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The basic picture

Network of n anonymous
finite-state machines.

Graph structure is fixed.

State of each machine
⇒ one label per node.

How much information can
we store?
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Structure of the graph matters!

Lots of symmetries:

⇒ can’t tell nodes with
the same label apart
⇒ O(log n) bits are
enough to describe the
state.

Few symmetries:

⇒ most nodes are
distinguishable
⇒ Θ(n) bits are needed
to describe the state.
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Information-theoretic vs effective capacity

Information-theoretic capacity =
log (number of distinguishable labelings) = how much space a
program running outside the network can get.

Effective capacity = how much space a program running
inside the network can get.

Information-theoretic capacity ≥ effective capacity.

When are they equal?
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Graph Turing machines

Graph Turing machine is like a
regular Turing machine with the
tape replaced by a graph.

Finite-state controller sees
label on current node and
set of labels on adjacent
nodes (without
multiplicities!)

No sense of direction:
controller moves by
choosing a label.

If more than one neighbor
has that label, adversary
chooses which to move to.
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Graph Turing machines: formal version

Input: Graph G and initial vertex v0.

Specification: Tuple (Σ,Q, q0, δ) where

Σ is the label set,
Q is the state space for the controller,
q0 is the initial state, and
δ : Q × Σ× P(Σ)→ (Q ∪ {qaccept, qreject})× Σ× Σ is the
transition function.

Transitions:

Let δ(q, `(v), {`(v ′)|(v , v ′) ∈ E}) = (q′, s, t).
q ← q′.
`(v)← s.
Move controller to some v ′ where `(v ′) = t.
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Effective capacity

Idea: Measure capacity by size of the largest ordinary Turing
machine we can simulate.

Problem: Not well-defined for a single graph (can put as
much storage as we like in the controller).

Effective capacity is defined for classes of graphs G.

A class G has effective capacity f (G ) if:

For any standard Turing machine M,
There is a graph Turing machine M ′, such that
For any graph G in G and vertex v0 of G ,
M ′(G , v0) simulates M running on a blank tape with f (G )
cells.
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Graph traversal
Counting in unary

Tool: graph traversal

Subroutine allows controller to visit every node in the graph.

Basic idea: use depth-first
search, storing stack in
graph itself.

But stack may get tangled
up.

Solution: Assign a layer
number mod 3 to each node
using breadth-first search.
(Itkis and Levin, 1994).

DFS now only considers
children in next layer.

Total time is O(n).
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Every graph has effective capacity Ω(log n)

Count from 0 to n by storing values in unary, with one bit per
node.

Each of these operations takes one graph traversal:
c ← c/2 Change every other 1 to a 0.
c ← c − 1 Find a 1 and change it to 0.
c ← c + 1 Find a 0 and change it to 1.

c
?
= 0 Traverse the graph looking for a 1.

c mod 2
?
= 0 Sum up all bits mod 2.

Doubling can be accomplished in quadratic time by repeatedly
adding 2 to a second counter.

This gives an O(log n)-bit counter in any graph.

⇒ (Minsky, 1967) Any graph can simulate an O(log n)-space
Turing machine.
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Trees
Random graphs

Capacity of lines is Θ(n)

Use a mod-3 slope to orient the line.

Now we have an ordinary Turing machine.

SSS 2010 Storage capacity of labeled graphs



Introduction
Graph Turing machines

Graph traversal and applications
Higher-capacity graphs

Conclusions

Lines
Trees
Random graphs

Capacity of trees

Information-theoretic capacity
varies from

Θ(log n) for stars, to

Θ(n) for lines.

We’d like to get the same values
for effective capacity.
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Information-theoretic capacity

Recursively ranking a rooted tree:

Group subtrees into
isomorphism classes.

Convert each subtree
labeling into a number: this
gives a multiset for each
equivalence class.

Multisets + root → rank for
whole tree.

Information-theoretic capacity =
log(number of possible ranks) =
log2(31200) ≈ 14.93.
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Extracting the information-theoretic capacity

Increment operation:

Find lowest-valued
subtree in rightmost
isomorphism class that is
not maxed out.
Increment it.
Reset less-significant
subtrees to zero.

All of this can be done using
finite-state controller plus
previous tricks for storing
stacks in tree etc.

Other counter operations are
similar.
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Capacity of random graphs is Θ(n)

Problem: Can’t tell nodes
apart.

Solution: Assign random
labels.

Sort nodes by degree and
neighborhood labeling and
use them as TM tape.

Works for Gn,p model where
edge probability p is
polynomial in n.
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Conclusions and open problems

We extract full information-theoretic
capacity from:

Highly-symmetric graphs.
Trees.
Random graphs with polynomial
edge probabilities.

Observation: GRAPH ISOMORPHISM
is not hard on these graphs.

What about:

Random geometric graphs?
Planar graphs?
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Warning!

Proceedings version omits many details.
Full paper (and these slides) available at:
www.cs.yale.edu/homes/aspnes/graph-capacity.html
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