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Abstract

We consider the problem of approximating a Boolean function f : {0,1}" — {0, 1} by the
sign of an integer polynomial p of degree k. For us, a polynomial p(z) predicts the value of f(x)
if, whenever p(z) > 0, f(z) = 1, and whenever p(z) < 0, f(#) = 0. A low-degree polynomial
p is a good approximator for f if it predicts f at almost all points. Given a positive integer
k, and a Boolean function f, we ask, “how good is the best degree k approximation to f?”
We introduce a new lower bound technique which applies to any Boolean function. We show
that the lower bound technique yields tight bounds in the case f is parity. Minsky and Papert

[10] proved that a perceptron can not compute parity; our bounds indicate exactly how well
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a perceptron can approzimate it. As a consequence, we are able to give the first correct proof
that, for a random oracle A, PP4 is properly contained in PSPACEA. We are also able to prove
the old AC? exponential-size lower bounds in a new way. This allows us to prove the new result
that an ACY circuit with one majority gate cannot approximate parity. Our proof depends only

on basic properties of integer polynomials.

1. Introduction

Linial, Mansour, and Nisan [9]; Tarui [16]; and Beigel, Reingold, and Spielman [2] have shown that
polynomial-size, bounded-depth circuits can be closely approximated as the sign of a low-degree
polynomial over the rationals. This result closely ties the class AC? [7, 18] to the class of low-
degree polynomials over the rationals, much as previous work by Razborov [12] and Smolensky [14]
ties AC? to the class of low-degree polynomials over finite fields. Unfortunately, the lower bound
techniques known for polynomials over finite fields do not generalize to the signs of a polynomials
over an ordered field; and despite considerable recent interest in this latter representation [4, 5,
11, 8], to date few techniques have been developed which yield lower bounds on the degree of such

polynomials.

In this paper we describe a result which relates the degree of a polynomial over the rationals to its
ability to accurately approximate particular Boolean functions. Qur bounds are tight in the case of
the parity function. In the language of perceptrons [10], this shows the maximum number of inputs
on which a perceptron of order k can output parity. Much as similar results for polynomials over
finite fields yield lower bounds for circuits containing MOD,, gates, this result yields lower bounds
for circuits of AND and OR gates with unbounded fan-in and a single threshold gate. While this

class of circuits is somewhat limited compared to more general classes of threshold circuits, it is



still surprisingly powerful. This can be seen by considering a few simple but instructive “puzzles”.
These demonstrate that there are cases where the subcircuits which are the inputs of the threshold
gate are uncorrelated with the function that the full circuit approximates, yet the full circuit can

manage to compute the function for all but a small fraction of the inputs.

1.1. Voting Puzzles

Puzzle 1:

Let n be an odd number of women. Let each have a uniformly chosen random bit
on her forehead. Each person can see all the bits except her own. They wish to vote on
the parity of the bits. No communication between the voters is allowed. More precisely,
each person casts a private vote (1 or 0); the outcome of the election is the value which
the majority cast. The n women are said to win the election in the case when the
outcome is equal to the parity of the n bits. What is a collective strategy for the voters

which gives them a high probability of winning the election?

Note that in this puzzle, no individual voter ever learns any information about the parity of the
bits, and each voter will be wrong exactly half of the time. It is tempting to believe that the voters
as a group will be able to win only half the time as well. Surprisingly, the voters can manage to

win with high probability with a very simple strategy.

Solution 1A:
If a voter sees as many 0’s as 1’s, she casts a vote of 0. Otherwise, she assumes that
the bit on her forehead is the same as the majority of the bits she sees; she then casts

a vote consistent with this assumption.



In the case where the number of 0’s and 1’s differs by more than one, each person will vote
assuming her bit is the same as the majority of bits. The majority of women are correct in
assuming that the bit on their head is the same as the bit which is in the majority— thus the

majority of votes cast are for the parity of the n bits. The voters win the election.

In the case where the number of 0’s is exactly one more than the number of 1’s, the majority

of women will vote 0. Zero is the correct answer. The voters win the election.

In the remaining case where the number of 0’s is exactly one less than the number of 1’s, the

majority of women will again vote 0. This value is wrong. The voters lose the election. This case

occurs in (n%) of 2" cases, i.e. with probability 0(\1/5).

The voters thus have a 1 — ﬁ chance of winning the election, which is much better than 50%.

Though the above strategy is optimal over all strategies where the voters behave identically, it

is not the optimal solution over unrestricted strategies.

Solution 1B:

For convenience, assume 7 is of the form 2¥ — 1. Divide the voters into k groups
numbered from 0 to k — 1, where group i contains 2° voters. Further divide the voters
in each group except the first into two equal-sized groups: the 0-half and 1-half. Denote
the parity of the forehead bits in group ¢ by P;. The strategy of a voter in the b-half of
group j is given as follows: If there exists an ¢« < j where F; = 0, vote b. If not, assume

P; = 0 and vote accordingly.

We argue that in all the cases where there exists a j such that P; = 0 the above strategy wins
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the election. Let j be the lowest numbered group such that P; = 0. Each voter in groups numbered
i < j voted incorrectly because they falsely assumed P; = 0. This accounts for 2/ — 1 incorrect
votes. Each voter in group j votes correctly. There are 27 voters in group j: thus there is one more
correct vote than incorrect vote cast among the votes of the first j groups. The voters in the 0-

and 1-halves of each higher group cancel each other out and have no effect on the election.

The remaining case, where P; = 1 for all j, occurs with probability 1/2¥ = 1/(n + 1). In this
case the voters all vote incorrectly. Thus the above strategy wins with probability 1 — 1/(n + 1),

which is better than the strategy presented in solution 1A.

Now, given any strategy, tallying the votes over all possible assignments will always count as
many correct votes as incorrect votes, since each voter is correct only half of the time. We conclude
that solution 1B is optimal, because the incorrect votes are optimally distributed. When the voters

win, they win by exactly one vote; when they lose, they all vote incorrectly.

Let’s generalize the puzzle a little.

Puzzle 2:

The voters have moved to Chicago, a city famous for its lax election laws. Each
voter can now cast as many votes as she wants! Fix the other parameters as before.
Once again, what is a collective strategy for the voters which has a high probability of

their winning the election?

Solution 2:

Have a each voter behave as did a whole group in solution 1B. Number the voters



from 0 to n — 1. The strategy for voter j is as follows: If a lower numbered voter has a
0 on her forehead, she abstainsn from voting (votes 0 times). Otherwise, she assumes

she has a 0 on her forehead and cast 27 votes accordingly.

The analysis is as in 1B except that we now have n groups. The probability of winning is
1—1/2". This is clearly optimal, for across all assignments as many incorrect votes as correct votes

must be cast. Thus there must be one assignment on which the voters are wrong.

Puzzle 3:

Let 5 be a set of n uniformly chosen random bits. This time there are (}) voters,
each of whom sees a distinct subset of 5 of size k. The voting is Chicago style, each
voter casting an integer vote. If the sum of the votes is positive, then the outcome of
the election is 0. If the sum is negative, the outcome is 1. If the sum is 0, the outcome is
undefined. Again, the voters wish to decide parity. Given n and k, what is a collective

strateqy for the voters which maximizes their probability of winning the election?

When k£ = n — 1, Puzzle 3 reduces to Puzzle 2. For general k, the puzzle can be restated as a

natural question about the subject of this paper: voting polynomials.

1.2. Voting Polynomials

If we are given a voting strategy in which each voter sees at most k bits, we can represent each
voter’s net vote (counting a vote for b as (—1)*) by a polynomial in the k bits that it sees. Thus

the total vote can be computed as a polynomial of degree at most k in all of the input bits, and
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determining the winner of an election consists of taking the sign of this polynomial. Conversely,
given a degree-k polynomial with integer coefficients, we can assign each term to a voter who can
see the bits on which its value depends; to determine its vote, each voter computes the sum of all
terms it has been assigned. Thus there is an equivalence between computing a Boolean function
as the result of an election with limited information and computing it as the sign of a low-degree
polynomial with rational coefficients. For this reason we refer to the latter representation as a

voting polynomial.

Voting polynomials are a special kind of perceptron [10], a circuit which computes a weighted
threshold of a set of arbitrary predicates. The order of a perceptron is the maximum number
of input bits available to any one predicate. An order k perceptron is essentially the same as
what we have been calling a voting strategy in which each voter sees at most k& bits. That voting
strategies compute the same functions as voting polynomials tells us that when considering order
k perceptrons we can limit ourselves to ones in which each predicate is the parity of a subset of the
input, a critical restriction which allows us to apply algebraic techniques to the question of what

functions a perceptron can approximate well.

To define the computation of voting polynomials more formally, we say that a function p
strongly represents' a Boolean function f just in case sgn(p(z)) = f(z) for all input vectors
xz. Though our terminology is unusual the underlying concept is a standard one; see for example
[4, 5, 8]. The strong degree of f, written ds(f), is the least k for which there exists a degree-k
polynomial which strongly represents f. Henceforth, when we say a polynomial p represents f we
mean it strongly represents f. For example, majority is represented by the degree 1 polynomial

Yaz; —n/2. Hence, d(MAJ) = 1.

1 As distinct from weakly represents, introduced in Section 2
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For the most part we are interested not so much in computing functions exactly as in approxi-
mating them. We say that a polynomial p approximates a function f with e errors if the number
of inputs « on which sgn(p(z)) # sgn(f(z)) is no greater than e. Our central concern will be to
determine for various functions the minimum number of errors in their best approximations by
polynomials of fixed degree. This is equivalent to determining how well a set of voters each of
whom sees only a bounded-size subset of the inputs can compute these functions. For example, to

know how well a degree k polynomial can approximate parity is to know the answer to “puzzle” 3.

We will answer this particular question in Section 3. First, however, it is necessary to state a

few definitions.

1.3. Boolean Functions

A Boolean function on n variables will be represented as a function from {1, —1}" to {1, —1}, where
each bit b is replaced by the real value (—1)5. In this representation the parity function on a set of

variables 1,9, ... is simply the monomial Hle x;.

The set of all real-valued functions on {1,—1}" can be thought of as a 2"-dimensional vector
space F,, where (f+g¢)(z) = f(z)+g¢g(z) and (af)(x) = af(x) for any functions f and g and scalar
a. A natural basis for this vector space is the set of functions which take on the value 1 on exactly

one possible input and take on the value 0 for all others; this basis suggests the inner product

f9= er{l,—l}" f(@)g(x).

An alternative basis can be constructed from the monomials ¢g(2) = [[;cg #i. Because 27 = 1,

the function obtained by taking the product of any two monomials ¢g and ¢g is itself a mono-



mial, ¢gagr. This fact allows one to show that any two distinct monomials are orthogonal, for
Y os(x)psi(x) = 3 dsas(x), and if S A S is nonempty, psas (@) will be —1 for exactly half of
all inputs z. Since the number of monomials is precisely 2, the dimension of F),, the monomials

form an alternative orthogonal basis for the space.

A function is a polynomial of degree k if it can be expressed as a linear combination of
monomials over sets of size k or less. The set of all polynomials Py of degree < k is a subspace of

F,, of dimension Zf:o (). It should be clear that F,, = P,.

A function is symmetric if it is invariant under all permutations of its input variables, or,
looking at equivalence classes, if f(z) = f(2’) whenever Y% 2, = > " 2f. We will often find
it convenient to treat a symmetric polynomial p in ...z, as polynomial in the single integer
quantity > 7 q @;. If we restrict ourselves to polynomials of degree at most n, this latter form is
unique and can be obtained by polynomial interpolation. It is not difficult to see that the degree

of the polynomial will be the same in either form.

2. Lower Bounds on Approximations

In this section we describe a property of Boolean functions which partially characterizes how difficult

they are to approximate.

Relax the conditions for representing a function as follows: let p weakly represent [ just
in case p is not the constant zero function, and sgn(p(z)) = sgn(f(«)) for all  where p(z) is
nonzero. In electoral terms, those values x where p(z) = 0 correspond to situations in which the

voters “deadlock”, delivering a majority to neither value; the difference between strong and weak



representation is that in the latter such deadlocks are allowed, so long as the majority casts the

correct vote in those situations where deadlock does not occur.

We can define the weak degree of a function f, d,(f), analogously to its strong degree, as
the least k£ for which there exists a degree k polynomial which weakly represents f. This notion
is useful because for functions of known weak degree it is possible to place a lower bound on the
distance to any low-degree polynomial approximation. The method is to show that any function p
which closely approximates a function f can be converted into a weak representative for f without
substantially increasing its degree. We do so by multiplying p by a low-degree polynomial ¢ which
sends all the inputs « for which sgn(p(z)) # sgn(f(z)) to 0 without changing the sign of any input

not sent to 0. The following lemma tells us when we can find such a function.

Lemma 2.1 Let S be a set of inputs such that |S| < S5 (7). Then there exvists a degree 2k

polynomial q such that ¢ # 0, g(x) > 0 for all z, and q(z) =0 for all z € 5.

Proof: Any degree k polynomial has Ef:o (7) coefficients, and its value on any particular input is a

linear combination of those coeflicients. Thus if r stands for a degree k& polynomial, the constraints

n

r(z) = 0 for all  in S are a homogeneous system of |§| linear equations in Y%, (") variables,

and have a non-trivial solution since |§| < S35, (). But then ¢ = r? is a non-trivial degree 2k

polynomial that is 0 on 5 and non-negative elsewhere. il

The full result is stated in the following theorem.

Theorem 2.2 If p is a degree k polynomial and f any Boolean function. Let S be the set of all x
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for which sgn(p(x)) # sgn(f(z)). Then if k < d,(f),

degf)—k—1J

2

n
151> > ( )
=0 ¢
Proof: Suppose otherwise; then by the preceding lemma there is a non-trivial degree d,,(f)—k—1
polynomial ¢ which is 0 on 5 and non-negative elsewhere. Now, pg weakly represents f, as for
any z either pg(z) = 0 or 2 ¢ S and sgn(pg(z)) = sgn(p(z)) = sgn(f(z)). But then pg is a weak

representative of f with degree d,,(f) — 1, a contradiction. W

2.1. Computing Weak Degrees

Unfortunately, it is not trivial to determine the weak degree of an arbitrary function. However,

there are functions whose weak degrees are easily determined. One such is the parity function:
Lemma 2.3 The weak degree of the parity function ¢ is n.

Proof: Suppose p weakly represents parity. Then p- ¢ > 0, since each term in ) p(a)¢(z) is
nonnegative and at least one term is nonzero. But parity is orthogonal to all other monomials,

thus if pisin Pr_1,p-¢=10.1
The parity function is central to the connection between strong and weak degrees. We will first

need a small technical lemma which is a disguised form of an old result in the theory of linear

inequalities:
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Lemma 2.4 Let S be a linear subspace of the space of real-valued functions on {1,—1}", and let
f be a function from {1,—1}" to {1,—1}. Then there exists some p € S which strongly represents

f if and only if there does not exist any nonzero q € S+ such which weakly represents f.

Proof: Let ¢ be the linear transformation which maps ¢ to fg. Then o(f) is the constant 1 and,
since o is easily seen to be an isometry, o(5)* = ¢(S+). Thus we may assume without loss of

generality that f is 1.

Regard S as the set of solutions p to Ap = 0 for some appropriate matrix A; then S* is the row
space of A consisting of all vectors of the form ¢ = yA. We may thus recast the original statement
as: there exists p such that Ap = 0 and p > 0 if and only if there does not exist ¢ = yA such that

g # 0 and ¢ > 0. This restatement is Stiemke’s Transposition Theorem [15] (see [13, 6].) I

We may now show the connection between strong and weak degrees.

Lemma 2.5 For any function f on n bits, ds(f) + dw(f¢) = n.

Proof: Suppose p has degree d,( f) and strongly represents f and ¢ has degree d,,( f¢) and weakly
represents f¢. Then pg has degree at most ds(f) + dw(f¢) and weakly represents parity. Hence

ds(f) + dw(f¢) > n by Lemma 2.3.

To show d( f)+dw(f¢) < n, suppose that ds(f) = k. Then there is no degree k—1 representative
of f, so the subspace Pr_y of the space of all real-valued functions on n bits contains no p such
that p(z)sgn(f(x)) > 0 for all . But then Lemma 2.4 tells us that there is a nonzero ¢ in P{

such that ¢(z)sgn(f(x)) > 0 for all #. Since P, is spanned by the monomials of degree k and
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higher, when we multiply ¢ by parity we get a polynomial consisting of monomials of degree n — k

and lower which is a weak representative for f¢. Thus d,(f¢) < n—k and ds(f)+ dyu(fP) <n. B

2.1.1. Symmetric Functions

Using Lemma 2.5 it is straightforward to characterize both the weak and strong degree of any

symmetric function.

Lemma 2.6 If f is a symmetric function, then ds(f) and d,(f) are both equal to the number of

times f changes sign when expressed as a univariate function iny | x;.

Proof: Clearly if f changes sign only & times there is a degree-k polynomial which strongly (and,
a fortiori, weakly) represents f. Furthermore, f¢ changes sign n — k times so there is a degree
n —k polynomial which represents f¢. Thus d,,(f) < k but by Lemma 2.5 d,,(f) = n—d,(f¢) > k.

Thus d(f) = k, and since dy(f) < ds(f) < k, ds(f)=Fk. 1

2.1.2. Random Functions

What is the expected weak degree of a randomly-chosen function? Combining Lemma 2.5 and
the fact that d,(f) < ds(f) we can easily see that the average weak degree is at most n/2. We
conjecture that both the strong and weak degrees are in fact exactly n/2 (when n is even) for
almost all functions. This conjecture is supported by empirical evidence for small values of n, but
we have been unable to prove a lower bound on the weak degree of a random function stronger

than the O(n/logn) bound implied by Gotsman [8].
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3. Approximating Parity

Suppose that we wish to approximate the parity function on n bits with a polynomial of degree k
(or, equivalently, to construct a solution to Puzzle 3; or to approximate parity with a perceptron
of order k.) Theorem 2.2 tells us that any degree k polynomial must differ in sign from parity on

at least ZZL(:%_k_l)/ZJ (") inputs. How close to this bound can we get?

One approach we might take is to approximate parity with a symmetric function, expressed
as a univariate polynomial v, in )" ;. As we are only concerned with the sign of v, ; our only
relevant decision is how to place its k zeroes to maximize the number of inputs z on which it
correctly predicts parity. Since s is binomially distributed we are likely to be best off “spending”

zeroes to get the correct values when s is close to 0.

This rule of thumb suggests the following plausible definition for v, ;. To simplify the analysis
we express the polynomial in the variable s = (1 — 2;)/2, the count of the number of times —1

appears in the input vector, making the parity of « simply (—1)*. Thus v, x(s) is:

(—1)ln=8)/2] kﬁ Q” - ’“J g bl )
i 5 {2 5 S

n—k

5 J, and the product itself places

Here the term before the product sets the sign when s = {

zeroes to set the sign correctly for all values in the range Vz;kJ <s < Vz;kJ + k. Outside of this
range v, , will predict parity correctly on roughly half the inputs. It is not difficult to see that v, j

can be expanded into a polynomial of degree k on the inputs zy...2,.

What is more difficult to see is how well v, ; predicts parity. The first step is to write an

expression for the number of inputs z on which v, has the “wrong” sign in the outer regions of
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the distribution of s:

; (L(n—k)/Qj ~1 —Qi)

(L(n -k)2)+k+1+ Qi)

_'_
91

When n — k is odd, an application of the symmetry identity (7;) = (nﬁz) causes the terms in the
summation on the right to exactly fill in the “gaps” in the summation on the left, leaving (after a

change of the summation variable) ZZL(:%_M/QJ ("), which is just the lower bound Zi(:%_k_l)/zj ")

7 7

since n — k is odd. Thus in this case v, approximates parity optimally.

The case where n — k is even is slightly more complicated. Here, an application of symmetry

yields:

Applying the Pascal’s triangle identity expands each term in this summation into two terms in

Ln=R)/2]=1 7
2 2 () (1)

=0

the following summation:

|(n—k—2)/2]

which is precisely twice the lower bound Zz(:o (”:1) on the number of inputs on which
any degree k polynomial on n — 1 bits must disagree with the parity of those bits. This pleasant
coincidence shows that (1) is in fact a lower bound on the number of errors of any degree k
approximation to parity on n inputs, for if some f had fewer errors, at least one of the degree k
polynomials on n — 1 bits obtained by fixing z, in f to 1 or —1 would approximate parity on the

remaining n — 1 bits better than allowed by the lower bound of Theorem 2.2.

We have just completed the proof the following theorem:
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Theorem 3.1 The symmetric polynomial v, on n inputs approximates parity optimally for all

values of n and k.

Thus the voting strategy based on v, j is a complete solution to Puzzle 3.

3.1. Approximating other symmetric functions

In general, Lemma 2.6 suggests that the difficulty of approximating a symmetric function increases
as the number of sign changes increases. Unfortunately, the bound of Theorem 2.2 is not tight
for symmetric functions in general. Perhaps surprisingly, it is not even the case that for every
symmetric function the best approximation of given degree is symmetric. Consider the function
on four bits which is positive only when exactly two of its input bits are 1. This symmetric
function changes sign twice, and the best symmetric linear approximation, which matches one of
the function’s sign changes, fails on five inputs. However, the asymmetric polynomial 2(z; — 1) —
(23 4+ 23 4 24) fails on only four inputs: when z; = —1 and two of the other inputs are 1 (three

cases) and when 7 = 1 and all of the other inputs are —1 (one case.)?

There is a curious contrast here. If we wish to compute a symmetric function exactly, Lemma
2.6 shows that we can do so with the lowest possible degree using a symmetric polynomial. But
allowing the polynomial to be incorrect on some inputs breaks symmetry. It is an open question
whether the symmetric functions do share any property which would yield a tighter lower bound

than that of Theorem 2.2.

20ne can verify by exhaustive search that no degree 1 approximation fails on fewer inputs.
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4. PP# # PSPACE" for random A

Bennet and Gill [3] assert that PP# # PSPACE” with probability 1 relative to a random oracle
A. Unfortunately, their proof has a bug [1] and the question of separating the two classes relative
to a random oracle has remained open. Fortunately, the lower bound of Theorem 2.2 gives us a

way to show that the two classes are in fact distinct.

Theorem 4.1 PP4 + PSPACE? for random A with probability 1.

Proof: Let ODD* be the set of all z such that an odd number of strings of length |z| are in A.
Clearly ODD“ is in PSPACE®. Now suppose that M# is a probabilistic oracle machine which
makes at most |z|° (c constant) oracle queries on any input . We can convert the computation of
M on a particular input z to a voting strategy in which each voter represents all computation paths
which query a particular set of strings of size |2|°, and the vote cast is the net difference between
the number of paths which decide 0 and the number of such paths which decide 1. The resulting
voting strategy thus attempts to compute the parity of n = 21l bits with each voter seeing at most
|z|° = O(logn) bits. By Theorem 2.2 it must fail with probability at least 27" Z?:/g_o(logn) (")

for n sufficiently large (e.g., when || < y/n) this value will always be larger than some positive

constant e.

Since the choice of M# and ¢ were arbitrary, we know that any probabilistic polynomial-time
oracle machine will fail to compute ODDA(QC) for any typical 2 with probability at least e. Lemma

1 from [3] shows that this property is sufficient to prove that ODD# ¢ PP# with probability 1. i
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5. Relation to Bounded-Depth Circuits

In this section we describe a method for constructing from an ACY circuit with a majority gate at
its root a voting polynomial which closely approximates it. The construction is based on that of
Beigel, Reingold, and Spielman [2]. The following key lemma is a simplification of their Lemma 5.

Note that in this construction bits will be represented by the real values 0 and 1.

Lemma 5.1 Foranye > 0 and any distribution of the inputs there exists a degree O(log(1/¢€)log(n))

polynomial on xy ...z, which computes their OR, \/ x, with probability at least 1 — €.

Proof: We will use a stripped-down version of a theorem of Valiant and Vazirani [17]. Let Sy be
the set of variables. For each ¢ < logn + 1, let 5; be constructed randomly from 5;_; by removing
each variable with probability 1/2. Let p; = Zx]eSi x;; clearly p; is a degree 1 polynomial in z.
Now consider some input z in which some z; is nonzero. Then one of the following cases must

hold:

1. p; > 1 for all 4. This occurs with probability at most n2-(egn+1) = 1/2.
2. Po = 1.

3. There is some ¢ such that p; > 1 but p;41 < 1. Now for any j, the probability that p;41 =0
given p; is 27P7 and the probability that p;41 = 1 is p;27%; hence the probability that
pj4+1 = 1 conditioned on p;4q < 11is p;/(p; + 1). Thus for any ¢ where p; > 1 and p;4q < 1,

pir1 = 1 with probability at least 2/3.
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Since one of the latter two cases occurs with probability at least 1/2, the probability that some

p; = 1is at least 1/3.

Now let p = Hi»igonﬂ(l — p;); p is thus a randomly-chosen polynomial of degree O(logn). If all
the x; are 0, each p; is 0 and p will be 1. Otherwise, some p; will be 1 with probability 1/3, and
p will be 0. Thus for each input 2, 1 — p computes \/ z with probability 1/3. The probability of
correctness can be amplified to 1 — € by using 1 — p’ where p’ is the product of O(log(1/¢)) different
p’s, each generated independently of the others; 1 — p’ has degree O(log(1/¢)log(n)). Now, since a
randomly-chosen 1 — p’ computes \/ x with probability at least 1 — ¢ for any individual z, for each
input distribution there must exist some fixed 1 — p’ which computes \/ # with probability at least

1 — ¢ when z is randomly chosen from that distribution. l

Corollary 5.2 For any ¢ > 0 and any function f computed by an AND-OR circuit of depth d and
size s, there exists a polynomial of degree O((log(s/e)log(s))?) which computes f for all but 2"e

inputs.

Proof: Replace each AND gate in the circuit with an OR gate whose inputs and output are
negated. Consider the distribution of the inputs of each gate when the inputs of the circuit are
chosen uniformly at random; by Lemma 5.1, using s as an upper bound on the number of inputs to
the gate, there exists some polynomial of degree O(log(s/¢)log(s)) which computes the value of the
gate with probability at least 1 — ¢/s when the inputs to the circuit are generated uniformly. The
composition of these polynomials is a polynomial of degree O((log(s/€)log(s))?) which computes
f with probability at least 1 — ¢ when the inputs are generated uniformly, i.e. which computes f

for all but 2"¢ inputs. i

19



Lemma 5.3 Let € > 0 and let f be a function computed by an AND-OR circuit of depth d + 1
and size s with a single majority gate at the root. Then there exists a voting polynomial of degree

O((log(s?/€)log(s))?) which approzimates f with at most 2"¢ errors.

Proof: Suppose that the majority gate has k inputs; for the subcircuit generating the ¢-th input use
Corollary 5.2 to construct a polynomial p; of degree O((log(sk/¢)log(s))?) which computes that in-
put for all but 2%¢/k inputs. Then sgn Y%, p;—k/2 is a polynomial of degree O((log(sk/¢)log(s))?)
which computes f for all but at most 2"¢ inputs. But since k is bounded by s we may rewrite the

degree as O((log(s?/¢)log(s))%). I

An immediate consequence of the preceding Lemma and Theorem 2.2 is a lower bound on the

size of a bounded-depth circuit with at most one majority gate which computes parity:

Lemma 5.4 If a depth d+ 1 AND-OR circuit with majority gate at its root computes parity, its

. . 1/4d
size is 29(n / ),

Proof: Suppose the size of the circuit is s. Then by Lemma 5.3 there exists a voting polynomial p
of degree O((log(4s%)log(s))?) = O(log(s)??) which approximates parity with at most 2" /4 errors.

But by Theorem 2.2 the degree of p must then be Q(y/n), and thus s = 20(n!/D) g

Corollary 5.5 If a depth d+ 1 AND-OR circuit containing one majority gate (not necessarily at

the root) computes parity, its size is QU n /4(d+2))

Proof: Transform the circuit into a circuit with a majority gate at its root as follows. Let C' be

the circuit, and let Cy and € be the circuits obtained by replacing the majority gate m in C' with
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a constant 0 or 1, respectively. Send the output of circuits which compute Cy, (1, and the inputs

to m into a circuit with a majority gate m’ at its root which acts as follows:

o If Cy = (q, set all the inputs to m’ to Cj.

o If Cy =0 and (1 = 1, set the inputs to m’ to the values of the inputs to m. Thus if m would
have computed the value z, m’ will compute the same value x, which gives the correct answer

for ¢ since C', = x.

o If Co = 1 and C; = 0, set the inputs to m’ to the negations of the inputs to m. Thus if m
would have computed the value z, m’ will compute T, which gives the correct answer for C'

since in this case (', = 7.

This combining circuit can be built in depth 3; thus the depth of the entire new circuit is d +4 and

its size is easily seen to be at most 3s + O(n) where s is the size of the original circuit. The result

follows. I
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