
The Expressive Power of Voting PolynomialsJames Aspnes�y Richard Beigel�z Merrick Furstx Steven RudichxOctober 14, 1993AbstractWe consider the problem of approximating a Boolean function f : f0; 1gn ! f0; 1g by thesign of an integer polynomial p of degree k. For us, a polynomial p(x) predicts the value of f(x)if, whenever p(x) � 0, f(x) = 1, and whenever p(x) < 0, f(x) = 0. A low-degree polynomialp is a good approximator for f if it predicts f at almost all points. Given a positive integerk, and a Boolean function f , we ask, \how good is the best degree k approximation to f?"We introduce a new lower bound technique which applies to any Boolean function. We showthat the lower bound technique yields tight bounds in the case f is parity. Minsky and Papert[10] proved that a perceptron can not compute parity; our bounds indicate exactly how well�Yale University, Dept. of Computer Science, P.O. Box 208285, New Haven CT 06520-8285.yEmail: aspnes-james@cs.yale.edu.zEmail: beigel-richard@cs.yale.edu. Supported in part by NSF grants CCR-8808949 and CCR-8958528.xCarnegie-Mellon University, School of Computer Science, Pittsburgh, PA 15213-3890.1

a perceptron can approximate it. As a consequence, we are able to give the �rst correct proofthat, for a random oracle A, PPA is properly contained in PSPACEA. We are also able to provethe old AC0 exponential-size lower bounds in a new way. This allows us to prove the new resultthat an AC0 circuit with one majority gate cannot approximate parity. Our proof depends onlyon basic properties of integer polynomials.1. IntroductionLinial, Mansour, and Nisan [9]; Tarui [16]; and Beigel, Reingold, and Spielman [2] have shown thatpolynomial-size, bounded-depth circuits can be closely approximated as the sign of a low-degreepolynomial over the rationals. This result closely ties the class AC0 [7, 18] to the class of low-degree polynomials over the rationals, much as previous work by Razborov [12] and Smolensky [14]ties AC0 to the class of low-degree polynomials over �nite �elds. Unfortunately, the lower boundtechniques known for polynomials over �nite �elds do not generalize to the signs of a polynomialsover an ordered �eld; and despite considerable recent interest in this latter representation [4, 5,11, 8], to date few techniques have been developed which yield lower bounds on the degree of suchpolynomials.In this paper we describe a result which relates the degree of a polynomial over the rationals to itsability to accurately approximate particular Boolean functions. Our bounds are tight in the case ofthe parity function. In the language of perceptrons [10], this shows the maximum number of inputson which a perceptron of order k can output parity. Much as similar results for polynomials over�nite �elds yield lower bounds for circuits containing MODp gates, this result yields lower boundsfor circuits of AND and OR gates with unbounded fan-in and a single threshold gate. While thisclass of circuits is somewhat limited compared to more general classes of threshold circuits, it is2

still surprisingly powerful. This can be seen by considering a few simple but instructive \puzzles".These demonstrate that there are cases where the subcircuits which are the inputs of the thresholdgate are uncorrelated with the function that the full circuit approximates, yet the full circuit canmanage to compute the function for all but a small fraction of the inputs.1.1. Voting PuzzlesPuzzle 1:Let n be an odd number of women. Let each have a uniformly chosen random biton her forehead. Each person can see all the bits except her own. They wish to vote onthe parity of the bits. No communication between the voters is allowed. More precisely,each person casts a private vote (1 or 0); the outcome of the election is the value whichthe majority cast. The n women are said to win the election in the case when theoutcome is equal to the parity of the n bits. What is a collective strategy for the voterswhich gives them a high probability of winning the election?Note that in this puzzle, no individual voter ever learns any information about the parity of thebits, and each voter will be wrong exactly half of the time. It is tempting to believe that the votersas a group will be able to win only half the time as well. Surprisingly, the voters can manage towin with high probability with a very simple strategy.Solution 1A:If a voter sees as many 0's as 1's, she casts a vote of 0. Otherwise, she assumes thatthe bit on her forehead is the same as the majority of the bits she sees; she then castsa vote consistent with this assumption. 3

In the case where the number of 0's and 1's di�ers by more than one, each person will voteassuming her bit is the same as the majority of bits. The majority of women are correct inassuming that the bit on their head is the same as the bit which is in the majority| thus themajority of votes cast are for the parity of the n bits. The voters win the election.In the case where the number of 0's is exactly one more than the number of 1's, the majorityof women will vote 0. Zero is the correct answer. The voters win the election.In the remaining case where the number of 0's is exactly one less than the number of 1's, themajority of women will again vote 0. This value is wrong. The voters lose the election. This caseoccurs in � nn=2� of 2n cases, i.e. with probability 1�(pn) .The voters thus have a 1� 1�(pn) chance of winning the election, which is much better than 50%.Though the above strategy is optimal over all strategies where the voters behave identically, itis not the optimal solution over unrestricted strategies.Solution 1B:For convenience, assume n is of the form 2k � 1. Divide the voters into k groupsnumbered from 0 to k � 1, where group i contains 2i voters. Further divide the votersin each group except the �rst into two equal-sized groups: the 0-half and 1-half. Denotethe parity of the forehead bits in group i by Pi. The strategy of a voter in the b-half ofgroup j is given as follows: If there exists an i < j where Pi = 0, vote b. If not, assumePj = 0 and vote accordingly.We argue that in all the cases where there exists a j such that Pj = 0 the above strategy wins4

the election. Let j be the lowest numbered group such that Pj = 0. Each voter in groups numberedi < j voted incorrectly because they falsely assumed Pi = 0. This accounts for 2j � 1 incorrectvotes. Each voter in group j votes correctly. There are 2j voters in group j; thus there is one morecorrect vote than incorrect vote cast among the votes of the �rst j groups. The voters in the 0-and 1-halves of each higher group cancel each other out and have no e�ect on the election.The remaining case, where Pj = 1 for all j, occurs with probability 1=2k = 1=(n + 1). In thiscase the voters all vote incorrectly. Thus the above strategy wins with probability 1 � 1=(n + 1),which is better than the strategy presented in solution 1A.Now, given any strategy, tallying the votes over all possible assignments will always count asmany correct votes as incorrect votes, since each voter is correct only half of the time. We concludethat solution 1B is optimal, because the incorrect votes are optimally distributed. When the voterswin, they win by exactly one vote; when they lose, they all vote incorrectly.Let's generalize the puzzle a little.Puzzle 2:The voters have moved to Chicago, a city famous for its lax election laws. Eachvoter can now cast as many votes as she wants! Fix the other parameters as before.Once again, what is a collective strategy for the voters which has a high probability oftheir winning the election?Solution 2:Have a each voter behave as did a whole group in solution 1B. Number the voters5

from 0 to n� 1. The strategy for voter j is as follows: If a lower numbered voter has a0 on her forehead, she abstainsn from voting (votes 0 times). Otherwise, she assumesshe has a 0 on her forehead and cast 2j votes accordingly.The analysis is as in 1B except that we now have n groups. The probability of winning is1�1=2n. This is clearly optimal, for across all assignments as many incorrect votes as correct votesmust be cast. Thus there must be one assignment on which the voters are wrong.Puzzle 3:Let S be a set of n uniformly chosen random bits. This time there are �nk� voters,each of whom sees a distinct subset of S of size k. The voting is Chicago style, eachvoter casting an integer vote. If the sum of the votes is positive, then the outcome ofthe election is 0. If the sum is negative, the outcome is 1. If the sum is 0, the outcome isunde�ned. Again, the voters wish to decide parity. Given n and k, what is a collectivestrategy for the voters which maximizes their probability of winning the election?When k = n � 1, Puzzle 3 reduces to Puzzle 2. For general k, the puzzle can be restated as anatural question about the subject of this paper: voting polynomials.1.2. Voting PolynomialsIf we are given a voting strategy in which each voter sees at most k bits, we can represent eachvoter's net vote (counting a vote for b as (�1)b) by a polynomial in the k bits that it sees. Thusthe total vote can be computed as a polynomial of degree at most k in all of the input bits, and6

determining the winner of an election consists of taking the sign of this polynomial. Conversely,given a degree-k polynomial with integer coe�cients, we can assign each term to a voter who cansee the bits on which its value depends; to determine its vote, each voter computes the sum of allterms it has been assigned. Thus there is an equivalence between computing a Boolean functionas the result of an election with limited information and computing it as the sign of a low-degreepolynomial with rational coe�cients. For this reason we refer to the latter representation as avoting polynomial.Voting polynomials are a special kind of perceptron [10], a circuit which computes a weightedthreshold of a set of arbitrary predicates. The order of a perceptron is the maximum numberof input bits available to any one predicate. An order k perceptron is essentially the same aswhat we have been calling a voting strategy in which each voter sees at most k bits. That votingstrategies compute the same functions as voting polynomials tells us that when considering orderk perceptrons we can limit ourselves to ones in which each predicate is the parity of a subset of theinput, a critical restriction which allows us to apply algebraic techniques to the question of whatfunctions a perceptron can approximate well.To de�ne the computation of voting polynomials more formally, we say that a function pstrongly represents1 a Boolean function f just in case sgn(p(x)) = f(x) for all input vectorsx. Though our terminology is unusual the underlying concept is a standard one; see for example[4, 5, 8]. The strong degree of f , written ds(f), is the least k for which there exists a degree-kpolynomial which strongly represents f . Henceforth, when we say a polynomial p represents f wemean it strongly represents f . For example, majority is represented by the degree 1 polynomial�xi � n=2. Hence, ds(MAJ) = 1.1As distinct from weakly represents, introduced in Section 27

For the most part we are interested not so much in computing functions exactly as in approxi-mating them. We say that a polynomial p approximates a function f with e errors if the numberof inputs x on which sgn(p(x)) 6= sgn(f(x)) is no greater than e. Our central concern will be todetermine for various functions the minimum number of errors in their best approximations bypolynomials of �xed degree. This is equivalent to determining how well a set of voters each ofwhom sees only a bounded-size subset of the inputs can compute these functions. For example, toknow how well a degree k polynomial can approximate parity is to know the answer to \puzzle" 3.We will answer this particular question in Section 3. First, however, it is necessary to state afew de�nitions.1.3. Boolean FunctionsA Boolean function on n variables will be represented as a function from f1;�1gn to f1;�1g, whereeach bit b is replaced by the real value (�1)b. In this representation the parity function on a set ofvariables x1; x2; : : :xk is simply the monomial Qki=1 xi.The set of all real-valued functions on f1;�1gn can be thought of as a 2n-dimensional vectorspace Fn where (f + g)(x) = f(x)+ g(x) and (af)(x) = af(x) for any functions f and g and scalara. A natural basis for this vector space is the set of functions which take on the value 1 on exactlyone possible input and take on the value 0 for all others; this basis suggests the inner productf � g =Px2f1;�1gn f(x)g(x).An alternative basis can be constructed from the monomials �S(x) = Qi2S xi. Because x2i = 1,the function obtained by taking the product of any two monomials �S and �S0 is itself a mono-8

mial, �S4S0 . This fact allows one to show that any two distinct monomials are orthogonal, forP�S(x)�S0(x) = P�S4S0(x), and if S 4 S 0 is nonempty, �S4S0 (x) will be �1 for exactly half ofall inputs x. Since the number of monomials is precisely 2n, the dimension of Fn, the monomialsform an alternative orthogonal basis for the space.A function is a polynomial of degree k if it can be expressed as a linear combination ofmonomials over sets of size k or less. The set of all polynomials Pk of degree � k is a subspace ofFn of dimension Pki=0 �ni�. It should be clear that Fn = Pn.A function is symmetric if it is invariant under all permutations of its input variables, or,looking at equivalence classes, if f(x) = f(x0) whenever Pni=1 xi = Pni=1 x0i. We will often �ndit convenient to treat a symmetric polynomial p in x1 : : : xn as polynomial in the single integerquantity Pni=1 xi. If we restrict ourselves to polynomials of degree at most n, this latter form isunique and can be obtained by polynomial interpolation. It is not di�cult to see that the degreeof the polynomial will be the same in either form.2. Lower Bounds on ApproximationsIn this section we describe a property of Boolean functions which partially characterizes how di�cultthey are to approximate.Relax the conditions for representing a function as follows: let p weakly represent f justin case p is not the constant zero function, and sgn(p(x)) = sgn(f(x)) for all x where p(x) isnonzero. In electoral terms, those values x where p(x) = 0 correspond to situations in which thevoters \deadlock", delivering a majority to neither value; the di�erence between strong and weak9

representation is that in the latter such deadlocks are allowed, so long as the majority casts thecorrect vote in those situations where deadlock does not occur.We can de�ne the weak degree of a function f , dw(f), analogously to its strong degree, asthe least k for which there exists a degree k polynomial which weakly represents f . This notionis useful because for functions of known weak degree it is possible to place a lower bound on thedistance to any low-degree polynomial approximation. The method is to show that any function pwhich closely approximates a function f can be converted into a weak representative for f withoutsubstantially increasing its degree. We do so by multiplying p by a low-degree polynomial q whichsends all the inputs x for which sgn(p(x)) 6= sgn(f(x)) to 0 without changing the sign of any inputnot sent to 0. The following lemma tells us when we can �nd such a function.Lemma 2.1 Let S be a set of inputs such that jSj < Pki=0 �ni�. Then there exists a degree 2kpolynomial q such that q 6= 0, q(x) � 0 for all x, and q(x) = 0 for all x 2 S.Proof: Any degree k polynomial hasPki=0 �ni� coe�cients, and its value on any particular input is alinear combination of those coe�cients. Thus if r stands for a degree k polynomial, the constraintsr(x) = 0 for all x in S are a homogeneous system of jSj linear equations in Pki=0 �ni� variables,and have a non-trivial solution since jSj < Pki=0 �ni�. But then q = r2 is a non-trivial degree 2kpolynomial that is 0 on S and non-negative elsewhere.The full result is stated in the following theorem.Theorem 2.2 If p is a degree k polynomial and f any Boolean function. Let S be the set of all x10

for which sgn(p(x)) 6= sgn(f(x)). Then if k < dw(f),jSj � � dw(f)�k�12 �Xi=0 ni!Proof: Suppose otherwise; then by the preceding lemma there is a non-trivial degree dw(f)�k�1polynomial q which is 0 on S and non-negative elsewhere. Now, pq weakly represents f , as forany x either pq(x) = 0 or x =2 S and sgn(pq(x)) = sgn(p(x)) = sgn(f(x)). But then pq is a weakrepresentative of f with degree dw(f)� 1, a contradiction.2.1. Computing Weak DegreesUnfortunately, it is not trivial to determine the weak degree of an arbitrary function. However,there are functions whose weak degrees are easily determined. One such is the parity function:Lemma 2.3 The weak degree of the parity function � is n.Proof: Suppose p weakly represents parity. Then p � � > 0, since each term in P p(x)�(x) isnonnegative and at least one term is nonzero. But parity is orthogonal to all other monomials,thus if p is in Pn�1, p � � = 0.The parity function is central to the connection between strong and weak degrees. We will �rstneed a small technical lemma which is a disguised form of an old result in the theory of linearinequalities: 11

Lemma 2.4 Let S be a linear subspace of the space of real-valued functions on f1;�1gn, and letf be a function from f1;�1gn to f1;�1g. Then there exists some p 2 S which strongly representsf if and only if there does not exist any nonzero q 2 S? such which weakly represents f .Proof: Let � be the linear transformation which maps g to fg. Then �(f) is the constant 1 and,since � is easily seen to be an isometry, �(S)? = �(S?). Thus we may assume without loss ofgenerality that f is 1.Regard S as the set of solutions p to Ap = 0 for some appropriate matrix A; then S? is the rowspace of A consisting of all vectors of the form q = yA. We may thus recast the original statementas: there exists p such that Ap = 0 and p > 0 if and only if there does not exist q = yA such thatq 6= 0 and q � 0. This restatement is Stiemke's Transposition Theorem [15] (see [13, 6].)We may now show the connection between strong and weak degrees.Lemma 2.5 For any function f on n bits, ds(f) + dw(f�) = n.Proof: Suppose p has degree ds(f) and strongly represents f and q has degree dw(f�) and weaklyrepresents f�. Then pq has degree at most ds(f) + dw(f�) and weakly represents parity. Henceds(f) + dw(f�) � n by Lemma 2.3.To show ds(f)+dw(f�) � n, suppose that ds(f) = k. Then there is no degree k�1 representativeof f , so the subspace Pk�1 of the space of all real-valued functions on n bits contains no p suchthat p(x) sgn(f(x)) > 0 for all x. But then Lemma 2.4 tells us that there is a nonzero q in P?k�1such that q(x) sgn(f(x)) � 0 for all x. Since P?k�1 is spanned by the monomials of degree k and12

higher, when we multiply q by parity we get a polynomial consisting of monomials of degree n� kand lower which is a weak representative for f�. Thus dw(f�) � n� k and ds(f) + dw(f�) � n.2.1.1. Symmetric FunctionsUsing Lemma 2.5 it is straightforward to characterize both the weak and strong degree of anysymmetric function.Lemma 2.6 If f is a symmetric function, then ds(f) and dw(f) are both equal to the number oftimes f changes sign when expressed as a univariate function in P xi.Proof: Clearly if f changes sign only k times there is a degree-k polynomial which strongly (and,a fortiori, weakly) represents f . Furthermore, f� changes sign n � k times so there is a degreen�k polynomial which represents f�. Thus dw(f) � k but by Lemma 2.5 dw(f) = n�ds(f�) � k.Thus dw(f) = k, and since dw(f) � ds(f) � k, ds(f) = k.2.1.2. Random FunctionsWhat is the expected weak degree of a randomly-chosen function? Combining Lemma 2.5 andthe fact that dw(f) � ds(f) we can easily see that the average weak degree is at most n=2. Weconjecture that both the strong and weak degrees are in fact exactly n=2 (when n is even) foralmost all functions. This conjecture is supported by empirical evidence for small values of n, butwe have been unable to prove a lower bound on the weak degree of a random function strongerthan the O(n= logn) bound implied by Gotsman [8].13

3. Approximating ParitySuppose that we wish to approximate the parity function on n bits with a polynomial of degree k(or, equivalently, to construct a solution to Puzzle 3; or to approximate parity with a perceptronof order k.) Theorem 2.2 tells us that any degree k polynomial must di�er in sign from parity onat least Pb(n�k�1)=2ci=0 �ni� inputs. How close to this bound can we get?One approach we might take is to approximate parity with a symmetric function, expressedas a univariate polynomial vn;k in Pxi. As we are only concerned with the sign of vn;k our onlyrelevant decision is how to place its k zeroes to maximize the number of inputs x on which itcorrectly predicts parity. Since s is binomially distributed we are likely to be best o� \spending"zeroes to get the correct values when s is close to 0.This rule of thumb suggests the following plausible de�nition for vn;k. To simplify the analysiswe express the polynomial in the variable s = P(1 � xi)=2, the count of the number of times �1appears in the input vector, making the parity of x simply (�1)s. Thus vn;k(s) is:(�1)b(n�k)=2c k�1Yi=0 ��n� k2 �+ i+ 12 � s�Here the term before the product sets the sign when s = jn�k2 k, and the product itself placeszeroes to set the sign correctly for all values in the range jn�k2 k � s � jn�k2 k+ k. Outside of thisrange vn;k will predict parity correctly on roughly half the inputs. It is not di�cult to see that vn;kcan be expanded into a polynomial of degree k on the inputs x1 : : :xn.What is more di�cult to see is how well vn;k predicts parity. The �rst step is to write anexpression for the number of inputs x on which vn;k has the \wrong" sign in the outer regions of14

the distribution of s: Xi�0 nb(n� k)=2c � 1� 2i!+ Xi�0 nb(n� k)=2c + k + 1 + 2i!When n� k is odd, an application of the symmetry identity �ni� = � nn�i� causes the terms in thesummation on the right to exactly �ll in the \gaps" in the summation on the left, leaving (after achange of the summation variable) Pb(n�k)=2ci=0 �ni�, which is just the lower bound Pb(n�k�1)=2ci=0 �ni�since n � k is odd. Thus in this case vn;k approximates parity optimally.The case where n � k is even is slightly more complicated. Here, an application of symmetryyields: 2Xi�0 nb(n� k)=2c � 1� 2i!Applying the Pascal's triangle identity expands each term in this summation into two terms inthe following summation: 2 b(n�k)=2c�1Xi=0 n � 1i ! (1)which is precisely twice the lower bound Pb(n�k�2)=2ci=0 �n�1i � on the number of inputs on whichany degree k polynomial on n � 1 bits must disagree with the parity of those bits. This pleasantcoincidence shows that (1) is in fact a lower bound on the number of errors of any degree kapproximation to parity on n inputs, for if some f had fewer errors, at least one of the degree kpolynomials on n � 1 bits obtained by �xing xn in f to 1 or �1 would approximate parity on theremaining n � 1 bits better than allowed by the lower bound of Theorem 2.2.We have just completed the proof the following theorem:15

Theorem 3.1 The symmetric polynomial vn;k on n inputs approximates parity optimally for allvalues of n and k.Thus the voting strategy based on vn;k is a complete solution to Puzzle 3.3.1. Approximating other symmetric functionsIn general, Lemma 2.6 suggests that the di�culty of approximating a symmetric function increasesas the number of sign changes increases. Unfortunately, the bound of Theorem 2.2 is not tightfor symmetric functions in general. Perhaps surprisingly, it is not even the case that for everysymmetric function the best approximation of given degree is symmetric. Consider the functionon four bits which is positive only when exactly two of its input bits are 1. This symmetricfunction changes sign twice, and the best symmetric linear approximation, which matches one ofthe function's sign changes, fails on �ve inputs. However, the asymmetric polynomial 2(x1 � 1)�(x2 + x3 + x4) fails on only four inputs: when x1 = �1 and two of the other inputs are 1 (threecases) and when x1 = 1 and all of the other inputs are �1 (one case.)2There is a curious contrast here. If we wish to compute a symmetric function exactly, Lemma2.6 shows that we can do so with the lowest possible degree using a symmetric polynomial. Butallowing the polynomial to be incorrect on some inputs breaks symmetry. It is an open questionwhether the symmetric functions do share any property which would yield a tighter lower boundthan that of Theorem 2.2.2One can verify by exhaustive search that no degree 1 approximation fails on fewer inputs.16

4. PPA 6= PSPACEA for random ABennet and Gill [3] assert that PPA 6= PSPACEA with probability 1 relative to a random oracleA. Unfortunately, their proof has a bug [1] and the question of separating the two classes relativeto a random oracle has remained open. Fortunately, the lower bound of Theorem 2.2 gives us away to show that the two classes are in fact distinct.Theorem 4.1 PPA 6= PSPACEA for random A with probability 1.Proof: Let ODDA be the set of all x such that an odd number of strings of length jxj are in A.Clearly ODDA is in PSPACEA. Now suppose that MA is a probabilistic oracle machine whichmakes at most jxjc (c constant) oracle queries on any input x. We can convert the computation ofMA on a particular input x to a voting strategy in which each voter represents all computation pathswhich query a particular set of strings of size jxjc, and the vote cast is the net di�erence betweenthe number of paths which decide 0 and the number of such paths which decide 1. The resultingvoting strategy thus attempts to compute the parity of n = 2jxj bits with each voter seeing at mostjxjc = O(logn) bits. By Theorem 2.2 it must fail with probability at least 2�nPn=2�O(logn)i=0 �ni�;for n su�ciently large (e.g., when jxjc < pn) this value will always be larger than some positiveconstant �.Since the choice of MA and c were arbitrary, we know that any probabilistic polynomial-timeoracle machine will fail to compute ODDA(x) for any typical x with probability at least �. Lemma1 from [3] shows that this property is su�cient to prove that ODDA =2 PPA with probability 1.17

5. Relation to Bounded-Depth CircuitsIn this section we describe a method for constructing from an AC0 circuit with a majority gate atits root a voting polynomial which closely approximates it. The construction is based on that ofBeigel, Reingold, and Spielman [2]. The following key lemma is a simpli�cation of their Lemma 5.Note that in this construction bits will be represented by the real values 0 and 1.Lemma 5.1 For any � > 0 and any distribution of the inputs there exists a degree O(log(1=�) log(n))polynomial on x1 : : : xn which computes their OR, Wx, with probability at least 1� �.Proof: We will use a stripped-down version of a theorem of Valiant and Vazirani [17]. Let S0 bethe set of variables. For each i � logn+ 1, let Si be constructed randomly from Si�1 by removingeach variable with probability 1=2. Let pi = Pxj2Si xj ; clearly pi is a degree 1 polynomial in x.Now consider some input x in which some xj is nonzero. Then one of the following cases musthold:1. pi > 1 for all i. This occurs with probability at most n2�(logn+1) = 1=2.2. p0 = 1.3. There is some i such that pi > 1 but pi+1 � 1. Now for any j, the probability that pj+1 = 0given pj is 2�pj and the probability that pj+1 = 1 is pj2�pj ; hence the probability thatpj+1 = 1 conditioned on pj+1 � 1 is pj=(pj + 1). Thus for any i where pi > 1 and pi+1 � 1,pi+1 = 1 with probability at least 2=3. 18

Since one of the latter two cases occurs with probability at least 1=2, the probability that somepi = 1 is at least 1=3.Now let p = Qlogn+1i=0 (1� pi); p is thus a randomly-chosen polynomial of degree O(logn). If allthe xi are 0, each pi is 0 and p will be 1. Otherwise, some pi will be 1 with probability 1=3, andp will be 0. Thus for each input x, 1 � p computes Wx with probability 1=3. The probability ofcorrectness can be ampli�ed to 1� � by using 1� p0 where p0 is the product of O(log(1=�)) di�erentp's, each generated independently of the others; 1� p0 has degree O(log(1=�) log(n)). Now, since arandomly-chosen 1� p0 computes Wx with probability at least 1� � for any individual x, for eachinput distribution there must exist some �xed 1� p0 which computes Wx with probability at least1� � when x is randomly chosen from that distribution.Corollary 5.2 For any � > 0 and any function f computed by an AND-OR circuit of depth d andsize s, there exists a polynomial of degree O((log(s=�) log(s))d) which computes f for all but 2n�inputs.Proof: Replace each AND gate in the circuit with an OR gate whose inputs and output arenegated. Consider the distribution of the inputs of each gate when the inputs of the circuit arechosen uniformly at random; by Lemma 5.1, using s as an upper bound on the number of inputs tothe gate, there exists some polynomial of degree O(log(s=�) log(s)) which computes the value of thegate with probability at least 1� �=s when the inputs to the circuit are generated uniformly. Thecomposition of these polynomials is a polynomial of degree O((log(s=�) log(s))d) which computesf with probability at least 1 � � when the inputs are generated uniformly, i.e. which computes ffor all but 2n� inputs. 19

Lemma 5.3 Let � > 0 and let f be a function computed by an AND-OR circuit of depth d + 1and size s with a single majority gate at the root. Then there exists a voting polynomial of degreeO((log(s2=�) log(s))d) which approximates f with at most 2n� errors.Proof: Suppose that the majority gate has k inputs; for the subcircuit generating the i-th input useCorollary 5.2 to construct a polynomial pi of degree O((log(sk=�) log(s))d) which computes that in-put for all but 2n�=k inputs. Then sgnPki=1 pi�k=2 is a polynomial of degree O((log(sk=�) log(s))d)which computes f for all but at most 2n� inputs. But since k is bounded by s we may rewrite thedegree as O((log(s2=�) log(s))d).An immediate consequence of the preceding Lemma and Theorem 2.2 is a lower bound on thesize of a bounded-depth circuit with at most one majority gate which computes parity:Lemma 5.4 If a depth d + 1 AND-OR circuit with majority gate at its root computes parity, itssize is 2
(n1=4d).Proof: Suppose the size of the circuit is s. Then by Lemma 5.3 there exists a voting polynomial pof degree O((log(4s2) log(s))d) = O(log(s)2d) which approximates parity with at most 2n=4 errors.But by Theorem 2.2 the degree of p must then be
(pn), and thus s = 2
(n1=(4d)).Corollary 5.5 If a depth d+ 1 AND-OR circuit containing one majority gate (not necessarily atthe root) computes parity, its size is 2
(n1=4(d+3)).Proof: Transform the circuit into a circuit with a majority gate at its root as follows. Let C bethe circuit, and let C0 and C1 be the circuits obtained by replacing the majority gate m in C with20

a constant 0 or 1, respectively. Send the output of circuits which compute C0, C1, and the inputsto m into a circuit with a majority gate m0 at its root which acts as follows:� If C0 = C1, set all the inputs to m0 to C0.� If C0 = 0 and C1 = 1, set the inputs to m0 to the values of the inputs to m. Thus if m wouldhave computed the value x, m0 will compute the same value x, which gives the correct answerfor C since Cx = x.� If C0 = 1 and C1 = 0, set the inputs to m0 to the negations of the inputs to m. Thus if mwould have computed the value x, m0 will compute x, which gives the correct answer for Csince in this case Cx = x.This combining circuit can be built in depth 3; thus the depth of the entire new circuit is d+4 andits size is easily seen to be at most 3s+O(n) where s is the size of the original circuit. The resultfollows.6. AcknowledgmentsBert Enderton supplied the slick proof in Solution 1B of puzzle 1. We would like to thank DavidApplegate, Bob Floyd, Simon Kasif, Dick Lipton, and Gabor Tardos for useful discussions.
21

References[1] Richard Beigel. Relativized counting classes: Relations among thresholds, parity, and mods.Journal of Computer and System Sciences, 42(1):76{96, February 1991.[2] Richard Beigel, Nick Reingold, and Daniel Spielman. The perceptron strikes back. In Pro-ceedings of the 6th Annual Conference on Structure in Complexity Theory, pages 286{291,1991.[3] Charles H. Bennett and John Gill. Relative to a random oracle A, PA 6= NPA 6= co-NPA withprobability 1. SIAM Journal on Computing, 10(1):96{113, February 1981.[4] Jehoshua Bruck. Harmonic analysis of polynomial threshold functions. SIAM Journal onDiscrete Mathematics, 3(2):168{177, May 1990.[5] Jehoshua Bruck and Roman Smolensky. Polynomial threshold functions, AC0 functions andspectral norms. In Proceedings of the 31st Annual Symposium on Foundations of ComputerScience, pages 632{641, 1990.[6] Va�sek Chv�atal. Linear Programming. W.H. Freeman and Company, 1983.[7] M. Furst, J. Saxe, and M. Sipser. Parity, circuits and the polynomial time hierarchy. Mathe-matical Systems Theory, 17:13{27, 1984.[8] Craig Gotsman. On boolean functions, polynomials, and algebraic threshold functions. Un-published manuscript.[9] Nathan Linial, Yishay Mansour, and Noam Nisan. Constant depth circuits, fourier transform,and learnability. In Proceedings of the 30th Annual Symposium on Foundations of ComputerScience, pages 574{579, 1989. 22

[10] Marvin L. Minsky and Seymour Papert. Perceptrons. MIT press, Cambridge, MA, 1988.Expanded Edition. The �rst edition appeared in 1968.[11] Ramamohan Paturi and Michael E. Saks. On threshold circuits for parity. In Proceedings ofthe 31st Annual Symposium on Foundations of Computer Science, pages 397{404, 1990.[12] A.A. Razborov. Lower bounds for the size of circuits of bounded depth with basis f^;�g.Math. notes of the Academy of Sciences of the USSR, 41(4):333{338, September 1987.[13] Alexander Schrijver. Theory of Linear and Integer Programming. John Wiley and Sons., 1986.[14] Roman Smolensky. Algebraic methods in the theory of lower bounds for boolean circuitcomplexity. In Proceedings of the 19th Annual ACM Symposium on Theory of Computing,pages 77{82, 1987.[15] Erich Stiemke. �Uber positive L�osungen homogener linearer Gleichungen. Mathematische An-nalen, 76:340{342, 1915.[16] Jun Tarui. Randomized polynomials, threshold circuits, and the polynomial hierarchy.Manuscript, August 1990.[17] L. G. Valiant and V.V. Vazirani. NP is as easy as detecting unique solutions. In Proceedingsof the 17th Annual ACM Symposium on Theory of Computing, 1985.[18] Andrew Yao. Separating the polynomial-time hierarchy by oracles. In Proceedings of the 26thAnnual IEEE Symposium on Foundations of Computer Science, pages 1{10, 1985.
23

