
Wait-Free Data Stru
turesin the Asyn
hronous PRAM ModelJames AspnesS
hool of Computer S
ien
eCarnegie-Mellon UniversityPittsburgh, PA 15213 Mauri
e HerlihyDigital Equipment CorporationCambridge Resear
h LaboratoryOne Kendall SquareCambridge MA, 02139May 22, 2000Abstra
tA wait-free implementation of a data obje
t in shared memory is one that guaranteesthat any pro
ess 
an 
omplete any operation in a �nite number of steps, regardless of theexe
ution speeds of the other pro
esses. Mu
h of the literature on wait-free syn
hronizationhas fo
used on the 
onstru
tion of atomi
 registers, whi
h are memory lo
ations that 
anbe read or written instantaneously by 
on
urrent pro
esses. This model, in whi
h a set ofasyn
hronous pro
esses 
ommuni
ate through shared atomi
 registers, is sometimes knownas asyn
hronous PRAM. It is known, however, that the asyn
hronous PRAM model is notsuÆ
iently powerful to 
onstru
t wait-free implementations of many simple data types su
has lists, queues, sta
ks, test-and-set registers, and others. In this paper, we give an algebrai

hara
terization of a large 
lass of obje
ts that do have wait-free implementations in asyn-
hronous PRAM, as well as a general algorithm for implementing them.Conta
t Author: M. Herlihy, herlihy�
rl.de
.
om (617) 621-6646.

0



1 Problem StatementA 
on
urrent obje
t is a data stru
ture sharedby asyn
hronous 
on
urrent pro
esses. An im-plementation of a 
on
urrent obje
t is wait-free if it guarantees that any pro
ess will 
om-plete any operation in a �nite number of steps,regardless of the exe
ution speeds of the otherpro
esses. The wait-free 
ondition is a naturalproperty to require of asyn
hronous systems.It guarantees that no pro
ess 
an be preventedfrom 
ompleting an operation by variationsin other pro
esses' speeds, or by undete
tedhalting failures. Even in a failure-free system,a pro
ess 
an en
ounter unexpe
ted delay bytaking a page fault or 
a
he miss, exhaustingits s
heduling quantum, or being swapped out.Similar problems arise in heterogeneous ar
hi-te
tures, where some pro
essors may be inher-ently faster than others, and some memory lo-
ations may be slower to a

ess. The wait-free
ondition rules out many 
onventional algo-rithmi
 te
hniques su
h as busy-waiting, 
on-ditional waiting, or 
riti
al se
tions, sin
e thefailure or delay of a single pro
ess within a
riti
al se
tion will prevent the non-faulty pro-
esses from making progress.The fundamental problem in this area is thefollowing: under what 
ir
umstan
es 
an we
onstru
t a wait-free implementation of one
on
urrent obje
t from another? Elsewhere[10, 11℄, we have shown that any obje
t X
an be assigned a 
onsensus number, whi
h isthe largest number of pro
esses (possibly in�-nite) that 
an a
hieve asyn
hronous 
onsensus[8℄ by applying operations to a shared X . Noobje
t with 
onsensus number n 
an be imple-mented by an obje
t with a lower 
onsensusnumber in a system of n or more pro
esses, butany obje
t with 
onsensus number n is univer-sal (it implements any other obje
t) in a sys-tem of n or fewer pro
esses. By 
omputing the
onsensus numbers of existing syn
hronizationprimitives, one 
an derive an in�nite hierar
hy

of su

essively more powerful syn
hronizationprimitives.In this paper, we extend our earlier resultsby investigating the 
lass of obje
ts that havewait-free implementations using only atomi
read and write operations applied to individualmemory 
ells. This model is sometimes knownas asyn
hronous PRAM [7, 9℄. Many re-sear
hers have investigated te
hniques for 
on-stru
ting su
h memory 
ells, 
alled atomi
 reg-isters, from simpler primitives [5, 6, 14, 17, 18,20, 21, 22, 23℄. Despite the impressive amountof intelle
tual energy that has been applied tothese 
onstru
tions, it is not diÆ
ult to showthat atomi
 registers have 
onsensus number1, and thus the asyn
hronous PRAM model istoo weak to support wait-free implementationsof any obje
t with a higher 
onsensus num-ber, in
luding 
ommon data types su
h as sets,queues, sta
ks, priority queues, or lists, most ifnot all the 
lassi
al syn
hronization primitives,su
h as test-and-set, 
ompare-and-swap, andfet
h-and-add, and simple memory-to-memoryoperations su
h as move or swap. These ob-servations raise an intriguing question: what,if anything, are atomi
 registers good for?In this paper, we give a new 
hara
teriza-tion of a wide 
lass of obje
ts that do havewait-free implementations in the asyn
hronousPRAM model. This 
hara
terization is al-gebrai
 in nature, in the sense that it is ex-pressed in terms of simple 
ommutativity andoverwriting properties of the data type's se-quential spe
i�
ation. We present a te
hniquefor transforming a sequential obje
t implemen-tation into an n-pro
ess wait-free implemen-tation requiring a worst-
ase syn
hronizationoverhead of O(n2) reads and writes per oper-ation. Examples of obje
ts that 
an be imple-mented in this way in
lude 
ounters, logi
al
lo
ks [15℄, and 
ertain kinds of set abstra
-tions.1



2 Summary of ResultsDetails of the formal model [11, 13℄ are omit-ted here for brevity. Informally, however, a
on
urrent system 
onsists of a 
olle
tion ofn sequential pro
esses that 
ommuni
ate byapplying operations to shared typed obje
ts.Pro
esses are sequential | ea
h pro
ess ap-plies a sequen
e of operations to obje
ts, al-ternately issuing an invo
ation and then re-
eiving the asso
iated response. We make nofairness assumptions about pro
esses. A pro-
ess 
an halt, or display arbitrary variations inspeed. In parti
ular, one pro
ess 
annot tellwhether another has halted or is just runningvery slowly.Obje
ts are data stru
tures in shared mem-ory. Ea
h obje
t has a type, whi
h de�nes a setof possible values and a set of primitive opera-tions that provide the only means to manipu-late that obje
t. Ea
h obje
t has a sequentialspe
i�
ation that de�nes how the obje
t be-haves when its operations are invoked one ata time by a single pro
ess. For example, thebehavior of a queue obje
t 
an be spe
i�ed byrequiring that enq insert an item in the queue,and that deq remove the oldest item present inthe queue. In a 
on
urrent system, however,an obje
t's operations 
an be invoked by 
on-
urrent pro
esses, and it is ne
essary to give ameaning to interleaved operation exe
utions.An obje
t is linearizable [12, 13℄ if ea
h oper-ation appears to take e�e
t instantaneously atsome point between the operation's invo
ationand response. Linearizability implies that pro-
esses appear to be interleaved at the granular-ity of 
omplete operations, and that the orderof non-overlapping operations is preserved. Asdis
ussed in more detail elsewhere [13℄, the no-tion of linearizability generalizes and uni�es anumber of ad-ho
 
orre
tness 
onditions in theliterature, and it is related to (but not identi-
al with) 
orre
tness 
riteria su
h as sequen-tial 
onsisten
y [16℄ and stri
t serializability

[19℄. We use linearizability as the basi
 
or-re
tness 
ondition for the 
on
urrent obje
ts
onstru
ted in this paper.An invo
ation 
onsists of an operationname, argument values, and pro
ess name,and a response 
onsists of a termination 
on-dition, result values, and pro
ess name. A his-tory is a sequen
e of invo
ations and responses,subje
t to simple well-formedness 
onstraintsomitted here. An invo
ation and responsemat
h if their pro
ess names agree. An op-eration in a history is a pair 
onsisting of aninvo
ation and the next mat
hing response. Ahistory is sequential if it is a sequen
e of opera-tions (i.e., mat
hing invo
ations and responsesare not interleaved). It is 
onvenient to treatan obje
t's sequential spe
i�
ation as a pre�x-
losed set of legal sequential histories. In thefollowing, we use \�" to denote 
on
atenationof sequen
es.De�nition 1 Two sequential histories h andh0 are equivalent if, for all sequential historiesg, h � g is legal if and only if h0 � g is legal.De�nition 2 Operations p and q 
ommute if,for all sequential histories h, if h � p and h � qare legal then h � p � q and h � q � p are legal andequivalent.De�nition 3 Operation q overwrites p if, forall sequential histories h, if h � p and h � q arelegal then h �p �q is legal and equivalent to h �q.This parti
ular notion of 
ommutativity is dueto Weihl [24℄. Both properties are 
arefullyformulated to en
ompass obje
ts with partialand non-deterministi
 operations.In this paper, we show how to 
onstru
ta wait-free asyn
hronous PRAM implementa-tion for any obje
t whose sequential spe
i�
a-tion satis�es the following property:Property 1 For all operations p and q, eitherp and q 
ommute, or one overwrites the other.2



For example, one data type that satis�es these
onditions is the following 
ounter data type,providing the following operations:in
(
: 
ounter, amount: integer)de
(
: 
ounter, amount: integer)respe
tively in
rement and de
rement the
ounter by a given amount,reset(
: 
ounter, amount: integer)reinitializes the 
ounter to amount, andread(
: 
ounter) returns(integer)returns the 
urrent 
ounter value. Note thatin
 and de
 operations 
ommute, every oper-ation overwrites read, and reset overwrites ev-ery operation. Su
h a shared 
ounter mightbe used, for example, in randomized shared-memory algorithms [3℄, and for logi
al 
lo
ks[15℄.3 The Basi
 Constru
tion3.1 Preliminary De�nitionsThe \real-time" ordering of events indu
es anirre
exive partial order on operations: p pre-
edes q if the response for p pre
edes the invo-
ation for q. If p and q are unrelated by pre
e-den
e, they are 
on
urrent. It is 
onvenient tothink of the pre
eden
e order as de�ning a di-re
ted a
y
li
 pre
eden
e graph on 
ompletedoperations: there is an edge from p to q if andonly if p pre
edes q.To re
onstru
t the obje
t state, we 
on-stru
t a linearization graph by augmentingthe pre
eden
e graph with additional edges.These edges re
e
t 
onstraints on the order-ing of 
on
urrent operations imposed by thealgebrai
 properties of the operations them-selves. First, a de�nition: an operation p ofpro
ess P interferes with operation q of Q if

either (1) p overwrites q but not vi
e-versa, or(2) p overwrites q and P > Q.The linearization graph L asso
iated with apre
eden
e graph G is de�ned by indu
tion onthe number of operations in G.� The linearization graph of the emptypre
eden
e graph is empty.� Let G be a non-empty pre
eden
e graph,let p be an operation of pro
ess P hav-ing no outgoing edges, and let G0 be thepre
eden
e graph 
onstru
ted by remov-ing p and its in
oming edges from G.Sin
e G0 has fewer operations, it has awell-de�ned linearization graph L0. Thelinearization graph L of G is 
onstru
tingas follows. Constru
t L00 by adding to L0the pre
eden
e edges for p. Let Q be themaximal subgraph of L00 whose verti
es
onsist of all operations q su
h that thereis no path in L00 from q to p. We add thefollowing edges to L00. For ea
h q in Q,{ If p interferes with q, add an edgefrom p to q.{ If q interferes with p and p does notinterfere with any operation pre
ed-ing q in Q, add an edge from p toq.The linearization graph L is the transitive 
lo-sure of the result.Lemma 1 The linearization graph for G iswell-de�ned; it does not depend on the 
hoi
eof p.Lemma 2 The linearization graph is a
y
li
.De�nition 4 A linearization of L is the se-quential history 
onstru
ted by a topologi
alsort of L.Lemma 3 If L has a legal linearization, thenall linearizations of L are legal and equivalent.3



Informally, the purpose of the linearizationgraph is to ensure that no operation's result isa�e
ted by 
on
urrent operations. Lineariza-tion graphs owe something to the serializationgraphs [4℄ used in database theory, althoughthe te
hni
al details are di�erent.3.2 The AlgorithmThe obje
t is represented by a graph whosetransitive 
losure is its pre
eden
e graph.Ea
h operation is represented by an entry, adata stru
ture with �elds for the invo
ation,the response, and n pointers to ea
h pro
ess'spre
eding entry. The graph is rooted in an an-
hor array whose P -th entry holds a pointerto the entry for pro
ess P 's most re
ent oper-ation.A pro
ess exe
utes an operation in threesteps:1. The pro
ess takes an instantaneous snap-shot of the an
hor array using the atomi
s
an pro
edure des
ribed in Se
tion 4.2. The pro
ess re
onstru
ts the linearizationgraph from the pre
eden
e graph rootedat the snapshot of the an
hor array. It
hooses a linearization, 
alled its view,and then 
hooses a response to the in-vo
ation 
onsistent with its view using asequential implementation of the obje
t.3. The pro
ess 
reates an entry for the op-eration, �lling in the response 
omputedin Step 2 and the pre
eden
e edges fromthe an
hor array 
opied in Step 1. It thenupdates the pre
eden
e graph by settingits slot in the an
hor array to point to thenew entry.In the full paper, we give an indu
tive proofthat any topologi
al sort of the pre
eden
egraph's linearization graph is a legal sequen-tial history, hen
e the obje
t implementa-tion is linearizable. Informally, this algorithm

exploits the 
ommutativity and overwritingproperties of operations to ensure that ea
hpro
ess sees \enough" of the obje
t state to
hoose a 
orre
t response independently of anyoperations that may be taking pla
e 
on
ur-rently.As des
ribed in detail in the full paper, thisalgorithm 
an be made 
onsiderably more eÆ-
ient by observing that most of the pre
eden
egraph 
an be dis
arded, and that it is not ne
-essary to re
onstru
t the entire linearizationgraph for ea
h operation. An example of su
ha 
onstru
tion is given below in Se
tion 5.4 Atomi
 S
anIt is 
onvenient to 
ast the atomi
 s
an prob-lem in a more general form. We 
an think ofa region of memory as representing a pool ofinformation provided by the pro
esses. Whenthe state of the memory does not depend onthe order in whi
h values are written, it is nat-ural to treat it as the join in a _-semilatti
eof the input values. The atomi
 s
an obje
tsimulates a 
olle
tion of single-writer registersfor whi
h it is possible to atomi
ally read thejoin of the register values.Fix a _-semilatti
e L; for 
onvenien
e wewill assume that L 
ontains a bottom ele-ment ? su
h that ? _x = x for all x inL. The atomi
 s
an obje
t has an operationWriteL(P; v) for ea
h pro
ess P and element vof L, and an operation ReadMax(P;) for ea
hpro
ess P . The serial semanti
s of the obje
tare quite straightforward: given any historyHthe value returned by a ReadMax(P;) opera-tion in H is equal to the join of all values vsu
h that WriteL(P; v) appears in H for somepro
essor P .To implement the atomi
 s
an obje
t,we assume that the pro
esses share be-tween them an array s
an[1 : : : n℄[0 : : : n + 1℄of multi-reader/single-writer atomi
 registers,4



where ea
h register s
an[P ℄[i℄ 
an be writ-ten to by pro
ess P . The two operationsWriteL(P; v) and ReadMax(P;) are both im-plemented in terms of a stronger primitive op-eration S
an(P; v), whi
h is 
arried out as fol-lows:1. Read s
an[P ℄[0℄2. Write v _ s
an[P ℄[0℄ to s
an[P ℄[0℄.3. For i from 1 to n+ 1:(a) Read s
an[Q℄[i� 1℄ for all pro
essesQ in arbitrary order.(b) Write the WQ s
an[Q℄[i � 1℄ tos
an[P ℄[i℄.4. Return s
an[P ℄[i+ 1℄Given the S
an operation, the WriteL op-eration is implemented by simply ignoring itsreturn value, while the ReadMax operation isjust a S
an operation whi
h always writes thevalue ?. In e�e
t, the S
an operation a
ts likea WriteL operation followed by a ReadMax op-eration; we demonstrate this fa
t formally inthe following se
tion.4.1 Proof of Corre
tnessWe demonstrate the 
orre
tness of the atomi
s
an algorithm in two steps. First, we willshow that any two values returned by S
anoperations are 
omparable within the latti
eL. Se
ond, we will use the latti
e orderingof the set of returned values to order the im-plemented WriteL and ReadMax operationsin any 
on
urrent history H ; this orderingwill produ
e an equivalent serial history of theatomi
 s
an obje
t, thus proving linearizabil-ity.Some notation will be useful. The usual or-der symbols <;>;�;� will be used for thesemilatti
e order in L. We will assume that

we are working from a �xed history H . Sin
ewe will be working primarily with the Writeevents in H , we will abbreviate any eventhA;Write(k); vi in H to simply A[k℄, and willoften abuse this notation by using oAk to referto the value written in addition to the Writeevent itself. We say that A[k℄ dire
tly-seesB[k� 1℄ if A's Read of s
an[pro
ess(B)℄[k� 1℄follows B[k � 1℄ in H . We will say thatA[k℄ sees B[l℄ if (A[k℄; B[l℄) is in the re
ex-ive, transitive 
losure of dire
tly-sees. Notethat for A[k℄ to see B[l℄ it is not enough thatA[k℄ � B[l℄; it must also o

ur later in time af-ter a sequen
e of intermediate reads and writesthat would allow the value B[l℄ to be in
orpo-rated in the value A[k℄.Certain fa
ts about the sees relation are im-portant enough to state as lemmas. The proofsare straightforward and are omitted to savespa
e.Lemma 4 Let A be an invo
ation, and let i �j be su
h that A[i℄ and A[j℄ both o

ur. ThenA[j℄ sees A[i℄.Lemma 5 Let A and B be invo
ations whereA <H B. Let k be su
h that A[k℄ and B[k℄both exist. Then oBk � oAk.It is also not diÆ
ult to see that any valuewritten by a pro
ess is the join of the valuesseen by that pro
ess; more formally, we state:Lemma 6 Let A[k℄ o

ur and let l < k, l � 0.Then A[k℄ = W fB[l℄jA[k℄seesB[l℄g.The following lemma des
ribes the prin
ipleon whi
h the atomi
 s
an algorithm depends:Lemma 7 Let A[k℄, B[k℄ both appear in thehistory for some k > 0. Then either A[k℄ seesB[k � 1℄ or B[k℄ sees A[k � 1℄.Proof: Suppose A[k � 1℄ pre
edes B[k � 1℄.Then sin
e B's read of s
an[pro
ess(B)℄[k� 1℄5



follows B[k � 1℄ it follows A[k � 1℄ and B[k℄sees A[k�1℄. Alternatively if B[k�1℄ pre
edesA[k � 1℄, A[k℄ sees B[k � 1℄.We may now prove the 
onsisten
y of theatomi
 s
an operation.Lemma 8 Let A, B be invo
ations su
h thatA[n+ 1℄ and B[n+ 1℄ both exist. Then eitherA[n+ 1℄ � B[n+ 1℄ or B[n+ 1℄ � A[n+ 1℄Proof: Let A0, B0 be invo
ations su
h thatA[n+ 1℄ sees A0[℄ and B[n+ 1℄ sees B0[℄. We
laim that either A[n + 1℄ � B0[℄ or B[n +1℄ � A0[℄. Let fAkg0�k�n+1 be an indexed setof invo
ations (not ne
essarily distin
t) su
hthat A0 = A0, An+1 = A, and for ea
h k,0 < k < n+1, Ak[k℄ dire
tly-sees Ak�1[k� 1℄.De�ne fBkg similarly; the existen
e of the setsfollows from the de�nition of sees.For ea
h Ak, Bk, where k > 0, Lemma7 implies that either Ak[k℄ sees Bk[k � 1℄ orBk[k � 1℄, and thus one of Ak or Bk has theproperty that its (k � 1)-th write is seen byboth Ak[k℄ and Bk[k℄. Let Xk stand for thisinvo
ation.Now 
onsider the indexed set fXkg0<k�n+1.Then there exist distin
t i, j su
h that Xi =Xj or pro
ess(Xi) = pro
ess(Xj), by the pi-geonhole prin
iple.In the former 
ase Xi = Xj , Lemma 4 im-mediately implies Xj [j � 1℄ sees Xi[i℄. In thelatter 
ase, assume that i < j; then that Ximust pre
ede Xj , be
ause Xj [j℄ sees eitherAi[i℄ or Bi[i℄, both of whi
h see Xi[i�1℄. Thusby Lemma 5, Xj [j � 1℄ � Xi[j � 1℄, but asj � 1 � i Lemma 4 gives us Xi[j � 1℄ seesXi[i℄. Thus in either 
ase Xj [j � 1℄ � Xi[i℄.But both A[n+1℄ and B[n+ 1℄ see Xj [j � 1℄,and Xi[i℄ sees one of A0[0℄, B0[0℄. Thus the
laim holds.Now suppose that A[n+1℄ and B[n+1℄ arein
omparable; by Lemma 6 there must thenexist a A0[0℄ whi
h A[n + 1℄ alone sees anda B0[0℄ whi
h B[n + 1℄ alone sees| but that

would 
ontradi
t the 
laim. Thus the lemmaholds.Theorem 5 The atomi
 s
an obje
t imple-mentation is linearizable.Proof: For ea
h invo
ation A in H , we 
on-sider both operations that it may implement,a WriteL operation whi
h we will refer to asAWriteL and a ReadMax operation whi
h wewill refer to as AReadMax (we will delete theextra operation later.) Now 
onsider any twosu
h operations x and y, implemented by in-vo
ations X and Y , respe
tively. Let x <S yif either X [n + 1℄ < Y [n + 1℄ or X [n + 1℄ =Y [n + 1℄, x is a WriteL operation, and y is aReadMax operation. By Lemma 8 <S 
an beextended into a total order; furthermore thistotal order is a superset of <H by Lemma 5.Thus we 
an use <S to linearize H| the a
-tual implemented history is obtained by delet-ing the extra operations, whi
h have no e�e
ton the obje
t's state.4.2 Running TimeEa
h S
an operation requires 1 Read and 1Write operation to set s
an[P ℄[0℄, plus n Readand 1 Write operations for ea
h of n+1 passesthrough the loop. Thus a single S
an opera-tion requires a total of n2 + n + 1 Read andn+2 Write operations, where as usual n is thenumber of pro
esses.Some of these operations 
an be eliminated;for example, the very last write (to s
an[P ℄[n+1℄) is super
uous, as that register is never read.It does, however, make proving the 
orre
tnessof the implementation mu
h easier. Depend-ing on the relative 
ost of storing values lo
allyto a pro
ess, it may also make sense to elim-inate all reads that a pro
ess does of its ownregisters. If both 
hanges are made, the algo-rithm require only n2�1 Read and n+1Writeoperations.6



read(
: 
ounter)a := atomi
 s
an of 
result := 0for all pro
esses P doif P's timestamp is maximal in athen result := result + a[P℄.
ontributionendreturn resultend readin
(
: 
ounter, amount: integer)a := atomi
 s
an of 
max := entry with maximal timestamp in aif my timestamp is maximalthen a[me℄.
ontribution := a[me℄.
ontribution + amountelse a[me℄.reset_
ount := max.reset_
ounta[me℄.reset_signature := max.reset_signaturea[me℄.
ontribution := amountend if
[me℄ := a[me℄end intreset(
: 
ounter, amount: integer)a := atomi
 s
an of 
max := entry with maximal timestamp in aa[me℄.
ontribution := amounta[me℄.reset_
ount := 1 + max.reset_
ounta[me℄.reset_signature := me
[me℄ := a[me℄end int Figure 1: A Wait-Free Counter Implementation
7



5 An ExampleAs an example of how simple optimizations
an transform our general algorithm into amore eÆ
ient algorithm, we revisit the shared
ounter example. Here, the pre
eden
e graphis represented in extremely 
ompa
t form. Thepro
esses share an n-element array of entries,where ea
h entry has the following �elds:� The reset 
ount is an integer, initiallyzero, used to order reset operations.� The reset signature is the name of the lastpro
ess observed to reset the 
ounter. Itis used to break ties among 
on
urrent re-sets.� The 
ontribution is an integer represent-ing the sum of the amounts in
rementedand de
remented exe
uted by that pro-
ess sin
e the last reset.An entry's timestamp is 
onstru
ted by 
on-
atenating the reset 
ount (high-order bits) tothe reset signature (low-order bits).Implementations of the 
ounter operationsare shown s
hemati
ally in Figure 1.6 Other Related WorkAlthough the work on atomi
 registers has along history, it is only re
ently that resear
hershave attempted to formalize the 
omputa-tional power of the resulting model. Coleand Zaji
ek [7℄ propose 
omplexity measuresand basi
 algorithms for an \asyn
hronousPRAM" model in whi
h asyn
hronous pro-
esses 
ommuni
ate through shared atomi
registers. Gibbons [9℄ proposes an asyn-
hronous model in whi
h shared atomi
 reg-isters are augmented by a form of barrier syn-
hronization. Our work extends these ap-proa
hes in two ways: we 
onsider data stru
-tures rather than the usual numeri
 or graph

algorithms, and we fo
us on wait-free 
om-putation, sin
e we feel that algorithms thatrequire pro
esses to wait for one another arepoorly suited to asyn
hronous models.We re
ently learned of two other atomi
s
an algorithms, developed independently byAttiya et al. [1℄ and by Anderson [2℄. The for-mer has time 
omplexity 
omparable to ours,while the latter uses time exponential in thenumber of pro
esses. We will in
lude a more
omplete dis
ussion of these algorithms in thefull paper, but for now we simply remark thateither 
ould be used in our 
onstru
tion.An obje
t implementation is randomizedwait-free if ea
h operation 
ompletes in a �xedexpe
ted number of steps. Elsewhere [3℄, wehave shown that the asyn
hronous PRAMmodel is universal for randomized wait-free ob-je
ts.7 RemarksThis paper has shown there there is a non-trivial 
lass of obje
ts that have wait-freeimplementations in the asyn
hronous PRAMmodel. This result suggests several interestingopen questions. Does every obje
t with 
on-sensus number 1 have a wait-free asyn
hronousPRAM implementation? If so, is there a �xedbound to the number of primitive reads andwrites needed to 
omplete an operation, per-haps as a fun
tion of n? Or, do there existobje
ts whose implementations must be �nitebut unbounded? Do the answers to these ques-tions depend on the number of pro
esses?Referen
es[1℄ Y. Afek, H. Attiya, D. Dolev, E. Gafni,M. Merritt, and N. Shavit. Atomi
 snap-shots. Private Communi
ation, 1990.8



[2℄ Anderson. Composite registers. Te
hni
alReport TR-89-25, University of Texas atAustin, September 1989.[3℄ J. Aspnes and M.P. Herlihy. Randomizedalgorithms for wait-free syn
hronization.Submitted for publi
ation.[4℄ P.A. Bernstein and N. Goodman. Con-
urren
y 
ontrol in distributed databasesystems. ACM Computing Surveys,13(2):185{222, June 1981.[5℄ B. Bloom. Constru
ting two-writeratomi
 registers. In Pro
eedings of theSixth ACM Symposium on Prin
iples ofDistributed Computing, pages 249{259,1987.[6℄ J.E. Burns and G.L. Peterson. Constru
t-ing multi-reader atomi
 values from non-atomi
 values. In Pro
eedings of the SixthACM Symposium on Prin
iples of Dis-tributed Computing, pages 222{231, 1987.[7℄ R. Cole and O. Zajie
. The apram:in
orporating asyn
hrony into the prammodel. In Pro
eedings of the 1989 Sym-posium on Parallel Algorithms and Ar
hi-te
tures, pages 169{178, Santa Fe, NM,June 1989.[8℄ M. Fis
her, N.A. Lyn
h, and M.S. Pater-son. Impossibility of distributed 
ommitwith one faulty pro
ess. Journal of theACM, 32(2), April 1985.[9℄ P.B. Gibbons. A more pra
ti
al prammodel. In Pro
eedings of the 1989 Sym-posium on Parallel Algorithms and Ar
hi-te
tures, pages 158{168, Santa Fe, NM,June 1989.[10℄ M.P. Herlihy. Wait-free syn
hroniza-tion. A

epted for publi
ation, ACMTOPLAS.

[11℄ M.P. Herlihy. Impossibility and universal-ity results for wait-free syn
hronization.In Seventh ACM SIGACT-SIGOPS Sym-posium on Prin
iples of Distributed Com-puting, August 1988.[12℄ M.P. Herlihy and J.M. Wing. Lineariz-abilty: a 
orre
tness 
ondition for 
on-
urrent obje
ts. A

epted for publi
ation,ACM TOPLAS.[13℄ M.P. Herlihy and J.M. Wing. Axioms for
on
urrent obje
ts. In 14th ACM Sympo-sium on Prin
iples of Programming Lan-guages, pages 13{26, January 1987.[14℄ L. Lamport. Con
urrent reading andwriting. Communi
ations of the ACM,20(11):806{811, November 1977.[15℄ L. Lamport. Time, 
lo
ks, and the or-dering of events in a distributed system.Communi
ations of the ACM, 21(7):558{565, July 1978.[16℄ L. Lamport. How to make a multipro
es-sor 
omputer that 
orre
tly exe
utes mul-tipro
ess programs. IEEE Transa
tionson Computers, C-28(9):690, September1979.[17℄ L. Lamport. On interpro
ess 
ommuni
a-tion, parts i and ii. Distributed Comput-ing, 1:77{101, 1986.[18℄ R. Newman-Wolfe. A proto
ol for wait-free, atomi
, multi-reader shared vari-ables. In Pro
eedings of the Sixth ACMSymposium on Prin
iples of DistributedComputing, pages 232{249, 1987.[19℄ C.H. Papadimitriou. The serializability of
on
urrent database updates. Journal ofthe ACM, 26(4):631{653, O
tober 1979.9



[20℄ G.L. Peterson. Con
urrent reading whilewriting. ACM Transa
tions on Program-ming Languages and Systems, 5(1):46{55,January 1983.[21℄ G.L. Peterson and J.E. Burns. Con
ur-rent reading while writing ii: the multi-writer 
ase. Te
hni
al Report GIT-ICS-86/26, Georgia Institute of Te
hnology,De
ember 1986.[22℄ A.K. Singh, J.H. Anderson, and M.G.Gouda. The elusive atomi
 register re-visited. In Pro
eedings of the Sixth ACMSymposium on Prin
iples of DistributedComputing, pages 206{221, August 1987.[23℄ P. Vitanyi and B. Awerbu
h. Atomi
shared register a

ess by asyn
hronoushardware. In Pro
eedings of of the27th IEEE Symposium on Foundations ofComputer S
ien
e, pages 223{243, 1986.See also errata in SIGACT News 18(4),Summer, 1987.[24℄ W.E. Weihl. Spe
i�
ation and implemen-tation of atomi
 data types. Te
hni
al Re-port TR-314, MIT Laboratory for Com-puter S
ien
e, Mar
h 1984.

10


