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Abstract. We introduce extension-based proofs, a class of impossibility proofs that includes
valency arguments. They are modelled as an interaction between a prover and a protocol. Using
proofs based on combinatorial topology, it has been shown that it is impossible to deterministically
solve k-set agreement among n > k ≥ 2 processes or approximate agreement on a cycle of length 4
among n > 2 processes in a wait-free manner in asynchronous models where processes communicate
using objects that can be constructed from shared registers. However, it was unknown whether
proofs based on simpler techniques were possible. We show that these impossibility results cannot
be obtained by extension-based proofs in the iterated snapshot model and, hence, extension-based
proofs are limited in power.
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1. Introduction. One of the most well-known results in the theory of distrib-
uted computing, due to Fischer, Lynch, and Paterson [22], is that there is no de-
terministic protocol solving consensus among n ≥ 2 processes in an asynchronous
message passing system that tolerates even one process crash.

Their result has been extended to asynchronous shared memory systems where
processes communicate by reading from and writing to shared registers [1, 20, 24, 31].
Moses and Rajsbaum [32] gave a unified framework for proving the impossibility of
consensus in a number of different systems.

Chaudhuri [18] conjectured that the impossibility of consensus could be general-
ized to the k-set agreement problem. In this problem, there are n > k ≥ 1 processes,
each starting with an input in {0, 1, . . . , k}. Each process that does not crash must
output a value that is the input of some process (validity) and, collectively, at most
k different values may be output (agreement). In particular, consensus is just 1-set
agreement.

Chaudhuri’s conjecture was eventually proved in three concurrent papers by
Borowsky and Gafni [12], Herlihy and Shavit [28], and Saks and Zaharoglou [34].
These proofs and a later proof by Attiya and Rajsbaum [10] all relied on sophisti-
cated machinery from topology. They use a vertex to model the view of a process in
an execution, a simplex or a clique to model a reachable configuration, and a simpli-
cial complex or graph to model the set of all final configurations of a protocol. Then
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they used Sperner’s Lemma to show that there exists a final configuration in which
n different values have been output. This proves that the protocol does not correctly
solve (n− 1)-set agreement.

Later on, Attiya and Castañeda [6] and Attiya and Paz [9] showed how to ob-
tain the same results using purely combinatorial techniques, without explicitly using
topology. Like the topological proofs, these proofs also consider the set of final config-
urations of a supposedly wait-free (n−1)-set agreement protocol. However, by relating
different final configurations to one another using indistinguishability and employing
arguments similar to proofs of Sperner’s Lemma, they proved the existence of a final
configuration in which n different values have been output.

A common feature of these impossibility proofs is that they are non-constructive:
They assume there is a bound on the maximum length of any execution and prove,
using properties of the entire set of final configurations, that there exists a final
configuration in which n different values have been output. However, they do not
construct an execution leading to such a final configuration.

In contrast, impossibility proofs for deterministic, wait-free consensus in asyn-
chronous systems explicitly construct an infinite execution by repeatedly extending
a finite execution by the steps of some processes. Specifically, they define a bivalent
configuration to be a configuration from which there is an execution in which some
process outputs 0 and an execution in which some process outputs 1. Then they show
that, from any bivalent configuration, there is a step of some process that results in
another bivalent configuration. This allows them to explicitly construct an infinite
execution in which no process has output a value. A natural question arises: is there
a proof of the impossibility of (n− 1)-set agreement (or, more generally, k-set agree-
ment) that explicitly constructs an infinite execution by repeated extensions? This
question is related to results in proof complexity that show certain theorems cannot be
obtained in weak formal systems. For example, it is known that relativized bounded
arithmetic cannot prove the pigeonhole principle [33].

In this paper, we formally define the class of extension-based proofs, which model
impossibility proofs that explicitly construct an infinite execution by repeated exten-
sions. Then, we prove that there is no extension-based proof of the impossibility of
a deterministic, wait-free protocol solving k-set agreement among n > k ≥ 2 pro-
cesses in the iterated snapshot model. We also prove that there is no extension-based
proof of the impossibility of a deterministic, wait-free protocol solving approximate
agreement among n > 2 processes on a cycle of length 4.

A task is a problem in which each process starts with a private input value
and must output one value such that these values satisfy certain specifications. At
a high level, an extension-based proof of the impossibility of solving a task is an
interaction between a prover and any protocol that claims to solve the task. The
prover has to refute this claim. To do so, it can repeatedly query the protocol about
the states of processes in a configuration that can be reached in one step from a known
configuration. It can also ask the protocol to exhibit an execution by a set of processes
from a known configuration in which some process outputs a particular value, or to
declare that no such execution exists. The goal of the prover is to construct a bad
execution in which some processes take infinitely many steps without terminating or
output values that do not satisfy the specifications of the task. The formal definition
of extension-based proofs is presented in Section 3.

A key observation is that, from the results of its queries, many protocols are in-
distinguishable to the prover. The prover must construct a single execution that is
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bad for all these protocols. To prove that no prover can construct a bad execution,
we show how an adversary can adaptively define a protocol in response to any specific
prover’s queries. In this adversarial protocol, all processes eventually terminate and
output correct values in executions consistent with the results of the prover’s queries.
In Section 5, we argue that no extension-based proof can refute the possibility of a
deterministic, wait-free protocol solving k-set agreement among n > k ≥ 2 processes
in the iterated snapshot model. This model is defined in Section 2. In the conference
version of this paper [3], we made a very similar argument in the iterated immediate
snapshot model. We also argue that there is no extension-based proof of the impos-
sibility of a deterministic, wait-free protocol solving approximate agreement among
n > 2 processes on a cycle of length 4 in the iterated snapshot model. Although
the outline of the proof is the same as for k-set agreement, there are some important
differences, which we present in Section 6.

From a computability standpoint, the snapshot model, the immediate snapshot
model, the iterated snapshot model, and the iterated immediate snapshot model are
equivalent in power to the single-writer register model in which processes commu-
nicate through registers. Any protocol in the single-writer register model can be
easily adapted to run in the snapshot model by replacing each read by a scan and
then throwing away the information that is not needed. Afek, Attiya, Dolev, Gafni,
Merritt, and Shavit [2] gave a wait-free implementation of a snapshot object using
registers, so any protocol in the snapshot model can be simulated in the single-writer
register model. Any execution of a protocol using an immediate snapshot object is
also an execution of the protocol using a snapshot object, so protocols designed for the
snapshot model also run in the immediate snapshot model. Borowsky and Gafni [13]
gave a wait-free implementation of an immediate snapshot object from a snapshot
object, so protocols designed for the immediate snapshot model can be modified to
run in the snapshot model. The iterated immediate snapshot model was introduced
by Borowsky and Gafni [14]. It consists of an unbounded sequence of immediate snap-
shot objects that are accessed by each process in order. Any protocol in this model
can be easily adapted to run in the snapshot model by appending values rather than
overwriting them when performing an update and throwing away the information in
a scan about values that would have appeared in other immediate snapshot objects.
Borowsky and Gafni gave a nonblocking simulation of a snapshot object in the it-
erated immediate snapshot model [14] and, hence, in the iterated snapshot model.
Thus, to show there is no wait-free protocol to solve a certain task in all these models,
it suffices to show that there is no wait-free protocol to solve that task in any one of
them.

Hoest and Shavit [29] showed that the collection of reachable configurations of
a full-information protocol in the iterated immediate snapshot model has a natural
representation using combinatorial topology. For the iterated snapshot model, there
is a similar representation using graphs, which may be easier to understand. This
representation is presented in Section 4, together with some properties that are used
in our proofs. Both these representations extend the combinatorial topology repre-
sentation of uniform full-information protocols in the iterated immediate snapshot
model [14, 28]. A protocol is uniform if all processes in all executions terminate after
taking the same number of steps.

A number of papers have appeared that extend our work. These are discussed
in Section 7, together with some interesting directions for future work.



4 DAN ALISTARH, JAMES ASPNES, FAITH ELLEN, RATI GELASHVILI AND LEQI ZHU

2. Models. An execution is a sequence of steps. In each step of a shared memory
model, a process performs an atomic operation on a shared object and then updates
its local state. Communication among processes occurs through atomic operations
on shared objects. We use n to denote the number of processes, p1, . . . , pn to denote
the processes, and xi to denote the input to process pi. The initial state of process
pi consists of its identifier, i, and its input, xi. When solving a task, we let yi denote
the output of process pi. A value is assigned to yi immediately before pi terminates.

In the single-writer register model, there is one register Ri for each process pi, to
which only it can write, but which can be read by every process. The initial value
of each register is −.

In the snapshot model, there is one shared single-writer snapshot object S with n
components. The initial value of each component is −. The snapshot object supports
two operations, update(v) and scan(). An update(v) operation by process pi updates
S[i], the i’th component of S, to have value v, where v is an element of an arbitrarily
large set that does not contain −. A scan() operation returns the value of each
component of S.

In the iterated snapshot model, there is an infinite sequence, S1, S2, . . . , of shared
single-writer snapshot objects, each with n components. The initial value of each
component is −. Each process accesses each snapshot object at most twice, starting
with S1. The first time pi accesses a snapshot object Sr, it performs an update, which
changes the value of Sr[i] from −. At its next step, it performs a scan of Sr. If it has
not terminated, then pi is poised to access the next snapshot object, Sr+1. In both
the snapshot and iterated snapshot models, we assume that a process only terminates
immediately after performing a scan. This is without loss of generality, because a
scan does not change the contents of shared memory and, so, does not affect any
other process.

In a full-information protocol, processes share everything they know and do not
forget anything they have learned. Formally, in the snapshot and iterated snapshot
models, whenever a process performs an update during a full-information protocol,
it changes the value of its component of the snapshot object to its current state and
its new state stays the same, except for an extra bit indicating that it has performed
the update. Whenever a process performs a scan during a full-information protocol,
its new state is a pair consisting of its process identifier and the result of the scan.
Note that each process, pi, remembers its entire history, because its previous state is
component i of the result of the scan. After performing a scan, a process consults
a decision function, δ, from the set of possible process states to the set of possible
output values and the special symbol ⊥. If si is the state of process pi, then δ(si) 6= ⊥
indicates that pi should output δ(si) and terminate. When δ(si) = ⊥, process pi
is poised to access the (next) snapshot object. A full-information protocol in the
snapshot or iterated snapshot model is completely specified by its decision function.
Any protocol can be easily transformed into a full-information protocol by defining the
decision function so that it ignores the information not used by the original protocol.

A configuration of a protocol consists of the contents of each shared object and
the state of each process at some point during an execution of the protocol. An
initial configuration is a configuration in which every process is in an initial state and
every object has its initial value. A process is active in a configuration if it has not
terminated. In every initial configuration, every process is active. A configuration
is final if it has no active processes, i.e., all its processes have terminated. If C is a
configuration and pi is a process that is active in C, then Cpi denotes the configuration
that results when pi takes the step from configuration C specified by the protocol. A
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schedule from C is a finite or infinite sequence of (not necessarily distinct) processes
α = α1, α2, . . . such that there is a sequence of configurations C0, C1, C2, . . . where
C = C0, process αj is active in Cj−1 and Cj = Cj−1αj for every position j ≥ 1 in
the sequence. If α is a finite schedule from C, then Cα denotes the configuration of
the protocol that is reached by performing one step by a process for each occurrence
of the process in α, in order, starting from configuration C and we say that Cα is
reachable from C. We say that a configuration is reachable if it is reachable from an
initial configuration. A protocol is wait-free if it does not have an infinite schedule
from an initial configuration.

Two configurations C and C ′ are indistinguishable to a set of processes P if every
process in P has the same state in C and C ′. Two finite schedules α and β from C
are indistinguishable to the set of processes P if the resulting configurations Cα and
Cβ are indistinguishable to P . A P-only schedule from C is a schedule in which only
processes in P appear.

3. Extension-Based Proofs. An extension-based proof is an interaction be-
tween a prover and any protocol that claims to solve a task in a wait-free manner.
The prover is trying to prove that the protocol is incorrect by constructing a bad
execution (that is either infinite or produces incorrect outputs). The prover starts
with no knowledge about the protocol (except its initial configurations) and makes
the protocol reveal information about various configurations by asking queries, which
it chooses adaptively, based on the responses to its queries. The interaction proceeds
in phases, beginning with phase 1.

At the beginning of each phase, the prover starts with a prefix of the sequence of
steps in the bad execution, together with the input values of all processes that have
taken steps in this prefix. More formally, in each phase ϕ ≥ 1, the prover starts with
a finite schedule, α(ϕ), and a set of initial configurations, B(ϕ). The configurations
in B(ϕ) only differ from one another in the input values of processes that do not
occur in α(ϕ). If every process appears in α(ϕ), then B(ϕ) consists of exactly one
initial configuration. In particular, if C0α(ϕ) is a final configuration for some initial
configuration C0 ∈ B(ϕ), then every process appears in α(ϕ) and B(ϕ) = {C0}. We let
A(ϕ) = {C0α(ϕ) | C0 ∈ B(ϕ)} denote the set of configurations reached by α(ϕ) from
configurations in B(ϕ). At the beginning of phase 1, α(1) is the empty schedule and
A(1) = B(1) is the set of all initial configurations of the protocol. If A(ϕ) consists of a
single final configuration and the values output by the processes in this configuration
satisfy the specifications of the task, then the prover loses.

The prover also maintains a set, A′(ϕ), containing the configurations it reaches
by taking non-empty sequences of steps from configurations in A(ϕ) during phase ϕ.
This set is empty at the start of phase ϕ and it will be constructed so that, for every
configuration C ′ ∈ A′(ϕ), there exists a configuration C ∈ A(ϕ) and a schedule β
from C such that C ′ = Cβ and Cβ′ ∈ A′(ϕ) for every nonempty prefix β′ of β.

A single-step query (C, q) in phase ϕ is specified by a configuration C ∈ A(ϕ) ∪
A′(ϕ) and a process q that is active in C. The protocol replies to this query with the
configuration C ′ resulting from q taking the step from C specified by the protocol.
Then the prover adds C ′ to A′(ϕ) and we say that the prover has reached C ′. Note
that there is a configuration C ′′ ∈ A(ϕ) and a schedule β from C ′′ such that C = C ′′β
and C ′′β′ ∈ A′(ϕ) for every nonempty prefix β′ of β. Hence, C ′ = C ′′βq and C ′′β′ ∈
A′(ϕ) for every nonempty prefix β′ of βq. If the prover reaches a configuration C ′ in
which the outputs of the processes do not satisfy the specifications of the task, it has
demonstrated that the protocol is incorrect. In this case, the prover wins.
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A query chain in phase ϕ is a (finite or infinite) sequence of consecutive single-
step queries (C1, q1), (C2, q2), . . . such that C1 ∈ A(ϕ)∪A′(ϕ) and Ci = Ci−1qi−1 for
every position i ≥ 2 in the sequence. The choice of process involved in each single-step
query in the sequence can depend on the responses to the previous single-step queries
in the sequence. Note that a single-step query is a query chain of length one. If a
final configuration is reached, the prover cannot continue the query chain, since the
configuration contains no active processes. The prover wins if it asks an infinite query
chain, since it has demonstrated that the protocol is not wait-free.

An output query (C,Q, y) in phase ϕ is specified by a configuration C ∈ A(ϕ) ∪
A′(ϕ), a set of processes Q that are all active in C, and a possible output value y. If
there is a Q-only schedule starting from C that results in a configuration in which some
process in Q outputs y, then the protocol returns some such schedule. Otherwise, the
protocol returns none. Note that the prover does not add the resulting configuration
to A′(ϕ). However, it can do so by asking a query chain starting from C following the
schedule returned by the protocol. If P is the set of all processes, then the results of
the output queries (C,P, y), for every possible output value y, tell the prover which
values can be output by the protocol starting from configuration C. For example, if 0
and 1 are the only possible output values, the results of (C,P, 0) and (C,P, 1) enable
the prover to determine whether C is bivalent.

To end phase ϕ, the prover commits to a nonempty schedule α′ from some config-
uration C ∈ A(ϕ) such that Cα′ ∈ A′(ϕ). Since A(ϕ) = {C0α(ϕ) | C0 ∈ B(ϕ)}, there
is an initial configuration C ′0 ∈ B(ϕ) such that C = C ′0α(ϕ). Hence Cα′ = C ′0α(ϕ)α′.
Let α(ϕ+1) = α(ϕ)α′ be the schedule obtained by extending α(ϕ) by α′, let B(ϕ+1)
be the set of all initial configurations that only differ from C ′0 by the states of processes
that do not appear in the schedule α(ϕ+ 1), and let A(ϕ+ 1) = {C0α(ϕ+ 1) | C0 ∈
B(ϕ+1)} be the set of configurations reached by α(ϕ+1) starting from configurations
in B(ϕ+ 1). Then the prover begins phase ϕ+ 1.

The only way that a phase can be infinite is if it contains an infinite query chain.
If the interaction between the prover and the protocol is infinite, either because it
contains an infinite query chain or the number of phases is infinite, the prover wins.
In this case, the prover has demonstrated that the protocol is not wait-free. Against
the trivial protocol in which no process ever outputs a value, the prover can win
by asking any infinite query chain. The prover also wins if the protocol ever gives
contradictory answers, for example, if the protocol says that some process outputs
outputs different values in two different configurations that are indistinguishable to
that process. Another example of a contradictory answer is when the protocol says
that process q ∈ Q outputs the value y in some configuration C ′, the protocol returns
none to the output query (C,Q, y), and there is a Q-only schedule starting from C
that results in configuration C ′.

An extension-based proof that a task is unsolvable is a prover which wins against
every protocol (that claims to solve the task). In other words, it is a method for
constructing a schedule for each protocol that starts from an initial configuration and
is either infinite (demonstrating that the protocol is not wait-free) or ends in a final
configuration whose outputs do not satisfy the specifications of the task.

A valency argument [22] proves a task is unsolvable by constructing an infinite
schedule from an initial configuration (by repeatedly extending a finite schedule) of
any protocol whose final configurations satisfy the specifications of the task. It is easy
to express the valency argument that proves the impossibility of wait-free consensus
as an extension-based proof:



WHY EXTENSION-BASED PROOFS FAIL 7

Theorem 3.1. There is no wait-free protocol for binary consensus among n ≥ 2
processes in the iterated snapshot model.

Proof. Given any protocol for n processes, the prover first asks the output queries
(C,P, y), for all initial configurations C and all y ∈ {0, 1}, where P is the set of all
n processes. Suppose no initial configuration is bivalent. Then the prover can find
two initial configurations C0 and C ′0 such that these configurations only differ from
one another by the input value of one process q and the protocol answered none
to the output queries (C0, P, 0) and (C ′0, P, 1). Next, the prover asks a query chain
starting from C0 involving only some process q′ ∈ P − {q}. If, at some point, the
protocol says that process q′ outputs 0, the protocol loses, since it has contradicted
its answer of none to the output query (C0, P, 0). If, at some point, the protocol says
that process q′ outputs 1, the prover asks a query chain starting from C ′0 involving
only process q′. Note that configuration C ′0 is indistinguishable from configuration C0

to process q′ and the contents of shared memory is the same in both configurations.
Thus, the protocol must return the same sequence of answers in both query chains or
it loses because it has given inconsistent answers. However, if the protocol says that
process q′ outputs 1 at the end of this query chain, it loses, since it has contradicted
its answer of none to the output query (C ′0, P, 1). The only other possibility is that
the query chain is infinite and the prover wins. Therefore, assume that the prover
finds a bivalent initial configuration C1.

Next, for each process q, the prover asks the single-step query (C1, q) followed
by the output queries (C1q, P, y) for each y ∈ {0, 1}. Suppose none of these n con-
figurations is bivalent. Then the prover can find two processes q′ and q′′ such that
the protocol answered none to the output queries (C1q

′, P, 0) and (C1q
′′, P, 1). Since

the first step of every process is an update, the configurations C1q
′q′′ and C1q

′′q′

are identical. The prover then asks a query chain starting from C1q
′ involving only

process q′′. If, at some point, the protocol says that process q′′ outputs 0, the protocol
loses, since it has contradicted its answer of none to the output query (C1q

′, P, 0). If,
at some point, the protocol says that process q′′ outputs 1, the protocol loses, since it
has contradicted its answer of none to the output query (C1q

′′, P, 1). The only other
possibility is that the query chain is infinite and the prover wins. Therefore, assume
that the prover finds a process q1 such that configuration C2 = C1q1 is bivalent. The
prover ends phase 1 by committing to the schedule q1.

In each subsequent phase, ϕ, the prover first asks the single-step query (Cϕ, q)
followed by the output queries (Cϕq, P, y), for each process q and each y ∈ {0, 1}, to
find a bivalent configuration Cϕ+1 = Cϕqϕ. Suppose none of these configurations is
bivalent. Then the prover can find two processes q′ and q′′ such that the protocol
answered none to the output queries (Cϕq

′, P, 0) and (Cϕq
′′, P, 1). If q′ and q′′ are

both poised to perform an update in Cϕ, the prover wins, by the same argument as
in phase 1. Otherwise, one of these processes, say q′′, is poised to perform a scan in
Cϕ. Then the prover asks a query chain starting from Cϕq

′′ involving only process
q′. If, at some point, the protocol says that process q′ outputs 1, it loses, since it has
contradicted its answer of none to the output query (Cϕq

′′, P, 1). If, at some point,
the protocol says that process q′ outputs 0, the prover asks a query chain starting
from Cϕ involving only process q′. Note that configuration Cϕ is indistinguishable
from configuration Cϕq

′′ to process q′ and the contents of shared memory is the same
in both configurations. Thus, the protocol must return the same sequence of answers
in both query chains or it loses because it has given inconsistent answers. However,
if the protocol says that process q′ outputs 0 at the end of this query chain, it loses,
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since it has contradicted its answer of none to the output query (Cϕq
′, P, 0). The only

other possibility is that the query chain starting from Cϕq
′′ is infinite and the prover

wins. Therefore, assume that the prover finds a process qϕ such that configuration
Cϕ+1 = Cϕqϕ is bivalent. In this case, the prover ends phase ϕ and commits to
extending the schedule by qϕ.

Since the prover either wins in some phase or the number of phases is infinite,
the prover wins.

In the conference version of this paper [3], there is an extension-based proof of this
result that does not use output queries.

If a prover knows that it is interacting with a wait-free protocol that has a finite
number of input configurations, it can win by asking single-step queries to examine
all reachable configurations in a breadth-first manner, violating the spirit of valency
arguments. However, the definition of extension-based proofs says that the prover is
given no knowledge about the protocol with which it is interacting (except its initial
configurations). In particular, it does not know whether the protocol is wait-free.
Such a prover would, in fact, lose against all protocols which are not wait-free, but
whose final configurations satisfy the specifications of the task .

An alternative definition is to require that the prover announce, at the beginning
of each phase, an upper bound on the number of output queries and (maximal) query
chains it will ask during the phase. This upper bound would not limit the total
number of single-step queries the prover could ask during the phase, since a query
chain can contain arbitrarily many single-step queries. The prover’s choice of this
bound could depend on the number of processes in the system, the task the protocol
is claiming to solve, and the information the prover has learned about the protocol in
earlier phases. With this definition, even if the prover knows that the protocol with
which it is interacting is wait-free and has a finite number of input configurations, it
cannot perform exhaustive search when the number of reachable final configurations
of the protocol is larger than its announced bound. However, if the prover also
knows an upper bound on the step complexity of the protocol, it could announce a
sufficiently large upper bound on the number of output queries and query chains in
phase 1 to enable it to perform exhaustive search. If, instead, the prover knows that
the protocol is uniform (i.e., every process terminates in the same number of steps
in every execution), but does not know an upper bound on the step complexity, it
could learn the step complexity of the protocol by performing a query chain in phase
1 and perform exhaustive search in phase 2. For the tasks considered in Section 5 and
Section 6, this does not help the prover, but it might help the prover against other
tasks.

4. Properties of the Iterated Snapshot Model. The proof of our main result
relies on properties of full-information protocols in the iterated snapshot model. We
begin with two simple observations. The first is true because each process remembers
its entire history and only process pi can update component i of a snapshot object.

Observation 4.1. The contents of shared memory in a reachable configuration
of a full-information protocol in the iterated snapshot model is completely determined
by the states of all processes in the configuration (including the states of the processes
that have terminated).

The second observation is a special case of a general, well-known result about
indistinguishability. (For example, see Corollary 2.2. in [8].)
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Observation 4.2. Suppose C and C ′ are two reachable configurations of a pro-
tocol in the iterated snapshot model that are indistinguishable to a set of processes P .
Furthermore, suppose that, except for the snapshot objects prior to St, each snapshot
object has the same contents in C and C ′. If each active process in P is poised to
access a snapshot object Sr in C, for some r ≥ t, and α is a finite, P -only sched-
ule from C, then α is a schedule from C ′ and the configurations Cα and C ′α are
indistinguishable to P .

Suppose C is a reachable configuration in which all active processes are poised to
update the same snapshot object. A 1-round schedule from C is a schedule consisting
of two occurrences of each process that is active in C. Each active process in the
resulting configuration is poised to update the next snapshot object in the sequence.
If none of the processes are active in C, then the empty schedule is the only 1-round
schedule from C. The following observation is a corollary of Observation 4.2.

Observation 4.3. Suppose β is a 1-round schedule from C, α is a prefix of β,
and P is the set of those processes that occur twice in α. Then α and β are indistin-
guishable to P and the terminated processes in configuration C.

For t > 1, a t-round schedule from C is a schedule β1β2 · · ·βt such that β1 is a
1-round schedule from C and, for 1 < i ≤ t, βi is a 1-round schedule from Cβ1 · · ·βi−1.
Note that some processes may have terminated during β1 · · ·βi−1. These processes
are not included in βi.

Every schedule from an initial configuration C that reaches a final configuration
C ′ is indistinguishable (to all processes) to an r-round schedule, for some value of
r. This is a special case of the following lemma, where t = 1 and P is the set of all
processes.

Lemma 4.4. Let C be a configuration in which every active process is poised to
perform an update to St and let C ′ be a configuration reachable from C. Suppose
that each process in some set P is poised to perform an update to St+r in C ′ or
has terminated prior to performing an update to St+r. Then there exists an r-round
schedule β from C such that Cβ and C ′ are indistinguishable to P , i.e., each process
in P has the same state in Cβ and C ′.

Proof. Since C ′ is reachable from C, there is a finite schedule α from C such
that C ′ = Cα. Note that each process in P occurs at most 2r times in α. Let γ be
the schedule from C obtained from α by removing all but the first 2r occurrences of
every process. The steps that are performed in α, but not γ, are accesses to St+r or
snapshot objects that follow St+r. Since no process in P accesses these objects when
the protocol is performed from C according to α or γ, Cα and Cγ are indistinguishable
to P . So, it suffices to show that Cγ and Cβ are indistinguishable to P for some r-
round schedule β.

The proof proceeds by induction on r. First suppose that r = 1. Let β be a
1-round schedule from C obtained from γ by appending sufficiently many occurrences
of every process that is active in C so that each occurs exactly twice in β. By
Observation 4.3, Cγ and Cβ are indistinguishable to P .

Now suppose that r > 1. Let α′ be the schedule from C obtained from γ by
removing all but the first 2r−2 occurrences of every process. This removes all accesses
of St+r−1, but no other steps. Let P ′ be the set of all processes that are poised to
perform an update to St+r−1 in Cα′ or have terminated prior to performing an update

to St+r−1. Then P ⊆ P ′. By the induction hypothesis, there exists an (r − 1)-round
schedule β′ from C such that Cβ′ and Cα′ are indistinguishable to P ′.
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Let α′′ be the schedule from Cα′ obtained from γ by removing the first 2r − 2
occurrences of every process. Each terminated process in Cα′ does not occur in α′′.
Each process in P that is active in Cα′ occurs exactly twice in α′′. Let β′′ be a 1-round
schedule from Cβ′ obtained from α′′ by appending sufficiently many occurrences of
every process that is active in Cβ′ so that each occurs exactly twice in β′′.

Note that, if some process pi performs its update to St+r−1 in γ, then pi ∈ P ′
and pi occurs at least once in α′′, so it is active in Cα′ and performs the same update

to St+r−1 in α′′. Since Cβ′ and Cα′ are indistinguishable to pi, it performs the same
update to St+r−1 in β′′. By construction, the accesses of St+r−1 in α′′ occur in the
same order as in γ. Moreover, because each process in P that is active in Cα′ occurs
exactly twice in α′′, its scan of St+r−1 gets the same result in γ, α′′, and β′′. Hence
Cγ and Cβ are indistinguishable to P , where β = β′β′′ is an r-round schedule.

In particular, consider any reachable configuration C ′ in which some process p
is poised to perform an update to Sr+1. Then Lemma 4.4 with t = 1 and P = {p}
says that there is a configuration reachable by an r-round schedule from an initial
configuration in which the state of p is the same as its state in configuration C ′.

Next, we present a simple graphical representation of the configurations of a full-
information protocol for n ≥ 2 processes in the iterated snapshot model. Recall that
such a protocol is specified by a function δ from the set of possible states of processes
to the set of possible output values and the special symbol ⊥. We use an undirected
graph Gt = (Vt,Et) to represent the configurations of this protocol reachable from
initial configurations by t-round schedules. Each vertex v ∈ Vt represents the state
s of one process in some such reachable configuration. The identifier of the process,
id(v), is the first part of this state s and we define δ(v) = δ(s). There is an edge in
Et between two vertices if there is some such reachable configuration that contains
the states represented by both vertices. In each configuration, there are exactly n
vertices, each with a different identifier. Therefore each edge in Et belongs to an
n-vertex clique in Gt consisting of vertices with distinct identifiers.

An n-vertex clique represents a configuration if the vertices of the clique represent
the states of the processes in that configuration. In particular, all initial configurations
are represented by n-vertex cliques in G0. For the k-set agreement problem, V0 =
{(i, a) | i ∈ {1, . . . , n} and a ∈ {0, . . . , k}} and {(i, a), (j, b)} ∈ E0 if and only if i 6= j.
Note that, for other tasks, there may be an n-vertex clique in G0 that does not
represent an initial configuration.

A vertex v is active if it represents the state of an active process, i.e., δ(v) = ⊥. A
vertex v is terminated if it represents the state of a process that has terminated, i.e.,
δ(v) 6= ⊥ is the value that the process has output. If an n-vertex clique represents a
configuration, that configuration is final if and only if all its vertices are terminated.

We show how to construct Gt+1 from Gt, given δ(v) for all v ∈ Vt. We start with
an n-vertex clique σ in Gt that represents some configuration C reachable from an
initial configuration by a t-round schedule, and construct the n-vertex cliques of Gt+1

representing configurations reachable from C by 1-round schedules.
Consider any subset τ of the active vertices in σ. Let id(τ) = {id(v) | v ∈ τ} be

the set of identifiers of processes whose states are represented by vertices in τ . Each
process pi, for i ∈ id(τ), is poised to perform an update to St+1 in configuration
C. Suppose process pi performs its update to St+1, for each i ∈ id(τ), but no other
process does so. Then, for each v ∈ τ , St+1[id(v)] is the state represented by v and,
for each j 6∈ id(τ), St+1[j] = −. If process pi now performs a scan of St+1, the
result is an n-component vector containing these values. Since this vector is uniquely
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determined by τ , we can represent the resulting state of process pi by the pair (i, τ).
Given δ(v) for each v ∈ σ, we can define the graph χ(σ, δ) as follows:
• v is a vertex in χ(σ, δ) if and only if

– v is a terminated vertex in σ or
– v = (i, τ), where τ is a subset of the active vertices in σ and i ∈ id(τ).

If v = (i, τ), then id(v) = i.
• {v, v′} is an edge in χ(σ, δ) if and only if id(v) 6= id(v′) and

– at least one of v and v′ is a terminated vertex in σ or
– v = (id(v), τ) and v′ = (id(v′), τ ′), where τ and τ ′ are subsets of the

active vertices in σ such that τ ⊆ τ ′ or τ ′ ⊆ τ .
We will show that the n-vertex cliques in χ(σ, δ) represent the configurations reachable
from C by 1-round schedules.

A vertex is in both σ and χ(σ, δ) if and only if it is terminated. If vertex (i, τ) is
in χ(σ, δ), but not in σ, then it represents the state of process pi immediately after it
has performed its scan of St+1, τ represents the result of the scan, and id(τ) is the
set of identifiers of the processes that performed an update to St+1 prior to this scan.
Note that i ∈ id(τ), since process pi performs its update to St+1 before its scan.

This method for obtaining χ(σ, δ) from the n-vertex clique σ is closely related to
the non-uniform chromatic subdivision of a simplex representing a configuration in
the iterated immediate snapshot model. Consequently, we call the graph χ(σ, δ) the
subdivision of σ. However, as mentioned by Herlihy and Shavit [28, page 884], χ(σ, δ)
is not necessarily a topological subdivision of σ.

Figure 4.1 illustrates the subdivisions of two different 3-vertex cliques. In σ, all
three vertices are active, the state of process p1 is represented by vertex x, the state
of p2 is represented by vertex y, and the state of p3 is represented by vertex z. In σ′,
processes p1 and p3 have the same states as in σ, but the state of p2 is represented by
vertex y′, which is terminated. For readability, process identifiers are omitted from
the representation of states in χ(σ, δ) and χ(σ′, δ). Instead, white vertices indicate
states of p1, red vertices indicate states of p2, and black vertices indicate states of p3.

The next two results show that there is a correspondence between the n-vertex
cliques in χ(σ, δ) and the configurations reachable from C by 1-round schedules.

Lemma 4.5. Let σ be an n-vertex clique that represents a configuration C in which
all active processes are poised to update the same snapshot object. If β is a 1-round
schedule from C, then the configuration Cβ is represented by an n-vertex clique in
χ(σ, δ).

Proof. Let A be the set of active processes in configuration C and let St+1 be the
snapshot object the processes in A are poised to update. Then a 1-round schedule
β from C is a sequence consisting of two copies of each process in A. Consider the
second occurrence in β of a process pi. This corresponds to the step in the schedule
β at which pi performs its scan of St+1. Let α be the prefix of β prior to this step.
For each pj ∈ A, pj occurs in α if and only if St+1[j] in configuration Cα contains
the state of pj in configuration C. Let τ be the set of vertices in σ that represent
the states of processes appearing in St+1 in configuration Cα. Then τ represents the
result of the scan of St+1 by process pi. In particular, pi occurs in α, since it performs
its update to St+1 before its scan. Hence i ∈ id(τ) and (i, τ) ∈ χ(σ, δ).

Suppose j 6= i, pj ∈ A, and the second occurrence of pj in β is after the second
occurrence of pi in β. Let ρ be the subset of σ representing the result of pj ’s scan, so
(j, ρ) ∈ χ(σ, δ). Then the prefix of β prior to the second occurrence of pj begins with
α. Hence τ ⊆ ρ and {(i, τ), (j, ρ)} is an edge in χ(σ, δ).
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Fig. 4.1. The subdivisions of two 3-vertex cliques.

For each process pi that is terminated in C, the vertex in σ with identifier i is
also in χ(σ, δ) and this vertex is connected to every other vertex in χ(σ, δ) with a
different identifier. Thus, the configuration Cβ is represented by an n-vertex clique
in χ(σ, δ).

Lemma 4.6. Let σ be an n-vertex clique that represents a configuration C in which
all active processes are poised to update the same snapshot object. Every n-vertex
clique in χ(σ, δ) represents a configuration reachable from C by a 1-round schedule.

Proof. Let St+1 be the snapshot object the active processes in C are poised to
update. Let σ′ be an n-vertex clique in χ(σ, δ). Since id(v) 6= id(v′) for all edges
{v, v′} in χ(σ, δ), there is vertex vi ∈ σ′ with id(vi) = i for each i ∈ {1, . . . , n}. Let I
be the set of indices of active processes in configuration C. The definition of χ(σ, δ)
implies that vi ∈ σ, for each i 6∈ I, and vi = (i, τi), for each i ∈ I, where τi is a subset
of the active vertices in σ and i ∈ id(τi). Furthermore, if i, j ∈ I and i 6= j, then
either τi ⊆ τj or τj ⊆ τi, since {vi, vj} is an edge of χ(σ, δ). Since τi ⊆ τj implies
id(τi) ⊆ id(τj), the sets id(τi) for i ∈ I can be ordered by inclusion. Let ≺ be a total
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order on I such that if i occurs in more of these sets than j does, then i ≺ j. In other
words, for all i ∈ I, the elements of id(τi) occur before the elements of I − id(τi) in
this order.

Let α′ be a sequence containing one copy of each process whose identifier is in
I such that pi occurs before pj if and only if i ≺ j. If the schedule α′ is performed
starting from C, then, for each i ∈ I, τi represents the contents of St+1 at some point
during the execution. Note that, since i ∈ id(τ), this point occurs after pi performs its
update. For each i ∈ I, insert a second copy of pi after the process in α′ whose update
causes the contents of St+1 to be represented by τi and before the next process in α′.
Let α be the resulting sequence. Then α is a 1-round schedule such that vi = (i, τi)
represents the state of pi in configuration Cα, for each i ∈ I. For each i 6∈ I, vi ∈ σ,
so it represents the state of the terminated process pi in C and, thus, the state of pi
in Cα, too. Hence σ′ represents the configuration Cα.

For any two (not necessarily disjoint) graphs G = (V,E) and G′ = (V ′, E′), the
union of G and G′ is the graph G ∪ G′ = (V ∪ V ′, E ∪ E′). Then Gt is a union of
n-vertex cliques. Consider any subgraph A of Gt that is the union of n-vertex cliques.
We define χ(A, δ) to be the union of the graphs χ(σ, δ) for all n-vertex cliques σ in A.
In particular, Gt+1 = χ(Gt, δ) is the union of χ(σ, δ) for all n-vertex cliques σ in Gt.

It follows from Lemma 4.5 that every configuration reachable from an initial
configuration by a t-round schedule is represented by an n-vertex clique in Gt. The
converse is true, provided it is true for t = 0.

Lemma 4.7. If every n-vertex clique in G0 represents an initial configuration of
the protocol, then, for all t ≥ 0, every n-vertex clique in Gt represents a configuration
reachable from an initial configuration by a t-round schedule.

Proof. Let t ≥ 0 and suppose that every n-vertex clique in Gt represents a con-
figuration reachable from an initial configuration by a t-round schedule. Consider any
n-vertex clique {v1, . . . , vn} in Gt+1. If vi is a terminated vertex in Gt, let ui = vi.
Otherwise, vi = (i, τi) where τi ⊆ σi for some n-vertex clique σi in Gt such that
i ∈ id(τi). In this case, let ui be the vertex in τi such that id(ui) = i. For all
1 ≤ i < j ≤ n, it follows from the definition of Et+1 that there is an n-vertex clique
in Gt that contains both ui and uj and, hence, there is an edge between ui and uj
in Gt. Thus σ = {u1, . . . , un} is a clique in Gt and {v1, . . . , vn} is an n-vertex clique
in χ(σ, δ). By assumption, σ represents a configuration reachable from an initial con-
figuration by a t-round schedule. Therefore, by Lemma 4.6, {v1, . . . , vn} represents a
configuration reachable from an initial configuration by a (t + 1)-round schedule. It
follows by induction that the claim is true for all t ≥ 0.

By definition, a clique is connected. We show that a subdivision of a clique in Gt

is still connected.

Lemma 4.8. The subdivision χ(σ, δ) of every n-vertex clique σ in Gt is connected.

Proof. First suppose that σ contains some terminated vertex u. By definition,
u ∈ χ(σ, δ) and no other vertex of χ(σ, δ) has the same id. Consider any other vertex
v ∈ χ(σ, δ). By definition, {u, v} is an edge in χ(σ, δ). Thus every vertex in χ(σ, δ) is
connected to u, so the graph χ(σ, δ) is connected.

Now suppose that σ contains only active vertices. Then (i, σ) ∈ χ(σ, δ), for
each i ∈ {1, . . . , n} = id(σ). Furthermore, if i, j ∈ {1, . . . , n} and i 6= j, then
{(i, σ), (j, σ)} is an edge in χ(σ, δ), so the vertices (i, σ) for i ∈ {1, . . . , n} form an
n-vertex clique. Now consider any vertex (i, τ) ∈ χ(σ, δ), where τ ( σ. Then, by
definition, {(i, τ), (j, σ)} is an edge in χ(σ, δ) for any j ∈ {1, . . . , n} − {i}. Since
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n ≥ 2, such a j exists. Thus every vertex in χ(σ, δ) is connected to this clique, so the
graph χ(σ, δ) is connected.

More generally, connectivity is preserved by subdivision.

Lemma 4.9. Let A be a connected subgraph of Gt that is the union of n-vertex
cliques. Then χ(A, δ) is a connected subgraph of Gt+1.

Proof. Consider any two vertices u′, v′ ∈ χ(A, δ). Then u′ ∈ χ(σ, δ) and v′ ∈
χ(τ, δ) for some n-vertex cliques σ, τ ⊆ A. Since A ⊆ Gt is connected, there is a path
w0, . . . , w` in A of length ` ≥ 0 in A such that w0 ∈ σ and w` ∈ τ . For 0 ≤ i ≤ `, let
w′i = wi if δ(wi) 6= ⊥, and let w′i = (id(wi), {wi}) if δ(wi) = ⊥.

Consider any i such that 1 ≤ i ≤ `. Since {wi−1, wi} is an edge of A, there exists
an n-vertex clique σi ⊆ A that contains this edge. Since wi−1, wi ∈ σi, it follows by
construction that w′i−1, w

′
i ∈ χ(σi, δ). By Lemma 4.8, the subdivision χ(σi, δ) of σi is

connected. Thus, there exists a path between w′i−1 and w′i in χ(σi, δ) ⊆ χ(A, δ). By
Lemma 4.8, χ(σ, δ) and χ(τ, δ) are connected, so there exist a path between u′ and
w′0 in χ(σ, δ) ⊆ χ(A, δ) and a path between w′` and v′ in χ(τ, δ) ⊆ χ(A, δ). Hence,
there is a path between u′ and v′ in χ(A, δ).

Since u′ and v′ are arbitrary, χ(A, δ) is connected.

The next result follows by induction, because Gt+1 = χ(Gt, δ).

Corollary 4.10. If G0 is connected, then Gt is connected, for all t ≥ 1.

If T ⊆ Vt is a set of terminated vertices in Gt, we define χ(T, δ) = T ⊆ Vt+1. Let
A and B each be either a nonempty set of terminated vertices in Gt or the nonempty
union of n-vertex cliques in Gt. Then the distance between A and B in Gt is the
minimum of the lengths of all paths in Gt between vertices in A and vertices in B. If
G0 is connected, then Corollary 4.10 implies that at least one such path exists. Now
we show that, if A and B intersect (i.e., the distance between them in Gt is 0), then
the same is true for χ(A, δ) and χ(B, δ) and, if A and B are disjoint (i.e., the distance
between them in Gt is greater than 0), then so are χ(A, δ) and χ(B, δ).

Lemma 4.11. Suppose A and B are each either a set of terminated vertices in
Gt or the union of n-vertex cliques in Gt. Then A and B are disjoint if and only if
χ(A, δ) and χ(B, δ) are disjoint.

Proof. When A or B is a set of terminated vertices in Gt, any vertex u ∈ A∩B is
terminated, so u ∈ A ∩ B if and only if u ∈ χ(A, δ) ∩ χ(B, δ). So, assume that A and
B are the unions of n-vertex cliques.

Suppose that A and B share a common vertex u. Let σ be an n-vertex clique
in A that contains u and let ρ be an n-vertex clique in B that contains u. If u is a
terminated vertex in Gt, then, by definition, u is a vertex in both χ(σ, δ) and χ(ρ, δ).
Otherwise, u is active in Gt. In this case, let τ = {u} and i = id(u). Then i ∈ id(τ),
τ ⊆ σ, and τ ⊆ ρ. By definition (i, τ) is a vertex in both χ(σ, δ) and χ(ρ, δ). Since
χ(σ, δ) is a subgraph of χ(A, δ) and χ(ρ, δ) is a subgraph of χ(B, δ), in both cases it
follows that χ(A, δ) and χ(B, δ) are not disjoint.

Conversely, suppose that χ(A, δ) and χ(B, δ) share a common vertex v. By defi-
nition, there exists an n-vertex clique σ ⊆ A, such that v ∈ χ(σ, δ). Similarly, there
exists an n-vertex clique ρ ⊆ B such that v ∈ χ(ρ, δ). If v is a terminated vertex in
Gt, then v is a vertex in both σ and ρ. Otherwise, v = (i, τ) where i ∈ id(τ), τ ⊆ σ,
and τ ⊆ ρ. Hence, in both cases, A and B are not disjoint.

We now prove one of the main technical tools used in this paper. Intuitively,
it shows that subdividing does not decrease distances. For example, the distance
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δ(v1) 6= ⊥

δ(v4) 6= ⊥

δ(v0) = ⊥

δ(v3) = ⊥δ(v2) = ⊥

Fig. 4.2. An illustration of Lemma 4.12.

between two terminated vertices in Gt does not decrease in Gt+1 and the distance
between two n-vertex cliques in Gt is no larger than the distance between their subdi-
visions in Gt+1. It also shows that the distance between A and B in Gt is less than the
distance between their subdivisions in Gt+1, provided that there is no path between
A and B in which every edge contains at least one terminated vertex.

Figure 4.2 illustrates Lemma 4.12. In the top diagram, which is part of Gt,
the grey triangle represents A, which consists of one 3-vertex clique and B = {v4}
is a set containing one terminated vertex. The blue path, which has length 4, is a
shortest path between A and B in Gt. Note that v2 and v3 are both active vertices.
In the bottom diagram, which is part of Gt+1, the grey triangle represents χ(A, δ)
and χ(B, δ) = B. The blue path, which now has length 5, is a shortest path between
χ(A, δ) and χ(B, δ) in Gt+1.

Lemma 4.12 (Distance Lemma). Suppose A,B ⊆ Gt are nonempty and each is
either a set of terminated vertices or the union of n-vertex cliques. Then the distance
between χ(A, δ) and χ(B, δ) in Gt+1 is at least as large as the distance between A and
B in Gt. Moreover, if every path between A and B in Gt contains at least one edge
between active vertices, then the distance between χ(A, δ) and χ(B, δ) in Gt+1 is larger
than the distance between A and B in Gt.

Proof. Let d be the distance between χ(A, δ) and χ(B, δ) in Gt+1. If d = 0, then,
by Lemma 4.11, the distance between A and B in Gt is 0. Moreover, there is an
empty path between χ(A, δ) and χ(B, δ), which does not contain an edge between
active vertices. Therefore, assume that d ≥ 1.

Consider any shortest path w0, w1, . . . , wd between χ(A, δ) and χ(B, δ) in Gt+1.
Since Gt+1 = χ(Gt, δ), it follows that, for 1 ≤ i ≤ d, there exists an n-vertex clique
σi ∈ Gt such that {wi−1, wi} ∈ χ(σi, δ).

We will construct a path u0, u1, . . . , ud of length d between A and B in Gt. Let
0 ≤ i ≤ d. If wi is a terminated vertex in Gt, let ui = wi. If wi is not a terminated
vertex in Gt, then wi = (id(wi), τi), where id(wi) ∈ id(τi) and τi is a set of active
vertices. In this case, let ui ∈ τi be such that id(ui) = id(wi). Note that, if i ≥ 1,
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then ui ∈ τi ⊆ σi and, if i < d, then ui ∈ τi ⊆ σi+1.
Since w0 ∈ χ(A, δ) and wd ∈ χ(B, δ), it follows that u0 ∈ A and ud ∈ B. Note

that id(ui−1) = id(wi−1) 6= id(wi) = id(ui), for 1 ≤ i ≤ d. Since ui−1, ui ∈ σi and σi
is an n-vertex clique, it follows that {ui−1, ui} is an edge in Gt. Hence u0, u1, . . . , ud
is a path between A and B in Gt. This implies that the distance between A and B in
Gt is at most d.

Now suppose that every path between A and B in Gt contains at least one edge
between active vertices. Then there exists 1 ≤ i ≤ d such that ui−1 and ui are both
active vertices. Since {wi−1, wi} is an edge in χ(σi, δ), either τi−1 ⊆ τi or τi ⊆ τi−1.
Without loss of generality, suppose that τi−1 ⊆ τi.

First, consider the case when i = d. Because ud ∈ B is an active vertex, B
is not a set of terminated vertices. Hence B is a union of n-vertex cliques. Since
wd ∈ χ(B, δ), there exists an n-vertex clique β ⊆ B such that wd ∈ χ(β, δ). This
implies that τd is a subset of the active vertices in β and, hence, so is τd−1. But then
wd−1 ∈ χ(β, δ) ⊆ χ(B, δ), which contradicts the assumption that w0, w1, . . . , wd−1, wd

is a shortest path from χ(A, δ) to χ(B, δ).
Therefore i < d. Since τi−1 ⊆ τi ⊆ σi+1, it follows that ui−1 ∈ σi+1. But σi+1

is a clique, so either ui−1 = ui+1, in which case u0, . . . , ui−1, ui+2 . . . ud is a path
from A to B in Gt of length d − 2, or {ui−1, ui+1} is an edge of σi+1, in which case
u0, . . . , ui−1, ui+1 . . . ud is a path from A to B in Gt of length d−1. In either case, the
distance between A and B in Gt is less than the distance between χ(A, δ) and χ(B, δ)
in Gt+1.

5. Why Extension-Based Proofs Fail for Set Agreement. In this section,
we prove that no extension-based proof can show the impossibility of deterministically
solving k-set agreement in a wait-free manner in the iterated snapshot model, for
n > k ≥ 2 processes. Specifically, we define an adversary that is able to win against
every extension-based prover.

During phase 1, the adversary maintains a partial specification of δ (the protocol it
is adaptively constructing) and an integer t ≥ 0. The integer t represents the number
of times it has subdivided G0, the graph representing the initial configurations. Recall
that Gt is the graph representing configurations of the protocol reachable from initial
configurations by t-round schedules. Once the adversary has defined δ(v) to be an
element of {⊥} ∪ {0, 1, . . . , k} for each vertex v ∈ Vt of Gt, it may subdivide Gt,
construct Gt+1 = χ(Gt, δ), and increment t.

The adversary maintains a number of invariants about δ as it responds to queries.
To ensure that these invariants are maintained, it may have to increment t multiple
times (each time subdividing the graph Gt). One invariant it maintains is that ver-
tices terminated with different output values are far away from one another in Gt.
This will help the adversary satisfy agreement in its final configurations. Another
invariant it maintains is that vertices terminated with output value y are far away
from configurations reachable from initial configurations that do not have y as an in-
put value. This will allow the adversary to satisfy validity in its final configurations.
Some vertices cannot output value y because doing so would contradict the adver-
sary’s none response to an output query (C,Q, y). A third invariant the adversary
maintains is that such vertices are far away from vertices with output value y. To do
this, it ensures that each such vertex either is close to a vertex that has terminated
with an output value other than y or is in a configuration reachable from an initial
configuration that does not have y as an input. In addition, the adversary ensures
that every query chain is finite.
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At the beginning of phase 2, the adversary completes the specification of δ on all
vertices in configurations reachable from configurations in A(2). It does so in such
a way that at most two different values are output in any of these configurations,
validity is not violated, no output query that returned none is contradicted, and
there is no infinite schedule from any of these configurations. Eventually, at the end
of some phase, the prover chooses a configuration reachable from a configuration in
A(2) in which every processes has terminated, so the adversary wins.

Fix an extension-based prover. As its interaction with the prover proceeds, the
adversary uses the integer t, the graphs Gr for 0 ≤ r ≤ t, and the values of δ where
it has been defined to determine how to respond to each of the prover’s queries.

Definition 5.1. For each 0 ≤ r ≤ t and each input value a, let Tr(a) = {v ∈
Vr | δ(v) = a} be the subset of terminated vertices in Vr that have output a.

The following simple properties are true because every terminated vertex remains
unchanged when a subdivision is performed.

Proposition 5.2. For all 0 ≤ r < t and all input values a, Tr(a) = χ(Tr(a), δ) ⊆
Tr+1(a). If δ(v) is defined for every vertex v ∈ Vt and the adversary subdivides Gt to
construct Gt+1, then Tt(a) = Tt+1(a) for all input values a.

We say that a vertex v ∈ V0 has seen input value a if it denotes the state of a
process whose input has value a. Inductively, we say that v ∈ Vr+1 has seen input
value a if v ∈ Vr and v has seen a or v = (i, τ) for some subset τ of active vertices
of an n-vertex clique in Gr such that i ∈ id(τ) and some vertex in τ has seen a. In
other words, if v represents the state of a process pi in some configuration reachable
by an r-round schedule, then v has seen a if and only if pi had input xi = a or, in
some round r′ ≤ r of this schedule, there was a process pj that performed its update
before pi performed its scan and the vertex representing pj has seen a in round r′−1.

Definition 5.3. For each 0 ≤ r ≤ t and each input value a, let Nr(a) be the
union of the n-vertex cliques in Gr consisting of vertices that have not seen a.

To avoid violating validity, the adversary should not let any vertex in Nt(a) output
the value a.

Proposition 5.4. For all 0 ≤ r < t and all input values a, Nr+1(a) = χ(Nr(a), δ).

Proof. Consider any n-vertex clique σ ⊆ Nr(a). Since no vertex in σ has seen a,
it follows, by definition, that no vertex in χ(σ, δ) has seen a. Thus χ(σ, δ) ⊆ Nr+1(a)
and, hence, χ(Nr(a), δ) ⊆ Nr+1(a).

Conversely, consider any n-vertex clique σ′ ⊆ Nr+1(a). By definition of Gr+1,
σ′ ⊆ χ(σ, δ) for some n-vertex clique σ in Gr. If some vertex in σ has seen a, then the
process in σ′ with the same id has seen a. But none of the vertices in σ′ have seen
a, so none of the vertices in σ have seen a. Hence σ ⊆ Nr(a) and σ′ ⊆ χ(Nr(a), δ).
Therefore Nr+1(a) ⊆ χ(Nr(a), δ).

In fact, every vertex in Gr that has not seen a is in Nr(a). This is the special
case of the following lemma when τ contains only one vertex.

Lemma 5.5. If τ is a subset of an n-vertex clique in Gr and no vertex in τ has
seen the input value a, then τ is a subset of an n-vertex clique in Nr(a).

Proof. The proof is by induction on r. For k-set agreement, every two vertices in
G0 are adjacent provided they represent the states of different processes, i.e., they have
different ids. Thus, if τ is a subset of an n-vertex clique in G0, no vertex in τ has seen
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the input value a, and b is an input value different from a, then τ ∪{(j, b) | j 6∈ id(τ)}
is an n-vertex clique in N0(a).

Let r ≥ 0 and assume the claim is true for r. Consider any n-vertex clique
σ′ in Gr+1. Let τ ′ be the subset of all vertices of σ′ that have not seen a. Since
Gr+1 = χ(Gr, δ), there exists an n-vertex clique σ in Gr such that σ′ ⊆ χ(σ, δ). Let
τ = {v ∈ σ | id(v) ∈ id(τ ′)}. Note that, by definition, if u ∈ σ has seen a, then every
vertex u′ ∈ χ(σ, δ) with id(u′) = id(u) has seen a. Hence, no vertex in τ has seen a.
By the induction hypothesis, there exists an n-vertex clique ρ in Nr(a) that contains
τ .

By definition, χ(ρ, δ) contains each vertex of τ ′. Since τ ′ ⊆ σ′, the vertices in
τ ′ are adjacent to one another. Let active(ρ) denote the set of active vertices in ρ
and let ρ′ = {(j, active(ρ)) | j ∈ id(active(ρ)) − id(τ ′)} ⊆ χ(ρ, δ). The vertices in ρ′

are adjacent to one another and to each vertex in τ ′. Furthermore, each terminated
vertex in ρ is adjacent to all the vertices in τ ′ and ρ′. Hence, these vertices form an
n-vertex clique in χ(ρ, δ) ⊆ Nr+1(a). Thus the claim is true for r + 1.

For each output query (C,P, a) to which the adversary answered none, the ad-
versary cannot let a vertex output a if the vertex represents the state of a process in
P in a configuration reachable from C by a P -only schedule. Otherwise, its definition
of δ contradicts its response to (C,P, a).

Definition 5.6. For each 0 ≤ r ≤ t and each input value a, let Xr(a) be the
subset of vertices in Vr that represent the states of processes in P in configurations
reachable from C by P -only schedules, for all output queries (C,P, a) to which the
adversary answered none.

The adversary should not let any vertex in Xt(a) output the value a.

Throughout the first phase, the adversary will respond to each query so that the
following invariants hold:

1. For each 0 ≤ r < t and each vertex v ∈ Vr, δ(v) is defined.
2. If v ∈ Vt and δ(v) is defined, then δ(v) 6= ⊥.
3. For every configuration C ∈ A′(1), there exists a schedule β from an initial

configuration C0 ∈ A(1) such that C = C0β, no process occurs more than 2t
times in β, and, for every nonempty prefix β′ of β, configuration C0β

′ ∈ A′(1)
has been reached during phase 1. If a process occurs 2t times in β and v ∈ Vt

represents the state of that process in C, then δ(v) is defined.
4. For every input value a, if Tt(a) is nonempty, then the distance in Gt between

Tt(a), the set of vertices that have terminated with value a, and Nt(a), the
set of vertices that have not seen value a, is at least 2.

5. For every two input values a 6= b, if Tt(a) and Tt(b) are nonempty, then the
distance between them in Gt is at least 3.

6. For every input value a and every vertex v ∈ Xt(a), either v ∈ Nt(a) or there
exists an input value b 6= a such that the distance between v and Tt(b) in Gt

is at most 1.
There is nothing special about the values 2 and 3 in Invariants 4 and 5. They are
simply the smallest values such that the invariants can be maintained and every query
chain is finite.

Lemma 5.7. Suppose the invariants hold. If a 6= b, then every path between Tt(a)
and Tt(b) ∪ Nt(a) in Gt contains at least one edge between vertices that are not ter-
minated.
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Proof. Consider any path v0, v1, . . . , v` between Tt(a) and Tt(b) ∪ Nt(a) in Gt.
Let vj be the last vertex on this path that is in Tt(a). If v` ∈ Tt(b), then Invariant
5 implies that the distance between vj and v` in Gt is at least 3. If v` ∈ Nt(a), then
Invariant 4 implies that the distance between vj and v` in Gt is at least 2. Hence,
` ≥ j + 2 and vj+1, vj+2 6∈ Tt(a). Moreover, by Invariant 5, vj+1, vj+2 6∈ Tt(c) for
any input value c 6= a. Hence, {vj+1, vj+2} is an edge between vertices that are not
terminated.

Essentially, a subdivision maintains the invariants, but increases the distance
between vertices that output different values and between vertices that output a and
cliques of n vertices that have not seen a.

Lemma 5.8. Suppose the invariants hold, the adversary defines δ(v) = ⊥ for each
vertex v ∈ Vt where δ(v) is undefined, and it subdivides Gt to construct Gt+1. If Tt(a)
is nonempty, then the distance between Tt+1(a) and Nt+1(a) in Gt+1 is greater than
the distance between Tt(a) and Nt(a) in Gt. If a 6= b and both Tt(a) and Tt(b) are
nonempty, then the distance between Tt+1(a) and Tt+1(b) in Gt+1 is greater than the
distance between Tt(a) and Tt(b) in Gt. Furthermore, if the adversary then increments
t, the invariants continue to hold.

Proof. Since Invariant 1 was true and the adversary defines δ(v) = ⊥ for each ver-
tex v ∈ Vt where δ(v) was undefined, Invariant 1 remains true after t is incremented.
Since Gt+1 has just been constructed, each vertex v′ ∈ Vt+1 is either a terminated
vertex in Vt or δ(v′) is undefined. Thus, Invariant 2 is true after t is incremented.
Since no configurations are added to A′(1), Invariant 3 remains true.

By Proposition 5.2, χ(Tt(a), δ) = Tt(a) = Tt+1(a), for each input a. By Proposi-
tion 5.4, Nt+1(a) = χ(Nt(a), δ). Lemma 5.7 says that, for b 6= a, every path between
Tt(a) and Nt(a) ∪ Tt(b) in Gt contains at least one edge between vertices that are
not terminated. By construction, δ(v) is defined for all vertices v ∈ Vt, so vertices
that are not terminated are active. Therefore, if Tt(a) is nonempty, Lemma 4.12
implies that the distance between χ(Tt(a), δ) = Tt+1(a) and χ(Nt(a), δ) = Nt+1(a)
in Gt+1 is greater than the distance between Tt(a) and Nt(a) in Gt. Similarly, if
both Tt(a) and Tt(b) are nonempty, Lemma 4.12 implies that the distance between
χ(Tt(t), δ) = Tt+1(a) and χ(Tt(b), δ) = Tt+1(b) in Gt+1 is greater than the distance
between Tt(a) and Tt(b) in Gt. Hence Invariants 4 and 5 remain true after t is
incremented.

Finally, consider any vertex v′ ∈ Xt+1(a). If v′ is a terminated vertex in Gt,
let v = v′ ∈ Xt(a). Otherwise, there exists an output query (C,P, a) to which the
adversary answered none and a P -only schedule γ′ from C ∈ A(1) ∪A′(1) such that
v′ is the state of some process pi ∈ P in configuration Cγ′. Recall that, for each
configuration C ∈ A(1) ∪ A′(1), there is an initial configuration C0 and a schedule β
from C0 such that C = C0β. By Invariant 3, process pi occurs at most 2t times in
β. Hence, there is a prefix γ of γ′ such that pi occurs exactly 2t times in βγ. Let
v ∈ Vt denote the state of pi in C0βγ = Cγ. Since γ is a P -only schedule, v ∈ Xt(a).
Furthermore, v′ ∈ χ(σ, δ) for some n-vertex clique σ that contains v.

In both cases, by Invariant 6, either v ∈ Nt(a) or the distance between v and
Tt(b) in Gt is at most 1 for some input b 6= a. By the definition of subdivision, if
v ∈ Nt(a), then v′ ∈ Nt+1(a). Similarly, if the distance between v and Tt(b) in Gt

is at most 1, then the distance between v′ and Tt+1(b) in Gt+1 is at most 1. Thus,
Invariant 6 remains true after t is incremented.
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The adversarial strategy for phase 1. Initially, the adversary defines δ(v) = ⊥
for each vertex v ∈ V0, it subdivides G0 to construct G1, and it sets t = 1. By
construction, Invariants 1 and 2 are true. Before the first query, A′(1) is empty, so
Invariant 3 is true. No vertices in G1 have terminated, so T1(a) is empty for all inputs
a. Since there have been no output queries, X1(a) is empty for all inputs a. Therefore
Invariants 4, 5, and 6 are vacuously true.

Suppose that the invariants are true immediately prior to some query in phase
1. We will show that the adversary can answer this query (and possibly define δ on
more vertices) so that the invariants remain true afterwards.

First, consider a single-step query (C, q), where C ∈ A(1)∪A′(1) and q is a process
that is active in C. Note that the prover already knows the state of every process in
configuration C, including which of them have terminated. Let β be a schedule from
an initial configuration C0 ∈ A(1) such that C = C0β, no process occurs more than
2t times in β, and C0β

′ ∈ A′(1) for every nonempty prefix β′ of β. As a result of this
query, the prover will add configuration Cq to A′(1). Note that βq is a schedule from
C0 such that Cq = C0βq. Since every proper prefix of βq is a prefix of β, configuration
C0β

′ ∈ A′(1) for every nonempty prefix β′ of βq.
If q occurs 2r times in β, then, by Invariant 3, 0 ≤ r ≤ t. Let v ∈ Vr be the vertex

that represents the state of q in configuration C. Since q is active in C, δ(v) = ⊥.
Hence, by Invariant 2, r < t. In this case, the adversary returns the configuration Cq,
which is the same as C except that Sr+1[id(q)] = (id(q), v) and the state of q has an
extra bit indicating that it last performed an update. Process q occurs 2r + 1 < 2t
times in βq and all other processes occur the same number of times in βq and β. Thus
Invariant 3 remains true. Since δ has not been changed by the adversary, Tt(a) is
unchanged for all inputs a and Invariants 1, 2, 4, and 5 remain true. Since no vertices
are added to Xt(a) for any input a, Invariant 6 remains true.

If q occurs 2r + 1 times in β, then, by Invariant 3, 0 ≤ r < t. The state of
q in configuration Cq is (id(q), τ), where τ is the result of its scan of Sr+1. It is
represented by a vertex v′ ∈ Vr+1. Note that, by Observation 4.1, the contents of
Sr+1 are determined by the states of all processes in C. If r < t − 1, then δ(v′) is
defined, by Invariant 1. It is also possible that r = t− 1 and δ(v′) is already defined.
In both these cases, the adversary returns configuration Cq, which is the same as
C, except for the state of q and, if δ(v′) 6= ⊥, the value q outputs. As above, the
invariants continue to hold. So, suppose that r = t− 1 and δ(v′) is not defined.

If there exists an input a such that setting δ(v′) = a maintains the invariants,
then the adversary defines δ(v′) = a and returns configuration Cq, which is the same
as C except for the state of q and the fact that q outputs a. In this case, the distance
between v′ and Nt(a) in Gt is at least 2 and, for all inputs b 6= a such that Tt(b)
is nonempty, the distance between v′ and Tt(b) in Gt is at least 3. The vertex v′ is
added to Tt(a). The sets Tt(b), for all inputs b 6= a, and the sets Nt(b) and Xt(b),
for all inputs b, are unchanged. Hence, Invariants 1, 2, 4, 5, and 6 continue to hold.
Process q occurs 2t times in βq and, by construction, δ(v′) is defined. For every other
process, its state in Cq is the same as its state in C. Thus, Invariant 3 continues to
hold. By Invariant 6, each vertex u ∈ Xt(a) is either in Nt(a) or is at distance at
most 1 from Tt(b) in Gt for some b 6= a. Since the distance between v′ and Nt(a) in
Gt is at least 2 and the distance between v′ and Tt(b) in Gt is at least 3, the distance
between v′ and u in Gt is at least 2. Thus v′ 6∈ Xt(a), so defining δ(v′) = a does not
contradict the result of any previous output query.

Otherwise, the adversary defines δ(v) = ⊥ for each vertex v ∈ Vt where δ(v)
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is undefined (including v′), subdivides Gt to construct Gt+1, and increments t. By
Lemma 5.8, the invariants continue to hold. The adversary returns configuration Cq,
which is the same as C except for the state of q.

Second, consider an output query (C,Q, y), where C ∈ A(1)∪A′(1), each process
q ∈ Q is active in C, and y is a possible output value. Let Q be the set of vertices in
Gt that represent the states of processes in Q in configurations reachable from C via
Q-only schedules.

If some vertex v ∈ Q is terminated with output y, then the adversary returns a
Q-only schedule from C that leads to a configuration C ′ in which v represents the
state of a process in C ′. None of the invariants are affected. So, suppose that no
vertex in Q is terminated with output y.

Let U be the subset of vertices in Q that are not in Nt(y), Xt(y), or Tt(a), for
any a 6= y. If U = ∅, then it would be impossible for the adversary to return a Q-only
schedule from C in which some vertex is terminated with output y without violating
validity or contradicting one of its previous answers. In this case, the adversary adds
Q to Xt(y) and returns none. Note that adding vertices in Nt(y) or ∪{Tt(a) | a 6= y}
to Xt(y) does not invalidate Invariant 6. The other invariants are not affected. So,
suppose U 6= ∅.

For each vertex u ∈ U, let Au be the union of all n-vertex cliques in Gt containing
u. We consider three cases. In the first case, there is a vertex u ∈ U such that some
vertex in Au is terminated and outputs y. Then the adversary can define δ(v) = y
for some vertex in v in Gt+1 and return a Q-only schedule from C that results in a
configuration in which the state of some process in Q is represented by v. Moreover,
we show that the adversary is able to maintain the invariants and does not contradict
its answer to any previous output query. The same is true if there is a vertex u ∈ U
such that no vertex in Au is terminated. In the remaining case, the adversary can
answer none without violating any invariant.

Case 1: There is a vertex u ∈ U such that some vertex in Au is terminated and
outputs value y. The adversary defines δ(v) = ⊥ for each vertex v ∈ Vt where δ(v)
is undefined and subdivides Gt to construct Gt+1. By Invariant 4 and Lemma 5.8,
the distance between Tt+1(y) and Nt+1(y) in Gt+1 is at least 3. If a 6= y and Tt(a) is
nonempty, then Proposition 5.2 implies that Tt+1(a) is nonempty and, by Invariant 5
and Lemma 5.8, the distance between Tt+1(y) and Tt+1(a) in Gt+1 is at least 4.

Let i = id(u) and v = (i, {u}). Since u ∈ U ⊆ Q, process pi ∈ Q. Let w ∈
Au ∩ Tt(y), let σ be an n-vertex clique in Au that contains w, and let C ′ be the
configuration represented by σ. Then v is the state of process pi in configuration
C ′pipi.

Next, the adversary increments t. All invariants continue to hold, by Lemma 5.8.
Finally, the adversary defines δ(v) = y and returns a Q-only schedule from C that
results in process pi being in state v. This adds vertex v to Tt(y). Invariants 1, 2, 3,
and 6 continue to hold.

Since w ∈ Tt−1(y), it is adjacent to every other vertex in χ(σ, δ) ⊆ Gt, including
v. It follows that the distance between v and Nt(y) in Gt is at least 2. Likewise, if
a 6= y and Tt(a) is nonempty, then the distance between v and Tt(a) in Gt is at least
3. Thus, Invariants 4 and 5 hold.

By Invariant 6, each vertex in Xt(y) is either in Nt(y) or is at distance at most 1
from Tt(b) in Gt for some b 6= y. Since the distance between v and Nt(y) in Gt is at
least 2 and the distance between v and Tt(b) in Gt is at least 3, the distance between
v and Xt(y) in Gt is at least 2. Thus v 6∈ Xt(y). Hence, defining δ(v) = y does not
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contradict the result of any previous output query.
Case 2: There is a vertex u ∈ U such that no vertex in Au is terminated. The

adversary defines δ(v) = ⊥ for each vertex v ∈ Vt where δ(v) is undefined and
subdivides Gt to construct Gt+1.

No vertex in Au is terminated, so the distance between Au and Tt(a) in Gt is at
least 1, for all inputs a. Since Au contains all vertices at distance at most 1 from u
in Gt, it follows that the distance from u to Tt(a) in Gt is at least 2. Moreover, since
u 6∈ Nt(y), the distance from u to Nt(y) in Gt is at least 1.

Let i = id(u) and let v = (i, {u}) ∈ Vt+1. Since u ∈ U ⊆ Q, process pi ∈ Q.
Consider any vertex v′ adjacent to v in Gt+1. There exists an n-vertex clique σ ⊆ Gt

such that v, v′ ∈ χ(σ, δ) and {u} ⊆ σ. Hence σ ⊆ Au. All vertices in Au are active,
so v′ = (j, ρ) where j 6= i, j ∈ id(ρ), ρ ⊆ σ, and {u} ⊆ ρ. Note that u 6∈ Nt(y) implies
v, v′ 6∈ Nt+1(y). Therefore, the distance from v to Nt+1(y) in Gt+1 is at least 2.

Let v′′ be any vertex adjacent to v′ in Gt+1. There exists an n-vertex clique
σ′ ⊆ Gt such that {v′, v′′} is an edge in χ(σ′, δ). This implies that ρ ⊆ σ′ and, hence
u ∈ σ′. Therefore σ′ ⊆ Au and v′, v′′ ∈ χ(Au, δ). Since the distance between Au and
Tt(a) in Gt is at least 1, Lemma 4.12 implies that the distance between χ(Au, δ) and
χ(Tt(a), δ) in Gt+1 is at least 1. By Proposition 5.2, χ(Tt(a), δ) = Tt+1(a). Hence
v′, v′′ 6∈ Tt+1(a). Thus, the distance from v to Tt+1(a) in Gt+1 is at least 3 for all
inputs a.

Now the adversary increments t, so all invariants continue to hold, by Lemma 5.8.
Finally, the adversary defines δ(v) = y and returns a Q-only schedule from C that
results in process pi being in state v. This adds vertex v to Tt(y). Invariants 1, 2, 3,
and 6 continue to hold. Since the distance from v to Nt(y) in Gt is at least 2 and the
distance from v to Tt(a) in Gt is at least 3 for all inputs a 6= y, Invariants 4 and 5
hold. As in the previous case, defining δ(v) = y does not contradict the result of any
previous output query.

Case 3. For every vertex u ∈ U, there is a vertex in Au that is terminated, but
there is no vertex in Au that is terminated and outputs value y. In this case, the
adversary returns none and adds U to Xt(y). Since each vertex u ∈ U is adjacent to
some vertex in Au that is terminated with an output other than y, Invariant 6 holds.
Invariants 1, 2, and 3 still hold, since t and δ are not changed, and Invariants 4 and
5 still hold, since Nt(a) and Tt(a) are not changed for any input a.

The prover does not win in phase 1. The invariants hold after each query made by
the prover in phase 1. By Invariant 5, at most one value is output in any configuration
reached by the prover. Moreover, by Invariant 4 and Lemma 5.5, if a process outputs
value a, then it has seen a. Hence, the prover cannot win in phase 1 by showing that
the protocol violates agreement or validity. It remains to show that the prover cannot
win by constructing an infinite query chain in phase 1.

Lemma 5.9. Every query chain in phase 1 is finite.

Proof. Assume, for a contradiction, there is an infinite query chain, (C1, q1),
(C2, q2), . . . in phase 1. If C1 is an initial configuration, let β1 be the empty schedule
and let C0 = C1. Otherwise, C1 ∈ A′(1) and, by Invariant 3, there is a schedule β1
from an initial configuration C0 ∈ A(1) to C1. For each j ≥ 1, let βj+1 = βjqj , so
Cj+1 = C0βj+1. Consider the infinite schedule β = β1q1q2 · · · from C0.

Let P be the set of processes that occur infinitely often in β. Let j′ ≥ 1 be the
first index such that qj ∈ P for all j ≥ j′. So, from j′ onwards, only processes in
P appear in queries. Let t′ ≥ 1 be the value of t held by the adversary immediately
prior to the query (Cj′ , qj′). By Invariant 3, each process occurs at most 2t′ times
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in βj′ . Hence, during the schedule βj′ from C0, no process performed an update to
Sr for r > t′. Each process in P eventually performs an update to every snapshot
object during the schedule β from C0. Therefore, while responding to this query
chain, the adversary eventually defines δ(v) = ⊥ for each vertex v ∈ Vr where δ(v) is
undefined and subdivides Gr to construct Gr+1, for all r ≥ t′. Since no process in P
is terminated, Tr(a) = Tt′(a), for all inputs a and all r > t′. If Tt′(a) is nonempty,
then, by Invariant 4, the distance between Tt′(a) and Nt′(a) in Gt′ is at least 2 and,
by Lemma 5.8, the distance between Tt′+2(a) and Nt′+2(a) in Gt′+2 is at least 4. If
b 6= a and Tt′(b) is also nonempty, then, by Invariant 5, the distance between Tt′(a)
and Tt′(b) in Gt′ is at least 3 and, by Lemma 5.8, the distance between Tt′+2(a) and
Tt′+2(b) in Gt′+2 is at least 5.

Consider the first index j′′ > j′ such that process qj′′ is poised to scan the
snapshot object St′+2 in Cj′′ . Then process qj′′ occurs exactly 2t′+3 times in βj′′ and
2(t′+2) times in βj′′+1. Let v ∈ Vt′+2 denote the state of process qj′′ in configuration
Cj′′+1.

Suppose there is some input a such that Tt′+2(a) is nonempty and the distance
from v to Tt′+2(a) in Gt′+2 is at most 2. Since the distance between Tt′+2(a) and
Nt′+2(a) in Gt′+2 is at least 4, the distance from v to Nt′+2(a) in Gt′+2 is at least 2.
Likewise, for each b 6= a such that Tt′+2(b) is nonempty, the distance between Tt′+2(a)
and Tt′+2(b) in Gt′+2 is at least 5, so the distance from v to Tt′+2(b) in Gt′+2 is at
least 3. According to its strategy for phase 1, the adversary defines δ(v) = a after
query (Cj′′ , qj′′). This contradicts the definition of P . Thus, the distance from v to
Tt′+2(a) in Gt′+2 is at least 3, for all inputs a such that Tt′+2(a) is nonempty.

Let a be the input of process qj′′ in configuration C0. Consider any (t′ + 2)-
round schedule β′′ obtained from β by removing all but the first 2(t′+ 2) occurrences
of processes in P , appending sufficiently many occurrences of the processes not in
P , and then applying Lemma 4.4. Note that configurations C0β

′′ and C0βj′′+1 are
indistinguishable to process qj′′ , so v is in the n-vertex clique σ in Gt′+2 representing
the configuration C0β

′′. Thus the distance in Gt′+2 between σ and any terminated
vertex is at least 2. During schedule β′′ from C0, qj′′ performs its update to St′+2

before any process performs its scan of St′+2, so all vertices in σ have seen a. Thus
the distance in Gt′+2 between σ and Nt′+2(a) is at least 1. The first edge on every
path from σ to Nt′+2(a) or to Tt′+2(b), for any input b, is between active vertices.
Therefore, by Lemma 4.12 and Propositions 5.2 and 5.4, the distance in Gt′+3 between
χ(σ, δ) and χ(Tt′+2(b), δ) = Tt′+3(b) is at least 3 for any input b and the distance in
Gt′+3 between χ(σ, δ) and χ(Nt′+2(a), δ) = Nt′+3(a) is at least 2.

Consider the first index m > j′′ such that process qm is poised to scan the
snapshot object St′+3 in Cqm . The state of process qm in configuration Cmqm is a
vertex in χ(σ, δ). According to its strategy for phase 1, the adversary terminates this
vertex after query (Cm, qm). This contradicts the definition of P .

Since the prover does not win in phase 1, it must eventually end phase 1. At
the end of phase 1, the prover commits to a nonempty schedule α(2) from an initial
configuration C ∈ A(1) such that Cα(2) ∈ A′(1), sets B(2) to consist of all initial
configurations that only differ from C by the states of processes that do not occur in
α(2), sets A(2) = {C0α(2) | C0 ∈ B(2)}, and then starts phase 2.

The adversarial strategy for later phases. At the beginning of phase 2, the adver-
sary updates δ. Afterwards, it can answer all future queries by the prover without
making any further changes to δ. We will show that, at the end of some future phase
ϕ, the prover will commit to a schedule α(ϕ+1) such that all configurations inA(ϕ+1)
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are final. Consequently, the prover will lose at the beginning of phase ϕ+ 1.
Let p be the first process in α(2) and let a be the input of p in the initial configu-

ration C. Note that p has the same state in every configuration in B(2), so it has input
a in all of them. First, the adversary subdivides the graph Gt, so that vertices which
are terminated with different values are further apart. Then, for each vertex on which
δ is undefined, but which is adjacent to a vertex on which δ is defined, the adversary
defines δ to have the same value. This ensures that, in the future, the adversary will
not contradict its none response to any output query. Finally, it defines δ to have
value a on all remaining vertices representing the states of processes in configurations
reachable from configurations in B(2).

More formally, let F denote the union of all n-vertex cliques in G1 that represent
a configuration reachable by a 1-round schedule beginning with p from a configuration
in B(2). Since p performs its update to S1 before any process performs its scan of S1

in all such schedules, every vertex in F has seen a.
The adversary defines δ(v) = ⊥ for each vertex v ∈ Vt where δ(v) is undefined,

subdivides Gt to construct Gt+1, and increments t. Since the invariants hold at the
end of phase 1, Lemma 5.8 says that they still hold. Furthermore, for any input b
such that Tt(b) is non-empty, the distance between Tt(b) and Nt(b) in Gt is at least 3
and, for any two inputs b 6= b′ such that Tt(b) and Tt(b

′) are non-empty, the distance
between Tt(b) and Tt(b

′) in Gt is at least 4. In particular, a vertex v ∈ Vt is adjacent
to a vertex w ∈ Tt(b) for at most one input b.

Invariant 2 says that no vertex v ∈ Vt has δ(v) = ⊥. The adversary has not yet
terminated any additional vertices in Gt, so, by Proposition 5.2, Tt(b) = Tt−1(b) for
all input values b.

Let F′ = χt−1(F, δ) ⊆ Gt. Since every vertex in F has seen a, it follows that every
vertex in F′ has seen a. Thus F′ and Nt(a) are disjoint, i.e., the distance between F′
and Nt(a) in Gt is at least 1.

For each input value b and each vertex v ∈ F′ that is at distance 1 from Tt(b)
in Gt and on which δ is undefined, the adversary defines δ(v) = b. This does not
violate validity, since the distance between Tt(b) and Nt(b) in Gt is at least 3. By
Invariant 6, each vertex in Xt(b) is either in Nt(b) or is at distance at most 1 from
Tt(b

′) in Gt for some b′ 6= b. If Tt(b) is nonempty, this implies that that the distance
in Gt between Tt(b) and each vertex in Xt(b) was at least 3. Hence, this assignment
does not contradict any output query that returned none. Moreover, the distance in
Gt between any two vertices in F′ that have output different values is still at least
2. Thus, in each n-vertex clique in Gt, all terminated vertices have output the same
value.

Finally, for each vertex v ∈ F′ where δ(v) is still undefined, the adversary sets
δ(v) = a. Validity is not violated, since no vertex in F′ is in Nt(a). Since each vertex
in Xt(a) ∩ F′ is at distance at most 1 from Tt(b

′) in Gt for some b′ 6= a, this does
not define δ(v) for any v ∈ Xt(a). Hence, it does not contradict any output query
that returned none. Agreement is not violated, since at most two different values are
output by the vertices in each n-vertex clique in Gt. Since two different values can be
output by the vertices in some n-vertex clique, this construction does not work when
k = 1.

In phases ϕ ≥ 2, the prover can only query configurations reachable from config-
urations in A(2). By definition, A(2) is the set of all configurations that are reached
by performing α(2) from initial configurations in B(2). It follows that, for any process
q and any extension α′ of α(2) from C ′ ∈ A(2), q appears at most 2t times in α(2)α′

before its state is represented by a vertex in F′. By construction, every vertex in F′ is
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terminated. Thus, eventually, the prover chooses a configuration at the end of some
phase in which every process is terminated. The prover loses in the next phase.

Thus, we have proved the following result:

Theorem 5.10. There is no extension-based proof of the impossibility of a wait-
free protocol solving k-set agreement for n > k ≥ 2 processes in the iterated snapshot
model.

6. Why Extension-Based Proofs Fail for Approximate Agreement on a
Cycle of Length 4. Next, we consider approximate agreement on a cycle of length
4. This is a special case of graphical approximate agreement [5], where the graph has
node set {0, 1, 2, 3} and four edges, {0, 1}, {1, 2}, {2, 3}, and {3, 0}. Each process pi
is given a node xi ∈ {0, 1, 2, 3} as input and, if it does not crash, it must output a
node yi ∈ {0, 1, 2, 3}. The outputs have to satisfy two properties: different output
values are adjacent to one another on the cycle (agreement) and each output value is a
node on a shortest path between two input values (validity). In particular, if all input
values are the same node, then each output value is this node and, if all input values
are endpoints of the same edge of the cycle, then each output value is an endpoint of
this edge.

The rest of this section is devoted to proving the following result. It shows that
the technique used for proving Theorem 5.10 can also be applied to another problem.

Theorem 6.1. There is no extension-based proof of the impossibility of a wait-
free protocol solving approximate agreement on a cycle of length 4 for n > 2 processes
in the iterated snapshot model.

This result inspired an argument by Alistarh, Ellen, and Rybicki [5] showing,
via a generalization of Sperner’s Lemma, that there is no wait-free protocol solving
approximate agreement on a cycle of length 4 for n > 2 processes in the iterated
immediate snapshot model.

The proof of this theorem is similar to the argument in Section 5: We define an
adversary that adaptively constructs a partial specification of a protocol δ for ap-
proximate agreement on a cycle of length 4, which wins against every extension-based
prover. There are two main differences. One difference is the adversary’s strategy at
the beginning of phase 2: First, it subdivides the graph twice, so vertices that are
terminated with different values are even further apart. Then, as in Section 5, for
each possible output value b ∈ {0, 1, 2, 3} and for each vertex on which δ is undefined,
but which is adjacent to a vertex on which δ has value b, the adversary defines δ to
have value b. The adversary would also like to define δ on the remaining vertices to
be the input value a of the first process to take a step in the schedule α(2). However,
agreement would be violated if there were remaining vertices adjacent to vertices on
which δ has value (a+ 2) mod 4. Instead, δ is defined to have value (a+ 1) mod 4 on
those remaining vertices and value a on the rest.

The other difference is the set Rt(a, a + 1), which is used in place of Nr(a). To
simplify notation, we use a+ 1 to denote (a+ 1) mod 4 for any node a.

Definition 6.2. For each 0 ≤ r ≤ t and each input value a ∈ {0, 1, 2, 3}, let
Rr(a, a+ 1) be the union of the n-vertex cliques in Gr consisting of vertices that have
only seen a or a+ 1.

In particular, the clique representing any initial configuration in which each process
has input a or a + 1 is contained in R0(a, a + 1) and the clique representing any
configuration reachable by a t-round schedule from such an initial configuration is
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contained in Rt(a, a + 1). To avoid violating validity, the adversary should restrict
δ(v) to be in {a, a+ 1,⊥} for each vertex in v ∈ Rt(a, a+ 1).

The first result is the analogue of Proposition 5.4 and has a similar proof.

Proposition 6.3. For all 0 ≤ r < t and all input values a, Rr+1(a, a + 1) =
χ(Rr(a, a+ 1), δ).

Proof. Consider any n-vertex clique σ ⊆ Rr(a, a+ 1). Since every vertex in σ has
seen no value other than a or a+ 1, it follows, by definition, that no vertex in χ(σ, δ)
has seen a value other than a or a + 1. Thus χ(σ, δ) ⊆ Rr+1(a, a + 1) and, hence,
χ(Rr(a, a+ 1), δ) ⊆ Rr+1(a, a+ 1).

Conversely, consider any n-vertex clique σ′ ⊆ Rr+1(a, a + 1). By the definition
of Gr+1, σ′ ⊆ χ(σ, δ) for some n-vertex clique σ in Gr. If some vertex in σ has seen
a value b 6= a, a + 1, then the process in σ′ with the same id has seen b. But none
of the vertices in σ′ have seen b, so none of the vertices in σ have seen b. Hence σ ⊆
Rr(a, a+1) and σ′ ⊆ χ(Rr(a, a+1), δ). Therefore Rr+1(a, a+1) ⊆ χ(Rr(a, a+1), δ).

Similarly, the next result is the analogue of Lemma 5.5 and its proof is almost
the same.

Lemma 6.4. If τ is a subset of an n-vertex clique in Gr and every vertex in τ has
only seen a or a+ 1, then τ is a subset of an n-vertex clique in Rr(a, a+ 1).

Proof. The proof is by induction on r. For approximate agreement on a cycle of
length 4, every two vertices in G0 are adjacent provided they represent the states of
different processes, i.e., they have different ids. Thus, if τ is a subset of an n-vertex
clique in G0 and every vertex in τ has only seen a or a+1, then τ ∪{(j, a) | j 6∈ id(τ)}
is an n-vertex clique in R0(a, a+ 1).

Let r ≥ 0 and assume the claim is true for r. Consider any n-vertex clique σ′ in
Gr+1. Let τ ′ be the subset of all vertices of σ′ that have only seen a or a+ 1. Since
Gr+1 = χ(Gr, δ), there exists an n-vertex clique σ in Gr such that σ′ ⊆ χ(σ, δ). Let
τ = {v ∈ σ | id(v) ∈ id(τ ′)}. Note that, by definition, if u ∈ σ has seen b 6= a, a+ 1,
then every vertex u′ ∈ χ(σ, δ) with id(u′) = id(u) has seen b. Hence, no vertex in τ
has seen a value other than a or a + 1. By the induction hypothesis, there exists an
n-vertex clique ρ in Rr(a, a+ 1) that contains τ .

By definition, χ(ρ, δ) contains each vertex of τ ′. Since τ ′ ⊆ σ′, the vertices in
τ ′ are adjacent to one another. Let active(ρ) denote the set of active vertices in ρ
and let ρ′ = {(j, active(ρ)) | j ∈ id(active(ρ)) − id(τ ′)} ⊆ χ(ρ, δ). The vertices in ρ′

are adjacent to one another and to each vertex in τ ′. Furthermore, each terminated
vertex in ρ is adjacent to all the vertices in τ ′ and ρ′. Hence, these vertices form an
n-vertex clique in χ(ρ, δ) ⊆ Rr+1(a, a+ 1). Thus the claim is true for r + 1.

Throughout the first phase, the adversary will respond to each query so that
Invariants 1, 2, 3, 5, and following two additional invariants hold:

4′. For every input value a, if Tt(a) is non-empty and a 6= b, b + 1, then the
distance between Tt(a) and Rt(b, b+ 1) is at least 2.

6′. For every input value a and every vertex v ∈ Xt(a), there exists an input
value b 6= a such that either v ∈ Rt(b, b + 1) and a 6= b + 1, or the distance
between v and Tt(b) in Gt is at most 1.

These additional invariants are used in place of Invariants 4 and 6.
The following result is analogous to Lemma 5.7 and its proof is the same except

that Invariant 4′ is used instead of Invariant 4.

Lemma 6.5. Suppose the invariants hold. If a 6= b, then every path between Tt(a)
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and Tt(b) in Gt contains at least one edge between vertices that are not terminated.
If a 6= b, b+ 1, then every path between Tt(a) and Rt(b, b+ 1) in Gt contains at least
one edge between vertices that are not terminated.

Likewise, the next result is analogous to Lemma 5.8. It has the same proof, with
Invariants 4′ and 6′ replacing Invariants 4 and 6, Proposition 6.3 replacing Proposi-
tion 5.4, and Lemma 6.5 replacing Lemma 5.7.

Lemma 6.6. Suppose the invariants hold, the adversary defines δ(v) = ⊥ for each
vertex v ∈ Vt where δ(v) is undefined, and subdivides Gt to construct Gt+1. If Tt(a)
is nonempty and a 6= b, b+ 1, then the distance between Tt+1(a) and Rt+1(b, b+ 1) in
Gt+1 is greater than the distance between Tt(a) and Rt(b, b + 1) in Gt. If a 6= b and
both Tt(a) and Tt(b) are nonempty, then the distance between Tt+1(a) and Tt+1(b) in
Gt+1 is greater than the distance between Tt(a) and Tt(b) in Gt. Furthermore, if the
adversary then increments t, the invariants continue to hold.

The adversarial strategy for phase 1. As in Section 5, the adversary initially
defines δ(v) = ⊥ for each vertex v ∈ V0, it subdivides G0 to construct G1, it sets
t = 1, and the invariants hold.

Suppose that the invariants are true immediately prior to some query in phase 1.
For a single-step query (C, q), where C ∈ A(1) ∪ A′(1) and q is an active process in
C, the adversary behaves as in Section 5 and the proof that the invariants continue
to hold is the same.

Now consider an output query (C,Q, y), where C ∈ A(1) ∪ A′(1), each process
q ∈ Q is active in C, and y is a possible output value. As in Section 5, let Q be the set
of vertices in Gt representing the states of processes in Q in configurations reachable
from C by Q-only schedules.

If some vertex v ∈ Q has terminated with output y, then the adversary returns a
Q-only schedule from C that leads to a configuration in which v represents the state
of some process. None of the invariants are affected. So, suppose that no vertex in Q
has terminated with output y.

Let U be the subset of vertices in Q that are not in Xt(y), Rt(b, b+1) for y 6= b, b+1,
or Tt(a) for y 6= a. If U = ∅, then, as in Section 5, the adversary adds Q to Xt(y)
and returns none. Note that adding vertices in ∪{Rt(b, b + 1) | y 6= b, b + 1} or
∪{Tt(a) | a 6= y} to Xt(y) does not make Invariant 6′ false. The other invariants are
not affected. So, suppose U 6= ∅.

As in Section 5, for each vertex u ∈ U, let Au be the union of all n-vertex cliques
in Gt containing u. The same three cases are considered and, in each case, the proof
is the same, using Invariants 4′ and 6′ instead of Invariants 4 and 6 and Lemma 6.6
instead of Lemma 5.8.

The prover does not win in phase 1. The invariants all hold after each query
made by the prover in phase 1. By Invariant 5, at most one value is output in any
configuration reached by the prover. Moreover, by Invariant 4′ and Lemma 6.4, if a
process outputs value a in a configuration reached by the prover, then it is not the
case that the process has only seen b or b + 1, where a 6= b, b + 1. Hence, the prover
cannot win in phase 1 by showing that the protocol violates agreement or validity.

Using the same proof as in Section 5, with Invariant 4′ replacing Invariant 4,
Proposition 6.3 replacing Proposition 5.4, and Lemma 6.6 replacing Lemma 5.8, it
follows that the prover cannot win by constructing an infinite query chain in phase 1.

Lemma 6.7. Every query chain in phase 1 is finite.
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Since the prover does not win in phase 1, it must eventually end phase 1. At
the end of phase 1, the prover commits to a nonempty schedule α(2) from an initial
configuration C ∈ A(1) such that Cα(2) ∈ A′(1), sets B(2) to consist of all initial
configurations that only differ from C by the states of processes that do not occur in
α(2), sets A(2) = {C0α(2) | C0 ∈ B(2)}, and then starts phase 2.

The adversarial strategy for later phases. Let p be the first process in α(2) and
let a be the input of p in the initial configuration C. Let F denote the union of all
n-vertex cliques in G1 that represent a configuration reachable by a 1-round schedule
beginning with p from a configuration in B(2). Since p performs its update to S1

before any process performs its scan of S1 in all such schedules, every vertex in F has
seen a.

The adversary defines δ(v) = ⊥ for each vertex v ∈ Vt where δ(v) is undefined,
subdivides Gt to construct Gt+1, and increments t. Then it repeats this a second
time. Since the invariants hold at the end of phase 1, Lemma 6.6 says that they
still hold. Furthermore, for any inputs b and b′ such that b 6= b′, b′ + 1 and Tt(b) is
non-empty, the distance between Tt(b) and Rt(b

′, b′ + 1) in Gt is at least 4 and, for
any two inputs b 6= b′ such that Tt(b) and Tt(b

′) are non-empty, the distance between
Tt(b) and Tt(b

′) in Gt is at least 5. In particular, a vertex v ∈ Vt is adjacent to a
vertex w ∈ Tt(b) for at most one input b.

Invariant 2 says that no vertex in Gt has δ(v) = ⊥. The adversary has not yet
terminated any additional vertices in Gt, so, by Proposition 5.2, Tt(b) = Tt−2(b) for
all input values b.

Let F′ = χt−1(F, δ) ⊆ Gt. Since every vertex in F has seen a, it follows that every
vertex in F′ has seen a. If a 6= b′, b′ + 1, then a vertex in Rt(b

′, b′ + 1) has not seen a
and, hence, is not in F′.

For each input value b and for each vertex v ∈ F′ that is at distance 1 from Tt−2(b)
in Gt and on which δ is undefined, the adversary defines δ(v) = b. Next, for each
vertex v ∈ F′ that is at distance 2 from Tt–2(a+ 2) in Gt and on which δ is undefined,
the adversary defines δ(v) = a+ 1.

Consider any input value b and any vertex v ∈ Tt(b)− Tt−2(b) ⊆ F′. The assign-
ment δ(v) = b does not violate validity. This is because, for any input b′ such that
b 6= b′, b′+ 1, the distance between Tt−2(b) and Rt(b

′, b′+ 1) in Gt is at least 4, so the
distance between v and Rt(b

′, b′+1) is at least 2. By Invariant 6′, each vertex in Xt(b)
is either in Rt(b

′, b′ + 1) for some value b′ such that b 6= b′, b′ + 1, or is at distance at
most 1 from Tt−2(b′) in Gt for some value b′ 6= b. Since the distance between Tt−2(b)
and Tt−2(b′) in Gt is at least 5, it follows the distance between v and Tt−2(b′) in Gt

is at least 3. Hence v 6∈ Xt(b) and this assignment does not contradict any output
query that returned none.

These assignments also do not violate agreement. To see why, consider any two
vertices v and v′ such that δ(v) = b 6= b′ = δ(v′). If {b, b′} = {a + 1, a + 2}, it is
possible that v and v′ are adjacent, which is fine since a + 1 and a + 2 are adjacent
nodes on the cycle. If {b, b′} 6= {a+ 1, a+ 2}, the distance between v and v′ in Gt is
at least 2, since the distance between Tt−2(b) and Tt−2(b′) in Gt is at least 5. Hence,
v and v′ do not represent the states of two processes in one final configuration.

Finally, for each vertex v ∈ F′ where δ(v) is still undefined, the adversary sets
δ(v) = a. Validity is not violated, since no vertex in F′ is in Rt(b, b+1), for a 6= b, b+1.
In addition, v is at least distance 2 from any vertex in Tt−2(b) in Gt for any b 6= a.
Hence, by Invariant 6′, v 6∈ Xt(a), so this assignment does not contradict any output
query that returned none. By construction, v is not adjacent to any vertex on which
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a+ 2 is output. Thus, at most two different values are output in any n-vertex clique
in Gt and, if two different values are output, they are adjacent nodes on the cycle.
Therefore, agreement is not violated.

In phases ϕ ≥ 2, the prover can only query configurations reachable from config-
urations in A(2). By definition, A(2) is the set of all configurations that are reached
by performing α(2) from initial configurations in B(2). It follows that, for any process
q and any extension α′ of α(2) from C ′ ∈ A(2), q appears at most 2t times in α(2)α′

before its state is represented by a vertex in F′. By construction, every vertex in
F′ has terminated. Thus, eventually, the prover chooses a configuration at the end
of some phase in which every process has terminated. The prover loses in the next
phase.

7. Conclusions. We have shown the limitation of extension-based proofs, in-
cluding valency arguments, for proving the impossibility of deterministic, wait-free
solutions to k-set agreement for n > k ≥ 2 processes or approximate agreement on
a cycle of length 4 for n > 2 processes in the iterated snapshot model. In the con-
ference version of this paper [3], we showed the same limitation for k-set agreement
in the iterated immediate snapshot model. We believe that these results also hold
for any asynchronous model where processes communicate using objects that can be
constructed from shared registers. More generally, we conjecture that if there is an
extension-based proof that some task is impossible to solve in any model M and there
is a non-blocking simulation of model M ′ in model M , then there is an extension-based
proof that the task is impossible to solve in model M ′.

Recently, Liu [30] gave an elegant generalization of Theorem 6.1. He showed that,
for any connected graph G, there is no extension-based proof of the impossibility of
approximate agreement on G among n > 2 processes.

In 2021, Brusse and Ellen [15] introduced augmented extension-based proofs, a
generalization of extension-based proofs in which output queries are replaced by as-
signment queries. An assignment query (C,P, f) in phase ϕ is specified by a con-
figuration C ∈ A(ϕ) ∪ A′(ϕ), a set of processes P that are all active in C, and an
assignment f from a set of processes Q ⊆ P to possible output values. If there is a
P -only schedule from C that leads to a configuration in which each process q ∈ Q is
terminated with output f(q), then the protocol returns some such schedule. Other-
wise, the protocol returns none. They proved that, for a general class of reductions,
if task T reduces to task S and there is an augmented extension-based proof that T
is impossible to solve in the iterated snapshot model, then there is also an augmented
extension-based proof that S is impossible to solve in the iterated snapshot model.
Hence, if there is no augmented extension-based proof that S is impossible to solve
in the iterated snapshot model, then there is no augmented extension-based proof
that T is impossible to solve in the iterated snapshot model. They also extended
the proof of Theorem 5.10 to show that there is no augmented extension-based proof
of the impossibility of a wait-free protocol solving k-set agreement for n > k ≥ 2
processes in the iterated snapshot model. Since there are reductions from k-leader
election and k-test-and-set to k-set agreement [12] it follows that there are also no
augmented extension-based proofs and, hence, no extension-based proofs of the im-
possibility of wait-free protocols solving these tasks. Although there is a reduction
from 2-set agreement to approximate agreement on a cycle of length 4 [5, 17], there
is no known reduction from approximate agreement on a cycle of length 4 to k-set
agreement for k ≥ 2. Thus, Theorem 6.1 does not follow from Brusse and Ellen’s
results.
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A protocol is anonymous if the steps taken by a process do not depend on its iden-
tifier. Brusse and Ellen showed that if there is an anonymous reduction from T to S
and there is an augmented extension-based proof that T is impossible to solve anony-
mously in the iterated snapshot model, then there is an augmented extension-based
proof that S is impossible to solve anonymously in the iterated snapshot model. They
also showed that there is no augmented extension-based proof of the impossibility of
an anonymous wait-free protocol solving k-set agreement for n > k ≥ 2 processes in
the iterated snapshot model. There are anonymous reductions from weak symmetry
breaking and (2n − 2)-renaming to k-set agreement. Therefore, there are no aug-
mented extension-based proofs that anonymous wait-free protocols cannot solve weak
symmetry breaking or (2n − 2)-renaming. However, techniques from combinatorial
topology have been used to prove that no such protocols exist for infinitely many
values of n [16].

In the synchronous message passing model, k-set agreement is solvable, but at
least t rounds are needed when there are more than kt processes and at most k
processes can crash each round [19, 26, 27]. Sheng and Ellen [35] defined a version of
extension-based proofs for the synchronous message passing model. They showed that
there is no extension-based proof of the impossibility of solving k-set agreement in
fewer than t rounds when there are kt+1 processes and at most k processes can crash
each round, for k ≥ 2 and t ≥ 3. An extension-based proof of a t-round lower bound for
a task consists of t+1 phases. At the end of the first phase, the prover commits to an
initial configuration and, at the end of each subsequent phase, the prover commits to a
configuration reachable in 1 round from the configuration to which it last committed.
At the end of the last phase, the prover wins if and only if the final configuration to
which it committed violates the specifications of the task or the protocol has provided
contradictory information. In the first t phases, a query asks the protocol to produce
a schedule from a specified configuration, with a specified upper bound on the number
of processes that can crash each round, in which a specified value is output by some
process, or say that no such schedule exists. In the final phase, a query asks what
value a specified process outputs in a specified final configuration. In the first phase,
the specified configurations are initial configurations and, in subsequent phases, the
specified configurations are restricted to be configurations reachable in one round from
the configuration to which the prover last committed.

There are two other results in distributed computing that have a similar flavour.
Rincon Galeana, Winkler, Schmid and Rajsbaum [23] showed that partitioning argu-
ments are insufficient to prove the impossibility of a uniform wait-free protocol for
(n− 1)-set agreement in the iterated immediate snapshot model. For the CONGEST
model, Bachrach, Censor-Hillel, Dory, Efron, Leitersdorf and Paz [11] showed that
reductions from two party communication complexity with a static cut cannot be
used to prove non-constant lower bounds on the number of rounds needed to solve
maximum matching or maximum flow.

We have considered allowing the prover to ask other types of queries. For example,
if a prover asks the same output query (C,P, y) multiple times, the protocol could be
required to return different schedules each time. This is left for future work.

We cannot allow certain queries, such as asking for an upper bound on the length
of any schedule. If the number of input configurations is finite and the prover is given
such an upper bound, then it can ask a finite number of query chains to exhaustively
search all final configurations, thereby fixing the protocol.

It may be possible to allow the prover to use such information in a restricted way
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and still construct an adversarial set agreement protocol. For example, the prover
might not be allowed to use this information to decide which queries to ask or what
extensions to construct, but could win when it has constructed a schedule that is
longer than this upper bound.

Attiya, Castañeda, and Rajsbaum [7] studied the limitations of valency arguments
for proving the impossibility of uniform protocols in the iterated immediate snapshot
model. In their proofs, the prover learns the set of values that are output by processes
in final configurations reachable from a given configuration, but it does not learn which
value is output by any specific process. They showed their class does not contain
proofs that (n − 1)-set agreement has no uniform protocol and that weak symmetry
breaking has no anonymous uniform protocol.

The definition of an extension-based proof can be modified to handle other ter-
mination conditions, such as obstruction-freedom [25]. It suffices for the prover to
construct a schedule that violates this condition.

Ellen, Gelashvili and Zhu [21] proved that any obstruction-free protocol for k-
set agreement among n > k ≥ 2 processes requires dn/ke registers, but their proof
is not extension-based. Specifically, the key technique in their proof is a reduction
from the impossibility of set agreement via a simulation argument. Some of the early
work about extension-based proofs motivated the approach used in that paper. We
conjecture that it is impossible to prove a non-constant lower bound on the number
of registers needed by any obstruction-free protocol for k-set agreement using an
extension-based proof.
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[16] A. Castañeda and S. Rajsbaum, New combinatorial topology bounds for renaming: the lower
bound, Distributed Computing, 22 (2010), pp. 287–301.
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