies a sequence of operations to objects, al-
ternately issuing an invocation and then re-
ceiving the associated response. We make no
fairness assumptions about processes. A pro-
cess can halt, or display arbitrary variations in
speed. In particular, one process cannot tell
whether another has halted or is just running
very slowly.

Objects are data structures in shared mem-
ory. Each object has a type, which defines a set
of possible values and a set of primitive opera-
tions that provide the only means to manipu-
late that object. Each object has a sequential
specification that defines how the object be-
haves when its operations are invoked one at
a time by a single process. For example, the
behavior of a queue object can be specified by
requiring that eng insert an item in the queue,
and that deq remove the oldest item present in
the queue. In a concurrent system, however,
an object’s operations can be invoked by con-
current processes, and it is necessary to give a
meaning to interleaved operation executions.

An object is linearizable [12, 13] if each oper-
ation appears to take effect instantaneously at
some point between the operation’s invocation
and response. Linearizability implies that pro-
cesses appear to be interleaved at the granular-
ity of complete operations, and that the order
of non-overlapping operations is preserved. As
discussed in more detail elsewhere [13], the no-
tion of linearizability generalizes and unifies a
number of ad-hoc correctness conditions in the
literature, and it is related to (but not identi-
cal with) correctness criteria such as sequen-
tial consistency [16] and strict serializability

[19]. We use linearizability as the basic cor-
rectness condition for the concurrent objects
constructed in this paper.

An invocation consists of an operation
name, argument values, and process name,
and a response consists of a termination con-
dition, result values, and process name. A his-
toryis a sequence of invocations and responses,
subject to simple well-formedness constraints
omitted here. An invocation and response
match if their process names agree. An op-
eration in a history is a pair consisting of an
invocation and the next matching response. A
history is sequential if it is a sequence of opera-
tions (i.e., matching invocations and responses
are not interleaved). It is convenient to treat
an object’s sequential specification as a prefix-
closed set of legal sequential histories. In the
following, we use “” to denote concatenation
of sequences.

Definition 1 Two sequential histories h and
h' are equivalent if, for all sequential histories
g, h-g is legal if and only if h' - g is legal.

Definition 2 Operations p and g commute if,
for all sequential histories h, if h-p and h - q
are legal then h-p-q and h-q-p are legal and
equivalent.

Definition 3 Operation q overwrites p if, for
all sequential histories h, if h-p and h - q are
legal then h-p-q is legal and equivalent to h-q.

This particular notion of commutativity is due
to Weihl [24]. Both properties are carefully
formulated to encompass objects with partial
and non-deterministic operations.

In this paper, we show how to construct
a wait-free asynchronous PRAM implementa-
tion for any object whose sequential specifica-
tion satisfies the following property:

Property 1 For all operations p and q, either
p and g commute, or one overwrites the other.



For example, one data type that satisfies these
conditions is the following counter data type,
providing the following operations:

inc(c: counter, amount: integer)
dec(c: counter, amount: integer)

respectively increment and decrement the
counter by a given amount,

reset(c: counter, amount: integer)
reinitializes the counter to amount, and
read(c: counter) returns(integer)

returns the current counter value. Note that
inc and dec operations commute, every oper-
ation overwrites read, and reset overwrites ev-
ery operation. Such a shared counter might
be used, for example, in randomized shared-
memory algorithms [3], and for logical clocks
[15].

3 The Basic Construction

3.1 Preliminary Definitions

The “real-time” ordering of events induces an
irreflexive partial order on operations: p pre-
cedes q if the response for p precedes the invo-
cation for ¢. If p and ¢ are unrelated by prece-
dence, they are concurrent. It is convenient to
think of the precedence order as defining a di-
rected acyclic precedence graph on completed
operations: there is an edge from p to ¢ if and
only if p precedes q.

To reconstruct the object state, we con-
struct a linearization graph by augmenting
the precedence graph with additional edges.
These edges reflect constraints on the order-
ing of concurrent operations imposed by the
algebraic properties of the operations them-
selves. First, a definition: an operation p of
process P interferes with operation ¢ of @ if

either (1) p overwrites ¢ but not vice-versa, or
(2) p overwrites ¢ and P > Q.

The linearization graph L associated with a
precedence graph G is defined by induction on
the number of operations in G.

e The linearization graph of the empty
precedence graph is empty.

e Let G be a non-empty precedence graph,
let p be an operation of process P hav-
ing no outgoing edges, and let G' be the
precedence graph constructed by remov-
ing p and its incoming edges from G.
Since G' has fewer operations, it has a
well-defined linearization graph L'. The
linearization graph L of G is constructing
as follows. Construct L" by adding to L'
the precedence edges for p. Let @ be the
maximal subgraph of L" whose vertices
consist of all operations ¢ such that there
is no path in L"” from ¢ to p. We add the
following edges to L". For each ¢ in @,

— If p interferes with ¢, add an edge
from p to gq.

— If ¢ interferes with p and p does not
interfere with any operation preced-
ing ¢ in @, add an edge from p to
q.

The linearization graph L is the transitive clo-
sure of the result.

Lemma 1 The linearization graph for G is
well-defined; it does not depend on the choice

of p.
Lemma 2 The linearization graph is acyclic.

Definition 4 A linearization of L is the se-
quential history constructed by a topological
sort of L.

Lemma 3 If L has a legal linearization, then
all linearizations of L are legal and equivalent.



Informally, the purpose of the linearization
graph is to ensure that no operation’s result is
affected by concurrent operations. Lineariza-
tion graphs owe something to the serialization
graphs [4] used in database theory, although
the technical details are different.

3.2 The Algorithm

The object is represented by a graph whose
transitive closure is its precedence graph.
Each operation is represented by an entry, a
data structure with fields for the invocation,
the response, and n pointers to each process’s
preceding entry. The graph is rooted in an an-
chor array whose P-th entry holds a pointer
to the entry for process P’s most recent oper-
ation.

A process executes an operation in three
steps:

1. The process takes an instantaneous snap-
shot of the anchor array using the atomic
scan procedure described in Section 4.

2. The process reconstructs the linearization
graph from the precedence graph rooted
at the snapshot of the anchor array. It
chooses a linearization, called its wview,
and then chooses a response to the in-
vocation consistent with its view using a
sequential implementation of the object.

3. The process creates an entry for the op-
eration, filling in the response computed
in Step 2 and the precedence edges from
the anchor array copied in Step 1. It then
updates the precedence graph by setting
its slot in the anchor array to point to the
new entry.

In the full paper, we give an inductive proof
that any topological sort of the precedence
graph’s linearization graph is a legal sequen-
tial history, hence the object implementa-
tion is linearizable. Informally, this algorithm

exploits the commutativity and overwriting
properties of operations to ensure that each
process sees “enough” of the object state to
choose a correct response independently of any
operations that may be taking place concur-
rently.

As described in detail in the full paper, this
algorithm can be made considerably more effi-
cient by observing that most of the precedence
graph can be discarded, and that it is not nec-
essary to reconstruct the entire linearization
graph for each operation. An example of such
a construction is given below in Section 5.

4 Atomic Scan

It is convenient to cast the atomic scan prob-
lem in a more general form. We can think of
a region of memory as representing a pool of
information provided by the processes. When
the state of the memory does not depend on
the order in which values are written, it is nat-
ural to treat it as the join in a V-semilattice
of the input values. The atomic scan object
simulates a collection of single-writer registers
for which it is possible to atomically read the
join of the register values.

Fix a V-semilattice L; for convenience we
will assume that L contains a bottom ele-
ment 1 such that L vz = z for all z in
L. The atomic scan object has an operation
Writer, (P, v) for each process P and element v
of L, and an operation ReadMax(P,) for each
process P. The serial semantics of the object
are quite straightforward: given any history H
the value returned by a ReadMax(P,) opera-
tion in H is equal to the join of all values v
such that Writey, (P, v) appears in H for some
processor P.

To implement the atomic scan object,
we assume that the processes share be-
tween them an array scan[l...n][0...n + 1]
of multi-reader/single-writer atomic registers,



where each register scan[P][i] can be writ-
ten to by process P. The two operations
Writer, (P,v) and ReadMax(P,) are both im-
plemented in terms of a stronger primitive op-
eration Scan(P,v), which is carried out as fol-
lows:

1. Read scan[P][0]
2. Write v V scan[P][0] to scan[P][0].
3. For i from 1 to n + 1:

(a) Read scan[@][i — 1] for all processes
@ in arbitrary order.

(b) Write the Vgscan[@][i — 1] to
scan[P][i].

4. Return scan[P][¢ + 1]

Given the Scan operation, the Writey op-
eration is implemented by simply ignoring its
return value, while the ReadMax operation is
just a Scan operation which always writes the
value L. In effect, the Scan operation acts like
a Writey, operation followed by a ReadMax op-
eration; we demonstrate this fact formally in
the following section.

4.1 Proof of Correctness

We demonstrate the correctness of the atomic
scan algorithm in two steps. First, we will
show that any two values returned by Scan
operations are comparable within the lattice
L. Second, we will use the lattice ordering
of the set of returned values to order the im-
plemented Write; and ReadMax operations
in any concurrent history H; this ordering
will produce an equivalent serial history of the
atomic scan object, thus proving linearizabil-
ity.

Some notation will be useful. The usual or-
der symbols <, >, >, < will be used for the
semilattice order in L. We will assume that

we are working from a fixed history H. Since
we will be working primarily with the Write
events in H, we will abbreviate any event
(A, Write(k),v) in H to simply A[k], and will
often abuse this notation by using 1Ak to refer
to the value written in addition to the Write
event itself. We say that A[k] directly-sees
Blk —1] if A’s Read of scan[process(B)][k — 1]
follows B[k — 1] in H. We will say that
Alk] sees BJl] if (A[k], B[l]) is in the reflex-
ive, transitive closure of directly-sees. Note
that for A[k] to see BJ[l] it is not enough that
A[k] > B[l]; it must also occur later in time af-
ter a sequence of intermediate reads and writes
that would allow the value BJ[I] to be incorpo-
rated in the value A[k].

Certain facts about the sees relation are im-
portant enough to state as lemmas. The proofs
are straightforward and are omitted to save
space.

Lemma 4 Let A be an invocation, and let i <
J be such that A[i] and A[j] both occur. Then
Alj] sees Ali].

Lemma 5 Let A and B be invocations where
A <y B. Let k be such that Alk] and B[k]
both exist. Then 1Bk > 1Ak.

It is also not difficult to see that any value
written by a process is the join of the values
seen by that process; more formally, we state:

Lemma 6 Let A[k] occur and letl < k, 1 > 0.
Then Alk] = \/ {BJl]|A[k]seesB]l]}.

The following lemma describes the principle
on which the atomic scan algorithm depends:

Lemma 7 Let A[k], Blk] both appear in the
history for some k > 0. Then either Alk] sees
B[k — 1] or B[k] sees A[k —1].

Proof: Suppose A[k — 1] precedes B[k — 1].
Then since B’s read of scan[process(B)][k — 1]



follows B[k — 1] it follows A[k — 1] and Blk]
sees A[k—1]. Alternatively if B[k—1] precedes
Alk — 1], A[k] sees Bk —1].

We may now prove the consistency of the
atomic scan operation.

Lemma 8 Let A, B be invocations such that
Aln + 1] and B[n + 1] both exzist. Then either
An+1]> B[n+1] or Bjn+1] > A[n + 1]

Proof: Let Ay, By be invocations such that
Aln + 1] sees Ap[] and B[n + 1] sees By[]. We
claim that either A[n + 1] > By[] or B[n +
1] > Ao[]. Let {Ar}o<k<nt1 be an indexed set
of invocations (not necessarily distinct) such
that A9 = Ao, A,+1 = A, and for each k,
0 <k <n+1, Aglk] directly-sees Ap_1[k —1].
Define { By } similarly; the existence of the sets
follows from the definition of sees.

For each Ay, By, where £k > 0, Lemma
7 implies that either Ay[k] sees B[k — 1] or
By [k — 1], and thus one of Ay or By has the
property that its (k — 1)-th write is seen by
both Ay[k] and By[k]. Let X} stand for this
invocation.

Now consider the indexed set { X }o<k<n1-
Then there exist distinct ¢, 7 such that X; =
X; or process(X;) = process(X;), by the pi-
geonhole principle.

In the former case X; = X;, Lemma 4 im-
mediately implies X;[j — 1] sees X;[i]. In the
latter case, assume that ¢ < j; then that X;
must precede X, because X;[j] sees either
A;[i] or B;li], both of which see X;[i —1]. Thus
by Lemma 5, X;[j — 1] > X;[j — 1], but as
j—1 > i Lemma 4 gives us X;[j — 1] sees
X;[i]. Thus in either case X;[j — 1] > X;[d].
But both A[n + 1] and B[n + 1] see X;[j — 1],
and X;[i] sees one of Ap[0], Bo[0]. Thus the
claim holds.

Now suppose that A[n+ 1] and B[n + 1] are
incomparable; by Lemma 6 there must then
exist a Ap[0] which A[n + 1] alone sees and
a By[0] which B[n + 1] alone sees— but that

would contradict the claim. Thus the lemma
holds.

Theorem 5 The atomic scan object imple-
mentation is linearizable.

Proof: For each invocation A in H, we con-
sider both operations that it may implement,
a Writer, operation which we will refer to as
AWriteL and a ReadMax operation which we
will refer to as ARaaqMax (We Will delete the
extra operation later.) Now consider any two
such operations x and y, implemented by in-
vocations X and Y, respectively. Let z <g y
if either X[n+ 1] < Y[n + 1] or X[n + 1] =
Y[n + 1], = is a Write,, operation, and y is a
ReadMax operation. By Lemma 8 <g can be
extended into a total order; furthermore this
total order is a superset of <y by Lemma 5.
Thus we can use <g to linearize H— the ac-
tual implemented history is obtained by delet-
ing the extra operations, which have no effect
on the object’s state.

4.2 Running Time

Each Scan operation requires 1 Read and 1
Write operation to set scan[P][0], plus n Read
and 1 Write operations for each of n+ 1 passes
through the loop. Thus a single Scan opera-
tion requires a total of n? + n + 1 Read and
n+ 2 Write operations, where as usual n is the
number of processes.

Some of these operations can be eliminated;
for example, the very last write (to scan[P][n+
1]) is superfluous, as that register is never read.
It does, however, make proving the correctness
of the implementation much easier. Depend-
ing on the relative cost of storing values locally
to a process, it may also make sense to elim-
inate all reads that a process does of its own
registers. If both changes are made, the algo-
rithm require only n? —1 Read and n+1 Write
operations.



read(c: counter)
a := atomic scan of ¢
result := 0
for all processes P do
if P’s timestamp is maximal in a
then result := result + a[P].contribution
end
return result
end read

inc(c: counter, amount: integer)

a := atomic scan of c
max := entry with maximal timestamp in a
if my timestamp is maximal
then a[me].contribution := a[me].contribution + amount
else a[me].reset_count := max.reset_count
a[me] .reset_signature := max.reset_signature
a[me] .contribution := amount
end if
c[me] := al[me]
end int

reset(c: counter, amount: integer)

a := atomic scan of ¢

max := entry with maximal timestamp in a
a[me] .contribution := amount

a[me] .reset_count := 1 + max.reset_count
a[me] .reset_signature := me

c[me] := al[me]

end int

Figure 1: A Wait-Free Counter Implementation



5 An Example

As an example of how simple optimizations
can transform our general algorithm into a
more efficient algorithm, we revisit the shared
counter example. Here, the precedence graph
is represented in extremely compact form. The
processes share an n-element array of entries,
where each entry has the following fields:

e The reset count is an integer, initially
zero, used to order reset operations.

e The reset signature is the name of the last
process observed to reset the counter. It
is used to break ties among concurrent re-
sets.

e The contribution is an integer represent-
ing the sum of the amounts incremented
and decremented executed by that pro-
cess since the last reset.

An entry’s timestamp is constructed by con-
catenating the reset count (high-order bits) to
the reset signature (low-order bits).

Implementations of the counter operations
are shown schematically in Figure 1.

6 Other Related Work

Although the work on atomic registers has a
long history, it is only recently that researchers
have attempted to formalize the computa-
tional power of the resulting model. Cole
and Zajicek [7] propose complexity measures
and basic algorithms for an “asynchronous
PRAM” model in which asynchronous pro-
cesses communicate through shared atomic
registers.  Gibbons [9] proposes an asyn-
chronous model in which shared atomic reg-
isters are augmented by a form of barrier syn-
chronization. Our work extends these ap-
proaches in two ways: we consider data struc-
tures rather than the usual numeric or graph

algorithms, and we focus on wait-free com-
putation, since we feel that algorithms that
require processes to wait for one another are
poorly suited to asynchronous models.

We recently learned of two other atomic
scan algorithms, developed independently by
Attiya et al. [1] and by Anderson [2]. The for-
mer has time complexity comparable to ours,
while the latter uses time exponential in the
number of processes. We will include a more
complete discussion of these algorithms in the
full paper, but for now we simply remark that
either could be used in our construction.

An object implementation is randomized
wait-free if each operation completes in a fized
expected number of steps. Elsewhere [3], we
have shown that the asynchronous PRAM
model is universal for randomized wait-free ob-
jects.

7 Remarks

This paper has shown there there is a non-
trivial class of objects that have wait-free
implementations in the asynchronous PRAM
model. This result suggests several interesting
open questions. Does every object with con-
sensus number 1 have a wait-free asynchronous
PRAM implementation? If so, is there a fixed
bound to the number of primitive reads and
writes needed to complete an operation, per-
haps as a function of n? Or, do there exist
objects whose implementations must be finite
but unbounded? Do the answers to these ques-
tions depend on the number of processes?

References

[1] Y. Afek, H. Attiya, D. Dolev, E. Gafni,
M. Merritt, and N. Shavit. Atomic snap-
shots. Private Communication, 1990.



2]

3]

[4]

[6]

[7]

[9]

[10]

Anderson. Composite registers. Technical
Report TR-89-25, University of Texas at
Austin, September 1989.

J. Aspnes and M.P. Herlihy. Randomized
algorithms for wait-free synchronization.
Submitted for publication.

P.A. Bernstein and N. Goodman. Con-
currency control in distributed database
systems. ACM Computing Surveys,
13(2):185-222, June 1981.

B. Bloom. Constructing two-writer
atomic registers. In Proceedings of the
Sixth ACM Symposium on Principles of
Distributed Computing, pages 249-259,
1987.

J.E. Burns and G.L. Peterson. Construct-
ing multi-reader atomic values from non-
atomic values. In Proceedings of the Sizth
ACM Symposium on Principles of Dis-
tributed Computing, pages 222-231, 1987.

R. Cole and O. Zajiec. The apram:
incorporating asynchrony into the pram
model. In Proceedings of the 1989 Sym-
posium on Parallel Algorithms and Archi-
tectures, pages 169-178, Santa Fe, NM,
June 1989.

M. Fischer, N.A. Lynch, and M.S. Pater-
son. Impossibility of distributed commit

with one faulty process. Journal of the
ACM, 32(2), April 1985.

P.B. Gibbons. A more practical pram
model. In Proceedings of the 1989 Sym-
posium on Parallel Algorithms and Archi-
tectures, pages 158-168, Santa Fe, NM,
June 1989.

M.P. Herlihy.  Wait-free synchroniza-
tion.  Accepted for publication, ACM
TOPLAS.

[11]

[12]

[13]

[14]

[15]

[16]

[19]

M.P. Herlihy. Impossibility and universal-
ity results for wait-free synchronization.
In Seventh ACM SIGACT-SIGOPS Sym-
posium on Principles of Distributed Com-
puting, August 1988.

M.P. Herlihy and J.M. Wing. Lineariz-
abilty: a correctness condition for con-

current objects. Accepted for publication,
ACM TOPLAS.

M.P. Herlihy and J.M. Wing. Axioms for
concurrent objects. In 14th ACM Sympo-
stum on Principles of Programming Lan-
guages, pages 13-26, January 1987.

L. Lamport. Concurrent reading and
writing. Communications of the ACM,
20(11):806-811, November 1977.

L. Lamport. Time, clocks, and the or-
dering of events in a distributed system.
Communications of the ACM, 21(7):558—
565, July 1978.

L. Lamport. How to make a multiproces-
sor computer that correctly executes mul-
tiprocess programs. IEEE Transactions
on Computers, C-28(9):690, September
1979.

L. Lamport. On interprocess communica-
tion, parts i and ii. Distributed Comput-
ing, 1:77-101, 1986.

R. Newman-Wolfe. A protocol for wait-
free, atomic, multi-reader shared vari-
ables. In Proceedings of the Sixth ACM
Symposium on Principles of Distributed
Computing, pages 232249, 1987.

C.H. Papadimitriou. The serializability of
concurrent database updates. Journal of
the ACM, 26(4):631-653, October 1979.



[20]

[22]

[23]

[24]

G.L. Peterson. Concurrent reading while
writing. ACM Transactions on Program-
ming Languages and Systems, 5(1):46-55,
January 1983.

G.L. Peterson and J.E. Burns. Concur-
rent reading while writing ii: the multi-
writer case. Technical Report GIT-ICS-
86/26, Georgia Institute of Technology,
December 1986.

A K. Singh, J.H. Anderson, and M.G.
Gouda. The elusive atomic register re-
visited. In Proceedings of the Sixth ACM
Symposium on Principles of Distributed
Computing, pages 206-221, August 1987.

P. Vitanyi and B. Awerbuch. Atomic
shared register access by asynchronous
hardware.  In Proceedings of of the
27th IEEE Symposium on Foundations of
Computer Science, pages 223-243, 1986.
See also errata in SIGACT News 18(4),
Summer, 1987.

W.E. Weihl. Specification and implemen-
tation of atomic data types. Technical Re-
port TR-314, MIT Laboratory for Com-
puter Science, March 1984.

10



