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ABSTRACT
It is impossible to deterministically solve wait-free consensus in an

asynchronous system. The classic proof uses a valency argument,

which constructs an infinite execution by repeatedly extending

a finite execution. We introduce extension-based proofs, a class of
impossibility proofs that are modelled as an interaction between a

prover and a protocol and that include valency arguments.

Using proofs based on combinatorial topology, it has been shown

that it is impossible to deterministically solve k-set agreement

among n > k ≥ 2 processes in a wait-free manner. However, it

was unknown whether proofs based on simpler techniques were

possible. We show that this impossibility result cannot be obtained

by an extension-based proof and, hence, extension-based proofs

are limited in power.
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1 INTRODUCTION
One of themost well-known results in the theory of distributed com-

puting, due to Fischer, Lynch, and Paterson [FLP85], is that there

is no deterministic, wait-free protocol solving consensus among
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n ≥ 2 processes in an asynchronous message passing system. In

fact, they showed that, even if at most one process may crash, it

is possible to construct an infinite execution in which no process

terminates. Their result has been extended to asynchronous shared

memory systems where processes communicate by reading from

and writing to shared registers [Abr88, CIL87, Her91, LAA87].

Chaudhuri [Cha93] conjectured that these impossibility results

could be generalized to the k-set agreement problem. In this problem,

there are n processes, each starting with an input in {0, 1, . . . ,k},
where 1 ≤ k < n. Each process that does not crash must output a

value that is the input of some process (validity) and, collectively, at
mostk different valuesmay be output (agreement). In particular, con-
sensus is 1-set agreement. Chaudhuri’s conjecture was eventually

proved in three concurrent papers by Borowsky and Gafni [BG93],

Herlihy and Shavit [HS99], and Saks and Zaharoglou [SZ00]. These

papers all relied on sophisticated machinery from combinatorial

topology, which they used to model the space of all reachable con-

figurations of the system. Later on, Attiya and Castañeda [AC11]

and Attiya and Paz [AP12] showed how to obtain the same results

using combinatorial techniques, without explicitly using topology.

A common feature of these impossibility proofs is that they assume

the existence of a deterministic, wait-free protocol, argue that it

has only finitely many executions, and then show that at least k + 1
different values are output in one of the executions. This implies

that any deterministic protocol for k-set agreement among n > k
processes in an asynchronous system using only registers has an

infinite execution. However, these proofs do not construct such an

execution.

In contrast, impossibility proofs for deterministic, wait-free con-

sensus in asynchronous systems explicitly construct an infinite

execution by repeatedly extending a finite execution by the steps

of some processes. Fischer, Lynch, and Paterson introduced valency
arguments to show that such extensions are possible in the case

of consensus. A natural question arises: is there a proof of the im-

possibility of k-set agreement that explicitly constructs an infinite

execution by repeated extensions?

Our contributions. In this paper, we formally define the class

of extension-based proofs, which model impossibility proofs that

explicitly construct an infinite execution by repeated extensions.

We also prove that that there is no extension-based proof of the

impossibility of a deterministic, wait-free protocol solving k-set
agreement among n > k ≥ 2 processes in an asynchronous system

using only registers.
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We model a proof of the impossibility of solving a task as an

interaction between a prover and a protocol that claims to solve

the task. The prover has to refute this claim. To do so, it repeatedly

queries the protocol about the states of processes in configurations

that can be reached in a small number of steps from configurations

it already knows about. The goal of the prover is to construct a

bad execution, i.e. an execution in which some processes take in-

finitely many steps without terminating, or output values that do

not satisfy the specifications of the task. For purposes of exposi-

tion, a restricted version of extension-based proofs is presented in

Section 3, together with an example of such a proof (the impossi-

bility of a deterministic, wait-free solution to consensus between

2 processes in an asynchronous shared memory system). The full

version of extension-based proofs is presented in Section 5.

In Section 4, we prove that restricted extension-based proofs

cannot show the impossibility of deterministic, wait-free set agree-

ment. A key observation is that, from the results of its queries, many

protocols are indistinguishable to the prover. It must construct a

single execution that is bad for all these protocols. To prove that no

prover can construct a bad execution for every k-set agreement pro-

tocol, we show how an adversary can adaptively define a protocol

in response to any specific prover’s queries. In this adversarial pro-
tocol, all processes eventually terminate and output correct values

in executions consistent with the results of the prover’s queries.

We use combinatorial topology to represent reachable configura-

tions of a protocol. This is described in Section 2. More information

can be found in the book byHerlihy, Kozlov, and Rajsbaum [HKR13].

In this view, when an extension-based prover makes queries, it is

essentially performing local search on the configuration space of

the protocol. Because the prover obtains incomplete information

about the protocol, the adversary has some flexibility when speci-

fying the protocol’s behaviour in configurations not yet queried by

the prover.

The class of extension-based proofs has an additional type of

query, which makes the prover stronger and simplifies the mod-

elling of valency arguments as extension-based proofs. In Section 5,

we also extend the proof in Section 4 to handle this additional type

of query.

Finally, possible extensions to extension-based proofs are dis-

cussed in Section 6.

2 PRELIMINARIES
2.1 NIIS Model
We consider the non-uniform iterated immediate snapshot (NIIS)
model withn ≥ 2 processes, introduced by Hoest and Shavit [HS06].

For deterministic, wait-free computation, it is known that the NIIS

model is equivalent to the standard asynchronous shared mem-

ory model, in which processes communicate by reading from and

writing to shared registers. Specifically, any task that has a determin-

istic, wait-free solution in one of these models has a deterministic,

wait-free solution in the other [HS06].

In the NIIS model, n processes, p0, . . . ,pn−1, communicate using

an infinite sequence, S1, S2, . . . , of shared single-writer atomic snap-
shot objects. Each snapshot object has n components. The initial

value of each component is⊥. A snapshot object supports two oper-

ations, update(v) and scan(). An update(v) operation by process pi

performed on a snapshot object updates component i of the object
to have valuev , wherev is an element of an arbitrarily large set that

does not contain ⊥. A scan() operation returns a vector containing

the current value of each component of the object.

Each process pi accesses each snapshot object at most twice,

starting with S1. Initially, pi ’s state consists of its identifier, i , and
its input. The first timepi accesses each snapshot object, it performs

an update to set the i’th component of the object to its current state.

At its next step, it performs a scan of the same object. Its new state,

si , consists of i and the result of the scan. Note that process pi
remembers its entire history, because its previous state is the i’th
component of the result of the scan. Next, pi consults a map, ∆, to
determine whether it should output a value. If ∆(si ) , ⊥, then pi
outputs ∆(si ) and terminates. If ∆(si ) = ⊥, then, at its next step, pi
accesses the next snapshot object. A protocol in the NIIS model is

completely specified by the map ∆.
A configuration consists of the contents of each shared object

and the state of each process. A process is active in a configuration

if it has not terminated. A configuration is terminal if it has no
active processes. An initial configuration is specified by the input

of each process.

From any configurationC , a scheduler decides the order in which

the processes take steps. It repeatedly selects a set of processes that

are all poised to perform updates on the same snapshot object.

Each of the processes in the set, in order of their identifiers, per-

forms its update. Then, each of these processes performs its next

scan, in the same order. Note that the scheduler never selects pro-

cesses that have terminated. The sequence of subsets of processes

selected by the scheduler is called a schedule from C . Given a finite

schedule α from C , we use Cα to denote the resulting configu-

ration. For example, if p0 and p1 are poised to access the same

snapshot object in C , then ({p0,p1}) is a schedule from C . If p1 is
active in C ′ = C({p0,p1}), then ({p1}) is a schedule from C ′

and

({p0,p1}, {p1}) is a schedule from C . After this schedule, p1 has

updated and scanned one more snapshot object than p0. Each finite

schedule from an initial configuration results in a reachable config-
uration. A protocol is wait-free if there is no infinite schedule from

any initial configuration.

Since each process remembers its entire history and only process

pi can update the i’th component of each snapshot object, the con-

tents of the snapshot objects in a configuration are fully determined

by the states of the processes in that configuration.

Observation 1. A reachable configuration is fully specified by
the set of states of all processes in the configuration (including the
processes that have terminated).

Two configurations C and C ′
are indistinguishable to a set of

processes P if every process in P has the same state in C and C ′
.

Two finite schedules α and β from C are indistinguishable to a

set of processes P if the resulting configurations Cα and Cβ are

indistinguishable to P .

Observation 2. Suppose C and C ′ are two reachable configura-
tions that are indistinguishable to P , every active process in P is poised
to update St inC , each snapshot object Sr has the same contents inC
andC ′ for all r ≥ t , and α is a finite schedule fromC containing only
processes in P . Then α is a schedule from C ′ and the configurations
Cα and C ′α are indistinguishable to P .
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Suppose C is a reachable configuration in which all active pro-

cesses are poised to update the same snapshot object. For any set of

processes P , a P-only 1-round schedule fromC is an ordered partition

of the processes in P that are active in C . If none of the processes
in P are active in C , then the empty schedule is the only 1-round

schedule. A full 1-round schedule fromC is a P-only 1-round sched-
ule where P is the set of all processes. Observe that, in the NIIS

model, if α is a P-only 1-round schedule from C and β is any full

1-round schedule from C such that β = αα ′
, then α and β are

indistinguishable to the processes in P .
For each t > 1, a P-only t-round schedule from C is a schedule

α1 · · ·αt such that, for each 1 ≤ i ≤ t , αi is a P-only 1-round sched-

ule from Cα1 · · ·αi−1. Notice that some processes in P may have

terminated during α1 · · ·αi−1. These processes are not included in

αi . A full t-round schedule fromC is a P-only t-round schedule from
C where P is the set of all processes. Observe that, if α1 · · ·αt is a
P-only t-round schedule fromC , β1 · · · βt is a full t-round schedule
from C , and αi is a prefix of βi for all 1 ≤ i ≤ t , then the con-

figurations Cα1 · · ·αt and Cβ1 · · · βt are indistinguishable to the

processes in P .

2.2 Topological Representation of a Protocol
An (abstract) simplex is the set of all subsets of some finite set. An

(abstract) simplicial complex is a finite collection of sets, S, that is
closed under subset: for any set σ ∈ S, if τ ⊆ σ , then τ ∈ S. In other

words, S is the union of a finite number of simplices. Each set σ ∈ S
is called a face. If |σ | = 1, then σ is called a vertex. If |σ | = 2, then

σ is called an edge. A subcomplex of S is a subset of S that is also a

simplicial complex.

In the topological view of a protocol in the NIIS model (specified

by a map ∆), every reachable configuration, C , of the protocol is
represented by a simplex, σ , which is the set of all subsets of states

of processes in C . In particular, each vertex of σ is a set containing

the state one process in C . Since the state of a process includes its
identifier, no two processes have the same state in C and, hence,

σ has n vertices. By Observation 1, the set of vertices of σ fully

specifies C .
For each t ≥ 0, let St denote the simplicial complex consisting

of all simplices representing configurations reachable from initial

configurations by full t-round schedules. In particular, the input
complex of the protocol, S0, represents all possible initial configu-
rations.

Hoest and Shavit [HS06] introduced the non-uniform chromatic
subdivision operation, χ , and proved that St+1 = χ (St ,∆), i.e. St+1

is the non-uniform chromatic subdivision of St . In general, the

non-uniform chromatic subdivision operation χ maps every subcom-

plex A of St to a subcomplex χ (A,∆) of St+1. It has the property
that χ (A,∆) is the union of χ (σ ,∆) over all simplices σ ⊆ A. The
formal definition of this operation is fairly technical and appears

in Section 2.3.

Suppose σ is an n-vertex simplex in St , which represents a reach-
able configuration C . A special case of Hoest and Shavit’s result is

that every n-vertex simplex in χ (σ ,∆) ⊆ St+1 represents a configu-
ration reachable from C by a full 1-round schedule. More generally,

if P is a subset of the processes and τ ⊆ σ is a simplex that consists

of vertices representing the states of these processes in configura-

tionC , then each simplex in χ (τ ,∆) consists of vertices representing
the states of these processes in a configuration reachable from C
by a P-only 1-round schedule. If τ is also a subset of an n-vertex
simplex σ ′

that represents another configuration C ′
, then, by Ob-

servation 2, for each P-only 1-round schedule α , the states of the
processes in P are the same in Cα and C ′α .

There is a natural geometric interpretation of an (abstract) sim-

plicial complex and subdivision. A geometric simplex σ is the set

of convex combinations of a finite number of affinely indepen-

dent points (each of which is a vertex of σ ) in some Euclidean

space [HKR13]. A face of σ is the set of convex combinations of a

subset of the affinely independent points. A geometric simplicial
complex K is a finite collection of geometric simplices such that

each face of σ ∈ K is a simplex in K and, for any two simplices

σ , τ ∈ K , σ ∩ τ ∈ K . The geometric realization of K is the union of

the simplices inK (in Euclidean space). A geometric simplicial com-

plex B is a subdivision of A if their geometric realizations are the

same and each simplex inA is the union of finitely many simplices

in B. One of the main contributions of Hoest and Shavit [HS06] is

showing that the non-uniform chromatic subdivision of a simplicial

complex is a subdivision of the simplicial complex in the geometric

setting.

Figure 1 contains an example of the non-uniform chromatic sub-

division of a (geometric) simplicial complex S with 3 processes, p0,
p1, and p2, in Euclidean space. In the configuration represented

by the left triangle of S, p0, p1, and p2 have states x , y, and z, re-
spectively, none of which have terminated. In the configuration

represented by the right triangle, p0 and p2 have the same state,

but p1 has state y
′
, in which it terminates and outputs ∆(y′). We

also illustrate two subcomplexes A and B of S and their subdivi-

sions. Note that all vertices in S and χ (S,∆) representing states

of the same process have the same colour. For readability, process

identifiers are omitted from the states in χ (S,∆).

2.3 Non-uniform Chromatic Subdivision
In this section, we define the non-uniform chromatic subdivision

of a simplex and then extend the definition to a simplicial complex.

Hoest and Shavit [HS06] discuss these definitions in more detail.

Let t ≥ 0 and let σ ⊆ St be an n-vertex simplex that represents a

reachable configurationC . For each vertexv ∈ σ , let state(v) be the
state represented by v . For each simplex τ ⊆ σ , let Pτ denote the

set of processes whose states appear in τ and let Id(τ ) be the set of
identifiers of the processes in Pτ . Let ®τ be the n-component vector

such that ®τi is state(v), if there is a vertex v ∈ τ that represents the

state of process pi , and ⊥ otherwise. Then ®τ is the result of each

process in Pτ ’s last scan in the configuration CPτ .
For any vertex v , we let ∆(v) denote ∆(state(v)). We say that

vertex v is active if ∆(v) = ⊥ and it has terminated if ∆(v) , ⊥.

The non-uniform chromatic subdivision χ (σ ,∆) of σ can only be

defined when ∆(v) is defined for every vertex v ∈ σ . The non-

uniform chromatic subdivision χ (A,∆) ⊆ St+1 of A is the union of

χ (σ ,∆) for all simplices σ ⊆ A. To define χ (σ ,∆), we consider two
cases.

Case 1: Every vertex v ∈ σ is active. Then χ (σ ,∆) is called the

standard chromatic subdivision of σ . The vertices of χ (σ ,∆) are of
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∆(y′) 6= ⊥

y

A ⊆ S

x y′

z

B ⊆ S

xyz xyz

xyz

x⊥⊥

xy⊥

xy⊥

⊥y⊥ ⊥yz ⊥yz ⊥⊥z

x⊥z

x⊥z

y′

χ(A,∆)

χ(B,∆)

S χ(S,∆)

Figure 1: A non-uniform chromatic subdivision.

the form {(i, ®τi )}, where i ∈ Id(σ ) is an identifier and τi ⊆ σ is

a simplex such that i ∈ Id(τi ). Suppose that I ⊆ Id(σ ) is a set of
identifiers and, for each i ∈ I , τi ⊆ σ is a simplex such that i ∈ Id(τi ).
Then {(i, ®τi ) : i ∈ I } ∈ χ (σ ,∆) if and only if there is an ordering

≼ on I such that i ≼ j implies that τi ⊆ τj and, for each i, j ∈ I , if
i ∈ Id(τj ), then τi ⊆ τj .

Case 2: Some vertex v ∈ σ has terminated. Let T be the set of

terminated vertices in σ and let τ ⊆ σ be the simplex consisting of

all subsets of σ that only contain active vertices. The non-uniform
chromatic subdivision of σ is the abstract simplicial complex χ (σ ,∆)
whose vertices are the vertices inT and the vertices in the standard

chromatic subdivision χ (τ ,∆) of τ . Each set in χ (τ ,∆) is a set in
χ (σ ,∆). In addition, if T ′ ⊆ T and τ ′ ∈ χ (τ ,∆), then T ′ ∪ τ ′ ∈

χ (σ ,∆).
We note the following property for terminated vertices:

Proposition 2.1. Suppose vertexv has terminated in St . Let A be
the subcomplex of St consisting of all subsets in St that only contain
vertices adjacent to v in St . Then v is adjacent to each vertex in
χ (A,∆) in St+1.

2.4 Distances between Subcomplexes
Let S be a simplicial complex and letA andB be non-empty subcom-

plexes of S. A path betweenA and B in S of length ℓ is a sequence of
vertices v0,v1, . . . ,vℓ such that v0 ∈ A, vℓ ∈ B, and, for 0 ≤ j < ℓ,
{vj ,vj+1} is an edge in S. Notice that a vertex may appear more

than once in a path and, if A and B both consist of a single vertex,

then we have the standard definition of a (non-simple) path in an

undirected graph. S is connected if for any two vertices u,v ∈ S,
there is path between u and v in S. If S is connected, then the dis-
tance between A and B in S, denoted distS(A,B), is the minimum

ℓ ≥ 0 such that there is a path between A and B in S of length ℓ.
The following proposition describes some basic properties of

the non-uniform chromatic subdivision operation, which all follow

from the fact that the non-uniform chromatic subdivision of a

simplicial complex is a subdivision of the simplicial complex in

the geometric setting. Since the input complex, S0, is connected,
the proposition implies St is connected for all t ≥ 1. Hence, the

distance between subcomplexes in St is well-defined.

Proposition 2.2. The non-uniform chromatic subdivision oper-

ation has the following properties:

(1) If S0 is connected, then, for all t ≥ 1, St is connected.
(2) A and B are disjoint subcomplexes of St if and only if χ (A,∆)

and χ (B,∆) are disjoint subcomplexes of St+1.
(3) If every path between subcomplexes A and B in St passes

through a subcomplex C, then every path between χ (A,∆) and
χ (B,∆) in St+1 passes through χ (C,∆).

(4) If C ⊆ St is a subcomplex containing only active vertices and
C1 and C2 are disjoint nonempty subcomplexes of C, then
distSt+1 (χ (C1,∆), χ (C2,∆)) ≥ 2.

We now prove one of the main technical tools used in this paper.

It allows us to relate the distance between two subcomplexes in St

to the distance between the nonuniform chromatic subdivisions of

these subcomplexes in St+1.

Lemma 2.3. LetA andB be nonempty subcomplexes of St , letA′ =
χ (A,∆), and let B′ = χ (B,∆). Then distSt+1 (A

′,B′) ≥ distSt (A,B).
If every path betweenA andB in St contains at least one edge between
active vertices, then distSt+1 (A

′,B′) ≥ distSt (A,B) + 1.

Proof. Wewill prove the first claim by induction on distSt (A,B).
The base case is when distSt (A,B) = 0. Since distances are always

non-negative, distSt+1 (A
′,B′) ≥ 0 = distSt (A,B).

So, suppose d = distSt (A,B) > 0 and the first claim holds for all

non-empty subcomplexes
ˆA and

ˆB of St where distSt ( ˆA, ˆB) < d .
Let C be the subcomplex of St consisting of all subsets in St that
only contain vertices v for which distSt (v,A) = 1 and let C′ =
χ (C,∆). Since distSt (A,B) > 0, C is non-empty and distSt (C,B) =
d − 1. Moreover, since A and C are disjoint, by Proposition 2.2(2),

A′ and C′ are disjoint, i.e. distSt+1 (A
′,C′) ≥ 1. By the induction

hypothesis applied to C and B, distSt+1 (C
′,B′) ≥ distSt (C,B) =

d − 1. Since every path between A and B in St passes through

C, by Proposition 2.2(3), every path between A′ and B′ in St+1

passes through C′. Therefore, distSt+1 (A
′,B′) ≥ distSt+1 (A

′,C′) +
distSt+1 (C

′,B′) ≥ d and the first claim holds for A and B.
Now suppose that every path between A and B in St contains at

least one edge between active vertices. Let E , ∅ be a smallest set

of edges between active vertices in St such that every path between
A and B contains at least one edge in E. Viewing St as a graph, the
removal of E from St results in some number of connected compo-

nents. Let Â be the set of vertices in the connected components that

contain at least one vertex in A and let B̂ be the set of remaining
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vertices in St . Let ˆA and
ˆB be the subcomplexes of St consisting of

all subsets in St that only contain vertices in Â and B̂, respectively.

Observe that A is a subcomplex of
ˆA and B is a subcomplex of

ˆB.

Let Ê ⊆ E be the set of edges between
ˆA and

ˆB. Note that Â and B̂

partition the vertices in St . Hence, every path between
ˆA and

ˆB

contains an edge in Ê. In particular, every path between A ⊆ ˆA and

B ⊆ ˆB contains an edge in Ê. By the minimality of E, E = Ê.
Let C be the subcomplex of St consisting of all subsets in St that

only contain vertices contained in some edge in E. By definition of

E, every vertex in C is active. Moreover, every path between
ˆA and

ˆB ∩ C passes through
ˆA ∩ C and every path between

ˆA ∩ C and
ˆB

passes through
ˆB ∩ C.

Let
ˆA′ = χ ( ˆA,∆) and let

ˆB′ = χ ( ˆB,∆). Then, by Proposi-

tion 2.2(3), every path between
ˆA′ and χ ( ˆB ∩ C,∆) passes through

χ ( ˆA ∩ C,∆) and every path between χ ( ˆA ∩ C,∆) and ˆB′ passes

through χ ( ˆB ∩ C,∆). It follows that every path between A′ ⊆ ˆA′

and B′ ⊆ ˆB′ consists of a path between A′ and χ ( ˆA ∩ C,∆), a

path between χ ( ˆA ∩ C,∆) and χ ( ˆB ∩ C,∆), and a path between

χ ( ˆB ∩ C,∆) and B′. Thus

distSt+1 (A
′,B′) ≥ distSt+1 (A

′, χ ( ˆA ∩ C,∆))

+ distSt+1 (χ (
ˆA ∩ C,∆), χ ( ˆB ∩ C,∆))

+ distSt+1 (χ ( ˆB ∩ C,∆),B′) .

By the first claim,

distSt+1 (A
′, χ ( ˆA ∩ C,∆)) ≥ distSt (A, ˆA ∩ C) and

distSt+1 (B
′, χ ( ˆB ∩ C,∆)) ≥ distSt (B, ˆB ∩ C) .

Now consider distSt+1 (χ (
ˆA ∩ C,∆), χ ( ˆB ∩ C,∆)). Since every ver-

tex in C is active and
ˆA ∩ C and

ˆB ∩ C are disjoint non-empty

subcomplexes of C, Proposition 2.2(4) implies that

distSt+1 (χ (
ˆA ∩ C,∆), χ ( ˆB ∩ C,∆)) ≥ 2 .

By definition of C, distSt ( ˆA ∩ C, ˆB ∩ C) = 1. Hence,

distSt (A, ˆA ∩ C) + distSt (B, ˆB ∩ C) = distSt (A,B) − 1 .

Finally, combining these equations, it follows that distSt+1 (A
′,B′) ≥

distSt (A,B) + 1. �

3 RESTRICTED EXTENSION-BASED PROOFS
In this section, we introduce and formally define the class of re-
stricted extension-based proofs, which are used to prove impossibility

results. To prove that a task has no wait-free solution, given any

protocol that supposedly solves the task, such a proof constructs

a schedule from an initial configuration, which witnesses the fact

that the protocol is incorrect. Specifically, either the schedule is

infinite or one of the specifications of the task is violated in the

configuration resulting from the schedule. To learn information

about the protocol, the proof queries the protocol about the states

of processes in various reachable configurations. In the NIIS model,

the only information a proof learns about the state of a process in a

reachable configuration is whether that process has output a value

and, if so, the value that it output. The rest of the information about

its state is the same for all NIIS protocols. In other words, if the

protocol is specified by a map ∆ from process states to outputs or

⊥, then the proof is querying the map ∆ at various process states.

More formally, a restricted extension-based proof in the NIIS

model is an interaction between a prover and any protocol defined

by a map ∆ from process states to outputs or ⊥. The prover starts

with no knowledge about the protocol (except its initial configura-

tions) and makes the protocol reveal information about the states of

processes in various configurations by asking queries. Each query

allows the prover to reach some configuration of the protocol. The

interaction proceeds in phases, beginning with phase 1.

In each phaseφ ≥ 1, the prover starts with a finite schedule, α(φ),
and a set, A (φ), of configurations that are reached by performing

α(φ) from initial configurations. These initial configurations only

differ from one another in the input values of processes that do not

appear in the schedule α(φ). The prover also maintains a set,A ′(φ),
containing the configurations it reaches by non-empty schedules

from configurations inA (φ) during phaseφ. This set is empty at the

start of phase φ. At the start of phase 1, α(1) is the empty schedule

and A (1) is the set of all initial configurations of the protocol.

The prover queries the protocol by specifying a configuration

C ∈ A (φ) ∪ A ′(φ) and a set of processes P that are poised to

update the same snapshot object in C . For each process pi ∈ P ,
let si denote the state of pi in the configuration C ′

resulting from

scheduling P fromC . The protocol replies to this query with ∆(i, si ),
for each pi ∈ P . Notice that, by the definition of the NIIS model,

this is enough for the prover to know the state of every process

and the contents of every component of every snapshot object in

configuration C ′
. Then, the prover adds C ′

to A ′(φ), and we say

that the prover has reached C ′
.

If the prover reaches a configuration in which the outputs of

the processes do not satisfy the specifications of the task, it has

demonstrated that the protocol is incorrect. In this case, the prover

wins (and the interaction ends).

A chain of queries is a (finite or infinite) sequence of queries

such that, if (Ci , Pi ) and (Ci+1, Pi+1) are consecutive queries in the

chain, then Ci+1 is the configuration resulting from scheduling Pi
from Ci . If the prover constructs an infinite chain of queries, it has

demonstrated that the protocol is not wait-free. In this case, the

prover also wins (and the interaction ends). In particular, the prover

wins against the trivial protocol in which no process ever outputs a

value, by constructing any infinite chain of queries. After construct-

ing finitely many chains of queries in phase φ without winning, the

prover must end the phase by committing to an extension of the

schedule α(φ).
It is important that the prover is allowed to construct chains of

queries instead of just single queries. Whenever a chain of queries

results in a terminal configuration, rather than going on forever,

the prover learns useful information about the protocol, i.e. the

outputs of all processes in that configuration. If the prover cannot

construct a chain of queries, then it might be forced to commit to

an extension without learning any useful information about the

protocol. This is because it is possible to add any finite number

of rounds at the beginning of a protocol that are ignored by the

processes.

Suppose the prover chooses configurationC ′ ∈ A ′(φ) at the end
of phase φ. Let α ′

be a (nonempty) schedule such thatC ′
is reached

by performing α ′
starting from some configuration C ∈ A (φ). Let

α(φ + 1) denote the schedule α(φ)α ′
. Since C ∈ A (φ), there is an

initial configuration I such that C is reached by performing α(φ)
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starting from I . ThusC ′
is reached by performing α(φ + 1) starting

from I . Finally, let A (φ + 1) be the set of all configurations that are
reached by performing α(φ + 1) from the initial configurations that

only differ from I by the states of processes that do not appear in

this schedule. Then the prover begins phase φ + 1.
If, in every configuration in A (φ), every process has terminated,

then A ′(φ) = ∅, the prover loses, and the interaction ends.

If the number of phases in the interaction is infinite, the prover

has constructed an infinite schedule in which some processes re-

main active and, hence, the protocol is not wait-free. This is the

third way that the prover can win.
To prove that a task is impossible using an extension-based proof,

a prover must win against every protocol.

An example. We express the proof of the impossibility of deter-

ministically solving wait-free binary consensus among two or more

processes as a restricted extension-based proof.

Theorem 3.1. Deterministic wait-free consensus among n ≥ 2

processes is impossible in the NIIS model.

Proof. Let C0 denote the initial configuration in which p0 has
input 0 and p1 has input 1. Then, by validity, the solo-execution by

p0 must decide a0 = 0 and the solo-execution by p1 must decide

1 − a0 = 1. The prover performs the query chain corresponding to

the solo execution by p0 from C0. The prover wins if this does not

terminate or p0 does not output 0. Similarly, the prover performs

the query chain corresponding to the solo execution by p1 from C0

and wins if this does not terminate or p1 does not output 1.
The prover will either construct an infinite query chain in some

phase, reach a configuration in which both 0 and 1 have been output,

or inductively construct an infinite sequence of configurations

C1,C2, . . . and a corresponding sequence of bits a1,a2, . . . such
that, for all i ≥ 1, Ci is reached from Ci−1 by scheduling one set of

processes (either {p0}, {p1}, or {p0,p1}), the solo-execution by p0
from Ci outputs ai , and the solo-execution by p1 from Ci outputs
1 − ai . Let i ≥ 1 and suppose the claim is true for i − 1.

If process p0 has terminated (and output value ai−1) in configu-

rationCi−1, then the solo execution by p1 fromCi−1, which outputs

1− ai−1, results in a configuration in which both 0 and 1 have been

output. Similarly, if p1 has terminated in configuration Ci−1, then
the prover has reached a configuration in which both 0 and 1 have

been output. So, suppose that neither p0 nor p1 has terminated in

Ci−1.
FromCi−1, the prover first performs the query chain correspond-

ing to the schedule {p0}, {p1}, {p1}, . . . where p0 is scheduled once

and then p1 is scheduled until it outputs a value bi . If that never
happens, then the prover wins. If bi = 1 − ai−1, then the prover

ends phase i , chooses Ci = Ci−1{p0}, and sets ai = ai−1. Note that
the solo execution by p0 from Ci outputs ai = ai−1 and the solo

execution by p1 from Ci outputs 1 − ai = 1 − ai−1.
Otherwise, bi = ai−1. In this case, the prover performs the query

chain fromCi−1 corresponding to the schedule {p1}, {p0}, {p0}, . . . ,
where p1 is scheduled once and then p0 is scheduled until it outputs
a value di . If that never happens, then the prover wins. If di = ai−1,
then the prover ends the round, chooses Ci = Ci−1{p1}, and sets

ai = ai−1. Note that the solo execution by p0 from Ci outputs ai =
ai−1 and the solo execution by p1 fromCi outputs 1−ai = 1−ai−1.

Otherwise, di = 1 − ai−1. Then the prover performs the query

{p0,p1}. Note that the configurationsCi−1{p0,p1} andCi−1{p0}{p1}
are indistinguishable to p1, i.e. p1 has the same state in both config-

urations. Thus, it outputs bi in its solo execution fromCi−1{p0,p1}.
Likewise, the configurations Ci−1{p0,p1} and Ci−1{p1}{p0} are in-
distinguishable to p0, so it outputs di in its solo execution from

Ci−1{p0,p1}. Finally, the prover ends the phase by choosing Ci =
Ci−1{p0,p1}, and sets ai = di . Note that the solo execution by p0
from Ci outputs ai and the solo execution by p1 from Ci outputs
bi = ai−1 = 1 − di = 1 − ai .

Thus, in all cases, the claim is true for i . Hence, by induction, the
claim is true for all i ≥ 0. �

4 WHAT CANNOT BE PROVED BY
RESTRICTED EXTENSION-BASED PROOFS

In this section, we prove that no restricted extension-based proof

can show the impossibility of deterministically solving k-set agree-
ment in a wait-free manner in the NIIS model, for n > k ≥ 2

processes. Observe that any protocol for n > k + 1 processes is also
a protocol for k + 1 processes, since the remaining processes could

crash before taking any steps. Therefore, it suffices to consider

n = k + 1.
To show our result, we define an adversary that is able to win

against every restricted extension-based prover. The adversary

maintains a partial specification of ∆ (the protocol it is adaptively

constructing) and an integer t ≥ 0. The integer t represents the
number of non-uniform chromatic subdivisions of the input com-

plex, S0, that it has performed. Once the adversary has defined ∆
for each vertex in St , then it may perform a non-uniform chromatic

subdivision of St (or subdivide St ) and construct St+1 = χ (St ,∆).
For each 0 ≤ r ≤ t and each input value a ∈ {0, 1, . . . ,k}, we

define Nra to be the subcomplex of Sr consisting of all subsets in Sr

that only contain vertices representing states of processes which

have not seen a (in any scan) and Tra to be the subcomplex of

Sr consisting of all subsets in Sr that only contain vertices repre-

senting states of processes which have output a and terminated,

i.e. vertices for which ∆ is a. If a vertex v corresponds to the state

of a process that has seen input a, then we say v contains a. No-
tice that Nta does not change when the adversary updates ∆, while
Tta could possibly change. From these definitions, it follows that

non-uniform chromatic subdivisions of these subcomplexes have

simple descriptions.

Proposition 4.1. For t ≥ 1, Nta is non-empty and χ (Nt−1a ,∆) =
Nta . If T

t
a is non-empty, then χ (Tt−1a ,∆) = T

t−1
a .

One difficulty is ensuring that the processes do output incorrect

values. To do so, the adversary terminates a process with output

value a at a particular state only if the vertexv in St corresponding
to its state contains a, i.e. the process has seen a, andv is sufficiently

far from any vertex that has terminated with a different value.

When the adversary performs a subdivision, the distance increases

between terminated vertices that output different values. Hence,

the adversary is able to terminate more vertices. This ensures that

every chain of queries is finite. Finally, it can be shown that, if the

adversary manages to ensure these conditions throughout the first

phase, then the prover is doomed to lose. This is because the prover

must commit to a non-empty schedule at the end of the first phase,
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which corresponds to some subcomplexQ of Sr , for some 1 ≤ r ≤ t .
Since the outputs are far apart in the current subdivision χ t−r (Q,∆)
of Q, the adversary can terminate all active vertices in χ t−r (Q,∆).
Hence, after a finite number of phases, the prover commits to an

extension that results in a configuration (corresponding to a simplex

in χ t−r (Q,∆)) in which all processes have terminated.

Adversarial Strategy in Phase 1. We define an adversarial strategy

so that, before and after each query made by the prover in phase 1,

the adversary is able to maintain the following invariants:

(1) For each 0 ≤ r < t and each vertexv ∈ Sr , ∆(v) is defined. If
v is a vertex in St , then either ∆(v) is undefined or ∆(v) , ⊥.

If s is the state of a process in a configuration that was

reached by the prover, then {s} is a vertex in Sr , for some

0 ≤ r ≤ t , and ∆(s) is defined.
(2) For any input a, if Tta is non-empty, then distSt (T

t
a,N

t
a ) ≥ 2.

(3) For any two inputs a , b, if Tta and Ttb are non-empty, then

distSt (T
t
a,T

t
b ) ≥ 3.

We note that there is nothing special about the values 2 and 3.

They are simply the smallest values such that the invariant can be

maintained and every chain of queries is finite.

The following lemma is a consequence of the invariants. In partic-

ular, it says that, after a subdivision, the distance between vertices

that output different values increases and the distance between

vertices that output a and vertices that do not contain a increases.

Lemma 4.2. For any two inputs a , b, if Tta is non-empty, then any
path between Tta and Ttb ∪N

t
a in St contains at least one edge between

active vertices. Moreover, if the adversary defines ∆(v) = ⊥ for each
vertexv ∈ St where∆(v) is undefined, subdivides St to construct St+1,
and Ttb is non-empty, then distSt+1 (T

t+1
a ,T

t+1
b ) ≥ distSt (T

t
a,T

t
b )+ 1

and distSt+1 (T
t+1
a ,N

t+1
a ) ≥ distSt (T

t
a,N

t
a ) + 1.

Proof. Consider any path v0,v1, . . . ,vℓ between T
t
a and Ttb ∪

Nta in St0 . Let vj be the last vertex in T
t
a . Since the invariants hold

after each query andvℓ ∈ Ttb ∪N
t
a , invariants (3) and (2) imply that

the distance between vj and vℓ is at least 2. Hence, ℓ ≥ j + 2. Since
vj is the last vertex in T

t
a , vj+1 and vj+2 are not in T

t
a . Moreover,

by invariant (3), vj+1 and vj+2 are not in T
t
c for any input c , a.

Hence, {vj+1,vj+2} is an edge between active vertices.

Suppose the adversary defines ∆(v) = ⊥ for each vertex v ∈

St where ∆(v) is undefined and subdivides St to construct St+1.
Then, by Proposition 4.1, for each input a, Tta = χ (Tta,∆) and
Nt+1a = χ (Nta,∆). Since the adversary does not terminate any new

vertices, Tt+1a = Tta . Therefore, by the second part of Lemma 2.3,

distSt+1 (T
t+1
a ,T

t+1
b ) ≥ distSt (T

t
a,T

t
b )+1 and distSt+1 (T

t+1
a ,N

t+1
a ) ≥

distSt (T
t
a,N

t
a ) + 1. �

We now describe the adversarial strategy. Initially, the adversary

sets ∆(v) = ⊥ for each vertex v ∈ S0. It then subdivides S0 to

construct S1 and sets t = 1. No vertices in S0 have terminated,

so T0a is empty for each input a. Before the first query, the prover
has only reached initial configurations. Hence, the invariants are

satisfied.

Now suppose the invariants are satisfied immediately prior to a

query (C, P) by the prover, where C is a configuration previously

reached by the prover and P is a set of active processes in C poised

to access the same snapshot object. Let D be the configuration

resulting from scheduling P fromC . Since each process in P is poised

to access the same snapshot object, by invariant (1), there exists

0 ≤ r ≤ t such that the state of each process in P in configurationC
corresponds to a vertex in Sr . Since each process in P is active inC ,
∆(v) = ⊥ for each such vertex v . Hence, by invariant (1), r < t . If
r < t − 1, then invariant (1) implies that ∆ is defined for each vertex

corresponding to the state of a process in D. Hence, the adversary
does not need to do anything.

So, suppose that r = t − 1. Let σ denote the simplex in St whose
vertices represent the states of processes in P in D. For each vertex

v ∈ σ , if ∆(v) is undefined, the adversary defines ∆(v) as follows. If
there exists an input a such that the distance between v and Nta in

St is at least 2 and the distance between v and Ttb in St is at least

3, for all inputs b , a, then the adversary sets ∆(v) = a. Otherwise,
the adversary sets ∆(v) = ⊥. This ensures that invariants (2) and

(3) continue to hold.

If ∆(v) , ⊥ for every vertex v ∈ σ , then invariant (1) holds.

Otherwise, the adversary defines ∆(v) = ⊥ for each vertex v ∈

St where ∆(v) is undefined, subdivides St to construct St+1, and
increments t . Then invariant (1) holds. By Lemma 4.2, invariants

(2) and (3) continue to hold.

Therefore, the invariants hold after the prover’s query.

The prover does not win in phase 1. Suppose that the invariants
all hold before and after each query made by the prover in phase 1.

By invariant (3), at most one value is output in any configuration

reached by the prover. Moreover, by invariant (2), if a process out-

puts a value y, then y is a value that it has seen in one of its scans.
Hence, y is the input of some process. So, the prover cannot win in

phase 1 by showing that the protocol violates agreement or validity.

It remains to show that the prover cannot win by constructing an

infinite chain of queries in phase 1.

Lemma 4.3. Every chain of queries in phase 1 is finite.

Proof. Assume, for a contradiction, that there is an infinite

chain of queries, (Cj , Pj ), for j ≥ 0. Let P be the set of processes

that are scheduled infinitely often. Then, there exists j0 ≥ 0 such

that, for all j ≥ j0, Pj ⊆ P . Let t0 ≥ 1 be the value of t held by the

adversary immediately prior to query (Cj0 , Pj0 ). By invariant (1),

the state of each process in Cj0 corresponds to a vertex v ∈ Sr , for
some 0 ≤ r ≤ t0. Hence, no process has accessed St0+1 in Cj0 and,

during this chain of queries, only processes in P access St for t > t0.
Since the processes in P eventually access Sr+1 for all r ≥ t0, and
no process in P ever terminates, the adversary eventually defines

∆(v) = ⊥ for each vertex v ∈ Sr where ∆(v) is undefined and

subdivides Sr to construct Sr+1, for all r ≥ t0.
Consider the first j1 ≥ j0 such that each process in Pj1 is poised to

access St0+2 inCj1 , i.e. Pj1 is the first set of processes to access St0+2
in the chain of queries. By definition of St0+2, the set of states of the
processes in Pj1 in Cj+1 correspond to a simplex σ1 in S

t0+2
. Since

the adversary does not terminate any new processes, Tta = T
t0
a ,

for any input a and any t ≥ t0. Thus, by applying Lemma 4.2

twice, for any inputs a , b, whenever Tt0a and Tt0b are non-empty,

distSt0+2 (T
t0+2
a ,Tt0+2b ) ≥ 5 and distSt0+2 (T

t0+2
a ,Nt0+2a ) ≥ 4.

If there is a vertex v ∈ σ1 that has distance at most 2 to some

vertex in Tt0+2a in St0+2, for some input a, then the distance from v
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to Nt0+1a is at least 2 and the distance from v to non-empty Tt0+1b in

St0+1 is at least 3, for all b , a. Hence the adversary defines ∆(v) ,
⊥ after query (Cj1 , Pj2 ), i.e. some process in Pj1 ⊆ P terminates.

This is a contradiction.

So, each vertex in σ1 has distance at least 3 to T
t0+2
a , for all inputs

a where Tt0+2a is non-empty. Consider the first j2 > j1 such that

each process in Pj2 is poised to access St0+3 in Cj2 . Let P
′
be the

set of processes that have accessed St0+2 in Cj2 . Since each process

in Pj1 ∪ Pj2 has already accessed St0+2, Pj1 ∪ Pj2 ⊆ P ′. Hence, the

states of P ′ in Cj2 forms a simplex σ2 in S
t0+2

and σ1 ⊆ σ2. Since
every vertex in σ2 has distance at most 1 from every vertex in σ1,

it follows that each vertex in σ2 has distance at least 2 to T
t0+2
a , for

all inputs a where Tt0+2a is non-empty.

Let a be the input of any process in Pj1 . Since Pj1 is the first set of
processes to access St0+2 and each process in P ′ has accessed St0+2,

each vertex in σ2 contains a and distSt0+2 (σ2,N
t0+2
a ) ≥ 1. Since the

distance between σ2 and any terminated vertex in St0+2 is at least

2, any path from a vertex v ∈ σ2 to a vertex in Nt0+1a ∪
⋃
b,a T

t0+1
b

must contain at least one edge between active vertices (specifi-

cally, between v and one of its neighbours). By Lemma 2.3 and

Proposition 4.1, it follows that distSt0+3 (χ (σ2,∆),N
t0+3
a ) ≥ 2 and

distSt0+3 (χ (σ2,∆),T
t0+3
b ) ≥ 3, for any input b , a where Tt0+2b =

Tt0+3b is non-empty. The state of each process in Pj2 in Cj2+1 cor-

responds to a vertex v in χ (σ2,∆). Hence, the adversary defines

∆(v) , ⊥ for at least one such vertexv , i.e. some process in Pj2 ⊆ P
terminates. This is a contradiction. �

The prover loses. Since the prover does not win in phase 1, even-

tually phase 1 must end. At the end of phase 1, the prover must

choose a configuration C ∈ A ′(1). This determines the set of con-

figurations,A (2), that the prover can initially query in phase 2. The

adversary will update ∆ one final time. Afterwards, it can answer all

future queries by the prover. The prover will eventually be forced

to choose a terminal configuration at the end of some future phase

and, consequently, will lose in the next phase.

C is a configuration reached by a non-empty schedule α(2) from
an initial configurationC0 ∈ A (1). Let P be the first set of processes

in α(2) and let a be the input of some process p ∈ P at C0. By

invariant (1), the state of each process in P at C0P is represented

by a vertex in S1. Since C is a reachable configuration, there is a

simplex σ ⊆ S1 with these vertices.

Let Q be the subcomplex of S1 consisting of all subsets in S1 that
only contain vertices which are at distance at most 1 from every

vertex in σ . Then Q contains every simplex corresponding to a con-

figuration reachable by a full 1-round schedule α ′
from some initial

configurationC ′
0
such thatC ′

0
α ′

andC0P are indistinguishable to P .
In particular, P is the first set of processes in α ′

and p has input a
in C ′

0
. It follows that the state of every process contains a in C ′

0
α ′
.

Hence, the distance between Q and N1a in S1 is at least 1.
Consider the value of t held by the adversary at the end of phase

1. If t > 1, then, applying Lemma 2.3 and Proposition 4.1 (t−1) times,

it follows that distSt (χ
t−1(Q,∆),Nta ) ≥ 1, where χ t−1(Q,∆) ⊆ St

denotes the simplicial complex obtained by performing t − 1 non-

uniform chromatic subdivisions of Q.
By invariant (1), for each vertex v ∈ St , ∆(v) is either undefined

or∆(v) , ⊥. By invariant (3), eachn-vertex simplex in St represents

a configuration in which all processes that have terminated have

output the same value. For each vertex v ∈ χ t−1(Q,∆) where ∆(v)
is undefined, the adversary sets ∆(v) = a. This is a valid output for

v since distSt (χ
t−1(Q,∆),Nta ) ≥ 1. Then each vertex in χ t−1(Q,∆)

has terminated. Morever, each n-vertex simplex in St represents
a reachable configuration in which the processes have output at

most 2 ≤ k different values.

In phases φ ≥ 2, the prover can only query configurations reach-

able from some configuration in A (2). By definition, A (2) is the

set of all configurations that are reached by performing α(2) from
initial configurations C ′

0
that only differ from C0 in the inputs of

processes that do not appear in α(2). It follows that, for any pro-

cess q and any extension α ′
of α(2) from C ′ ∈ A (2), q appears at

most t times in α(2)α ′
before its state is represented by a vertex in

χ t−1(Q,∆). Note that, by construction, every vertex in χ t−1(Q,∆)
has terminated. Thus, eventually, the prover chooses a configura-

tion at the end of some phase in which every process has terminated.

The prover loses in the next phase.

5 EXTENSION-BASED PROOFS
In this section, we extend the definition of a restricted extension-

based proof to include output queries, explain how the adversarial

protocol can respond to these queries, and extend the proof in

Section 4. Roughly speaking, output queries allow the prover to

perform a valency argument.

An output query in phase φ is specified by a configuration C ∈

A (φ) ∪ A ′(φ), a set of active processes P in C that are poised to

access the same snapshot object, and a value y ∈ {0, 1, . . . ,k}. If
there is a schedule fromC involving only processes in P , i.e. a P-only
schedule, that results in a configuration in which some process in P
outputsy, then the protocol returns some such schedule. Otherwise,

the protocol returns none. In each phase, the prover is allowed to

make finitely many output queries in addition to finitely many

chains of queries.

For example, if P is the set of all processes, then the sequence

of output queries (C, P, 0), (C, P, 1), . . . , (C, P,k) enables the prover
to determine which values can be output by the processes when

they are scheduled starting from C . In particular, the prover can

determine if it is only possible to output one value starting from C ,
i.e. if C is univalent.

Responding to output queries in phase 1. Suppose that the invari-
ants hold prior to an output query (C, P,y) in phase 1. We show

that the adversary can answer the output query so that it never

conflicts with the result of any future query made in phase 1, while

still maintaining the invariants.

By definition, each process in P is poised to access the same

snapshot object Sr in C , for some r ≥ 0. By invariant (1), r ≤ t ,
where t is the value held by the adversary immediately prior to the

query. Let V be the subcomplex of St consisting of all subsets in

St that only contain vertices representing the state of a process in

P in a configuration C ′
reachable from C by a P-only (t − r )-round

schedule fromC . In particular,V contains the possible states of each

process in P after it has been selected t times (or it has terminated)

in some configuration C ′
reachable from C by a P-only schedule.

If some vertex v ∈ V has terminated with output y, then the

adversary returns a P-only (t − r )-round schedule fromC that leads
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to a configuration C ′
such that v represents the state of a process

in C ′
. If every vertex in V has terminated and none have output y,

then the adversary returnsnone. Since the adversary never changes

∆(v) once it has been set, these responses do not conflict with the

result of any future query. In both cases, the invariants continue to

hold.

Now suppose that no vertex in V has terminated with output

y and V contains at least one vertex that has not terminated. Let

U , ∅ be the subcomplex of V consisting of all subsets in V that

only contain vertices that have not terminated (i.e. ∆ is currently

undefined for these vertices). For each simplex σ ⊆ U, letAσ be the

subcomplex of St consisting of all subsets in St that only contain

vertices at distance at most 1 to each vertex in σ . We consider a

number of cases.

Case 1: There is a simplex σ ⊆ U such that σ * Nty and no vertex
in Aσ has terminated. Then the adversary subdivides St twice,

i.e. it defines ∆(v) = ⊥ for each v ∈ St where ∆(v) is undefined,
subdivides St to construct St+1, defines ∆(v) = ⊥ for eachv ∈ St+1

where ∆(v) is undefined, and subdivides St+1 to construct St+2.
Consider the simplex ρ ⊆ χ (σ ,∆) consisting of all subsets of

{(i, ®σ ) : i ∈ Id(σ )}. Since σ * Nty , some vertex in σ contains

y, so each vertex in ρ contains y. Hence, distSt+1 (ρ,N
t+1
y ) ≥ 1.

Since each vertex in Aσ is active, χ (Aσ ,∆) is the standard chro-

matic subdivision of Aσ . It follows that every path between ρ
and Tt+1a ∪ Nt+1y in St+1, for inputs a , y, contains at least one

edge between a vertex in ρ and one of its neighbours in χ (Aσ ,∆),
which is an edge between active vertices. Since no vertex in Tt+1a is

active, distSt+1 (ρ,T
t+1
a ) ≥ 2, for all inputs a. By Lemma 2.3 and

Proposition 4.1, it follows that distSt+2 (χ (ρ,∆),N
t+2
y ) ≥ 2 and

distSt+2 (χ (ρ,∆),T
t+2
a ) ≥ 3, for all inputs a.

The adversary defines ∆(v) = y, for one vertex v ∈ χ (ρ,∆),
returns a P-only (t + 2 − r )-round schedule from C that leads to

a configuration C ′
such that v represents the state of a process in

C ′
, and sets t to t + 2. By Lemma 4.2, invariants (2) and (3) are not

violated by the subdivisions and increments of t . Since ∆(v) , ⊥,

invariant (1) continues to hold and, since distSt (v,N
t
y ) ≥ 2 and

distSt (v,T
t
a ) ≥ 3, for all inputs a , y, invariants (2) and (3) continue

to hold.

Case 2: There is a simplex σ ⊆ U such that σ * Nty and there is a
vertexw ∈ Aσ such thatw has terminated with output y. Then the

adversary subdivides St once, i.e. it defines ∆(v) = ⊥ for each ver-

tex v ∈ St where ∆(v) is undefined and subdivides St to construct

St+1. Note thatw ∈ Tty = T
t+1
y , so Tty is non-empty. By invariant

(2) and Lemma 4.2, distSt+1 (T
t+1
y ,N

t+1
y ) ≥ 3. By invariant (3) and

Lemma 4.2, distSt+1 (T
t+1
y ,T

t+1
a ) ≥ 4 for all inputs a , y such that

Tta is non-empty. Sincew has terminated andw ∈ Aσ , by Proposi-

tion 2.1,w is adjacent to every vertex in χ (σ ,∆) ⊆ St+1. It follows
that distSt+1 (χ (σ ,∆),N

t+1
y ) ≥ 2 and distSt+1 (χ (σ ,∆),T

t+1
a ) ≥ 3, for

all inputs a , y such that Tt+1a = Tta is non-empty.

The adversary defines ∆(v) = y, for a vertex v ∈ χ (σ ,∆), re-
turns a P-only (t + 1 − r )-round schedule from C that leads to a

configuration C ′
such that v represents the state of a process in

C ′
, and increments t . By Lemma 4.2, invariants (2) and (3) are not

violated by the subdivision and increment of t . Since ∆(v) , ⊥,

invariant (1) continues to hold and, since distSt (v,N
t
y ) ≥ 2 and

distSt (v,T
t
a ) ≥ 3, for all inputs a , y such that Tta is non-empty,

invariants (2) and (3) continue to hold.

Case 3. For every simplex σ ⊆ U, either σ ⊆ Nty or some vertex
w ∈ Aσ has terminated with an output a , y. In this case, the

adversary returns none. If σ ⊆ Nty , then no vertex in σ contains y
and, by Proposition 4.1, no vertex in any subdivision of σ contains

y. Hence, by invariant (2), the adversary never terminates any

vertex in σ (or a future subdivision of σ ) with output y as the

result of a future query (in any phase). If some vertexw ∈ Aσ has

terminated with output a , y, then, since w is adjacent to each

vertex in σ , w is adjacent to each vertex in any subdivision of σ
(Proposition 2.1). Since invariant (3) holds, the adversary never

terminates such vertices with any output other than a as the result

of a future query in phase 1. In both cases, the invariants continue

to hold.

The prover still loses. Since the adversary is able to maintain the

invariants before and after each query, as in Section 4, the prover

does not win in phase 1 and must eventually choose a configuration

C ∈ A ′(1) at the end of phase 1. The adversary will update ∆
one final time. Afterwards, it can answer all future queries by the

prover. The prover will eventually be forced to choose a terminal

configuration at the end of some future phase and, consequently,

will lose in the next phase.

C is a configuration reached by a non-empty schedule α(2) from
an initial configurationC0 ∈ A (1). Let P be the first set of processes

in α(2) and let a be the input of some process p ∈ P at C0. By

invariant (1), the state of each process in P at C0P is represented

by a vertex in S1. Since C is a reachable configuration, there is a

simplex σ ⊆ S1 with these vertices.

Let Q be the subcomplex of S1 consisting of all subsets in S1 that
only contain vertices which are at distance at most 1 from every

vertex in σ . Then Q contains every simplex corresponding to a con-

figuration reachable by a full 1-round schedule α ′
from some initial

configurationC ′
0
such thatC ′

0
α ′

andC0P are indistinguishable to P .
In particular, P is the first set of processes in α ′

and p has input a
in C ′

0
. It follows that the state of every process contains a in C ′

0
α ′
.

Hence, the distance between Q and N1a in S1 is at least 1.
Consider the value of t held by the adversary at the end of phase

1. If t > 1, then, applying Lemma 2.3 and Proposition 4.1 (t−1) times,

it follows that distSt (χ
t−1(Q,∆),Nta ) ≥ 1, where χ t−1(Q,∆) ⊆ St

denotes the simplicial complex obtained by performing t − 1 non-

uniform chromatic subdivisions of Q.
To ensure that the prover loses, we have to modify the adver-

sary’s strategy at the end of phase 1 in Section 4 slightly. In particu-

lar, when the adversary defines ∆(v) for each vertex in χ t−1(Q,∆),
it cannot simply set ∆(v) = a, where a is an input value contained

in each vertex of χ t−1(Q,∆). The problem is that the adversary

may have answered none to an output query (C, P,a) where not
all vertices have terminated. This can only occur in Case 3. Instead,

the adversary does the following.

(1) It subdivides St twice to construct St+2 and sets t to t + 2.
(2) Let T be the set of all terminated vertices in St . For each

terminated vertexw ∈ T and each vertex v ∈ χ t−1(Q,∆) ⊆
St that is adjacent to w , if ∆(v) is undefined, then it sets

∆(v) = ∆(w).

994



STOC ’19, June 23–26, 2019, Phoenix, AZ, USA Dan Alistarh, James Aspnes, Faith Ellen, Rati Gelashvili, and Leqi Zhu

(3) For each vertex v ∈ χ t−1(Q,∆), if ∆(v) is undefined, then it

sets ∆(v) = a.

Immediately before step (1), invariants (3) and (2) imply that

distSt (T
t
b ,T

t
d ) ≥ 3 and distSt (T

t
b ,N

t
b ) ≥ 2 for any inputs b , d

such that Ttb and Ttd are non-empty. By Lemma 4.2, immediately

after step (1), distSt (T
t
b ,T

t
d ) ≥ 5 and distSt (T

t
b ,N

t
b ) ≥ 4 for any

inputs b , d such that Ttb and Ttd are non-empty. Consequently,

immediately after step (1), if a vertex v ∈ St is adjacent to a vertex

w ∈ Ttb , then it is not adjacent to any vertex in Ttd , for d , b.

Since invariant (1) holds immediately before step (1) and the

adversary does not set ∆(v) = ⊥ for any vertex v ∈ St during step

(2), invariant (1) continues to hold immediately after step (2).

Consider any vertex u ∈ χ t−1(Q,∆) such that the adversary sets

∆(u) = b in step (2). Then u is adjacent to a vertex w ∈ Ttb ∩ T .

Since distSt (w,N
t
b ) ≥ 4, it follows that distSt (u,N

t
b ) ≥ 3 and b is a

valid output for u. Thus invariant (2) holds immediately after step

(2).

Now consider any vertex v ∈ Ttd , where d , b. If v < T , then

v is adjacent to a vertex w ′ ∈ Ttd ∩ T . Since distSt (w,w
′) ≥ 5, it

follows that distSt (u,v) ≥ 3. If v ∈ T , then distSt (w,v) ≥ 5 and,

hence, distSt (u,v) ≥ 4. Thus invariant (3) holds immediately after

step (2).

Next, we show that the changes to ∆ do not violate the response

to any output query made in phase 1.

Lemma 5.1. No output queries made in phase 1 are ever violated.

Proof. Let (C, P,y) be an output query made in phase 1. By

definition, each process in P is poised to access the same snapshot

object Sr inC , for some r ≥ 1. By invariant (1), r ≤ t , where t is the
value held by the adversary immediately before the output query.

Let V be the subcomplex of St consisting of all subsets in St that
only contain vertices which represent the state of a process in P
in a configuration C ′

reachable from C by a P-only (t − r )-round
schedule from C . Let U be the subcomplex of V consisting of all

subsets in V that only contain vertices that have not terminated.

If the adversary answers with a P-only schedule α , then there is

a vertex v ∈ St
′

that represents the state of a process in Cα such

that ∆(v) = y, where t ′ ≥ t is the value held by the adversary imme-

diately after the output query. Since the adversary never changes

∆(v) once it has been defined, the adversary will never violate its

response to the output query.

If every vertex inV has terminated and none have outputy, then
the adversary answers none. In this case, it will never violate its

response to the output query, because it never changes ∆(v) for
any vertex v once it has been defined.

The remaining case is when the adversary answers none and for

every simplex σ inU, either σ is contained inNty or there is a vertex

in Aσ that has terminated with an output b , y, where Aσ is the

subcomplex of St consisting of all subsets in St that only contain

vertices at distance at most 1 from every vertex in σ . Consider any
simplex σ ⊆ U and its subdivision σ ′

in the complex constructed

by the adversary at the end of phase 1. We show that the adversary

never terminates any vertex in σ ′
with output y. Hence it does not

violate its response to the output query (C, P,y).

Case 1. σ ⊆ Nty . Then no vertex in σ contains y and, hence, no

vertex v ∈ σ ′
contains y. If the adversary set ∆(v) , ⊥ prior to

step (3) at the end of phase 1, then, by invariant (2), ∆(v) , y. If
the adversary sets ∆(v) = a in step (3), then a is contained in v
(by construction) and, hence, ∆(v) , y. Note the adversary never

modifies ∆ after step (3).

Case 2. σ * Nty . Then Aσ contains a vertex w that has termi-

nated with ∆(w) , y. Since w has terminated and is adjacent to

every vertex in σ , it follows by Proposition 2.1 thatw is adjacent

to every vertex v ∈ σ ′
. If the adversary set ∆(v) , ⊥ prior to step

(3) at the end of phase 1, then, by invariant (3), ∆(v) = ∆(w) , y.
Notice that, since v is adjacent tow ∈ Tty , if ∆(v) is not set in step

(2), then it is not set in step (3). �

Since no output query is violated and the invariants hold prior

to step (3), the rest of the argument in Section 4 is unchanged. In

particular, the prover must commit to a terminal configuration in

χ t−1(Q,∆) at the end of some phase and, hence, loses in the next

phase.

Thus, we have shown that there is no extension-based proof of

the impossibility of deterministically solving k-set agreement in a

wait-free manner in the NIIS model for n > k ≥ 2 processes. Since

there is a deterministic, wait-free protocol for a task in the NIIS

model if and only if there is a deterministic, wait-free protocol for

the task using only registers, we have proved our main result.

Theorem 5.2. No extension-based proof can show the impossibility
of a deterministic, wait-free protocol for k-set agreement among n >
k ≥ 2 processes using only registers.

6 FUTUREWORK
We have shown the limitation of valency arguments for proving the

impossibility of deterministic, wait-free solutions to set-agreement

in the NIIS model. Although we have restricted attention to the

proof of impossibility of one problem in one model, our approach

can be applied to other problems and other models.

The definition of an extension-based proof can be modified to

handle other termination conditions, such as obstruction-freedom

[HLM03]. It suffices for the prover to construct a schedule that

violates this condition.

The NIIS model is computationally equivalent to an asynchro-

nous shared memory model in which processes communicate by

reading from and writing to shared registers. However, these two

models are not equivalent in terms of space and step complexities.

A covering argument [BL93] is a standard approach for proving a

lower bound on the number of registers needed to solve a problem

in an asynchronous system. We have a definition for extension-

based proofs in this model that includes covering arguments.

There is a recent proof that any obstruction-free protocol for

k-set agreement among n > k ≥ 2 processes requires ⌈n/k⌉ reg-
isters [EGZ18], but it is not extension-based. In fact, some of our

early work about extension-based proofs motivated the approach

in [EGZ18]We conjecture that it impossible to prove a non-constant

lower bound on the number of registers needed by any obstruction-

free protocol for k-set agreement using an extension-based proof.

Combinatorial topology has also been successfully applied to

show that it is impossible to deterministically solve (2n−2)-renaming
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among n processes using only registers, whenever n is a prime

power, i.e. n = pℓ , for some prime p and integer ℓ [CR10]. In this

problem, processes begin with identifiers from an arbitrarily large

domain and must compute identifiers in the range {0, 1, . . . , 2n−3}.

There are no extension-based proofs of this result. We conjecture

that extension-based proofs cannot prove this impossibility result.

We have considered allowing the prover to perform a number

of other types of queries and can extend our adversarial protocol

so that it can answer them. For example, if a prover asks the same

output query (C, P,y)multiple times, the protocol could be required

to return different schedules each time, until it has returned all

possible P-only schedules from C that output y.
We cannot allow certain queries, such as asking for an upper

bound on the length of any schedule. If the prover is given such an

upper bound, then it can perform a finite number of chain queries

to examine all reachable configurations, thereby fixing the protocol.

However, we can allow the prover to use this information in a

restricted way and still construct an adversarial k-set agreement

protocol. For example, we might require that the prover does not

use this information to decide which queries to perform or what

extensions to construct, but can use this information to win when

it has constructed a schedule that is longer than this upper bound.
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