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Abstract

We consider the question of how much information can be stored by labeling the

vertices of a connected undirected graph G using a constant-size set of labels,

when isomorphic labelings are not distinguishable. Specifically, we are interested

in the effective capacity of members of some class of graphs, the number of

states distinguishable by a Turing machine that uses the labeled graph itself in

place of the usual linear tape. We show that the effective capacity is related

to the information-theoretic capacity which we introduce in the paper. It

equals the information-theoretic capacity of the graph up to constant factors for

trees, random graphs with polynomial edge probabilities, and bounded-degree

graphs.

1. Introduction

We consider the question of how much information can be stored by la-

beling the vertices of a connected undirected graph G using a constant-size

set of labels, when isomorphic labelings are not distinguishable. An exact
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information-theoretic bound is easily obtained by counting the number of iso-

morphism classes of labelings of G, which we call the information-theoretic

capacity of the graph. More interesting is the effective capacity of mem-

bers of some class of graphs, the number of states distinguishable by a Turing

machine that uses the labeled graph itself in place of the usual linear tape.

The motivation for this model is self-organizing systems consisting of many

communicating finite-state machines, where at any time, one machine (the lo-

cation of the Turing machine head) takes a leadership role. Our main question

is how much computing power such machines can cooperate to achieve. The

answer depends on the inherent storage capacity of the communication graph, a

function of its size (bigger gives more space) and symmetries (more symmetries

makes the space harder to exploit).

In more detail, a graph Turing machine consists of an undirected con-

nected graph G, each of whose nodes holds a symbol from some finite alphabet,

together with a finite-state controller that can move around the graph and up-

date the symbols written on nodes. Because there is no built-in sense of direction

on an arbitrary graph, the left and right moves of a standard Turing machine

controller are replaced by moves to adjacent graph nodes with a given symbol.

If there is no such adjacent graph node, the move operation fails, which allows

the controller to test its immediate neighborhood for the absence of particu-

lar symbols. If there is more than one such node, which node the controller

moves to is chosen arbitrarily. (A more formal definition of the model is given

in Section 3.)

The intent of this model is to represent what computations are feasible in

various classes of simple distributed systems made up of a network of finite-state

machines. Inclusion of an explicit head that can move nondeterministically to

adjacent nodes (thus breaking at least local symmetries in the graph) makes the

model slightly stronger than similar models from the self-stabilization literature

(e.g., Dijkstra’s original model in [1]) or population protocols [2]; we discuss the

connection between our model and these other models in Section 2.

The main limitation on what a graph Turing machine can compute appears
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to be the intrinsic storage capacity of its graph. For some graphs (paths,

for example) the storage capacity is essentially equivalent to a Turing machine

tape of the same size. For others (cliques, stars, some trees), the usable storage

capacity may be much less, because symmetries within the graph make it diffi-

cult to distinguish different nodes with the same labeling. We define a notion

of information-theoretic capacity of a graph (Section 4.1) that captures

the number of distinguishable classes of labelings of the graph. Essentially this

comes down to counting equivalence classes of labelings under automorphisms

of the graph; it is related to the notion of the distinguishing number of a

graph, which we discuss further in Section 2.3.

The information-theoretic capacity puts an upper bound on the effective

capacity of the graph, the amount of storage that it provides to the graph Tur-

ing machine head (defined formally in Section 4.2). Extracting usable capacity

requires not only that labelings of the graph are distinguishable in principle but

that they are distinguishable to the finite-state controller in a way that allows

it to simulate a classic Turing machine tape. We show, in Section 6.1, that an

arbitrary graph with n nodes provides at least Ω(log n) tape cells worth of effec-

tive capacity (which matches the information-theoretic upper bound for cliques

and stars, up to constant factors). For specific classes of graphs, including

trees (Section 7), bounded-degree graphs (Section 8), and random graphs with

polynomial edge probabilities (Section 9), we show that the effective capacity

similarly matches the information-theoretic capacity.

Notably, these classes of graphs are ones for which testing graph isomorphism

is easy. Whether we can extract the full capacity of a general graph is open,

and appears to be related to whether graph isomorphism for arbitrary graphs

can be solved in LOGSPACE. We discuss this issue in Section 10.

2. Related work

2.1. Self-stabilizing models

A graph Turing machine bears a strong resemblance to a network of finite-

state machines, which has been the basis for numerous models of distributed
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computing, especially in the self-stabilization literature. Perhaps closest to the

present work is the original self-stabilizing model of Dijkstra [1], where we have a

collection of finite-state nodes organized as a finite connected undirected graph,

and at each step some node may undergo a transition to a new state that

depends on its previous state and the state of its immediate neighbors. The main

difference between the graph Turing machine model and this is the existence

of a unique head, and even more so, its ability to move to a single neighbor

of the current node—these properties break symmetry in ways that are often

difficult in classic self-stabilizing systems. A limitation of the graph Turing

machine model is the restriction on what the head can sense of adjoining nodes:

it cannot distinguish neighbors in the same state, or even detect whether one

or many neighbors is in a particular state.

Itkis and Levin [3] give a general method for doing self-stabilizing computa-

tions in asynchronous general topology networks. Their model is stronger than

ours, in that each node can maintain pointers to its neighbors (in particular, it

can distinguish neighbors in the same state). Nonetheless, we have found some

of the techniques in their paper useful in obtaining our current results.

2.2. Population protocols

There is also a close connection between our model and the population

protocol model [2], in which a collection of finite-state agents interact pairwise,

each member of the pair updating its state based on the prior states of both

agents (see [4] for a recent survey on this and related models). This is especially

true for work on population protocols with restricted communication graphs (for

example, [5]). Indeed, it is almost possible to simulate a graph Turing machine

in a population protocol, simply by moving the state of the head around as part

of the state of the node it is placed on, and using interactions with neighbors

to sense the local state. The missing piece in the population protocol model

is that there is no mechanism for detecting the absence of a particular state

in the immediate neighborhood. Although a fairness condition implies that

every neighbor will make itself known eventually, the head node has no way to
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Figure 1: Examples of distinguishability numbers. The line has distinguishability number 2,
but the more symmetric square has distinguishability number 3.

tell if this has happened yet. Urn automata [6], a precursor to the population

protocol model in which a finite-state controller manages the population, also

have some similarities to graph Turing machines, especially in the combination

of a classical Turing-machine controller with an unusual data store.

The community protocol model of Guerraoui and Ruppert [7, 8] extends

population protocols by allowing agents to store a constant number of pointers

to other agents that can only be used in limited ways. Despite these restric-

tions, Guerraoui and Ruppert show that community protocols with n agents can

simulate storage modification machines as defined by Schönhage [9], which

consist of a dynamic graph on n nodes updated by a finite-state controller.

Such machines can in turn simulate standard Turing machines with O(n log n)

space. The community protocol and storage modification machine models are

both stronger than our graph Turing machines because they allow for a dynamic

graph, while our machines have to work with the graph they are given.

2.3. Distinguishing number

The distinguishing number [10] d(G) of a graph G is the minimum num-

ber of colors (color is used instead of labels in the literature) needed to color
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the vertices of G so that G has no non-trivial color-preserving automorphism.

An automorphism is a permutation of the vertices of the graph that preserves

adjacency so that two vertices that are adjacent are mapped to two vertices that

are adjacent. A color-preserving automorphism is an automorphism that maps

vertices to vertices of the same color. The concept is illustrated in Figure 1 in

which the mapping is indicated with dashed arrows. In the example of a line,

there is a non-trivial color-preserving automorphism if nodes are colored with

only one color (a). If we color one of the two endpoints by introducing a second

color, there is no non-trivial color preserving automorphism. In the case of the

square, two colors are not sufficient. The figure shows the one-coloring (c) as

well as one particular two-coloring (d) and the corresponding color-preserving

automorphism, but it should be clear that no other two-colorings will eliminate

all non-trivial color-preserving automorphsims..

If the distinguishing number of a class of graphs is bounded, then we can

in principle color the nodes with a distinguishing coloring that uniquely iden-

tifies each node based on its position in the graph (though it still may require

substantial work to identify a particular node). With a large enough alphabet,

we can use a second component of the state to store the contents of a Turing

machine tape cell. This would give an information-theoretic capacity for the

graph of Θ(n).

Albertson and Collins [10] show that any graph has distinguishing number

O(log(|Aut(G)|)), where Aut(G) is the set of automorphisms of G. This implies

that the information-theoretic capacity of the class of graphs with constant-

sized automorphism groups is Θ(n) (the effective capacity may be smaller in

some cases). Thus graphs with low information-theoretic capacity will have

large automorphism groups, i.e., lots of symmetry.

Computing distinguishing number exactly appears to be difficult. Some

improved characterizations may be found in [11, 12].

3. Graph Turing machines

In this section, we define formally our notion of a graph Turing machine.
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A graph Turing machine is specified by a 6-tuple (Σ, Q, q0, qaccept, qreject, δ),

where Σ is a finite alphabet of tape symbols; Q is a finite set of controller

states; q0 ∈ Q is the initial controller state; qaccept, qreject ∈ Q are halting

states; and δ : (Q − {qaccept, qreject}) × Σ × P(Σ) → Q × Σ × Σ is the tran-

sition function. We assume that the alphabet Σ contains the special blank

symbol −. The graph G on which the machine runs and the initial position of

the controller v0 ∈ V (G) are supplied separately.

The first argument of the transition function δ is the current state of the

controller, the second argument is the symbol on the current node, and the

third gives the set of symbols that appear on one or more of the neighbors of

the current node. The output of δ gives the new state of the controller, the

symbol to write to the current node, and the symbol indicating which adjacent

node to move to.

The special states qaccept and qreject are accepting and rejecting halting

states, respectively; if the machine enters one of these two halting states, there

is no move to a neighboring node. For transitions that do not enter a halting

state, we require that the target symbol be present in the immediate neighbor-

hood (i.e., that it is chosen from the set of neighboring symbols). Implicit in

this rule is that, in the unusual event that G contains only a single node v0

and the set of symbols on neighboring nodes is empty, the machine must halt

immediately.

A configuration of a graph Turing machine (Σ, Q, q0, qaccept, qreject, δ) run-

ning on a graph G is a triple (q, v, s) ∈ Q×V (G)×ΣV (G) where q is the current

state of the controller, v is its current position, and s specifies the current tape

symbol sv on each node v of G. A halting configuration is a configuration in

which the controller state is either qaccept or qreject; in the former case it is an

accepting configuration and in the latter a rejecting configuration.

We consider (G, v0) to be the input to the graph Turing machine, where

G is a graph and v0 ∈ V (G) is the initial node. Given an input (G, v0), the

initial configuration of the machine is (q0, v0, {−}V (G)), i.e., the configuration

in which the controller starts on node v0 in state q0 and all nodes contain the
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blank symbol. As with standard Turing machines, we write M(G, v0) for the

machine M operating on input (G, v0).

Given a non-halting configuration (q, v, s), let

(q′, σ1, σ2) = δ (q, sv, {su : (u, v) ∈ E(G)}) .

There is a transition from (q, v, s) to (q′, v′, s′) if (a) s′v = σ1, (b) s′u = su for

all u ∈ V (G)− {v}, and (c) s′v′ = sv′ = σ2. Note that there may be more than

one such transition if there is more than one neighbor v′ with sv′ = σ2, Note

further that there are no transitions from a halting configuration.

Given input (G, v0), a computation path is a sequence of configurations

C0, C1, . . . where C0 is the initial configuration and there is a transition from

Ci to Ci+1 for each i. A graph Turing machine halts on input (G, v0) if every

computation path is finite. A graph Turing machine accepts (rejects) input

(G, v0) if every computation path is finite and ends in an accepting (rejecting)

configuration. The running time of a graph Turing machine with input (G, v0)

is the maximum length of any computation path, or ∞ if no such maximum

exists.

Though most computations of graph Turing machines are inherently nonde-

terministic, we will call a graph Turing machine deterministic if for any input

(G, v0) it either accepts on all computation paths or rejects on all computation

paths. The justification for this unusual usage is that for a deterministic graph

Turing machine, the choice of which of several alternative nodes to move to can

be made arbitrarily—possibly even according to some deterministic tie-breaking

rule (whose inclusion would complicate the model.)

3.1. Simulations

To show that a graph Turing machine with a given input (G, v) has com-

putation power that is no less than that of another machines, it is enough to

show how the graph Turing machine can simulate the other machine. The

other machine can be a standard Turing machine, a graph Turing machine with

a different input, or a graph Turing machine with the same input but extended
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in some way such as by adding more built-in storage (Section 6.1) or multi-

ple heads (Section 6.2). The particular case of simulating a standard Turing

machine will be used to define effective capacity in Section 4.2.

The idea of a simulation is to show how the configurations and transitions of

the simulating machine can be mapped to configurations and transitions of the

simulated machine so that the simulating machine clearly captures the behavior

of the simulated machine. If a machine simulates another machine then it has at

least as much computation power. Any computation of the simulated machine

can be done by the simulating machine which can accept whenever the simulated

configuration is an accepting configuration and reject whenever the simulated

configuration is a rejecting configuration.

We say that a graph Turing machine M1 with input (G1, v1) simulates a

graph Turing machine M2 with input (G2, v2) if there is a mapping from config-

urations of M1(G1, v1) to configurations of M2(G2, v2) such that two configura-

tions that form a transition in M1(G1, v1) map to either two configurations that

form a transition in M2(G2, v2) or to the same configuration of M2. In other

words, the images of two configurations that form a transition in M1 are two

configurations that form a transition in M2 or the same configuration. Allowing

for the same configuration to be repeated in the mapping is called stuttering.

It is needed because intermediate steps of in the simulating machine do not

necessarily reflect change of configuration in the simulated machine.

4. Storage capacity of graphs

In this section, we consider the question of how much information can be

stored in a given graph. We first look at the information-theoretic capacity

bound (Section 4.1), then consider how much of this potential capacity can

actually be extracted (Section 4.2).

4.1. Information-theoretic capacity

The information-theoretic capacity of a graph is just the base 2 logarithm

of the number of distinguishable labelings of its nodes, where two labelings
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are distinguishable if there is no non-trivial automorphism of the graph that

carries one to the other and equivalent otherwise. This quantity is in principle

computable using Burnside’s Lemma; the number of distinguishable labelings is

L(G) = |X/Aut(G)| = 1

|Aut(G)|
∑

g∈Aut(G)

|Xg|,

where X is the set of all labelings, X/Aut(G) is the quotient set of equivalence

classes of labelings under automorphisms in G, and Xg is the set of labelings

preserved by a particular automorphism g. The information-theoretic capacity

IG of G is then the base 2 logarithm lgL(G) of this quantity.

In practice, computing the number of distinguishable labelings will be easiest

for classes of graphs that have no non-trivial automorphisms, or for which the set

of automorphisms has a particularly simple structure, such as cliques, stars, or

trees. For example, any permutation of the nodes of a clique, or any permutation

of the non-central nodes of a star, is an automorphism of the graph. We can

map one labeling of the clique to another by a color-preserving permutation

precisely when each labeling has the same number of nodes with each color.

In the case of a star, we can map one labeling to another by color-preserving

permutation if the central nodes have the same colors and the labeling has the

same number of leaves with each color. It follows that an equivalence class can

be specified by counting the number of nodes with each color (plus O(1) bits for

the central node for a star). In either case we get Θ(log n) bits of information.

Graphs with constant distinguishing number (see Section 2.3), which are

those for which a small number of carefully-colored nodes eliminate color-preserving

automorphisms, will have information-theoretic capacity Θ(n). An example

would be a path; by fixing distinct colors of the endpoints, no color-preserving

automorphisms remain.

The information-theoretic capacity of general trees depends heavily on the

structure of the tree: whether it looks more like a star, with many automor-

phisms, or a path, with few. We discuss this issue in detail in Section 7.

In general, we can bound the information-theoretic capacity of any graph

with n nodes by O(n); this is just the number of bits needed to represent all
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possible labelings without considering equivalence.

The usefulness of the information-theoretic capacity is that it puts an upper

bound on how much state can be stored in the graph. Call two configurations

of a graph Turing machine equivalent if

1. The head is in the same state in both configurations.

2. There is a label-preserving automorphism of G that carries the position

of the head in the first configuration to the position of the head in the

second configuration.

It is not hard to see that equivalent states have equivalent successors, since

the same automorphism can be used after a transition as long as we are careful

to make the heads move to matching locations. It follows that for the purpose

of simulating a graph Turing machine, we need only record its state up to

equivalence.

Theorem 1. Fix a graph Turing machine, and suppose it is used to simu-

late a standard Turing machine. When running on graph G with n nodes and

information-theoretic capacity IG, the simulation has at most O(IG) space.

Proof. We can describe a state of the graph Turing machine up to equiva-

lence by specifying (a) some member of a class of equivalent graph labelings (IG

bits); (b) the state of the finite-state controller (O(1) bits); and (c) the posi-

tion of the finite-state controller (log n bits). Summing these quantities gives

O(1) + log n + IG bits, which translates into at most O(log n + IG) tape cells

for the simulated machine. But now observe that any graph has IG = Ω(log n)

(provided the alphabet size is at least 2), since we can obtain at least n + 1

distinct automorphism classes by labeling k nodes with one symbol and n − k

with another, where k ranges from 0 to n. So O(log n+ IG) = O(IG). �

4.2. Effective capacity

Our intent is that the effective capacity of a graph is the size of the

largest standard Turing machine tape that can be simulated using the graph.

However, we can in principle make this size arbitrarily large for any fixed graph
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by increasing the size of the alphabet and the number of states in the finite-state

controller. To avoid this problem, we define effective capacity only for classes

of graphs.

Definition 1. A class of graphs G has effective capacity f , f : G 7→ N, if: for
any standard Turing machine M , there is a graph Turing machine M ′ which,
for any G in G, and any vertex v0 of G, M ′(G, v0) simulates M running on an
initially blank tape with f(G) tape cells.

Note that because we have not specified alphabet sizes, effective capacity

is defined only up to constants. Furthermore, any particular construction can

only demonstrate a lower bound on effective capacity. For example, we show in

Section 6.1 that the class of all graphs has effective capacity Ω(log n), where n

is the number of nodes in the graph. The reason for this is that we can use the

nodes in the graph as a unary counter, and then use a standard construction [13]

to simulate a log(n)-space Turing machine. However, this does not exclude the

possibility that some subclass of the class of all graphs has higher effective

capacity, or that there might be a construction that obtains Ω(log n) space on

general graphs while doing better on some specific graphs.

An example of a class of graphs with high effective capacity are paths. The

essential idea is that we can use a path directly to simulate a standard Turing

machine tape, with each node in the path representing one cell in the tape. A

minor complication is that a standard Turing machine can tell its left from its

right while a graph Turing machine can only do so if the neighbors of the current

cell have different labels. But we can handle this by adding an extra field in each

node that holds repeating values {0, 1, 2} (this is the slope mechanism from [3]),

with the left neighbor of a node with value x being the one with (x− 1) mod 3

and the right being the one with (x+ 1) mod 3. This extra information triples

the size of the alphabet, but that is permitted by the definition.

On the other hand, we can’t do any better than Θ(n). It is immediate from

Definition 1 and Theorem 1 that no class of graphs has an effective capacity

that exceeds the information-theoretic capacity by more than a constant factor.
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Definition 1 also does not include a time bound. A natural restriction would

be to consider polynomially-bounded effective capacity, where the simula-

tion can use at most a polynomial number of steps for each step of the simulated

machine. In our constructions, we are more interested in showing possibility

rather than specific time bounds, but we will state time bounds when we can.

5. Graph traversal

A fundamental tool for doing computation with a graph Turing machine is

the ability to traverse every node in the graph. In this section, we show how

this can be done regardless of the structure of the graph.

We adapt depth-first search to our needs. Depth-first search requires a

stack, which we can represent by marking the nodes that are on the stack.

Unfortunately, because the graph may contain cycles, a simple mark does not

suffice to indicate unambiguously a stack node’s parent. If each node were

labeled with its distance modulo three from the root, then the correct parent

node would be evident from the labels. So, we need a way to label nodes with

their distance modulo three from the root. This essentially requires visiting the

nodes and labeling them in breadth-first order. Visiting and labeling nodes in

breadth-first order can be done in phases. In phase k, we label nodes that are

not yet labeled and are adjacent to nodes labeled in phase k−1. The expansion

of the labeled frontier can be achieved if we have a way to visit all nodes in the

graph, as in depth-first search. This seems like a circular dependency, so we

have to parametrize the traversals. In phase k, we only need to do depth-first

traversal of all nodes that were labeled in phase k− 1 and the nodes that are to

be labeled in phase k without visiting any other nodes. The required depth-first

traversal in phase k can be done using only the labeling of phase k− 1, thereby

breaking the seeming circularity.

For the depth-first search method, we assume that every node has the fields

color (which may be black, white or gray) and depth (which may be∞, 0, 1 or 2).

The depth field is calculated modulo 3 to keep the size of the state finite; this

approach is similar to the “centered slope” technique used in [3]. The variable
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head refers to the node that is the current position of the graph Turing machine.

In the initial configuration in which every node contains the blank symbol, we

implicitly have v.depth = ∞ and v.color = white for every node v. In order to

initiate the process of assigning the depth labels, we explicitly set head.color to

white and head.depth to 0 (not shown in the code).

In the depth-first search algorithm the head is initially at the root whose

color is white. The color is changed to gray (line 3) and then each of the nodes

adjacent to the root is depth-search recursively (line 6). The search at a given

node v is finished if v.color = black or v.depth =∞. At that point, the color of

the node, which must be gray, is changed to black (line 8) and the depth-first

search backtracks to the parent node (line 9). If the node that is finished does

not have a parent in the search, it must be the root node and the search is

terminated (line 10). When the search is terminated, the head is at the root

node and all nodes who depth is not infinity have color black. By exchanging

the roles of white and black nodes in the last step of the search (line 13) , we

effectively reset all nodes from white to black without requiring another traversal

of the graph, and ensures that the postcondition of the procedure matches the

precondition.

Because depth-first search will be used in the process of establishing the

correct depth labels, its invariant refers to C, the portion of the graph that

has been successfully depth labeled so far. A node v is in C if and only if

v.depth 6= ∞. The depth-first search algorithm is a framework to allow the

performance of some action at every node of C. The action can occur in pre-

order or post-order with respect to the search.

During the depth-first search, a node v is finished if v.color = black or

v.depth = ∞. A per-node action is safe if it respects the invariant concerning

the depth field, leaves the head where it found it, and alters the color or depth

fields of a node only when that node is finished and remains finished after the

alteration.

In each phase of the breadth-first algorithm to establish the depth labels we

use depth-first search to visit every node v in C and perform the safe per-node
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Invariant: letting C := {v | v.depth 6=∞}, the induced subgraph on C is
connected, root ∈ C, and all nodes v ∈ C have
v.depth = d(root, v) mod 3

Precondition: head = root, and all nodes v with v.depth 6=∞ have
v.color = white

1 done := false;
2 repeat
3 if head.color = white then
4 head.color := gray;

// perform a safe per-node action (preorder)

5 end
6 if head has a neighbor w with w.color = white and

w.depth = (head.depth + 1) mod 3 then head := w;
7 else
8 head.color := black;

// perform a safe per-node action (postorder)

9 if head has a neighbor v with v.color = gray and
v.depth = (head.depth− 1) mod 3 then head := v;

10 else done := true;

11 end

12 until done;
13 exchange the roles of white and black;

Postcondition: the precondition holds

Algorithm 1: Depth-first traversal of a distance-labeled subgraph
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operation of changing the depth field of every neighbor w of v with w.depth =∞

to (v.depth + 1) mod 3. If at least one node has its depth field modified, then

C has expanded, and the next phase of the breadth-first expansion ensues.

Otherwise, the process of assigning depth labels to all nodes accessible from the

root is complete. We should note here that the breadth first search is written

with the assumption that all nodes whose depth is not infinity when the search

begins have color white. The depth first search exchanges the black and white

colors at the end of the search.

Precondition: all nodes v have v.depth =∞
1 head.color := white;
2 head.depth := 0;
3 repeat
4 C := {v | v.depth 6=∞};

// C consists of all nodes within distance k of the

starting node, where k is the number of completed

iterations

5 foreach v ∈ C do
6 foreach w in v’s neighbors with w.depth =∞ do
7 w.color := black;
8 w.depth := (v.depth + 1) mod 3;

9 end

10 end

11 until no node w with w.depth =∞ is encountered ;

Algorithm 2: Breadth-first assignment of distance labels for Algorithm 1

To establish the correctness of the depth-first search, we observe that at any

time, the induced subgraph on the nodes that are white or gray is connected,

and the gray nodes are the nodes along a shortest path from the root to the

location of the head or a predecessor of it. Because the head never moves to a

black node, it is clear that the only way a node fails to have a white or gray

neighbor is if it is the root and it is the last node to be finished. This is the

safety property; the liveness property is that we continue to make progress. If

we continue to go down, eventually there must be a node with no white or gray

children, which will be made black. This in turn establishes the correctness of

the breadth-first depth labeling process: at each phase all the currently labeled
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nodes are visited, and any unlabeled neighbors of them are properly labeled.

All accessible nodes are properly depth labeled if and only if no neighbors of

labeled nodes are unlabeled.

If the graph G has n nodes and m edges accessible from the root, the depth

labeling process completes in O(n2) steps. Once all accessible nodes are depth

labeled, then the depth-first search process can visit every node in O(m) steps.

6. Variants of the model

In this section, we show that the graph Turing machine model is robust

against minor changes, including:

• Expanding the store on the controller to O(log n) bits. (Section 6.1.)

• Replacing the single head with k heads. (Section 6.2.)

• Removing the controller’s ability to see adjacent nodes. (Section 6.3.)

These are analogous to classic Turing machine results showing that small

changes in the definition do not affect what we can compute.

6.1. Extracting logarithmic space

Using the graph traversal algorithm from Section 5, we can extract Θ(log n)

space from any graph with n nodes, with a slowdown that is quadratic in n. This

simplifies further constructions by letting us replace the finite-state controller

in a graph Turing machine with a LOGSPACE controller.

All graphs have at least Θ(log n) bits of storage available, by ignoring the

edge structure and treating the nodes as a unary counter. The following oper-

ations can be performed in linear time, with one traversal.

• Halve the counter value Traverse the graph, changing every other 1 to

a 0.

• Subtract one Find a node with bit 1 and change it to 0.

• Add one Find a node with bit 0 and change it to 1.
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• Test for nonzero Traverse the graph looking for a 1.

• Test parity Traverse the graph, and sum up the values mod 2.

• Doubling Repeatedly look for an unmarked node with bit 1, mark it and

add one. When done, erase all marks.

Following a classic construction of Minksy [13], with halving, doubling, and

parity testing, we can implement a pushdown stack of bits (the least-significant

bit is the top of the stack, and halving and doubling correspond to pop and

push, respectively). Two such stacks provide a bidirectional tape that stores

Θ(log n) bits. The cost is that we double the size of the alphabet (to store the

extra bit on each node) and increase the time for a step by Θ(n2).

6.2. Multiple heads

To simulate multiple heads, we include in each node a component indicating

which heads are present at that node. A step of the k-head Turing machine is

simulated by a single head using two traversals: the first, to collect the states of

all the heads and their neighbors; the second, to move all the heads according

to the transition function for the k-head machine. This expands the size of the

alphabet and requires linear time overhead.

6.3. Limited vision

Our standard graph Turing machine model assumes that the controller can

see the states of nodes adjacent to its current position. This simplifies program-

ming and avoids the issue of what happens if the controller attempts to move

to a symbol that is not found in the neighborhood. An alternative is to remove

the power to see neighbors and have attempts to move to nonexistent symbols

fail, leaving the head in the same position.3

In this failed-move model, we can nonetheless gather the set of adjacent

symbols with a little effort. First mark the current position of the head with a

3Moving to an arbitrary neighbor may also be a reasonable choice; this can be handled
using essentially the same methods.
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unique symbol (necessary to allow it to get back without getting lost). Then,

for each possible neighboring symbol σ, attempt to move to σ. If the move

succeeds, we can add σ to the list of neighbors and return to the head’s original

position. If it fails, we move on to the next σ. After restoring the original

symbol at the head’s position, we can then make a move based on the set of

neighbors as in the standard model. This adds one symbol to the alphabet and

increases the cost of each step by O(|Σ|).

7. Trees

The question of whether the information-theoretic capacity of a general fam-

ily of graphs is necessarily achievable effectively seems to be tied up with the

problem of graph isomorphism. For trees, the isomorphism problem is simpler

and can be solved in polynomial time [14]. Moreover, it is possible to place a

total order on classes of isomorphic trees, which can in turn be used to drive a

counter simulation that extracts the full storage capacity of the graph, albeit at

the expense of an exponential slowdown introduced by the embedded counter

machine simulation.

The canonization algorithm of [14] runs in LOGSPACE, so it is tempting

to use the LOGSPACE simulation of Section 6.1 to execute it directly. Unfor-

tunately, the algorithm assumes that the tree is presented on a read-only work

tape using unique identifiers for each node. We don’t have this in our model.

So instead we describe a new mechanism for comparing labeled trees that works

despite this restriction, while allowing us to compute the next labeling of a tree

in place. Both the isomorphism and increment procedures run in polynomial

time.

Before presenting our mechanism, we consider the information-theoretic ca-

pacity of trees.

7.1. Rooted vs unrooted trees

The trees we consider are rooted; this assumption does not affect the asymp-

totic storage capacity of the tree. Using the same alphabet, a tree with a fixed
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root has at most lg n bits of information more than its unrooted equivalent. The

proof is the following.

Let (T, v) be a rooted tree with n nodes. Let X be the set of labelings of

(unrooted) T with n nodes. Let Aut(T ) be the automorphism group of T and

Aut(T )v be the subgroup of automorphisms that fix v. Let X be the set of

labelings of T . Then X/Aut(T ) is the set of inequivalent labelings of unrooted

T , and X/Aut(T )v is the set of inequivalent labelings of T with root v. Since

there are at most n nodes to which an automorphism may map v, Aut(T )v has

at most n cosets in Aut(T ). It follows that |X/Aut(T )v| is at most n times as

large as |X/Aut(T )|.

7.2. Information-theoretic capacity of a tree

Let T be a tree and let T1, T2, . . . , Td be the subtrees rooted at the children of

the root of T . Let fk map a rooted tree to the number of inequivalent labelings

over an alphabet of size k ≥ 1; this gives the information-theoretic capacity of

the tree. Then we have the recurrence

fk(T ) = k
∏
i

(
ci + fk(Ui)− 1

fk(Ui)− 1

)
where U1, U2, . . . , U` are the non-isomorphic classes of the Tjs, and ci is the

multiplicity of Ui among the Tjs. Here the k counts the number of possible

states in the root, and each factor in the product counts the number of ways of

choosing a multiset of ci values out of fk(Ui) possibilities; this is the number of

distinguishable labelings of the i-th equivalence class. The base for the recur-

rence is provided by a tree with one node, whose root has no children; in this

case, the product is empty, leaving just k.

We will show that it is possible to extract exactly fk(T ) states from a rooted

tree T , using only a constant amount of additional space at each node beyond the

labels of size k. To do so, we show that a graph Turing machine can compute a

total ordering on tree labelings and use this ordering build a counter with values

0 . . . fk(T )− 1, by implementing increment and decrement as the successor and

predecessor operations of these labelings.
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7.3. Comparing trees

We define an ordering on (isomorphism classes of) labeled rooted trees by

induction. Let T be a tree with root label ` and immediate subtrees T1, . . . , Tc;

let T ′ be a tree with root label `′ and immediate subtrees T ′1, . . . , T
′
d. If ` < `′,

then T < T ′. If ` > `′, then T > T ′. Otherwise, let C = {T1, . . . , Tc} and

D = {T ′1, . . . , T ′d} be multisets. If C = D, then T = T ′, where subtree equality

is defined inductively. If max(C −D) > max(D −C), then T > T ′. Otherwise,

max(D − C) > max(C − D), and T < T ′. It is straightforward to verify that

this relation ≤ on labeled rooted trees is reflexive, transitive, and antisymmetric

up to isomorphism.

Algorithm 3 computes this total ordering. We present it in the context of a

graph Turing machine with two heads, one on tree T and one on tree T ′. Each

node has a “removed” bit, which is initially unset. The main invariant is that

removing all subtrees whose removed bits are set does not affect the order.

The algorithm begins by comparing the root labels. Assuming that they

are equal, for each of the immediate subtrees Ti of T , we attempt to find a

immediate subtree of T ′ isomorphic to Ti. If there is such a subtree T ′j , we set

the removed bit for both Ti and T ′j ; these subtrees offset one another and will

not be considered again. If no match can be made, then we set the removed bit

for each T ′j that was determined to be less than Ti, as these subtrees cannot be

the maximum in the symmetric difference of the two multisets of subtrees. At

the end, if all immediate subtrees have been removed, then T = T ′. Otherwise,

if all immediate subtrees of T ′ have been removed, then T > T ′, else T < T ′.

When testing isomorphism between two top-level trees T and T ′, each pair

of subtrees at the same level are compared at most once; in Algorithm 3, this

corresponds to at most a constant amount of work being done for each distinct

pair of values of head1 and head2. It follows that the total number of steps done

by the algorithm is proportional to the product of the sizes of the two trees.
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Precondition: all nodes of both trees are distance-labeled and all state
values are null

1 done := false;
2 repeat
3 if head1.label < head2.label then result := LT;
4 else if head1.label > head2.label then result := GT;
5 else if no child of head2 has state = null then

// all children of head2 have state = removed
6 if all children of head1 have state = removed then result := EQ;
7 else result := GT;

8 else if no child of head1 has state = null then result := LT;
9 else result := ⊥;

10 if result = ⊥ then
11 set head1 to a child of head1 with state = null;
12 set head2 to a child of head2 with state = null;

13 else
14 set the state of all children of head1 and head2 to null;
15 if head1 is the root (of tree T ) then done := true;
16 else if result = EQ then
17 head1.state = removed;
18 head1 = head1.parent;
19 head2.state = removed;
20 head2 = head2.parent;
21 foreach child c of head2 with c.state ∈ {considered, notMax} do
22 c.state := null;
23 end

24 else
25 if result = GT then head2.state := notMax;
26 else head2.state := considered;
27 head2 = head2.parent;
28 if there exists a child c of head2 with c.state = null then
29 head2 := c;
30 else
31 head1.state = considered;
32 head1 = head1.parent;
33 foreach child c of head2 with c.state = considered do
34 c.state := null;
35 end
36 foreach child c of head2 with c.state = notMax do
37 c.state := removed;
38 end

39 end

40 end

41 end

42 until done;

Algorithm 3: Isomorphism checker
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7.4. Implementing counters with labeled trees

In this section, we simulate counter machines with operations of clear, in-

crement, and compare counters for equality, which can implement a standard

Turing machine, albeit with exponential slowdown [13].

Given a tree T whose nodes can be labeled 0, . . . , k−1, we represent counter

values 0, . . . , fk(T ) − 1 by the labelings they index in the order defined above,

where fk is the count of isomorphism classes of labelings defined in Section 7.2.

Zero corresponds to the all-zeros labeling, so clearing a register can be accom-

plished with one traversal. Two counters whose underlying unlabeled trees are

isomorphic can be compared using the isomorphism algorithm. The increment

operation requires a new algorithm, which appears as Algorithm 4.

We assume that each node of the tree has space to save its old label, and the

increment routine will save the previous counter value. To increment a subtree T

with overflow, first save the root label and then increment its immediate subtrees

(saving their respective values). If every subtree overflowed (i.e., is zero), then

increment the root label mod k and overflow if it becomes zero. Otherwise,

use the isomorphism checker to find and mark the minimum nonzero immediate

subtree M . Restore every tree other than M to its original value and then

zero those that are less than M . The call stack for this recursive algorithm is

represented using a state label at each node of the tree.

We prove the correctness of the increment algorithm by induction. Suppose

we are incrementing a labeled tree T with immediate subtrees T1 ≥ . . . ≥ Tc.

Let T ′ be the resulting tree. In case T1, . . . , Tc are already at their respective

maximums, it is straightforward to verify that T ′ is the successor of T . Other-

wise, let U be any relabeling of T such that U > T . We show that T < T ′ ≤ U

and thus that T ′ is the successor of T .

Let T ′1 ≥ · · · ≥ T ′c be the immediate subtrees of T ′ and let U1 ≥ · · · ≥ Uc

be the immediate subtrees of U . Note that, on account of the labelings, T ′i

(respectively Ui) may not correspond to Ti. Given that some Ti is not maximum,

then the root labels of T and T ′ are identical, and the algorithm is able to find

a minimum incremented tree T ′j , where we choose j to be as large as possible
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1 procedure increment(T )
2 T.oldLabel := T.label
3 foreach child T ′ of T do
4 increment(T ′)
5 end
6 if every child T ′ of T returned overflow then
7 T.label := T.label + 1 (mod k) if T.label = 0 then
8 return overflow
9 end

10 else
11 Using Algorithm 3, find minimum nonzero M among children of

T .
12 foreach child T ′ of T do

// restore old labels

13 foreach i in T ′ do
14 i.label := i.oldLabel
15 end

// compare using Algorithm 3

16 if T ′ < M then
// set tree value to 0

17 foreach i in T ′ do
18 i.label := 0
19 end

20 end

21 end

22 end

23 end

Algorithm 4: Counter increment
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in case of ties. We have Ti = T ′i if i < j, and Tj < T ′j (count the number of

trees greater than or equal to T ′j). For all i > j, the tree T ′i is zero. If the root

label of U is not equal to the root label of T then T ′ < U . Otherwise, let ` be

the least index for which T` < U`. For all i < `, we have Ui = Ti. If ` < j, then

U > T ′. Otherwise, U` has the same shape (disregarding labels) as some tree

Ti < T ′j . Since T ′j was the minimum increment, it follows that T ′j ≤ U` and thus

that T ′ ≤ U .

8. Capacity of a bounded-degree graph

For a bounded-degree graph, we can use the mechanism in [5] (which itself

derives much of its structure from the previous construction in [3]) with only a

few small modifications.

In a graph with degree bound ∆, it is possible to assign each node a label

in {1, . . . ,∆2 + 1} so that each node’s label is unique within a ball of radius 2.

This is a distance two labeling, and it gives each node the ability to identify

its neighbors uniquely. Angluin et al. [5] construct a distance two labeling

non-deterministically, by having each node adopt a new label if it detects a

second-order neighbor with the same label. In our model, we can construct the

labeling deterministically, by iteratively assigning each node a label that does

not conflict with a second-order neighbor (it is easy to see that each time we do

this, we cannot create any new conflicts, so we converge after O(n) iterations

to a correct labeling).

Using such a labeling, it is straightforward to adapt the traversal routine

to build a spanning tree, which in turn can simulate a Turing machine tape to

provide Θ(n) bits of effective capacity.

9. Random graphs

Suppose we consider random graphs G drawn from G(n, p), i.e., a graph on

n nodes where each edge uv appears with probability p.4 Suppose further that

4See [15, 16] for an overview of random graphs.
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p scales as Θ(n−c) for some fixed 0 < c < 1. Then it is possible to achieve an

effective capacity of Θ(n) with high probability5 from graphs in this class. Note

that graphs in this class are connected with high probability.

The basic idea is that if we can compute a total order on nodes, we can

use each node to hold one Turing machine cell, with left and right movements

corresponding to moving down or up in the ordering. We compute this ordering

by assigning a signature to each node, based on random values stored in its

neighborhood. For simplicity, we assume that the Turing machine simulator

can generate random values.

We start with a basic lemma:

Lemma 2. Let u and v be nodes in G(n, p), where p = Θ(n−c) for fixed 0 <

c < 1. Then with high probability, for any two nodes u and v, the set δ(u)−δ(v)

of nodes w that are adjacent to u but not v has has size Ω
(
n1−c

)
.

Proof. The probability that w is adjacent to u but not v is exactly p(1− p) =

Θ(n−c) ≥ αn−c for some α. Summing over all possible w to obtain a total

count X gives E[X] ≥ α(n− 2)n−c. These events are independent, so Chernoff

bounds (e.g., [16, Theorem 2.1]) give

Pr

[
X ≤ 1

2
E[X]

]
≤ exp

(
−
(
1
2 E[X]

)
)2

2 E[X]

)
= exp (−E[X]/8)

= exp
(
−Θ

(
n1−c

))
.

Since this holds with high probability for each individual pair u, v, summing

over all u and v shows that it holds with high probability for all u and v. �

Suppose now that each node w holds a random bit rw that is 0 or 1 with

equal probability, and we count the number of one bits in δ(u); to avoid ugly

summations, we will write this as rδ(u). Then

5We use with high probability to mean that the probability that the event occurs is
1 − O(n−c) for any fixed c; this implies the weaker condition that the probability that the
even occurs goes to 1 in the limit as n grows.
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Lemma 3.

Pr
[
rδ(u) = rδ(v)

]
= O

(
n(c−1)/2

)
.

Proof. Observe that

Pr
[
rδ(u) = rδ(v)

]
= Pr

[
rδ(u) − rδ(u)∩δ(v) = rδ(v) − rδ(u)∩δ(v)

]
= Pr

[
rδ(u)−δ(v) = rδ(v)−δ(u)

]
.

These last two quantities are independent binomial random variables ob-

tained by summing Ω
(
n1−c

)
bits each (from Lemma 2). For any fixed value of

rδ(u)−δ(v), the probability that rδ(v)−δ(u) takes the same value is O
(

1/
√
n1−c

)
=

O
(
n(c−1)/2

)
. �

Now repeat the construction in parallel k times using k independent random

bits per node to obtain a probability of O
(
nk(c−1)/2

)
. For any fixed c < 1, there

is a constant k such that this probability for any particular pair is bounded by

n−3 and the probability that we get identical values summed over all pairs is

bounded by
(
n
2

)
n−3 ≤ n−1. So assuming the condition in Lemma 2 holds, most

random k-bit labelings r1, r2, . . . , rk will give a unique signature r1δ(u), . . . r
k
δ(u)

for each node u.

It is easy to see that a LOGSPACE controller can compute these signatures

and order nodes by signature. This implies that a LOGSPACE controller can

also detect if two nodes have the same signatures, and generate new random

bit values until this condition no longer holds. It follows that we can obtain

Θ(n) effective capacity from any family of graphs that satisfies the condition of

Lemma 2, and thus have:

Theorem 4. A member of the family of random graphs G(n, p) where p =

Θ(n−c) for any fixed 0 < c < 1 has effective capacity Θ(n) with high probability.

This result depends on being able to assign random values to each node,

which requires extending the basic graph Turing machine model to include ran-

domization in the obvious way. We suspect that this is not necessary to obtain
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the result, and that local structural properties of the graph (for example, the

degrees of each node) could substitute for the random bits used in the con-

struction. The difficulty that arises is that such structural properties will not

in general be independent, and as our graph Turing machine will always be

working in some fixed graph, if the properties happen to lead to many duplicate

signatures there is not much the machine can do about it. We leave the question

of the deterministic effective capacity of random graphs to future work.

10. Conclusion

We have defined a new class of graph-based Turing machines, motivated

by potential applications in self-organizing systems of finite-state automata.

We have shown that this class is robust under natural changes to the model,

and that its power is primarily characterized by the effective capacity of the

underlying graph, which is the amount of usable storage obtained by writing

symbols from a finite alphabet on its nodes. This is at least Ω(log n) bits of

space for an arbitrary n-node graph, and rises to Θ(n) bits for bounded-degree

graphs and almost all random graphs with polynomial edge probabilities. For

trees, the effective capacity ranges from Θ(log n) for trees with many symmetries

(stars) to Θ(n) for trees with few (binary trees, paths). In intermediate cases

we have shown that we can always get within a constant factor of the full

information-theoretic capacity corresponding to the number of non-isomorphic

states, although the time complexity of our algorithm could be significantly

improved.

The main open problem remaining is whether it is possible to extract the

full information-theoretic capacity from an arbitrary graph. This seems closely

tied to the problem of computing graph isomorphism, which is not known to be

hard, even for LOGSPACE. The reason is that distinguishing two different

labelings of a graph appears to depend on being able to distinguish between non-

isomorphic subgraphs (since this gives a weak form of orientation to the graph).

However, the problem is not exactly the same, because we have the ability to

supplemental isomorphism testing by using some of our labels as signposts and
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we do not need a perfect isomorphism tester as long as we can group subgraphs

into small equivalence classes. So it may be that extracting the full capacity of

an arbitrary graph is possible without solving graph isomorphism in general.
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